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Abstract 

Over the last three decades, composites have been increasingly adopted in a lot of engineering 

fields due to their excellent specific properties. Thanks to this, many researches have been 

conducted in this field, which generally agree that composites: 

I. need description of 3D stress fields, local effects and complex failure mechanisms  

with the minimum computational effort; 

II. have low out-of-plane shear and transverse strengths;  

Accordingly, in order to investigate these issues, the present dissertation describes the 

research work carried out towards: 

I. developing of analytical and numerical models for accurate and efficient analysis of 

laminates and sandwiches under different loading conditions (static analyses, 

impulsive loading and low velocity impacts); 

II. developing of techniques to improve structural performances of composites structures 

by tuning their energy absorption mechanism; 

A higher order theory (AD-ZZ) including zig-zag effects, transverse shear continuity, 

variable transverse displacement and layerwise representation is presented for analysis of 

laminates and sandwiches. This theory is cast in such a way that the unknowns in the model 

will involve only five variables like equivalent single layer models: the three displacement 

components and the two shear rotations of the normals on the reference surface. It is 

advantageous to formulate the theory in this way, as it provides the opportunity to refine its 

through-the-thickness representation by adding computational layers in the thickness direction 

without increasing the number of unknowns. After extensive evaluation of the accuracy 

obtained by the above mentioned theory for a variety of structures, the AD-ZZ model is 

enriched by adding a set of continuity functions in order to treat laminates and structures with 



 

 

in-plane discontinuities (e.g. bonded joints, two material wedge) under a unified approach 

without adding new unknowns.  

Speaking of techniques to improve structural performances, two approaches are presented: 

variable stiffness composites and stitching. The former tool works on the strain energy of 

the structure computing fibre distributions that minimize unwanted energy contributions and 

maximize the wanted ones. The latter prescribes the insertions of transverse reinforcements in 

sandwich structures. The homogenized mechanical properties of this structure, required by the 

AD-ZZ model to perform the analysis, are evaluated through virtual material tests using a 3D 

FE model. The results obtained applying these techniques demonstrate that both are effective 

in reducing transverse stresses at critical interfaces and, in certain cases, in improving bending 

stiffness. 

New C
0
 displacement-based and stress-based finite elements for analysis of laminated and 

sandwich plates based on the AD-ZZ model are developed. To achieve this goal, a new 

technique that converts derivatives of functional degrees of freedom contained in the AD-ZZ 

is presented. Both the elements satisfy all the requirements of computationally efficient finite 

element models for analysis of multilayered structures, namely 1) the number of degrees of 

freedom is independent from the number of layers; 2) no shear correction factors or penalty 

number are added in the formulation. Consistent shear fields are obtained for the present finite 

element formulations. Numerical results demonstrate that these new elements are robust, 

accurate and computationally efficient for analysis of multilayered structures.  

In order to study structures subjected to impact loading a new simulation procedure is 

developed. It is based on the AD-ZZ model and considers the crushing behaviour of soft-like 

media without performing each time a detailed 3D finite element analysis. Numerical results 

show that the response of composites undergoing low velocity impact is very accurately 

predicted with low computational effort. Overall, the present procedure holds great promise 

for analysis of laminated and sandwich structures undergoing low velocity impact.  

This dissertation is organized in the form of eight chapters each of which is based on the 

papers published during the PhD: 
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Introduction 

Over the last thirty years, composites have increasingly found applications in various 

engineering field (military and civil aircraft, aerospace vehicles, naval and civil structures) 

thanks to their high specific stiffness and strength. Accordingly, the present research study 

deals with composites in laminated and sandwich configurations. In particular, various aspects 

related to composite materials are examined in order to give a complete description of their 

critical aspects and their characteristic behaviour.  

First, in order to put the present work in the right perspective, in Chapter 1 the most recent 

analytical approaches adopted by researchers for modelling composite structures are 

discussed into details. In fact, composite materials require accurate description of their 

interlaminar stress field, since it completely differs from the one measured in classical 

materials; therefore, many theories have been developed in literature for obtaining meaningful 

results. Then, in Chapter 2 it is presented a tool extensively used in the present research work 

due to its accuracy in the prediction of the interlaminar stress-field. It is an analytical 

physically based zig-zag model with fixed degrees of freedom and hierarchic representation, 

developed by Prof. Icardi and by the author. Thanks to this representation, the computational 

effort is kept as low as possible, since the model can be refined across the thickness in order 

to improve accuracy, without adding new unknowns as they are fixed. Accordingly, this 

model is here referred as adaptive model (AD-ZZ). As case studies, in Chapter 3, several 

laminated and sandwich structures are analysed in order to verify the accuracy of the present 

structural model. In particular, structures with extremely low length-to-thickness ratios are 

considered, as customarily in the reference literature, since they represent severe test cases, 

being characterized by strong layerwise effects. Different loading schemes are also 

considered, with the aim of verifying the accuracy of the AD-ZZ model also for structures 

with clamped edges, since structural models with the same functional degrees of freedom as 

the AD-ZZ model often fail with this kind of structures. Comparisons between the results by 
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the AD-ZZ model and by the most important theories discussed in Chapter 1 are also 

presented for laminates and sandwiches. Finally, as a preliminary application to dynamic 

analyses, three sandwich panels subjected to blast pulse are studied with the AD-ZZ model in 

order to test its accuracy for this kind of analyses.   

As a next step, in Chapter 4, the AD-ZZ model is enriched with new contributions. 

Specifically, in order to analyse laminates and bonded joints under a unified approach, the 

AD-ZZ model incorporates new terms, which enables to satisfy the stress boundary 

conditions required when analysing structures with in-plane discontinuity, as in the overlap of 

bonded joints. More in general, thanks to these new contributions the AD-ZZ model is also 

made able to treat structures with in-plane variation of the mechanical properties with 

improved accuracy, as shown in Chapter 8. Similarly to its previous formulation, the model a 

priori satisfies the out-of-plane stress contact conditions at the interfaces of adjacent layers 

and the stress boundary conditions at the upper and lower faces of the structures. In order to 

show the capabilities of this model, applications to analyses of joints taken from the literature 

are presented, for which analytical or finite element results are available for comparisons. 

Single- and double-lap sample cases with isotropic or laminated adherents are investigated. 

The next part of the present research focuses the attention on methods for improving 

structural performances of laminated and sandwich structures. Namely, in Chapter 5 variable 

stiffness and textile composites are considered. The former tool takes advantage of the 

following condition: if each deformation process can be easily described in terms of its strain 

energy contributions, deformation modes responsible for unwanted behaviours can be 

identified and their energy contributions minimized; meanwhile, other deformation modes, 

not deleterious, could be maximized. In this way, an energy transfer process is induced 

between unwanted and preferred modes. On this basis, the law of variation for the mechanical 

properties of a single ply can be found as the ones able to minimize/maximize the 

contributions of interest. The plies with variable stiffness have properties that vary over the 

main plane (x-y plane), according to specific laws that can be satisfied by fibre distributions 

easy to be produced with current technologies. Once incorporated in multilayered structures 

or in the face-sheets of sandwich panels, these plies are able to transfer energy, reducing the 

transverse interlaminar stresses and, in specific configurations, the transverse deflection. The 

benefits that the layers with variable stiffness can bring to the dynamic response of the 

structures subjected to blast loading are also presented. In particular, it is shown that these 
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layers are able to reduce the transverse oscillations under impulsive loading. For what 

concerns textile composites, in accordance with the recent research results the attention is 

focused on specific applications such as stitching or tufting, which imply the insertions of 

transverse reinforcements in sandwich structures in order to reduce their typical difference 

between in-plane and transverse stiffness. This technique introduces the idea of 3D material, 

thus requiring developing specific techniques to treat the problem with the AD-ZZ model. 

Indeed, being a smeared model, it needs an evaluation of the homogenized mechanical 

properties due to the contribution of the through-the-thickness reinforcement. For doing this, 

virtual material tests are carried using a 3D FE model, thus obtaining all the constants of the 

6-by-6 stiffness matrix. A full scale computation like this is expensive, but it is required only 

once for any specific case, therefore costs are affordable. The effects of the stitching spacing 

is taken into consideration, because, this parameter plays an important role in varying the 

stiffness of the structure. Once the homogenized mechanical properties of the reinforced 

sandwich have been determined, a global structural analysis is carried out. Applications are 

presented showing that virtual material tests provide results included in the natural dispersion 

of experiments and that stitching or tufting are effective in recovering critical stresses.  

Chapter 6 faces one of the main drawbacks of the AD-ZZ model: the incorporation of 

derivatives of various orders of the functional d.o.f. in the displacement fields. This is due to 

the fact that expressions of zig-zag functions and of higher-order contributions are obtained 

once for all in a physically consistent way enforcing differential equations like the continuity 

of interlaminar stresses, the boundary conditions and indefinite equilibrium equations. 

Regrettably, derivatives are unwise contributions when finite elements are developed, since 

they should appear as nodal d.o.f. Consequently, computationally inefficient interpolation 

functions must be used. To overcome this drawback, in Chapter 6, it is developed a technique 

(SEUPT) that obtains a C
0
 layerwise model with just five functional d.o.f. from a variable 

kinematics, physically-based zig-zag model. The objective is finding a priori corrections of 

displacements in closed form, which make the energy of the equivalent model with all the 

derivatives neglected equivalent to that of its initial counterpart model containing all the 

derivatives. This idea was already successfully applied in previous work by Prof. Icardi, 

where energy updating was developed as a post-processing technique to improve the 

predictive capability of shear deformable commercial finite plate elements. Here, the idea is 

adopted to eliminate the derivatives of the functional d.o.f. directly from the AD-ZZ model, 
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so to obtain a C
0
 equivalent model with just five d.o.f. able to account for zig-zag and 

layerwise effects. Hermite’s polynomial representations of the d.o.f. are used over the domain, 

whose order depends upon the order of derivatives appearing in the model. Accuracy and 

efficiency of the updating technique are assessed comparing the results of the AD-ZZ model 

to its equivalent counterpart free from derivatives and considering closed form solution of 

reference sample cases with intricate through-the-thickness displacement and stress 

distributions, for which exact elasticity solutions are available for comparisons. 

In Chapter 7, taking advantage of SEUPT, two finite elements are developed. The former is 

an eight-node plate element with standard d.o.f. and serendipity interpolating functions. It is 

applied to compute stress and displacement fields of sample cases for which the exact solution 

is available in the literature. This demonstrates that, through energy balance considerations, an 

efficient and accurate C
0
 element with standard features can be constructed even using as 

structural model a physically-based zig-zag one. The other finite element developed in 

Chapter 7 is a partial hybrid one, which only includes out-of-plane stresses as nodal d.o.f. In 

order to reduce the effort for developing the element without losing accuracy, displacement 

and stress interpolating functions all of the same order are considered. Accordingly, the same 

C
0
 interpolation by standard serendipity polynomials is employed for all the nodal d.o.f. 

Accuracy, solvability and convergence behaviour of this element are assessed comparing its 

results for laminates and sandwiches with different boundary conditions and abruptly 

changing material properties with the exact solutions available in literature. 

The last part of the present research deals with impact on composites structures, which is an 

application of practical engineering interest. In particular, in Chapter 8, a new simulation 

procedure for the analysis of low-velocity, low-energy impact is presented. It is based on the 

AD-ZZ model and uses a modified Hertzian contact law that forces the target to conform to 

the shape of the impactor. In order to describe core crushing, when dealing with sandwiches, 

the variable, apparent elastic moduli of the core while it collapses/buckles under transverse 

compressive loading are computed apart once for all through a detailed three-dimensional 

finite element analysis. Then, they are provided to the AD-ZZ model as variable properties at 

each load level. Furthermore, the damage analysis is integrated inside the dynamic analysis, 

thus stress-based criteria are applied for estimating the overall area of failure. Then, the 

damage analysis is repeated with the new stress-field and the relative property degradation is 

applied, as a consequence of the damage onset. Finally, the analysis goes on, while the time 
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folds, in an implicit time integration scheme. The results obtained by this new technique can 

be substantially collected in two classes: the prediction of the contact force and the damage 

analysis time after time. The results dealing with laminates and sandwiches, with various 

boundary conditions, impactor geometries, materials and impact energies, show the accuracy 

of the present technique and, what is important, its low computational effort. 

 

Concluding, the present study focuses the attention on various aspects related to modelling of 

composite structures and offers theories, tools and techniques for accurate analyses. The most 

important topics related to the composite design are treated and new models proposed. 

Whenever possible, the results by the theories proposed are assessed through comparisons 

with experimental results. The matters opened by this study and the good results obtained by 

the tools implemented suggests to work further on these topics, thus future developments are 

currently in progress.  
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Chapter 1:  Modelling of composite structures 

1.1 State of the art 

Laminates and sandwiches increasingly find use as primary structural components, since with 

respect to metals improved structural performances can be obtained with a lower mass using 

these materials (see, e.g., Sliseris and Rocens [1] and Khani et al. [2], Nik et al. [3]). 

However, owing to their rather poor out-of-plane moduli and strengths compared to those in 

the in-plane direction, warping, shearing and straining deformations of the normal (zig-zag 

effect) and relevant out-of-plane stress concentrations (layerwise effect) rise. These effects 

can cause local micro-failures that lead to loss of strength and stiffness, which can be 

dangerous for structural integrity. They also affect vibration and buckling behavior, 

particularly in case of strong anisotropy and for thick structures (see, e.g. Liu and Islam [4] 

and Vachon et al. [5]). Since structures must carry the ultimate design load even when they 

are damaged, various technical skills have been developed to improve damage tolerance, 

strength and fatigue behaviour of composites (see, e.g., Potluri et al. [6], Judawisastra et al. 

[7], Wang et al. [8], Vaidya et al. [9], Nilanjan [10] and Cox and Flanagan [11]).  

In order to enhance the effectiveness of these techniques, zig-zag and layerwise effects should 

be accurately described. Therefore, many multi-layered models based on different 

assumptions have been developed. Their basic requirement is that they produce continuous 

displacements across the thickness with appropriate discontinuous slope changes at the 

interfaces of constituent layer, which enables to obtain continuous interlaminar stresses as 

prescribed by the elasticity theory. Equivalent Single-Layer models (ESL) (e.g. FSDT [12] 

and HSDT [13]) still find many applications for predicting overall quantities being simple to 

handle and having low computational costs, but they are unable to provide realistic 

predictions of stress fields, as they disregard previous requirements. 
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The papers by Reddy [14], Bert [15], Noor and Burton [16], Reddy [17], Reddy and Robbins 

[18], Burton and Noor [19] and Noor, Burton and Bert [20] and more recently those by 

Chakrabarti et al. [21], Matsunaga [22], Chen and Wu [23], Kreja [24], Tahani [25], Noor and 

Malik [26], Carrera [27] give i) an extensive discussion of the various techniques employed to 

account for zig-zag and layerwise effects and ii) extensive assessments of  their performances. 

Accuracy of finite element models for laminated and sandwich composites is assessed by To 

and Liu [28], Desai et al. [29], Ramtekkar et al. [30], Dau et al. [31], Carrera et al. [32], 

Shimpi and Ainapure [33], Elmalich and Rabinovitch [34], Zhen et al. [35], Cao et al. [36] 

and Dey at al. [37]. Further assessments are presented  in the papers  by Matsunaga [38], [39], 

[40], [41], [42], Mourad et al. [43], Versino et al. [44], Hu et al. [45], Kapuria and Nath [46], 

Oñate et al. [47], [48], [49], Vidal and Polit [50], Mashat et al. [51] and Carrera et al. [52], 

[53], [54], [55], [56], [57].  

The most recent analytical models suitable for stress analyses are here classified in a broad 

outline as: (i) Discrete-Layer (DL) models with a separate representation across each 

computational/physical layer [58], [59]; (ii) High-Order Layerwise (HLW) plate models based 

on a combination of global higher-order terms and local layerwise functions of various type 

(see, e.g. [60] and [61]). These theories are further split into kinematic-based (ZZ-K) and 

physically-based zig-zag plate theories (ZZ-F) with displacement-based or mixed/hybrid 

formulation. The latter have the advantage of more easily enforcing stress interfacial and 

boundary constraints, but their stability, convergence and solvability are ruled by quite 

complex relations.  

Of interest to this work are physically-based zig-zag plate theories with fixed degrees of 

freedom (d.o.f.) that a priori fulfil the stress continuity conditions [62]. They incorporate 

piecewise contributions to displacements that enable to meet these requirements, as prescribed 

by the elasticity theory. Thus, they change with the stacking sequence. On the contrary, 

kinematic-based zig-zag plate theories include piecewise contributions to displacements with 

a periodic change of the slope, as in the exact elasticity solution of laminates with periodical 

stack-up. Thus, this kind of models is not mechanical-properties dependent. 

It is a common opinion that use of DL and 3D finite element analysis, though accurate, should 

be limited to local regions otherwise they could overwhelm the computational capacity having 

a too large number of variables. Instead, as shown by the cited reviews and in the papers by 

Giunta et al. [63], Vidal et al. [64], Shariyat [65], Lo et al. [66], Jun et al. [67], Zhen and 
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Wanji [68], [69], [70], [71], [72], Wanji et al. [73], Zhen et al. [74] HLW can be as accurate 

as 3D FEA and DL models at a much lower cost. Hence, a continuously increasing interest 

has been registered in the recent years towards these models. Among HLW, ZZ-F with a fixed 

number of variables pioneered by Di Sciuva in [62] and refined in [75], [76], [77], [78], [79], 

[80], [81] are of great interest, being accurate with the minimal computational effort 

As a corroboration of this, ZZ-F based on Di Sciuva’s ideas  have found extensive application 

as structural models for solving various problems dealing with laminated and sandwich 

composites. As examples since earlier applications to present, the papers by Cho and 

Parmerter [82], Cho et al. [83], Cho and Kim [84], [85], [86], [87], Cho and Choi [88], Oh et 

al. [89], Kim et al. [90], Lee et al. [91], Kapuria et al. [92], [93], [94], [95], Li and Liu [96], 

Zhen and Wanji [97], Di Sciuva and Icardi [98], Gherlone and Di Sciuva [99], Di Sciuva, 

Gherlone, and Librescu [100], Averill [101], Averill and Yip [102], Aitharaju and Averill 

[103], Eby and Averill [104], Yip and Averill [105], Icardi [106], [107], [108], [109], Icardi 

and Ruotolo [110], Icardi, Di Sciuva and Librescu [111], Icardi and Di Sciuva [112], Icardi 

and Ferrero [113], [114], [115], [116], [117], [118], Icardi and Sola [119], [120], [121], [122], 

[123], Tessler et al. [124], [125], [126], [127], [128], [129], Gherlone et al. [130], Versino et 

al. [131] and Azhari et al. [132] are cited. 

In the forthcoming sections, the kinematic assumptions of Di Sciuva’s and of refined ZZ-F 

models, how and why they evolved till nowadays will be discussed into details. 

1.2 Preliminaries and notations 

Consider a multilayered plate made of nl arbitrarily oriented, orthotropic layers and ni= nl -1 

interfaces. Each point of the plate is referred to a Cartesian coordinate system (x, y, z), with z 

as the thickness coordinate. The middle plane Ω is assumed as the reference plane, hence z ∈ 

[-h/2, h/2], where h is the overall thickness. The principal material directions of each 

constituent lamina are indicated as 1, 2 and 3. The position of the upper
+
 and lower 

-
 surfaces 

of the k
th

 layer are indicated as 
(k)

z
+
 and 

(k)
z

-
; the quantities that belong to a generic layer k are 

denoted with the superscript
(k)

 (see Figure 1.1). The applied transverse load is denoted with 
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the symbol p
0
, the applied surface loads are indicated with τij (ij indicate the surface over 

which they act).   

It is assumed that sandwich plates can be analysed in homogenized form as laminated plates 

with a thick intermediate layer constituting the core, when the buckling of cell walls is 

considered outside the purpose of the analysis. Otherwise, a full three-dimensional description 

of the cellular structure should be employed (see Chapter 8). 

The orthogonal components of the displacement vector in (x, y, z) are denoted as u, v and w. 

Linear relations between stresses and strains are assumed throughout this work, hence 

distinction between various measures of stresses and strains is unnecessary. The components 

of the strain tensor are εxx, εyy, εzz, εxy, εxz and εyz and the corresponding components of the 

stress tensor are σxx, σyy, σzz, σxy, σxz and σyz respectively.  

According to [133], the generalized Hooke’s law determines for each orthotropic layer with 

arbitrary orientation θ the following stress-strain relations: 

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

xx xx

yy yy

zz zz

xz xz

yz yz

xy xy

C C C C

C C C C

C C C C

C C

C C

C C C C

 

 

 

 

 

 

    
    
    
       

     
    
    
    
        

 (1.1) 

Where defining m= cos θ and n= sin θ: 
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      (1.2) 

The elastic coefficients Cij’ in (1.2) are related to Young’s moduli E1, E2, E3 in 1, 2 and 3 

directions, shear moduli  G12, G23, G31  in the planes 1-2, 2-3, 3-1 and the Poisson’s ratios νij=-

εj/εi, which are the so-called engineering constants.  
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Figure 1.1 a) Reference system; b) criteria for numbering layers and interfaces. 

Acronym Definition 

3D FEA Three-dimensional Finite Element Analysis 

DL Discrete Layer models 

d.o.f. Degrees of freedom 

ESL Equivalent Single-Layer Models 

FSDT First-Order Shear Deformation Theory 

GL-ST Global-local superposition technique 

HLW High-order layerwise models 

HSDT Third-order shear deformation plate theory 

RZT Refined Zig-Zag Theory 

TBT Timoshenko Beam Theory 

ZZ-F Physically-based zig-zag models 

ZZ-K Cinematically-based zig-zag models 

Symbol Definition 

u
0
, v

0
, w

0
 Displacement of the points on the reference mid-plane 

γx, γy 
Transverse shear rotations of the normal of the points on the 

reference mid-plane 

θx, θy Rotations of the normal of the points on the reference mid-plane 

Φx
k
, Φy

k, 
Ψ

k
,
 
Ω

k
 Continuity constants (in Icardi’s theories) 

Hk Heaviside unit step function 

Ψ Linear rotation of a layer above the reference surface (in 
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Sublaminate theory) 

β, η 
Higher-order rotations of a layer above the reference surface (in 

Sublaminate theory) 

ξi, ξj Continuity coefficients (in Sublaminate theory) 

Cx, Cy, Dx, Dy, b, 

c, d, e 

Higher-order terms to be computed by imposing conditions 

prescribed by the Elasticity Theory (in Icardi’s theories) 

uG, vG, wG Global contributions (in Global-local theory) 

ūL
k
, ûL

k
, v̅L

k
, v̂L

k
, 

ωz(x), uzz (x) 
Local contributions (in Global-local theory) 

Ψα Zig-zag amplitude (in RZT theory) 

φα
(k)

 Zig-zag function (in RZT theory) 

Table 1.1 List of symbols and acronyms. 

1.3 Di Sciuva’s early ZZ-F models  

The following piecewise representation of displacements is assumed in the Di Sciuva’s zig-

zag model [80]: 

 0 0 0 3

, 3

1

u( , , ) ( , ) ( , ) ( , ) ( , ) ( , )( )
in

k

x x x x k k

k

x y z u x y z x y w x y A x y z x y z z H


          

 0 0 0 3

, 3

1

v( , , ) ( , ) ( , ) ( , ) ( , ) ( , )( )
in

k

y y y y k k

k

x y z v x y z x y w x y A x y z x y z z H


        (1.3) 

0w( , , ) ( , )x y z w x y  

that contains the piecewise linear model [62] as a particular case neglecting terms Ax3 and 

Ay3.  

As functional d.o.f. of the piecewise linear and cubic models, the orthogonal components of 

the elastic displacements u
0
, v

0
 and w

0
 in the x, y, z directions of the points on the reference 

mid-plane and the transverse shear rotations γx and γy are assumed.  

The characteristic feature of Di Sciuva’s theory is the presence of piecewise functions Φx
k
 

=(ak γx + ck γy ) and Φy
k
 =(bk γx + dk γy ) the so-called zig-zag functions, whose purpose is to 

make continuous transverse shear stresses at the layer interfaces. Displacements (1.3) can be 

viewed as the sum of a polynomial representation in z whose representation is valid across the 
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whole thickness of the structure (i.e. global part) and a contribution varying among the layers 

constituting the local part of the model. The global contribution is continuous across the 

thickness and has a continuous gradient. The local contributions Φi
k
 provide appropriate 

discontinuous derivatives in z at the layer interfaces in order to make continuous transverse 

shear stresses. Hk is the Heaviside unit step function (Hk=0 for z < zk, while Hk=1 for z ≥zk).  

The expressions of the constants ak, bk, ck, dk are obtained in a straightforward way in a closed 

form for any lay-up by enforcing the continuity of transverse shear stresses at the interfaces: 

( ) ( )

( ) ( )

| |

| |

k k

k k

xz xz
z z

yz yz
z z

 

 

 

 




 (1.4) 

These constraints only depend on the geometric and material properties of the structure. It is 

reminded that differently to other models they do not involve any additional d.o.f. and they 

identically vanish in homogeneous plates. 

Coefficients Ax3 and Ay3 are incorporated in order to satisfy the traction-free boundary 

conditions at the upper and lower bounding faces: 

   0 0
2 2xz yz

h hz z        (1.5) 

Many numerical assessments have been published by Di Sciuva (see, e.g. [77], [78], [134]) as 

closed-form solutions or finite element solutions. Comparisons with three-dimensional exact 

elasticity solutions and other approximate solutions demonstrated the significant influence of 

transverse shear deformations on the response of laminates, even when they are not extremely 

thick.  

Displacement and stress fields are accurately predicted by Di Sciuva’s models for structures 

with simply supported edges whenever the ratio of in-plane to transverse stiffness properties 

is not extremely high and the material properties of constituent layers do not abruptly change 

across the thickness. 

Since no additional variables with respect to ESL theories are incorporated in the Di Sciuva’s 

models for defining the zig-zag functions (and thus to satisfy the interlaminar stress 

continuity) they attracted many researchers aimed at obtaining accurate stress predictions with  

low processing time and memory storage dimension. 

The pioneering model [80] found many applications. Based on this theory, Di Sciuva [78] 

develops a three-node, conforming, multilayered plate element of arbitrary triangular shape 

with a total of 30 nodal d.o.f., namely the two in-plane displacements, u
0
, v

0
 the two shear 
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rotations γx, γy, the transverse displacement w
0
 and its first and second order derivatives w

0
,x, 

w
0
,y, w

0
,xx, w

0
,xy and w

0
,yy  for a total of 10 d.o.f. at each node. 

The third-order multi-layered zig-zag model with a constant transverse displacement and with 

interlayer transverse shear stress continuity fulfilment is applied by Icardi and Ruotolo [110] 

and Icardi [135] to analysis of symmetric and unsymmetric multi-layered shells. Curvature 

terms are incorporated into displacement fields and into the strain-displacements relations. 

Differently to plates, the comparison with exact solutions demonstrates that for shells 

integration of local equilibrium equations no longer obtains accurate stress predictions, owing 

to membrane-bending-twisting coupling effects. Indeed, in-plane stresses exploited to derive 

their out-of-plane counterparts by integrating the local equilibrium equations are no longer 

accurate for shells. 

Averill [101] and Averill and Yip [102] develop zig-zag models where the continuity of the 

transverse shear stress across the laminate thickness is enforced using a penalty method in 

order to obtain a C
0
 formulation. The standard form based on the bending rotation as primary 

kinematic variable in the expression for the axial displacement is adopted as in the 

Timoshenko Beam Theory (TBT). An additional kinematic variable associated with a zig-zag 

function is incorporated by introducing an ad hoc penalty term to the variational principle, 

enforcing continuity of the transverse shear stress across the cross-section in a limiting sense, 

as the penalty parameter approaches a large value. The through-the-thickness variation of the 

in-plane displacement is described by a cubic polynomial in the transverse coordinate with a 

piecewise linear function superposed upon it. The transverse displacement is assumed 

constant.   

The displacement components of the k
th

 layer can thus be written as: 

1
0 2 3

1 1

0

u( , z) ( ) ( ) ( ) ( ) ( )( ) ( )( )

( , ) ( )

k m

i i j j

i j

x u x z x z x z x x z z x z z

w x z w x

   


 

        



    (1.6) 

where Ψ is the linear rotation of layer m + 1 (the layer above the reference surface), β and η 

are higher-order rotations, which are computed by satisfying the transverse shear traction 

boundary conditions: 

       2 2 2 2xz xz xz xz
h h h hz z z z            (1.7) 

ξi and ξj are continuity coefficients computed imposing conditions (1.4).  
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The model results in a four-variable, C
0
- continuous beam theory suitable for formulation of 

efficient finite elements. But an anomaly is present since the methodology for defining the 

zig-zag function lacks invariance with respect to the choice of the fixed layer. Moreover, 

Averill’s model still gives erroneous results at clamped ends. Tessler et al. [124], [125], [126], 

[127] overcome the shear-force inconsistency and difficulties in simulating clamped boundary 

conditions, proposing a zig-zag theory that constitutes a natural extension of TBT. This theory 

is based on a zig-zag function that i) vanishes at the top and bottom beam surfaces, ii) does 

not require full shear-stress continuity across the laminated-beam and iii) is C
0
-continuous.  

In the following section an approach for describing zig-zag and layerwise effects alternative 

to that proposed by Di Sciuva is presented, to give a complete view of the research in the 

field. Then, the most relevant contributions brought for improving zig-zag models based on 

Di Sciuva’s ideas are discussed. 

1.4 Murakami’s zig-zag function  

As an alternative to the approach suggested by Di Sciuva [62] - [80] and presented above, ZZ-

K theories ( [52], [53], [54], [55], [56], [57]) use 

 F ( ) 1 2
k

kk M

k

z z
z

h


   (1.8) 

instead of the local contributions brought by the summations in Eq. (1.3). The meaning of 

symbols is as follows:  zM
k
 is the thickness coordinate of the reference plane of the k

th
 layer 

and h
k
 is the thickness of the k

th
 layer. Eq. (1.8) is based on the Murakami’s idea [136]  of a 

priori assuming a slope variation of displacements at the interfaces as in laminates with 

periodic lay-up. 

As discussed by Gherlone [137], the Murakami’s zig-zag function obtains results in good 

agreement with exact 3D elasticity solution whenever periodical stack-ups are considered, 

while it is less accurate for arbitrary stacking sequences (see also Section 3.2.2). 

ZZ-F models result into more accurate solutions with general lay-ups, in particular when 

asymmetrical sandwiches with high face-to-core stiffness ratios are considered, or when a 

weak layer is placed on the top or bottom of laminates to simulate a damaged face. Thus, to 

ensure always the maximal accuracy, physically-consistent zig-zag functions should be 
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considered. However, ZZ-K models are much easier to implement, require less effort than 

ZZ-F and can more easily produce an efficient C
0
 formulation useful for the development of 

finite elements.  

In light of these considerations, ZZ-F could help when solving practical problems, but 

techniques should be developed to manipulate the rather complex algebraic equations 

resulting from the enforcement of the physical contact conditions at the layer interfaces and 

for obtaining a C
0
 formulation. This avoids development of inefficient finite elements with 

derivatives of the d.o.f. as nodal variables, which directly come from the fact that the 

unknown coefficients of the physically based zig-zag functions are computed through 

equations involving stresses. 

Refined ZZ-F models developed to overcome the drawbacks of early Di Sciuva’s ones are 

discussed in the next sections. Aims of these models  developed by various researchers 

starting from the ideas by Di Sciuva  are obtainment of accurate stress prediction from 

constitutive equations,  consideration of  general boundary conditions and incorporation of 

transverse normal deformability and stress, which are important when interlaminar bonding 

imperfections [138] and temperature gradients  rise [139] and when cut-outs and delamination 

fronts are considered. 

1.5 Sublaminate zig-zag models  

Sublaminate zig-zag models by Averill and co-workers [101], [102], [103], [104], [105] 

extend the concept of local and global laminate modelling introduced by Pagano and Soni 

[140]. The idea is similar to Di Sciuva’s model (1.3), but displacements at the top and bottom 

surfaces of computational layers are assumed as kinematic variables. Analyses are carried out 

using a single computational layer, stacking several computational layers or even subdividing 

a physical layer into one or more computational layers. As a consequence, a good 

compromise between accuracy and cost saving can be achieved in all cases. The 

representation can be refined in the regions with steep displacements and stress gradients, 

while a single computational layer can be used elsewhere. As important consequence, 

sublaminate models offer the possibility of obtaining accurate stress predictions from 
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constitutive equations, even with abruptly changing material properties of constituent layers, 

with a computational burden lower than DL models.  

Averill and co-workers introduced the following zig-zag representation within each 

computational layer, i.e. within each sublaminate: 

1

u( , , ) ( , ) ( , ) ( , )( )
in

b x xk k

k

x y z u x y z x y x y z z


        

1

( , , ) ( , ) ( , ) ( , )( )
in

b y yk k

k

v x y z v x y z x y x y z z


      (1.9) 

w( , , ) ( , ) 1 ( , )b t

sb sb

z z
x y z w x y w x y

h h

   
     

   
 

where hsb is the thickness of the sublaminate; ub and vb are the axial displacements in x and y 

directions, respectively at z=0; Ψi is the rotations of the normal at z=0; wt and wb are the 

transverse deflections of the top and bottom surface of the k
th

 sublaminate. ξik are the 

continuity coefficients computed imposing conditions (1.4)  

A modified sublaminate zig-zag beam theory is developed by Icardi [107] with a complete 

fulfilment of interfacial continuity. This model is developed from a previous one [141] 

constituting a refined version of the piecewise cubic zig-zag model by Di Sciuva, where a 

piecewise parabolic contribution is incorporated in the in-plane displacements of (1.3) in 

order to fulfil the stress-free boundary conditions (1.5) at the upper and lower free surfaces 

also for asymmetric structures. It could be noticed indeed that linear and cubic contributions 

give rise to parabolic, i.e. symmetric, transverse shear stress distributions, while the second 

order term enables the possibility to treat asymmetric stresses resulting from asymmetric lay-

ups. The displacement field postulated in [107] is: 

0 0 0 2 3

,

1

( , , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )( )
in

k

x x x x x k k

k

U x y z u x y z x y w x y C x y z D x y z x y z z H


              

0 0 0 2 3

,

1

( , , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )( )
in

k

y y y y y k k

k

V x y z v x y z x y w x y C x y z D x y z x y z z H


            (1.10) 

0 2 3 4 2

1 1

( , , ) ( , ) ( , )( ) ( , )( )
i in n

k k

k k k k

k k

W x y z w x y bz cz dz ez x y z z H x y z z H
 

             

Based on this representation, the model [107] is developed with a piecewise variable 

transverse displacement. The d.o.f. are the same as in early Di Sciuva’s theories. The 

continuity functions Φi
k
 are incorporated in order to fulfil the continuity of the interlaminar 
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shear stresses at the material interfaces (1.4) like in the Di Sciuva’s theoretical models. The 

two contributions Ψ
k
 and Ω

k
 to the transverse displacement are incorporated in order to satisfy 

the continuity of the transverse normal stress at the interfaces σzz|
(k)

z
+
= σzz|

(k)
z
-
 and of related  

gradient in the thickness direction σzz,z|
(k)

z
+
= σzz,z|

(k)
z
-
, respectively, as discussed in Chapter 2. 

In light of these considerations, in [107] the displacement field of the sublaminate theory is as 

follows: 

4
1

( )

1 1

5
1 2

( )

1 1 1

( , ) ( ) ( )( )

( , ) ( ) ( )( ) ( )( )

i

i i

n
i i k

j j j k k

i k

n n
i i k k

j j j k k j k k

i k k

U x z z U x x z z H

W x z z W x x z z H x z z H



 



  

   

      

 

  

 (1.11) 

The d.o.f. in this case are the in-plane and transverse components of the displacements at the 

lower and upper bonding faces of the sublaminate, their thickness derivatives and the 

transverse displacement at the mid-plane of the sublaminate  (the bottom plane of the 

sublaminate is assumed as reference plane). 

Barboni and Gaudenzi in Ref. [142] develop a refined, physically-based three-dimensional 

zig-zag model with variable transverse displacement for analysis of multilayered composites 

with arbitrary lay-up capable of accurately capturing the warping of sections and the 

interlaminar stress fields. A class of C
0
 finite element models based on this theory is 

developed by Gaudenzi et al. [143] and applied to bending and vibration problems of 

laminated plates, comparing results with the three-dimensional elasticity theory, classical 

laminate theory and other higher-order theories. 

Numerical applications of sublaminate model [108], [109] and [141] demonstrate that 

accuracy is improved when laminates are very thick and/or the constituent layers have 

distinctly different elastic properties as shown by the comparison with the exact solutions 

[144], [145]. A fundamental advantage of the sublaminate solution is also the possibility to 

obtain accurate stress results from constitutive equations, because it is possible to refine the 

representation in the regions with steep gradients by stacking more sublaminates.  
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1.6 Global-Local zig-zag theories  

Improved zig-zag models based on a global-local superposition technique (GL-ST) that obtain 

accurate stress from constitutive equations have been developed by Li and Liu [96] for 

analysis of plates considering 15 d.o.f. and, more recently, by Zhen and Wanji [68], [69], [70], 

[71], [72]. These models still assume a constant transverse displacement across the thickness, 

but refinements have been brought to the global-local superposition modelling technique over 

years by Zhen, Wanji and co-workers. A general formulation for this kind of models can be: 

ˆu ( , , ) ( , , ) ( , , ) ( , , )k k k

G L Lx y z u x y z u x y z u x y z      

ˆ( , , ) ( , , ) ( , , ) ( , , )k k k

G L Lv x y z v x y z v x y z v x y z    (1.12) 

( , , ) ( , , )k

Gw x y z w x y z  

where uG, vG and wG are the global contributions to displacements; ūL
k
, ûL

k
, v̅L

k
 and v̂L

k
 are 

terms of local groups; the superscript k represents the number of layers. These terms are 

polynomials up to the third order in the thickness coordinate:  
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L
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 (1.13) 
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By enforcing free conditions of the transverse shear stresses on the top and bottom surfaces, 

displacements and transverse shear stresses continuity conditions at the interfaces, terms ui
k
 

and vi
k
 are computed. They are just functions of material constants and thickness of laminated 

plate, and their full expressions can be found in Ref. [68].  

Numerical results (see, e.g. [110], [141]) show that the global-local superposition modelling 

technique is capable of accurately predicting the distributions of displacement and stress 

fields for laminates and shells, also for the cases where ZZ-F models by other researches fail 
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to be accurate. The global local ZZ-F theories [68], [69], [70], [71], [72] and [96] accurately 

predicts stress fields for laminates with general lamination configurations and for sandwiches  

under mechanical or thermal loading. C
0
 triangular and quadrilateral multilayered plate 

elements are developed in [66], while C
1
 finite elements are developed in [68], [69], [70] and 

[72]. In Ref. [146], Vidal and Polit propose the following displacement field:  

 0 0 0 ( )

, ,

0

( , y, ) ( ) ( ) sin ( ) ( ) ( ) ( )

w( , y, ) ( )

k

x z x ZZ

h z
u x z u x zw x x w x F z u x

h

x z w x





    



 (1.14) 

where ωz(x) and uzz (x) are additional d.o.f., which represent local contributions. A 

characteristic feature of this model is the use of sinus representation [147]. Sinus 

representation approximates the exact three-dimensional solution and furthermore the 

derivative of this function represents the transverse shear strain distribution due to bending. 

Therefore, the free boundary conditions at the top and bottom surfaces of the beam are 

automatically satisfied. Based on this model, in [148] a six d.o.f. global-local beam model 

with parabolic transverse displacement is developed.  

Di Sciuva and Gherlone in Ref. [149] develop a third-order Hermitian zig-zag plate theory as 

a refinement of the cubic zig-zag one [78], [79], [80] and apply it to development of a finite 

element plate model able to capture also transverse normal deformability. In-plane 

displacements are represented across the thickness as the sum of a classical power expansion, 

a piecewise contribution that is continuous but with jumps in the first derivatives at interfaces 

(thus enforcing continuity of transverse shear stresses) and a contribution allowing in-plane 

displacement jumps at the interfaces, which simulate damaged interfaces (their detrimental 

effects are discussed in [100]). A linear variation of the transverse displacement is assumed 

across the thickness to account for the transverse normal deformability and the corresponding 

normal stress. Like in Refs. [150] and [151], a mixed approach is applied with the transverse 

normal stress as input and related strain as output. In [149], the transverse normal stress is 

supposed constant across the thickness. As functional d.o.f., transverse displacements and 

transverse normal stresses at the upper and lower faces are assumed to enable use of the 

sublaminate approach. The finite element is constructed adopting parabolic 2D interpolation 

functions of classical 8 node plate elements, assuming as nodal d.o.f. the three displacements, 

the derivatives of the transverse displacement and the transverse shear stresses at corner nodes 
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and the two in-plane displacements and transverse shear stresses at mid-side nodes. Further 

application and assessments of the Hermitian model are presented by Di Sciuva et al. in [152].  

1.7 Refined Di Sciuva’s zig-zag Theory RZT 

Nevertheless Di Sciuva’s early models satisfying the interlaminar transverse shear stress 

continuity accurately predict the through-the-thickness distribution of in-plane displacements 

and stresses of thin to thick laminated beams/plates, they are affected by three serious 

drawbacks. As highlighted in Tessler et al. [125], the shortcomings arisen are:  

 

- the inconsistency of the transverse shear forces obtained integrating the transverse shear 

stresses, as they don’t match their counterpart forces coming from the constitutive transverse 

shear stresses; 

- the transverse shear forces incorrectly vanish at clamped edges; 

- the C
1
-continuity requirement for a finite element implementation. 

 

To overcome these drawbacks, Tessler, Di Sciuva and Gherlone developed a refined version 

of Di Sciuva’s piecewise linear zig-zag model [62], the Refined zig-zag Theory (RZT). In this 

theory, it is still assumed a piecewise linear distribution of the in-plane displacement and a 

constant transverse one, the displacements being postulated as: 

     ( ) ( )

( )

( , ) ( )

( , ) ( )

k k

k

z

U z u z z

U z w

        



x x x x

x x
 (1.15) 

The meaning of symbols in (1.15) is as follows: the superscript k denotes the k
th

 lamina and α 

represents the component of the displacement vector along the coordinate xα. The variables 

uα, θα and w represent the in-plane displacement, the rotation of the normal of points on the 

reference mid-plane and the transverse deflection, respectively. The first two contributions to 

the in-plane displacement Uα
(k)

 represent the global part, i.e. the coarse part of the model that 

repeats the kinematics of FSDT, while the latter one represents the local, i.e. the refined 

piecewise contribution, wherein Ψα is the zig-zag amplitude and φα
(k)

 is the zig-zag function. 

Thus the variable Ψα is added to kinematics. 
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For a plate, the RZT model results in seven kinematic variables, namely the five FSDT 

variables uα, θα and w plus the two zig-zag amplitudes Ψα. Once the stacking sequence is 

defined along with the transverse shear moduli of constituent layers, the zig-zag function φα
(k)

 

can be computed. For homogeneous plates φα
(k)

 still vanishes identically, like in the early Di 

Sciuva’s zig-zag model. 

To overcome the shortcomings of the Di Sciuva’s early models mentioned above, in RZT the 

transverse shear stress continuity is only partially satisfied, a discontinuity being allowed at 

the layer interfaces. Relaxing the continuity conditions, the RZT model  obtains a piecewise 

constant distribution of transverse shear stresses that is accurate in an average sense and that 

avoids the shear forces inconsistency (e.g., [98]- [100], [110]- [112], [153] - [154]). Namely, 

the transverse shear stress continuity condition is enforced only on the zig-zag dependent 

contribution. 

RZT is revisited by Tessler, Di Sciuva and Gherlone in [127], [128] assuming the in-plane 

displacement field  expressed as a superposition of coarse and fine contributions, within the 

framework of a multi-scale formalism that yields to four distinct sets of zig-zag functions, 

among which the best one is identified. Further studies are presented in Iurlaro et al. [155], Di 

Sciuva and Gherlone [156] and Di Sciuva et al. [157]. 

As RZT requires only C
0
-continuous kinematic approximations, it is suitable for developing 

computationally efficient C
0
-continuous finite elements. Gherlone, Tessler and Di Sciuva 

develop in [130] two- and three-node beam finite elements based on RZT for analysis of 

multilayered composite and sandwich beams accounting for stretching, bending, and 

transverse shear deformations. Anisoparametric interpolations are adopted to approximate the 

four independent kinematic variables of RZT so to avoid locking phenomena in thin cases. 

Different types of constraints are examined for obtaining two-node elements. The most 

accurate results are obtained for simply-supported and cantilever beams with a large range 

variation of lamination sequences and slenderness ratios and with heterogeneous material 

properties (including sandwiches). A variable transverse displacement is obtained from the 

constraint relations. 

Versino, Mattone, Gherlone, Tessler and Di Sciuva in Ref. [131] develop C
0
 three- and six-

node triangular plate element based on RZT and still anisoparametric interpolations that 

ensure proper element behaviour even when plates are very thin. Continuous edge constraints 
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are enforced on transverse shear strains to derive coupled-field deflection shape functions also 

in this case. 

Kim and Cho [158] obtains an accurate description of displacement and stress fields adopting 

a mixed variational formulation within the framework of the Reissner mixed variational 

theorem wherein the FSDT is adopted as kinematics, while the assumed transverse shear 

stress field derives from a higher-order zig-zag model by establishing a relation between the 

kinematic variables of the two models. 

Oñate et al. [47] uses RZT as the basis for developing a two-node linear C
0
 beam element 

named LRZ that was proven to accurately capture the stress fields of laminates, both for 

simply supported and clamped boundary conditions under different loads, and able to capture 

the relative displacement between layers occurring in a delamination process.   

Iurlaro, Gherlone and Di Sciuva in [159] develop a mixed RZT model that assumes the RZT 

kinematics along with an independent transverse shear stress field that derives from the 

integration of local equilibrium equations as a generalization of the technique by Auricchio 

and Sacco [160]. In this formulation, originally developed for beams, the transverse shear 

stress satisfies exactly the axial equilibrium equation and it a priori satisfies the top and 

bottom stress boundary conditions on transverse shear stresses. As a result of the integration, 

the transverse shear stress is continuous at the layer interfaces. It is not used a polynomial 

thickness representation for transverse shear stresses, differently to many other mixed models, 

because Auricchio and Sacco highlighted a serious drawback for this kind of assumption: 

once stress variables increase according to the increase in the number of layers, the 

compatibility term in the Reissner’s functional forces the assumed stresses to fit with those 

coming from kinematic assumptions yielding to no improvements (over fitting deficiency). 

So, it is better to simplify the expression of transverse shear stresses in terms of kinematic 

variables. 

In order to extend the technique to plates and to prevent from over fitting deficiency, Iurlaro 

et al. [159] assumed the cylindrical bending hypothesis according to which the transverse 

shear stress is related only to second order derivatives of RZT kinematic variables  uα, θα  and 

Ψα. 

In thick laminates, the plane stress assumption σzz=0 ceases to be valid; hence a fully three-

dimensional stress field takes place. Displacements cease to be piecewise linear across the 

thickness and assume a higher-order pattern. Hence, models suitable for analysis of these 
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cases should account for a non-linear piecewise distribution of in-plane displacements across 

the thickness and for the transverse normal deformability (see, e.g. Refs. [107], [119] and 

[159]). Accordingly, Barut et al. [161] incorporate a piece-wise parabolic contribution to in-

plane displacements and assume a smeared parabolic distribution for the transverse 

displacement to enrich the RZT model. The transverse normal stress is independently 

assumed in the form of a smeared cubic polynomial in terms of two stress variables. 

Subsequently, the stress variables are expressed in terms of the kinematic ones by satisfying a 

least-square statement. 

1.8 Zig-zag models with variable kinematics and fixed d.o.f  

In order to limit computational burden, Icardi and Ferrero explore whether a model with the 

five classical middle surface functional d.o.f. and a hierarchic zig-zag representation that can 

adapt to the variation of solutions can obtain accurate stress predictions from constitutive 

equations. Initially, in [116] a sublaminate ZZ-F model with variable kinematics is developed 

as a mixed plate model with displacements and interlaminar stresses at the upper and lower 

faces as functional d.o.f.  The following zig-zag representation of displacements is postulated 

across the thickness of each computational layer J:  
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Contributions u
J
, v

J
, w

J
 constitute the global part, which comprises hierarchic forms, while 

summations represent the local one. The continuity functions Φx
k
, Φy

k
 are aimed at  making 

continuous the interlaminar shear stresses at the interfaces of layers grouped in each 

computational layer J, while Ψ
k
, Ω

k
 make the transverse normal stress and its gradient 

continuous at the interfaces as prescribed by the elasticity theory. Their expressions are 
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determined as a combination of unknown coefficients and derivatives of the generalized 

displacements u
J
, v

J
, w

J
.  

The generalised displacements u
J
, v

J
, w

J
 are assumed as polynomial expansions, across the 

thickness whose expansion order can be varied from region to region in order to adapt to the 

variation of solutions.  

The goal of obtaining accurate stress predictions from constitutive equations without using a 

sublaminate representation is achieved by Icardi and Ferrero in [113]. Therein, a zig-zag 

displacement-based shell model is developed that incorporates the variable-expansion 

piecewise contributions (1.16) by assuming the mid-plane generalized displacements u
0
, v

0
 

,w
0
, γx and γy as functional d.o.f. The in-plane displacements are postulated to vary across the 

thickness as follows: 
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where α, β are the coordinate on the shell middle surface, ζ is the thickness coordinate and Rα, 

Rβ are the radii.  The coefficients C2α, C3α, C2β and C3β are expressed in terms of the 

functional d.o.f. and their derivatives by enforcing the stress-free boundary conditions for the 

transverse shear stresses (1.5). 

The transverse displacement variation across the thickness is represented in the following 

form: 
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 (1.19) 

The continuity functions have the same purpose as in (1.16).  The still unknown coefficients b 

to e are determined by enforcing the stress boundary conditions: 
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           0 0

, ,; ; 0;
2 2 2 2 2 2

h h h h h hp p                (1.20)  

The displacement field fulfils the following kinematic contact conditions that hold for perfect 

bonding:  

; ; ;k k k k k k
u u u u u u          

     
    (1.21) 

The higher-order terms (Oζ
4
) and (Oζ

5
) represent contributions whose expansion order can 

vary across the thickness as desired. This model provides accurate prediction of stress and 

displacement field directly from constitutive equations, as shown in the benchmark cases with 

exact solutions usually considered in literature and for variable-stiffness composites  [114] - 

[115].  

However, the model [113] requires adopting a too high order of expansion in each 

computational layer, which could be impractical in certain cases. Therefore, Icardi and Sola 

[119] recasts the approach of [113] in such a way that allows for reducing the expansion order 

of displacements across the thickness, as discussed in the next chapter, so to improve the 

computational efficiency.   
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Chapter 2: The present adaptive model (AD-

ZZ) 

In this chapter a high order theory including zig-zag effects, transverse shear continuity, 

variable transverse displacement and layerwise representation (AD-ZZ model) is presented 

for analysis of laminates and sandwiches. The dissertation is organized in such a way that 

explains how the author has reached the current version of this model. In particular, the path 

followed starts from basic Equivalent Single Layer theories ( [12], [13]) and then, by adding 

new coefficients or varying the through-the-thickness interpolation, it refines the structural 

model and forces it to respect the conditions prescribed by the Elasticity Theory. The final 

result is a model that with low computational effort can represent the interlaminar shear 

stresses directly from constitutive equations even for thick laminated and sandwich structures 

also when the constituent plies have distinctly different properties across the thickness. These 

characteristics make this theory particularly suited for the analysis of highly iterative 

problems, such as non-linear analyses or impulsive dynamic studies, as discussed forward. 

Generally speaking, the AD-ZZ model is a modified version of the zig-zag 3D one by Icardi 

and Ferrero [113]. In particular the AD-ZZ model differs from the theory of [113] mainly for 

two aspects: 

 all the higher-order terms in the present model can vary between each layer, while in 

[113] the coefficients of second, third and fourth order in z are the same across all the 

structure. This new approach enables to reduce the coefficients to be determined, as 

shown next (see Section 2.2.3). 

 a more intensive use of the symbolic calculus in the implementation that enable to 

compute apart once for all in closed form the expressions of high-order terms and 

continuity functions (see Figure 2.5). In this way, it is possible to overcome the 

drawbacks due to the rather complex algebraic manipulations required for an a priori 



Chapter 2:The present adaptive model (AD-ZZ) 

 

 

23 

 

fulfilment of the stress continuity conditions at the interfaces and for deriving the 

expressions of the higher-order contributions. In addition, the use of the symbolic 

calculus avoids the simplifying assumptions that the theory [113] formulate to 

compute numerically high-order terms and continuity functions.  

These aspects contribute to reduce the computational times of the present theory up to 10 

% per each run with respect to [113]. 

2.1 Steps from FSDT to PWM4 models 

In order make clearer the AD-ZZ model here presented, all the refinements brought through 

years till the present final version are recalled. This represents also the logical path followed 

when implementing the AD-ZZ model. As explained next, every refinement has been 

introduced in order to improve accuracy but keeping low computational burden.  

For each model here recalled the displacement and stress fields are compared to the exact 

solution for a [0°/90°/0°] laminated beam. 

The laminated beam, for which the exact solution is reported in Ref. [144], has three layers 

made of mat p (EL/ET=25; GLT/ET=0.5; GTT/ET=0.2; υLT=0.25), each h/3 high. In order to 

enhance the layerwise effects a length to thickness ratio of 4 is considered.  

The beam is simply-supported and the acting loading on the upper face of the structure is 

sinusoidal: 
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The static problem is solved within the framework of the Rayleigh-Ritz method, assuming the 

in-plane variation of the functional d.o.f. as follows: 
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The Rayleigh-Ritz method is chosen since, to obtain the governing equations, it requires 

writing only the strain energy, the kinetic energy and the work of external forces. In this way, 

it is not necessary deriving the Euler-Lagrange field equations and variationally consistent 

boundary conditions and it is easier using symbolic calculus within the solving procedure (see 

Section 2.2.2). Note that the use of the Rayleigh-Ritz method is allowed since always 

conservative systems are analysed. 

The displacement and stress variations across the thickness reported in this section are 

normalized as follows [144]: 

   2

0 0 0 0

, ,
0, 0,2 2

x x
xx zz

xz
xx zz xz

L L
z z

z E u z
u

p p p hp

 


  

   
   
        (2.5) 

Please notice that all results reported in this section are obtained without introducing any 

technique for improving results except integration of local equilibrium equations. No shear 

correction factors are used for FSDT in order to compare the results by elder models to those 

of most recent ones under the same hypotheses.  

In order to put the results shown in this section in the right perspective, it is reminded that the 

elasticity theory prescribes the following requirements to be met: 

       2 2 2 2xz xz yz yz
h h h hz z z z              (2.6) 

       0 0

2 2 2 2zz zz
h h h hz p z z p z          (2.7) 

( ) ( ) ( ) ( )| | | |k k k kxz xz yz yz
z z z z

   
   
   (2.8) 

( ) ( )| |k kz z
z z

 
 
  (2.9) 

Finally note that the notation adopted in this chapter is the same already explained in Section 

1.2.   

2.1.1 FSDT model 

The First-Order Shear Deformation Theory (FSDT) [12] is the extension to multilayer 

laminates of previous theories available, as it allows a transverse shear deformation of the 

plate. The displacement field is: 
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 (2.10) 

The displacement and stress fields computed for the cross-ply beam described above are 

reported in Figure 2.1. 
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Figure 2.1 Comparison between stress and displacement fields by the FSDPT model [12] and the 

exact solution [144] for a [0°/90°/0°] laminated beam with L/h=4. 

The FSDT model, which assumes the transverse shear strain constant across the thickness of 

the structure, yields to a piece-wise constant distribution of transverse shear stress that 

violates the continuity conditions at layer interfaces. Also the stress-free boundary conditions 

at the top and bottom surface are not satisfied, as shown by the shear stress computed from 

constitutive equations reported in Figure 2.1a. It is seen that the representation of in-plane 

displacement across the thickness is not adequate (Figure 2.1d) and also the distribution of the 

in-plane stress across the thickness is wrong (Figure 2.1c). As a consequence, integrating σxx,x 

+ σxz,z =0 does not bring a significant improvement in the prediction of the transverse shear 
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stress (Figure 2.1a). Note that in Figure 2.1b it is reported a quantity defined as transverse 

normal stress computed from constitutive equations. This means that this quantity is 

calculated applying Eq. (1.1). So, considering the structure analysed and the displacement 

field (2.10), it results that σzz= C13 εxx. This consideration holds also for the theory presented 

in Section 2.1.2 and 2.1.3. 

 

2.1.2 HSDT model 

In order to improve accuracy, Reddy [13] with the HSDT model postulates the addition of a 

term of third order in z to the in-plane displacements, whose aim is to meet the boundary 

conditions for the transverse shear stress at the upper and lower surfaces at least for 

symmetric lay-ups (Eq. 2.6): 
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 (2.11) 

The stress and displacement fields by the HSDT model for the [0°/90°/0°] laminated beam are 

reported in Figure 2.2. 
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Figure 2.2 Comparison between stress and displacement fields by the HSDT model [13] and the 

exact solution [144] for a [0°/90°/0°] laminated beam with L/h=4. 

The results of Figure 2.2 show that HSDT still inaccurately evaluates and disregards the 

energy contributions of transverse normal strain and stress as well as those of the transverse 

shear stress (Figure 2.2a and c). Though fulfilling the boundary conditions of Eq. 2.6, the 

shear stress is not continuous and still inaccurate. The behaviour is different for the in-plane 

stress. Indeed, for this structure, the distribution computed by the HSDT model still remains 

inaccurate, but only close to the interfaces. As a consequence, integrating σxx,x + σxz,z =0 

allows for a good prediction of the transverse shear stress near the free faces (Figure 2.2a). An 

acceptable accuracy of the in-plane displacement is obtained at the upper and lower faces, 

while near the interfaces the through-the-thickness variation is inaccurate. 

2.1.3 PWM3 model 

As explained in Chapter 1, another constraint that the structural models tried to fulfil is the 

continuity of the transverse shear stress (Eq. 2.8). To reach this goal, as mentioned above two 

different solutions can be adopted using physically-based or cinematically-based zig-zag 

functions. For the development of the AD-ZZ model the former solution is adopted. 

Therefore, the displacement field (here named PWM3) discussed in this section, as in Ref. 

[141], adds one set of continuity functions to the in-plane displacement distribution of the 

HSDT model (2.11). These terms introduce a layerwise effect, aiming at restoring the 

through-the-thickness continuity of the transverse shear stress. In addition, also a parabolic 

contribution is incorporated in the in-plane displacements of (2.11) in order to fulfil the stress-

free boundary conditions (2.6) at the upper and lower free surfaces also for asymmetric 

structures. Therefore, the displacement field for the PWM3 model is as follows:  
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For the cross-ply beam, the stress and displacement fields predicted by the PWM3 model are 

reported in Figure 2.3. 
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Figure 2.3 Comparison between stress and displacement fields by the Piecewise cubic model PWM3 

(Eq. 2.12) and the exact solution [144] for a [0°/90°/0°] laminated beam with L/h=4. 

In Figure 2.3a, the transverse shear stress predicted from constitutive equations is continuous 

and it respects the boundary conditions prescribed by the elasticity theory (2.6). Nevertheless, 

accuracy is not consistently improved as shown by the comparison with the exact solution. 

The situation does not improve integrating the equilibrium equation σxx,x + σxz,z =0. Indeed, 

the layerwise effect is only partially captured and a coincidence with the exact solution is not 

still achieved. The difference between the exact solution and the one predicted by the PWM3 

model is strongly evident close to the interfaces, which are the most critical regions when 

performing damage analysis. The incorrect result is a consequence of the inaccurate 

evaluation of the in-plane stress (Figure 2.3c) and of the in-plane displacement (Figure 2.3d). 

So, there is a lack in the theory. In fact, the energy due to the transverse normal stress is still 

disregarded. Despite this, the transverse normal stress computed integrating σxz,x + σzz,z =0 

(Figure 2.3b) is accurate. 

The above mentioned lack of this theory becomes more evident when studying sandwiches, 

which have constituent layers with distinctly different mechanical properties and so claim for 

structural model with variable transverse displacement. 
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2.1.4 PWM4 model 

In accordance with what discussed above, as explained in Chapter 1, Icardi [107] refines the 

PWM3 postulating also for the transverse displacement a variable representation up to the 

fourth order. In addition, the PWM4 model adds two set of layerwise terms to the transverse 

displacement in order to satisfy the continuity conditions on the transverse normal stress (Eq. 

2.9) and its through-the-thickness gradient. Thus, the following displacement field is 

postulated:  
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 (2.13) 

As shown by Figure 2.4a, the addition of these terms does not bring to significant 

improvement in the evaluation of the transverse shear stress both from constitutive equations 

and from integration. The same consideration holds for in-plane stress and displacement, 

whose accuracy is not changed with respect to that of Figure 2.3 (see Figure 2.4 c and d). 

Instead, an improvement is obtained for the transverse normal stress (Figure 2.4b), which 

now, also when computed from constitutive equations, fulfils all the conditions prescribed by 

the elasticity theory (Eq. 2.7) and quite well describes the through-the-thickness distribution 

of the exact solution. 
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Figure 2.4 Comparison between stress and displacement fields by the Piecewise quartic model 

PWM4 (Eq. 2.13) and the exact solution [144] for a [0°/90°/0°] laminated beam with L/h=4. 

2.2 Development of the AD-ZZ model 

A further improvement of model [107] is difficult to obtain by simply adding terms of higher 

order in z. To overcome this problem, the author developed the AD-ZZ model [119] by 

exploiting a different version of the idea of refining the local interpolation already pursued by 

sublaminate and global local models discussed in Section 1.5 and 1.6. Accordingly, the 

following representation of the in-plane displacements is postulated across the thickness: 
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To have the minimal number of unknowns, the three displacement components and the two 

shear rotations of the normals on the reference surface are assumed as functional d.o.f. The 

superscripts i mean that these terms vary from point to point across the thickness. From the 

theoretical viewpoint, this aspect and the addition of the continuity functions Cu
k
 and Cv

k
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represent the new contributions with respect to the model by Icardi and Ferrero [113] with the 

same d.o.f. Indeed, in [113] the third and four order expansion is considered fixed across the 

thickness, while just the higher-order terms are assumed to vary with position.  

As for the other zig-zag models, the terms in the summations represent contributions that are 

continuous across the thickness, but with discontinuous derivatives at the layer interfaces. The 

expressions of the continuity functions Φx
k
, Φy

k
, Cu

k
 and Cv

k
 are determined enforcing an a 

priori fulfilment of the transverse shear stress (Eq. 2.8) and of the displacement contact 

conditions at the interfaces: 
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 (2.16) 
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 (2.17) 

The coefficients Cx
i
, Cy

i
, Dx

i
 and Dy

i
 as well as the other high order coefficients are 

determined by enforcing the stress-free boundary conditions for the transverse shear stresses 

at the upper |
u
 and lower |l free surfaces (Eq. 2.6) and also by enforcing equilibrium conditions 

at discrete points across the thickness: 

, , ,

, , ,

, , ,

xx x xy y xz z x

xy x yy y yz z y

xz x yz y zz z z

b

b

b

  

  

  

  

  

  

 (2.18) 

where bi are the body forces. 

In this work, as explained forward, these cumbersome algebraic operations are carried out 

once for all with a symbolic calculus tool, thus speeding up the analysis. 

As already discussed, the transverse displacement has a significant role for describing core’s 

crushing in sandwich structure as well as for keeping equilibrium when thermal stresses are 

applied. Accordingly, a variable representation across the thickness is postulated: 
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 (2.19) 

From the formal point of view, this expression is similar to the one proposed in Ref. [113], 

but here, though the functional d.o.f. are fixed, the expression holds in a single layer. This 

aspect and the addition of the continuity function Cw
k
 represent the new contributions with 

respect to the model Icardi and Ferrero [113]. 
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The two zig-zag contributions Ψ
k
 and Ω

k
 in the summations are incorporated in order to a 

priori fulfil the stress contact conditions on the transverse normal stress (Eq. 2.9) and its 

gradient (as it can be noticed analysing the local equilibrium equations (2.18)): 
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The continuity function Cw
k
, enable an a priori fulfilment of the displacement contact 

conditions, by imposing: 

)()( )1()(   zzwzzw kk
 (2.21) 

The still unknown coefficients b
i
 to e

i
 are determined by enforcing equilibrium conditions 

(2.18) at discrete points across the thickness, as well as by enforcing the fulfilment of the 

boundary conditions on the transverse normal stress (Eq. 2.7) and its gradient at the upper and 

lower bounding surfaces: 
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This last condition directly derives from Eq. (2.18), from which, it is possible to obtain: 

, , ,zz z z xz x yz yb      (2.23) 

By assuming bi=0, Eq. (2.23) at the free surfaces of the structures turns into (2.22). 

From the practical viewpoint, the new contribution with respect to the model of Ref. [113] is 

that continuity functions and high-order terms are computed in a fully closed exact form using 

a symbolic calculus tool, as explained next. 

2.2.1 Continuity functions 

In order to get the expressions of continuity functions, the displacement field is split into fixed 

contributes, layer’s contributes and summations’ contributes, as follows: 
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As it can be seen in a straightforward way, the interfacial displacement contact conditions do 

not involve derivatives of the functional d.o.f. of any order. As example, the explicit 

expressions of (2.16) and (2.21) at the generic interface   are reported: 
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From Eqs. (2.25) and (2.26) it is possible to easily notice that the expressions of the 

displacement continuity functions Cu
k
, Cv

k
 and Cw

k
 at a generic interface   are represented 

by the difference between the layer’s contributes of adjacent plies: 
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The expressions of the other continuity functions are more intricate, however it is possible to 

notice that Φx
k
, Φy

k
 and Ψ

k
 involve first order derivatives of the functional d.o.f., whereas Ω

k
 

involves also second order derivatives of the functional d.o.f. Their expressions should be 

assumed in the following form as function of unknown coefficients (here named continuity 

constants) and of derivatives of various order of the functional d.o.f.: 
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Thus, at every interface, 45 unknowns should be computed Φu1 
(k)

, …., Φu9 
(k)

, Φv1 
(k)

, …., Φv9 

(k)
, Ψ1 

(k)
, …., Ψ9 

(k)
, Ω1 

(k)
, …., Ω18 

(k)
. For doing this, based on the assumption of Eqs. (2.24), 

the strain field becomes: 

0

, , , ,

1 1

0

,y ,y , ,

1 1

,

1 1

0 0

,z ,z , ,x ,

( , , ) ( )

( , , ) ( )

( , , ) 2 ( )

( , , ) ( )

i i

i i

i i

n n
i k k

xx x x x x k k u x k

k k

n n
i k k

yy y y k k v y k

k k

n n
i k k

zz z k k k

k k

i k i k

xz x k x x k

x y z U U z z H C H

x y z V V z z H C H

x y z W H z z H

x y z U U H W W z z H









 

 

 

     

     

     

        

 

 

 

1 1

2

, ,

1 1

0 0

,z ,z ,y ,y ,y

1 1

2

,y ,y

1 1

0

,y ,y ,y ,y

1 1

( )

( , , ) ( )

( )

( , , ) ( )

i i

i i

i i

i i

i i

n n

k

k k

n n
k k

x k k w x k

k k

n n
i k i k

yz y k k k

k k

n n
k k

k k w k

k k

n n
i k k

xy x k k u k

k k

z z H C H

x y z V V H W W z z H

z z H C H

x y z U U z z H C H





 

 

 

 

 



   

         

   

      



 

 

 

 

 

0

,x ,x ,x ,x

1 1

( )
i in n

i k k

y k k v k

k k

V V z z H C H
 

     

 (2.34) 

By applying the strain-stress relations (Hooke Law (1.1)) it is possible to write stresses σxz, 

σyz, σzz, and the gradient σzz,z in the generic layer j as follows: 
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By imposing the continuity conditions (2.8), (2.9) and (2.20) at the interface between the 

layers j and j+1 one can obtain: 



Chapter 2:The present adaptive model (AD-ZZ) 

 

 

40 

 

1 1
0 0

44 ,z ,z , ,x ,

1 1

1 1 1
2 0 0

, , 45 ,z ,z ,y ,y

1 1 1

1 1
2

,y ,y ,y

1 1

( , , ) ( )

( )

( ) ( )

j j
j j i k i k

xz x k x x k k

k k

j j j
k k j i k i

x k k w x k y k

k k k

j j
k k k

k k k k w

k k

x y z C U U H W W z z H

z z H C H C V V H W W

z z H z z H C H


 

 

  

  

 

 


         



 
           

 

      

 

  

 
1

1

1

1 0 0

44 ,z ,z , ,x ,

1 1

2 1 0 0

, , 45 ,z ,z ,y ,y

1 1 1

2

,y ,y

1 1

( , , )

( )

( )

( ) ( )

j
j

k xz

k

j j
j i k i k

x k x x k k

k k

j j j
k k j i k i

x k k w x k y k

k k k

j j
k k

k k k k

k k

x y z

C U U H W W z z H

z z H C H C V V H W W

z z H z z H C










 



  

 


 




         



 
           

 

      



 

  

  ,y

1

j
k

w k

k

H








 (2.39) 

1 1
0 0

45 ,z ,z , ,x ,

1 1

1 1 1
2 0 0

, , 55 ,z ,z ,y ,y

1 1 1

1 1
2

,y ,y ,y

1 1

( , , ) ( )

( )

( ) ( )

j j
j j i k i k

yz x k x x k k

k k

j j j
k k j i k i

x k k w x k y k

k k k

j j
k k k

k k k k w

k k

x y z C U U H W W z z H

z z H C H C V V H W W

z z H z z H C H


 

 

  

  

 

 


         



 
           

 

      

 

  

 
1

1

1

1 0 0

45 ,z ,z , ,x ,

1 1

2 1 0 0

, , 55 ,z ,z ,y ,y

1 1 1

2

,y ,y

1 1

( , , )

( )

( )

( ) ( )

j
j

k yz

k

j j
j i k i k

x k x x k k

k k

j j j
k k j i k i

x k k w x k y k

k k k

j j
k k

k k k k

k k

x y z

C U U H W W z z H

z z H C H C V V H W W

z z H z z H C










 



  

 


 




         



 
           

 

      



 

  

  ,y

1

j
k

w k

k

H








 (2.40) 



Chapter 2:The present adaptive model (AD-ZZ) 

 

 

41 

 

1 1
0

13 , , , ,

1 1

1 1 1
0

23 ,y ,y , , 33 ,

1 1 1

1
0

36 ,y ,y ,y

1

( , , ) ( )

( )

2 ( ) ( )

j j
j j i k k

zz x x x x k k u x k

k k

j j j
j i k k j i k

y y k k v y k z k

k k k

j
k j i k

k k x k k

k

x y z C U U z z H C H

C V V z z H C H C W H

z z H C U U z z H C


 

 

  

  





 
       

 

  
          

  


        



 

  


1 1

,y

1 1

1 1
0 1

,x ,x ,x ,x

1 1

1 0

13 , , , ,

1 1

1 0

23 ,y ,y , , 33

1 1

( ) ( , , )

( )

( )

j j
k

u k

k k

j j
i k k j

y k k v k zz

k k

j j
j i k k

x x x x k k u x k

k k

j j
j i k k

y y k k v y k

k k

H

V V z z H C H x y z

C U U z z H C H

C V V z z H C H C



 

 

 


 



 



 







       



 
       

 

 
      

 

 

 

 

  1

,

1

1 0

36 ,y ,y ,y ,y

1 1 1

0

,x ,x ,x ,x

1 1

2 ( ) ( )

( )

j
j i k

z k

k

j j j
k j i k k

k k x k k u k

k k k

j j
i k k

y k k v k

k k

W H

z z H C U U z z H C H

V V z z H C H







  

 


  



 
          

 


      





  

 
 (2.41) 

1 1
0 0

, 13 , , , 23 ,yz ,yz ,

1 1

1 1 1
0 0

33 , 36 ,yz ,yz ,y ,xz ,xz ,x

1 1 1

1

, 1

( , , )

2

( , , )

j j
j j i k j i k

zz z xz xz x x k y y k

k k

j j j
j i k j i k i k

z k x k y k

k k k

j

zz z

x y z C U U H C V V H

C W H C U U H V V H

x y z C





 

 

  

  



   
           

   

   
              

   

 

 

  

1 0 1 0

3 , , , 23 ,yz ,yz ,

1 1

1 1 0 0

33 , 36 ,yz ,yz ,y ,xz ,xz ,x

1 1 1

2

j j
j i k j i k

xz xz x x k y y k

k k

j j j
j i k j i k i k

z k x k y k

k k k

U U H C V V H

C W H C U U H V V H

 

 

 

  

   
          

   

   
             

   

 

  

 (2.42) 

Eqs. (2.39) - (2.42) are solved with the symbolic calculus tool of MatLab
®

 without 

introducing any simplifying assumption differently to Ref. [113]. By solving this system, it is 

possible to obtain in closed form the expressions of the continuity functions at any constituent 

or computational layers (see Figure 2.5). The arbitrary nature of displacements enables the 

decomposition of the system (2.39) - (2.42) into 45 independent conditions at each interface, 

since the homologous displacements and displacement derivatives have to be collected 

separately at both hands as an independent condition to be fulfilled. 



Chapter 2:The present adaptive model (AD-ZZ) 

 

 

42 

 

2.2.2 Hierarchic terms 

The high order coefficients of Eqs. (2.14), (2.15) and (2.19) are computed in a similar way. 

These terms are here referred as hierarchical terms, as they enable a variable representation in 

different regions across the thickness.  

The unknown coefficients are determined with a system of independent equations, obtained 

by enforcing the fulfilment of the boundary conditions of Eqs. (2.6), (2.7) and (2.22), as well 

as by imposing the fulfilment of the local differential equilibrium equations (2.18). 

Considering the displacement field of Eqs. (2.14), (2.15) and (2.19) with through-the-

thickness representation up to the third order for u and v and up to the fourth order for w, Eqs. 

(2.6), (2.7) and (2.22) determine the following solving system: 
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Finally, the constraint of Eq. (2.18) should be imposed at np=Nlay ∙ ord_u – 2 points across the 

thickness, where Nlay is the number of computational layers, while ord_u is the order of the 
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expansion chosen for the in-plane displacements. The location of the np points is arbitrary and 

it is determined trying to fulfil the equilibrium condition (2.18) in all the points across the 

thickness of the structure. From the practical point of view, in order to verify the fulfilment of 

the equilibrium (2.18) across all the thickness of the structure, the through-the-thickness 

variations of the three components of Eq. (2.18) are plotted on separate graphs. If these 

variations are equal to bi (or 0 as in the cases here considered) the points chosen are correct, 

otherwise they should be changed placing the points where errors are bigger. This procedure 

can be carried out by hands (as in the cases here considered) or it can be automated by 

defining error indices.  

However, in order to avoid numerical problems (i.e. singular or badly scaled matrix) the np 

points should not be placed excessively near to the layers’ interfaces, since, as explained 

before continuity conditions derive from equilibrium. 

In details, considering the displacement fields in compact form as in Eqs. (2.24), Eqs (2.47) 

and (2.48) represent the explicit form of Eq. (2.18)  for the evaluation of the generic higher 

order terms of a beam at the generic point zp in the layer j: 
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 (2.48) 

As already done for the computations of the continuity functions, the solving system obtained 

by Eqs. (2.43) – (2.48) is implemented in a symbolic MatLab
®
 code. Please note that, the 

solution is obtained starting from the bottom layer of the structure and then moving up across 

the thickness.  

It is remarked that all the algebraic operations required for determining the expressions of the 

coefficients of displacements and the expression of the continuity functions are carried out 

once for all in analytic form after having defined loading and boundary conditions (see Figure 

2.5). Note that, the procedure needs to know the boundary conditions applied because if a 

structure with the same boundary conditions of that analysed has been already solved, the 
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symbolic calculus is not performed since the closed-form expressions of higher order terms 

and continuity functions are already known. Therefore, they are just recalled in order to save 

computational effort. 

Owing to this, the present model obtains accurate results with a low computational effort, 

because many computations are carried apart once for all outside the solution process. Also 

the governing equations are computed with symbolic calculus by applying the Rayleigh-Ritz 

method. In particular, the procedure requires writing the strain energy of the structure (U), its 

kinetic energy (K) and the work of external forces (W). These quantities, according to the 

notation of Section 1.2, are defined as follows: 

         
1 1

2 2

T T T

V V

U dV C dV       (2.49) 

     
V S

W b u dV t u dS    (2.50) 

   
1

2

T

V

K u u dV   (2.51) 

The symbols {b} and {t} are the body and surface forces, ρ is the density and {u} the vector 

of displacements. 
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Figure 2.5 Steps for applying the AD-ZZ for a static analysis 

2.2.3 Remarks on the AD-ZZ model 

The present model avoids the poor behaviour of the models with displacements and shear 

rotations as functional d.o.f. that often fail in the prediction of deflection and stresses of 

clamped components. Indeed, when computing higher order terms during the symbolic 

procedure, it is sufficient to enforce as additional constraint a non-vanishing transverse shear 

at clamped edges..  

The present model is compatible with cohesive models, as specific laws for the displacements 

contact conditions can be enforced instead of Eqs. (2.16), (2.17) and (2.21).  

Finally note that the present model can treat sandwiches, since HLW models have this 

capability as shown by numerical results of Chapter 3 and by Elmalich and Rabinovitch [34], 

Giunta et al. [63], Plagianakos and Saravanos [162], Moreira and Rodrigues [163], 

Chrysochoidis and Saravanos [164], Hohe and Librescu [165] and Shariyat [166]. 

As mentioned above, the AD-ZZ model, which is used in the present numerical illustrations, 

requires computing a lower number of unknowns than its pioneering model [113], thus 

allowing a significant reduction of the computational burden though it is equally accurate. For 

instance, let us consider the case of a three layer structure: the AD-ZZ model generates 18 

higher order terms, while the one by Icardi and Ferrero [113], in order to obtain the same 

accuracy as the AD-ZZ, requires computing 20 higher order terms. This results in a reduction 

of the overall computational processing time up to 10 % of the memory storage dimension per 

each run. This reduction determines a consistent advantage, for instance, when progressive 

failure analyses are carried out. Of course, the greater is the number of constituent layers, the 

bigger is the advantage of the AD-ZZ model over the model [113].  

2.2.4 Application of AD-ZZ to [0°/90°/0°] laminated beam  

The stress and displacement fields predicted by the AD-ZZ model for the [0°/90°/0°] cross-

ply beam are reported in Figure 2.6. 
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Figure 2.6 Comparison between stress and displacement fields by the AD-ZZ model and the exact 

solution [144] for a [0°/90°/0°] laminated beam with L/h=4. 

From the results of Figure 2.6 it could be noticed that the AD-ZZ model is able to predict 

stress and displacement fields as accurate as the exact 3D solution from constitutive 

equations. 

Note that both the transverse normal stress and the shear stress are obtained directly from 

constitutive equations. For what concerns the computational times, the results by the theories 

discussed in this session are not largely variable. 

Indeed, processing times ranging from 0.79 s for the FSDT to 0.90 s for the AD-ZZ model are 

required on a laptop computer with an 1.80 GHz double-core processor and 4 GB RAM. This 

confirms that, thanks to an a priori evaluation of high-order terms, the AD-ZZ model has a 

low computational burden even if it can be refined locally. Note that the computational time 

reported above for the AD-ZZ does not include the time required by the symbolic procedure 

to compute higher order terms and continuity functions. This time for the structure considered 

here is  600 s.  

After this preliminary assessment, in the next Chapter accuracy and efficiency of the AD-ZZ 

will be analysed in details considering both laminates and sandwiches with different boundary 

conditions.   
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Chapter 3: Assessment of the AD-ZZ model 

In the present section, the AD-ZZ model explained above will be tested comparing its results 

with those by other theories discussed in Chapter 1 and with exact solutions available in 

literature for laminated and sandwich structures. The goal is to verify the accuracy of the 

model for a variety of structures. 

 

 

MAT 

p 

MAT 

c 

MAT     

bc 
MAT bl 

MAT 

g 

MAT 

1 

MAT 

2 

MAT 

3 
MAT 4 

Carbon- 

Epoxy 

PVC 

foam 

E1 [GPa] 172.4 0.1 1.72 10-3 137.92 5.9 1 33 25 0.05 157.9 0.104 

E2 [GPa] 6.89 0.1 6.89 10-5 5.512 10 1 1 1 0.05 9.584 0.104 

E3 [GPa] 6.89 0.1 6.89 10-5 5.512 10 1 1 1 0.05 9.584 0.104 

G12 [GPa] 3.45 0.04 3.45 10-5 2.76 5.9 0.2 0.8 0.5 0.0217 5.93 0.04 

G13 [GPa] 3.45 0.04 3.45 10-5 2.76 0.2 0.2 0.8 0.5 0.0217 5.93 0.04 

G23 [GPa] 1.378 0.04 1.38 10-5 1.1024 0.7 0.2 0.8 0.5 0.0217 3.227 0.04 

υ12 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.15 0.32 0.3 

υ13 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.15 0.32 0.3 

υ23 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.15 0.49 0.3 

Table 3.1 Mechanical properties of the materials constituting the structures considered in static 

analyses of Section 3.1 and 3.2. 

3.1 Validation of the AD-ZZ model for static analyses 

Numerical applications are presented for laminated plates and beams in order to demonstrate 

that the present model is accurate, efficient and able to predict interlaminar stresses without 

post-processing techniques. Results for sandwiches undamaged or with damaged faces or with 

a damaged core are also presented since, owing to their abruptly changing material properties 

across the thickness, they represent very severe tests cases for the model.  
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Structures with simply-supported edges under sinusoidal distributed loading are considered 

first, since they are the test cases initially considered by the researchers, then applications are 

presented to structures with other boundary conditions that are proven to be critical for the 

models in the literature. 

Even if unrealistic for engineering applications, all the results refer to extremely low values of 

the thickness ratio S=L/h, in order to enhance the layerwise effects. 

The static problem is solved within the framework of the Rayleigh-Ritz method assuming the 

in-plane variation of the functional d.o.f. as series expansion able to fulfil the imposed 

boundary conditions. 

After substitution of this representation into the governing equations, a set of linear algebraic 

equations is obtained that allows determining the unknown amplitudes. 

3.1.1 [0°/90°] laminated beam 

First a cross-ply [0°/90°] beam is considered. This lay-up gives rise to strongly asymmetric 

stress field across the thickness and thus it well puts in evidence the importance of high-order 

hierarchic terms. Displacements and stresses are reported at x=Lx/2 or at x=0, where they 

assume their maximum, in the following normalized form, according to Pagano [144], which 

computes the exact solution for this case:  

   2
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The beam is in mat-p (see Table 3.1), with each layer h/2 thick, it is simply supported and the 

acting load is sinusoidal: 
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A length-to-thickness ratio of 4 is considered. According to the boundary conditions imposed 

the in-plane variation of the functional d.o.f. is chosen as follows: 
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All the results by the AD-ZZ model appearing in the Figure 3.1 are obtained considering 

M=1, a third order expansion of the in-plane displacement u and a fourth order expansion for 

the transverse displacement w in Eqs. (2.14) and (2.19) in each constituent layers (i.e. the 

terms (Oz
4
) and (Oz

5
) are disregarded), while the points where the equilibrium constraint 

(2.18) has been imposed are located at: (-0.412 h; -0.10 h; 0.075 h; 0.2 h), where h is 

thickness of the beam. 
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Figure 3.1 Through-the-thickness distribution of a) in-plane stress σx̅x, b) transverse shear stress 

σx̅z, c) transverse normal stress σz̅z and d) in-plane displacement u̅ for the [0°/90°] beam by the AD-

ZZ model and exact solution [144]. 

Figure 3.1a represents the through-the-thickness variation of the in-plane stress σ̅xx by the 

AD-ZZ model compared to the exact solution. While Figure 3.1b and Figure 3.1c represent 

respectively σ̅xz and σ̅zz, and Figure 3.1d represents the through-the-thickness variation of the 

in-plane displacement u̅.  

From the reported numerical results, it appears that the AD-ZZ model accurately predicts the 

stress and displacement fields for this structure, the numerical results being the same as the 

exact solutions by Pagano [144]. Note that the results by the AD-ZZ model reported in Figure 

3.1 are obtained directly from constitutive equations, thus determining a very low 
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computational time, which is just 0.88 s on a laptop computer with an 1.80 GHz double-core 

processor and 4 GB RAM.  

3.1.2 [0°/90°/0°] laminated plate 

Now a cross-ply [0°/90°/0°] square plate is examined. The length-to-thickness ratio is again 4, 

each of the three layers is in mat-p and h/3 thick. The plate is simply supported and a 

bisinusoidal loading acts on its upper surface: 
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The in-plane variation of the functional d.o.f. is chosen as follows: 
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All results presented for this case are obtained considering M=N=1. According to Pagano 

[145], displacements and stresses in Figure 3.2 are reported in the following normalized form:  
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All the next results refer to a third order expansion of the in-plane displacement u and v, and a 

fourth order expansion for the transverse displacement w in Eqs. (2.14), (2.15) and (2.19). 

Every expansion is valid within the thickness of the three layers, while the points where the 

constraint (2.18) has been imposed are: (-0.45 h;-0.3 h;-0.15 h; 0 h; 0.05 h; 0.25 h; 0.45 h), 
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where h is thickness of the plate. Figure 3.2a and 3.2b represent the through-the-thickness 

variation of the shear stresses σ̅xz and σ̅yz, while Figure 3.2c represents the through-the-

thickness variation of the in-plane displacement u̅. 
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Figure 3.2 Through-the-thickness distribution of a) transverse shear stress σx̅z, b) transverse shear 

stress σy̅z and c) in-plane displacement u̅ for the [0°/90°/0°] plate by the AD-ZZ model and exact 

solution [145]. 

The results of Figure 3.2 show that the AD-ZZ model accurately describes the in-plane 

displacement u̅ and the shear stresses σ̅xz and σ̅yz also for this case. Note that both the shear 

stresses reported in Figure 3.2 are computed from constitutive equations. For what concerns 

the processing times, 0.96 s are required to perform the analysis on a laptop computer with an 

1.80 GHz double-core processor and 4 GB RAM.  

3.1.3 [0°/90°/0°] laminated plate with clamped edges 

To assess whether a non-vanishing transverse shear can be enforced with displacements and 

shear rotations that vanish, the result by the present model are compared to those by Vel and 

Batra [167], who studies the effects of various boundary conditions. This serves also as a test 

of the capability of the AD-ZZ model to treat general boundary conditions. 

The case of a square plate that is simply supported on two opposite edges and clamped on the 

other two is considered, whose top surface is subjected to a bi-sinusoidal normal load (Eq. 

(3.6)), whereas the bottom surface is traction free. Vel and Batra [167] solves the governing 

equations using a three-dimensional generalization of the Eshelby-Stroh formalism that 

determines an infinite system of equations in infinite unknowns. The boundary conditions at 

the edges and the continuity conditions at the interfaces are exploited to define constants in 
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the general solution, which are determined by the Fourier series method. Truncations of the 

set of infinite equations introduce errors that are minimized by increasing the number of the 

terms in the series. 

Figure 3.3a reports the variation of the transverse shear stress across the thickness predicted 

by the present model and by Vel and Batra [167] with 250 terms in the series. This case 

corresponds to a length-to-thickness ratio of 5, assuming that each lamina is in mat-p and h/3 

thick. The stacking sequence is [0°/ 90°/ 0°].  

The through-the-thickness variation of the transverse displacement component at the centre of 

the plate w̅ and the transverse shear stress σ̅xz at the clamped edge are presented in normalized 

form as follows, according to [167]: 
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Lx being the side length, h the thickness of the plate and p
0
 the amplitude of the bi-sinusidal 

load.  

Figure 3.3b shows how the transverse displacement varies across the thickness. In this case, 

the comparison results are obtained from those presented in Ref. [167] in tabular form. The 

results by the present model reported in Figures 3.3a and 3.3b are computed whitihn the 

framework of the Rayleigh-Ritz method assuming the following in-plane representation of the 

functional d.o.f. 
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The results with dashed lines are computed considering 200 terms in the series, while the ones 

with a solid line are obtained considering just a single component in the series expansion, i.e. 

M=N=1.  

For what concerns the through-the-thickness representation, the results of Figure 3.3 are 

obtained considering a third order expansion of the in-plane displacement u and v, and a 

fourth order expansion for the transverse displacement w in Eqs. (2.14), (2.15) and (2.19). 

Every expansion is valid within the thickness of the three layers, while the points where the 

constraint (2.18) has been imposed are: (-0.47 h;-0.3 h;-0.1 h; 0 h; 0.05 h; 0.26 h; 0.45 h), 

where h is thickness of the plate 
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Figure 3.3 Through-the-thickness distribution of a) transverse shear stress σ̅xz and b) transverse 

displacement w̅ for the [0°/90°/0°] plate with clamped edges by the AD-ZZ model and analytical 

solution [167]. 

It could be seen that the present model accurately predicts the through-the-thickness variation 

of solutions even when just a single terms representation is adopted, so with the minimal 

computational effort. This is due to the a priori fulfilment of the stress and displacement 

boundary conditions and of the interfacial stress contact conditions obtained determining 

expressions in closed form for the coefficients of displacements. The computation of these 

coefficients, which is required just once at a time, takes about a minute, while the solution of 

governing equations takes four minutes with M=N=200 and 1.3 s with M=N=1. So, it could 

be noticed the capability of the model of being accurate with a low expansion order, which 

gives a considerable practical advantage when repeated computations are required. 

3.1.4 Sandwich beam 

Sandwich structures are more critical since they are characterized by abruptly changing 

material properties across the thickness. 

Simply supported sandwich beams undergoing sinusoidal loading with S=4 already studied by 

Aitharaju and Averill [103] and Icardi [107] are here considered. The face layers are made of 

materials MAT1, MAT2 and MAT3, while the core is made of material MAT4, whose 

mechanical properties are reported in Table 3.1. As it can be seen from the data reported in 

Table 3.1, MAT1 is a rather compliant material, as compared to others, having weak 

properties in tension, compression and shear, MAT2 has high stiffness properties, MAT3 is 

stiff in tension and compression, but rather compliant in shear, while MAT4 is very 

compliant, as usual for core. 

The sandwich beam is simulated as a multilayered beam with a (MAT 1/2/3/1/3/4)s stacking 

sequence and the following thickness ratios of the constituent layers (0.010/0.025 

/0.015/0.020/0.030/0.4)s. As shown in Aitharaju and Averill [103] and Icardi [107], this 

combination of materials and the lay-up determines rather intricate displacement and stress 

distributions across the thickness, which are more difficult to capture from constitutive 

equations than those of laminates. 
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The exact three dimensional solution for the present cases has been computed in Icardi [107] 

with the technique of Pagano [144], since results were not available in literature in the 

presence of damage. To simulate the damage, a degradation of the elastic properties is 

considered according to the ply-discount theory.  

More realistic damage models are not considered, because here the purpose is to consider just 

abruptly changing material properties. In light of the boundary conditions of the beam, the in-

plane variation of the functional d.o.f. of Eqs. (3.3) – (3.5) is chosen.  

The numerical results are reported in the following normalized form ( [107]): 
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        (3.19) 

Like in the previous cases, the results by the present model refer to a third order expansion of 

the in-plane displacement u and a fourth order expansion for the transverse displacement w in 

Eqs. (2.14) and (2.19), as higher order representations do not considerably improve accuracy. 

This expansion order is valid within the thickness of the eleven constituent layers. The points 

where the constraint (2.18) has been imposed are: (-0.4975 h; -0.4925 h; -0.48375 h; -0.4775 

h; -0.47125 h; -0.46125 h; -0.4575 h; -0.45375 h; -0.445 h; -0.44 h; -0.435 h; -0.4225 h; -

0.415 h; -0.4075 h; -0.2 h; 0 h; 0.2 h; 0.4075 h; 0.415 h; 0.4225 h; 0.435 h; 0.44 h; 0.445 h; 

0.45375 h; 0.4575 h; 0.46125 h; 0.47125 h; 0.4775 h; 0.48375 h; 0.4925 h; 0.4975 h), where h 

is thickness of the beam. 

 

Undamaged case - Figure 3.4 compares the results by the present model to the exact solution 

by Icardi [107]. It could be noticed that the AD-ZZ model provides an accurate representation 

of interlaminar stress directly from the constitutive equations. Also note that, thanks to a 

variable representation of the transverse displacement, the AD-ZZ model is able to describe 

the variable transverse displacement that is typical for sandwich structures. At the same time, 

also for this case the computational effort is low, since only 1.15 s are required to perform the 

analysis. 
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Figure 3.4 Through-the-thickness distribution of a) transverse shear stress σ̅xz, b) in-plane 

displacement u̅ and c) transverse displacement w̅ for the sandwich beam by the AD-ZZ model and 

exact solution [107]. 

Damaged core - The damage is simulated reducing G13 of the core’s material of a 10
2
 factor. 

Figure 3.5 compares the results by the present model to the exact solution of Ref. [107]. As a 

general observation, it could be noticed that the damage does not vary the symmetry of the 

stress and displacement fields, but it enhances the differences between core and faces. Despite 

this, the AD-ZZ model is still able to correctly predict displacements and stresses across the 

thickness without post-processing. In particular, the model can accurately capture σ̅xz and σ̅zz 

from constitutive equations, even with abruptly changing material properties across the 

thickness. For this case the computational time is 1.28 s. 
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Figure 3.5 Through-the-thickness distribution of a) transverse shear stress σ̅xz, b) transverse normal 

stress σz̅z and c) in-plane displacement u̅ for the sandwich beam with damaged core by the AD-ZZ 

model and exact solution [107]. 

Damaged upper face - The damage is simulated considering the elastic moduli E3 of the core 

and of the upper face layers reduced of a 10
2
 factor. Figure 3.6a represents the through-the-

thickness variation of the shear stress σ̅xz, while Figure 3.6b represents σz̅z and Figure 3.6c and 

3.6d represent, respectively, the through-the-thickness variation of the in-plane displacement 

u̅, and of the transverse displacement w̅. 

Exact solution [107] demonstrates that if the elastic moduli E3 of the core and of the upper 

face layers are reduced by a factor 10
2
, strong layerwise effects rise due to asymmetry of 

properties and different moduli of adjacent constituent layers. This makes the out-of-plane 

stresses of this sample case difficult to capture. In particular, σx̅z shows nearly an opposite 

behaviour between the upper and lower face, which can be captured only if the models can be 

locally refined, e.g. by changing their representation across the thickness. Indeed, reduction of 

E3 implies a relevant increase of σ̅xz in the upper face and in a region of the core close to it, 

while it decreases and changes sign at the lower face. Thus, in order to treat this case, the 

models should be able to capture sudden variations.  

The results of Figure 3.6d, showing a strong variation across the thickness of w̅, point out 

again that sandwiches require an accurate modelling of the transverse normal stress and 

deformation through a detailed description of the piecewise variation of the transverse 

displacement. The displacement of Figure 3.6c also shows that the Murakami’s zig-zag 
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function [136] based upon kinematic assumptions cannot appropriately represent the solution 

for this case, as the slope does not necessarily reverse at each interface, as shown by the exact 

solution. Thus, this could represent a further case where a physically based zig-zag function 

should give better estimates, in addition to those discussed next and in Ref. [137]. 

The AD-ZZ model still confirms its efficiency also for this case, as it requires only 1.35 s to 

perform the analysis.  
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Figure 3.6 Through-the-thickness distribution of a) transverse shear stress σ̅xz, b) transverse normal 

stress σz̅z, c) in-plane displacement u̅ and d) transverse displacement w̅ for the sandwich beam with 

damaged face by the AD-ZZ model and exact solution [107]. 

3.1.5 Cantilever sandwich beam 

Now a cantilever sandwich beam formerly considered by Tessler et al. [129] that is subjected 

to a uniform transverse loading acting on the upper face is considered. The aim is to discuss a 

sample case for which zig-zag theories based on the same d.o.f. of the present AD-ZZ model 

failed the prediction of displacement and stress fields at the clamped edge, as discussed in 
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Chapter 1. Since for this case no exact solution is known, the comparison is made with the 3D 

finite element results of Ref. [129]. 

The beam has the faces made of unidirectional Carbon-Epoxy laminates and a PVC foam core 

(See Table 3.1). The length-to-thickness ratio is 10, while the thickness ratios of the 

constituent layers are [0.1h/0.8h/0.1h]. For this sample case, the results by the present model 

are again obtained considering a third order expansion of the in-plane displacements u, v and 

a fourth order expansion for the transverse displacement w in Eqs. (2.14), (2.15) and (2.19). 

This expansion order is valid within the thickness of each constituent layer. The points where 

the constraint (2.18) has been imposed are: (-0.47 h;-0.425 h;-0.35 h; 0.1 h; 0.25 h; 0.42 h; 

0.45 h), where h is thickness of the beam. 

Figure 3.7 reports the comparison between the through-the-thickness distribution of the 

transverse shear stress and of the in-plane stress predicted by the AD-ZZ model and by the 3D 

FEM analysis by Tessler et al. [129]. The normalization is as follows, according to Ref. [129]: 
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 (3.20) 

Differently to other cases discussed, here the in-plane variation of the functional d.o.f. within 

the Rayleigh-Ritz method is described as a product of orthogonal one-dimensional Gram–

Schmidt polynomial in the x and y directions:   

1 1

d( , ) ( ) (y)
M N

mn m n

m n

x y P x
 

   (3.21) 

where d is the generic d.o.f. (i.e. {d}={u
0
, v

0
, w

0
, γx

0
, γy

0
}), while the polynomials are as 

follow:  
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 (3.23) 

Results of Figure 3.7 show that the AD-ZZ model achieves a high level of accuracy. It is 

reminded that this achievement is not so obvious for structural models, since when the d.o.f. 

vanish at the clamped edge, the transverse shear stress resultant also incorrectly vanishes.  

The present model prevents from this drawback by enforcing as additional constraint a non-

vanishing transverse shear at clamped edges when computing higher order terms with 

symbolic. 
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Figure 3.7 Through-the-thickness distribution of a) transverse shear stress σ̅xz and b) in-plane stress 

σx̅x for the cantilever sandwich beam by the AD-ZZ model and 3D FEA [129]. 

3.2 Comparison with other theories 

As a further assessment of the accuracy of the AD-ZZ model for static analysis, in the present 

section its results are compared to those by some of the theories discussed in Chapter 1, 

considering laminates or sandwiches. 
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3.2.1 Sandwich plate by global-local theory and AD-ZZ model 

First, the sample case by Zhen and Wanji [72] is analysed, which refers to a simply supported 

sandwich plate undergoing a sinusoidal loading with faces in MAT p and core in MAT c. The 

length to thickness ratio is 4, faces are 0.1h thick and core is 0.8h thick. Transverse shear 

stresses by the global – local approach of Ref. [72] and by the AD-ZZ model [119] are 

compared to the exact solution [72] in Figure 3.8, where they are normalized according to Eq. 

(3.12).  

The in-plane variation of the functional d.o.f. given in Eqs. (3.7)-(3.11) is adopted. The 

equilibrium condition of Eq. (2.18) is imposed in [-0.45h; -0.41h; -0.2h; 0.1h; 0.36h; 0.41h; 

0.45h].  

The results of Figure 3.8 show that both models [72] and [119] obtain results in good 

agreement with the exact solution. This is a consequence of the possibility both models offer 

of refining locally their solution. However, while the global-local approach [72] only gives a 

hint of the asymmetry in σ̅yz due to the loading acting on the upper face of the structure, the 

AD-ZZ model is able to precisely describe this aspect because equilibrium is enforced at 

several points across the thickness. It could be noticed that asymmetry is enhanced by the 

rather poor properties of the core as compared to faces, which amplifies the fact that loading 

is applied only on the upper face.   
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Figure 3.8 Comparison between transverse shear stresses by the AD-ZZ model [119], the global-

local approach by Zhen and Wanji [72] and the exact solution [72] for a sandwich plate with L/h=4. 

 

3.2.2 Sandwich plate by AD-ZZ model and HLW theory with ZZ-K 

function 

It is now considered the simply supported rectangular sandwich plate under bi-sinusoidal 

loading analysed by Brischetto et al. [168]. It has a length to thickness ratio of Lx/h=4 and a 

length-side ratio of Ly/Lx=3. A geometrical asymmetry due to the difference between the 

thickness of the upper and lower faces characterizes this case, as the thickness ratios of the 

constituent layers are [2h/10; 7h/10; h/10]. There is also an asymmetry in the material 

properties, the lay-up being [MAT bl/ MAT bc/ MAT p]. Figure 3.9 reports the comparison 

between the exact solutions and the numerical results by the AD-ZZ model [119] and by the 

model [168]. This ZZ-K layerwise model describes the through-the-thickness variation of 

displacements using a seventh order representation and the Murakami’s zig-zag function. The 

quantities reported in Figure 3.9 are normalized as follows, according to [168]:  
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The results by the AD-ZZ model [119] have been obtained imposing the equilibrium 

condition (2.18) in [-0.45h; -0.35h; -0.25h; 0.1h; 0.3h; 0.42h; 0.47h]. Nevertheless this case is 

a very challenging stacking sequence due to the unsymmetric lay-up, both the approaches 

considered are accurate for what concerns transverse shear stress. However Figure 3.9b shows 

the limit of using Murakami zig-zag function for structure with asymmetric lay-up. As a 

matter of fact, the AD-ZZ model, which uses a physically-based zig-zag function, is 

dramatically more accurate in describing the through-the-thickness distribution of the in-plane 

displacement. Thus, it can better approximate the in-plane stress and strain, and consequently 

their contribution to strain energy for general lay-up. 

 

Figure 3.9 Comparison between transverse shear stress and in-plane displacement by the AD-ZZ 

model [119], the HLW model [168] and the exact solution [168] for a sandwich plate with L/h=4. 
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3.2.3 [0°/90°/0°/90°] laminated beam by sublaminate theory and AD-ZZ 

model 

This case considers the simply supported laminated [0°/90°/0°/90°] beam undergoing 

sinusoidal loading analysed by Averill and Yip [102]. The beam has four layers each h/4 thick 

and made of MAT p. The length to thickness ratio of the beam is 4. Figure 3.10 reports the 

exact elasticity solution for this case compared to the numerical ones by the sublaminate 

approach of Ref. [102] and by the AD-ZZ model [119]. The quantities reported in Figure 3.10 

are normalized as in Eq. (3.1). For the AD-ZZ model, equilibrium conditions (2.18) have been 

imposed in the following points [-0.45h; -0.4h; -0.2h; -0.15h; -0.1h; 0.05h; 0.1h; 0.2h; 0.27h; 

0.45h].  

Numerical results show that both the approaches considered obtain accurate results, especially 

for the in-plane stress and displacement. Instead, the sublaminate approach [102] is less 

accurate in describing the through the thickness distribution of the transverse shear stress. 

Perhaps, an improved accuracy could be obtained further refining the discretization in [102]. 

The superior accuracy of model [119] with fewer unknowns is the results of equilibria 

enforced at points across the thickness. 
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Figure 3.10 Comparison between transverse shear stress, in-plane stress and in-plane displacement 

by the AD-ZZ model [119], the sublaminate approach [102] and the exact solution [102] for a 

[0°/90°/0°/90°] laminated beam with L/h=4. 

3.2.4 [0°/90°/0°] laminated plate by cubic-parabolic RZT model and AD-ZZ 

model 

In thick laminates with different properties of layers and thickness, displacements cease to be 

piecewise linear across the thickness, assuming a higher-order pattern. In order to show this, 

here a [0°/90°/0°] simply supported rectangular (Ly=3Lx) plate, with a length-to-thickness 

ratio of 5, subjected to bi-sinusoidal transverse loading is considered. All three constituent 
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layers are made of MAT g. The outer ones have thickness 0.25h, the inner one has thickness 

0.5h.  

In order to treat this case, Iurlaro et al. in [159] enrich the RZT model [62] with a higher-order 

kinematic assumptions for the in-plane displacements and with a through-the-thickness 

parabolic distribution of the transverse displacement (here referred as the cubic-parabolic 

RZT). In Figure 3.11, the results by this formulation are compared to the exact 3D solution 

computed using the Pagano technique [145] and the results by the AD-ZZ model. Stresses and 

displacements are reported in normalized form as prescribed in Ref. [159]: 
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 (3.25) 

Where D11 is the bending stiffness defined according to [159] as: 
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These results show the importance of assuming a high-order through-the-thickness 

representation of displacements, because cases exists for which a piecewise linear 

representation cannot achieve the maximal accuracy. 

Indeed, nevertheless the material properties of constituent layers and the lay-up are not 

dissimilar to those of previous cases, here a piecewise linear representation with a constant w 

cannot be accurate. From Figure 3.11, it could be noticed that both the AD-ZZ model [119] 

and cubic-parabolic RZT [159] models obtain the fulfilment of the boundary conditions 

prescribed by the elasticity theory for shear and transverse normal stresses (2.6) – (2.7) and 

(2.22). Both models show an accurate predictive capability accounting for the idea pioneered 

by Di Sciuva in Ref. [62] of a priori fulfilling the interlaminar stress continuity with a fixed 

number of d.o.f.  
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Figure 3.11 Comparison between stress and displacement fields by the AD-ZZ model [119], the RZT 

approach [159] and the exact solution [159] for a laminated plate with length-to-thickness ratio 5. 

3.3 Validation of the AD-ZZ model for dynamic analyses 

Now attention is focused on dynamic analyses. In particular the validation of the AD-ZZ 

model for this kind of analysis is done considering three sandwiches undergoing blast loading. 

The choice of performing validation of the structural model considering pulse loading and not 

evaluation of natural frequencies is done because the natural frequencies are global quantities 

(see Ref. [155]) that don’t enhance the quality of the AD-ZZ in describing local effects. 

3.3.1 Impulsive loading 

Blast pulse loading represents a major hazard responsible for catastrophic failure of structures, 

as evidenced by research works dealing with explosive pressure pulses, which look for 

configurations able to reduce their detrimental effects (see e.g. Librescu et al. [169], [170] and 

[171] and Hause and Librescu [172] and [173]). 

Once a pressure pulse is generated, a shock wave is transmitted in all directions. When this 

wave reaches a structure, it can be noticed an instantaneous pressure peak, followed by a 

decrease. Various expressions have been suggested in literature, either of theoretical or 
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numerical nature, to describe the overpressure time history. In particular, the modified 

Friedlander exponential decay equation is generally adopted as blast-type loading (see e.g. 

Librescu et al. [169] and [171], Hause and Librescu [172], Gupta [174], Gupta et al. [175] and 

Song et al. [176]): 
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 (3.27) 

Pm being the peak pressure in excess of the ambient one, tp the positive phase duration 

measured from the time of arrival of the blast and a’ a decay parameter that can be adjusted in 

order to approximate the result of an experimental test. Customarily, the pressure is assumed 

to be uniformly distributed over the entire panel and the impact is assumed to occur with a 

normal incidence. This is not the case of gun blast pressure pulses, which require the spatial 

distribution of the pressure pulse to be considered; the readers find a study about gun blast in 

the paper by Kim and Han [177]. 

Assuming a’/tp equal to zero, the limiting case of the triangular loading is featured. As other 

special cases, the rectangular, step and sine pressure pulses have been considered in literature. 

The sonic boom-type loading is customarily modelled as an N-shaped pressure pulse 

corresponding to an idealized far-field pulse impacting at a normal incidence: 
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where r denotes the shock pulse length factor and the other symbols are as in (3.27). For the 

case r = 1, the N-shaped pulse degenerates into a triangular distribution, while for r = 2 a 

symmetric pulse is obtained. 

The solving system for the dynamic problem due to this kind of loading is as follows: 
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 (3.29) 

Where [M] is the mass matrix of the structure, [K] is the stiffness matrix, {D} is the column 

vector of the functional d.o.f. and {P(t)} is the column vector of the applied load. To solve the 

equation system (3.29) a step by step procedure is used, discretising the equation in time. 

More precisely the Newmark implicit time integration scheme is adopted, since alternative 
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explicit time integration schemes need extremely small time steps to be stable. It is 

worthwhile to mention that all the numerical results here considered disregard geometrical 

and material non-linearity, therefore, at any time step the solving system is a linear system 

with constant coefficients, thus the main drawback of the implicit integration schemes (i.e. 

inverting a stiffness matrix with coefficients that depend on the displacement) is avoided. 

Using the Newmark algorithm the velocity and the acceleration vectors after a time step Δt 

are: 
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 (3.30) 

By setting 2β ≥ γ ≥ 0.5 the method is unconditionally stable (see, e.g. Ref. [178]). In the 

present work, aiming at meeting stability requirements, all the calculations are carried out 

considering β=1/4 and γ=1/2. However, in order to limit convergence and rounding errors, 

relatively small time-steps are considered. By substituting the expressions of Eq. (3.30) into 

Eq. (3.29), a linear algebraic solving system of the type F(Dn+1) =0 is obtained.  

The Rayleigh Ritz method is employed to solve the static equations, i.e. the spatial part of the 

problem. In details, since all the structures analysed in this sections are simply supported, the 

trial functions of Eqs. (3.7) – (3.11) are employed to describe the in-plane variation of the 

functional d.o.f. 
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Figure 3.12 Time history for a) constant blast pulse, b) triangular blast pulse and c) step blast pulse.  

3.3.2 Study of sandwiches undergoing blast pulse loading 

Three sample test cases concerning simply-supported sandwich panels subjected to blast pulse 

loading are considered in order to assess the accuracy of the model in case of dynamic 

analyses. 

In all the cases, according to [172], which analytically solves the problem by applying the 

extended Galerkin method (EGM) coupled with the Laplace Transform, the material 

properties of faces are chosen as: E1=206.84 GPa, E2= E3=5.171 GPa, G12= G13= G23=2.551 
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GPa, υ12= υ23 =0.25, υ13=0.22, density 1558.35 Kg/m
3
. Those of core are: E1=E2=E3=0.138 

GPa, G12= G13= 0.1027 GPa, G23=0.06205 GPa; υij follows from Eij and Gij according to the 

rule for transversely orthotropic media; the density is 16.3136 Kg/m
3
. The panels are plate, 

square (Lx= Ly= 0.6096 m) and have a core 25.4 mm thick, each of the faces is 1.905 mm 

thick and the lay-up is [45°/-45°/45°/-45°/45°/core/45°/-45°/45°/-45°/45].  

Figure 3.13a represents the central deflection of the sandwich panel normalized to the static 

one under a triangular pulse loading, Figure 3.13b and 3.13c respectively represent the 

normalized central deflection of the plate under a step pulse loading and a constant pulse 

loading. Note that for Figure 3.13b, the differences between the analytical solution by Hause 

and Librescu [172] and that computed by the present AD-ZZ model are due to the fact that the 

latter considers a variable transverse displacement differently to [172]. This implies a 

different behaviour of the two theories that is evident just for the case with step blast loading. 

The results of Figures 3.13a, 3.13b and 3.13c are obtained considering M=N=1 in Eqs. (3.7) – 

(3.11) similarly to what done by Hause and Librescu [172]. Therefore, in order to better 

evaluate the effect of these parameters on the structural response, the central deflections for 

different values of M and N for the sandwich panel subjected to a constant pulse loading are 

reported in Figure 3.13d.  

From this figure, it could be noticed that the mean value of the deflection varies. Indeed, the 

minimum and the maximum deflections translate upwards as M and N grow because the 

stiffness of the structure decreases a little as a result of an increase in the number of 

components of the displacements’ representation. In addition, even if it is less evident, it 

could also be noticed a small increase in the frequency of the dynamic response due to the 

same reason.  
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Figure 3.13 Non dimensional deflection time history for a simply-supported sandwich plate (Lx= 

Ly= 0.6096 m, h= 29.21 mm) subjected to a) triangular pulse loading, b) step pulse loading and c) 

constant pulse loading. d) Non dimensional deflection time history for different order of expansion 

(constant pulse loading). 

Another important effect to be remarked is that related to the variation of the length to 

thickness ratio. As well known, the lower is this ratio, the higher are the layerwise effects, and 

in particular those due to transverse shear deformation. In order to study these effects on the 

response, once again, the sandwich panel subjected to a constant pulse loading is considered. 

Figure 3.14 represents the central deflection of the sandwich panel normalized to the static 

one considering different values of the length to thickness ratio. Reducing the length to 

thickness ratio it could be noticed a strong reduction in the amplitude of the oscillation, 

together with an increase in the frequency of the response due to the fact that a thick structure 

is considerably stiffer than a thin one.  
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Figure 3.14 Non dimensional deflection time history for a sandwich panel with different length to 

thickness ratios subjected to a constant pulse loading. 
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Chapter 4: Study of bonded joints 

In this Chapter, as an application of the AD-ZZ model to problem of practical interest, its 

particularization to study of bonded joints is presented. This kind of joints offers a 

combination of improved performances and manufacturing advantages with respect to 

traditional mechanical fastening, like better vibration isolation, accommodation of thermal 

expansion mismatch and hygrothermal swelling, better aesthetic appearance and better 

aerodynamic capabilities. 

In particular, adhesive bonding allows for a more gradual transfer of load between the 

structural elements, thus achieving a more uniform stress distribution. As a direct 

consequence, adhesive bonding is the most suitable technique for joining components when 

stress concentrations due to mechanical fastening have potentially catastrophic effects on 

strength and fatigue life, like for composite laminates, as discussed by Her [179].  

Simulating bonded joints is a rather complex matter that requires in many cases to account for 

geometric and material nonlinearity, to take into consideration the stress boundary conditions 

in a point form and to carry out the analysis with a sophisticate modelling of out-of-plane 

stress and strain fields. As shown by the comprehensive literature reviews by Vinson [180] 

and by da Silva et al. [181], many analytical, numerical and experimental studies have been 

published over years.  

A serious design concern regarding adhesively bonded joints is the evaluation of the stress 

and strain fields across the joint and how they are influenced by geometry, materials, loading 

conditions, temperature and moisture effects. A considerable effort has been made by many 

researchers to fully understand the intricacies in the behaviour of bonded joints and how the 

stress state influences the failure modes. The analysis of bonded joints can be carried out via 

finite element analysis (FEA) without introducing any simplifying assumption that could limit 

accuracy even in the case of complex joint geometries and complex material models including 

nonlinear effects. However FEA requires a quite long preparation and a large computational 
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time. To overcome this problem, analytical models (AM) based on simplifying assumptions 

and finite-difference schemes are extensively adopted for studying joints. Analytical [182], 

[183], [184], [185], [186], [187], finite element [188], [189], [190], [191] and finite-difference 

[192] solutions show that even when the adherends and the adhesive materials are 

homogeneous and isotropic, stresses and deformations are complex due to the different elastic 

moduli of adhesive and adherends and the enforcement of the stress boundary conditions. 

Results of the analyses show non-uniform shear strain and stress distributions in the adhesive 

layer caused by the progressive reduction of the strain in the adherends along the overlap and 

the continuity of the adhesive/adherends interface. The out-of-plane transverse shear and 

normal stresses in single- (SLJ) and double-lap (DLJ) bonded joints have a peak close to the 

edges of the bonding layer, which can lead to the premature failure of the joint in service. The 

peeling stress can be larger than the shear stress, thus becoming the dominant effect at the 

edges, as shown, e.g., by Nemes and Lachaud [193]. The readers can find a comprehensive 

discussion and extensive assessments in the papers by da Silva et al. [181] and [194]. 

Most AM are stress-based models that still maintain some of the simplifying assumptions of 

the pioneering models (Volkersen [195], Goland and Reissner [196] and Hart-Smith [197]) in 

order to allow a fast, low cost solution in closed form. Often, shear stress is assumed constant 

across the thickness of the adhesive, or shear and peel stresses in the adhesive layer are 

calculated solving a plane strain problem. This happens because the adhesive is assumed to 

deform only in shear and the adherends are assumed to be rigid, though these hypotheses 

could be not realistic in all cases. With the advent of bonded laminated composites as primary 

structures in the 80’s, more complex AM that consider the effects due to the deformation of 

the adherends and of the adhesive have been developed in order to adequately treat joints with 

laminated adherends. In this case, it is of primary importance to accurately account for the 

large variation of the transverse shear and normal stresses across the thickness that rise as a 

consequence of the different properties of the layers constituting the joint. However, trying to 

keep these improved models as simple as possible, often the stress-free boundary conditions 

at the ends of the overlap are still disregarded, along with the bending effect due to the 

eccentric load path of SLJ. Moreover, the deformability of the adherends is still accounted for 

with simplified techniques, as in [196] and [197]. Refined AM with improved predictive 

capability are reviewed by da Silva et al. [181], Gustafson et al. [182], Diaz Diaz et al. [183] 

and Radice and Vinson [184]. These models, depending on the complexity of their governing 
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differential equations, can be solved either in closed or numerical form. For examples, the 

models by Renton and Vinson [198], Srinivas [199] and Allman [200] are cited as examples 

that account for the transverse shear and normal deformations of adhesive and adherends, 

satisfy the stress-free boundary conditions ( [198], [199]) and consider the effects of bending, 

stretching and shearing in the adherends and the tearing actions in the adhesive ( [200]). 

Bonded joints with adherends made of composite materials have been recently studied by 

Diaz Diaz et al. [183] using a stress based layerwise model obtained by stacking Reissner-

Mindlin plates, which requires to solve a system of 29 equations in 29 unknown parameters. 

Since the assumptions of AM can affect the accuracy of results, an increasing number of 3-D 

FEA and of finite-difference 3-D schemes results for bonded joints have been published in the 

last years. The papers by Khalili et al. [189] and Diaz et al. [190] dealing with 3-D FEA of 

SLJ with CFRP adherends and epoxy adhesive and the paper by Andruet et al. [188] dealing 

with geometric nonlinear effects are cited as examples. Finite-difference 3-D schemes as an 

alternative to FEA and AM are overviewed by Xu and Li [192]. 

As discussed by Adams and Mallick [201], whenever a complex representation aimed at 

realistically simulating the stress fields is employed, a numerical scheme should be used for 

solving, even in the case of AM. However, this does not result disadvantageous and 

impractical compared to simpler AM allowing closed-form solutions, because costs are still 

saved with respect to 3-D FEA without significant accuracy loss. Besides, AM are not 

affected by stress singularities at the edge interfaces like 3-D FEA.  

Geometric and material nonlinear effects and adherends with dissimilar thickness have been 

recently considered by Mortensen and Thomsen [202] using refined AM. Damage of joints 

under impact loading is considered by Vaidya et al. [203]. 

The Classical Laminated Plate Theory (CLPT) and the First-Order Shear Deformation Plate 

Theory (FSDPT) are used for analysis of bonded joints with laminated composite adherends 

by Mortensen and Thomsen [202], Wah [204] and Yang and Pang [205]. These applications 

shed light on whether the analysis of bonded joints can be successfully carried out with 

ordinary displacement-based models, which are the tools customarily employed for the 

analysis of laminated structures. Nevertheless the adhesive peel stress is disregarded in the 

constitutive equations and the transverse shear stress is neglected or assumed constant across 

the thickness (as a consequence, equilibrium is not satisfied at the interfaces and the stress 

free conditions at the end of the overlap are not met), these studies have shown that the results 
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of displacement-based models can be in good agreement with those of finite element models, 

as shown e.g. in [205]. Accordingly, further research is motivated in this field because even 

better results could be obtained without the mentioned infringements. Moreover, 

displacement-based AM are of interest for analysis of bonded joints because the same 

approach can be used across the overlap and far from it, so designers can carry out a realistic 

analysis of the structures in the bonded region and outside it contemporaneously and with the 

same tool.  

As a contribution towards refinement of studies with displacement-based approaches, in this 

section the analysis of bonded joints with laminated adherends is carried out assuming as 

structural model the AD-ZZ model, which is here reformulated in order to treat bonded joints 

through inclusion of a variable in-plane representation. Thanks to this feature, the 

representation can be different in the adherends and in the overlap. Thus, the model can 

accurately simulate the variation of solutions across the joint and it can predict the effects of 

such variation on global and local behaviour, whose relevance has been shown by Gaudiello 

and Kolpakov [206] and Kolpakov [207].  

4.1 Modelling of the problem 

When adhesively bonded joints with laminated adherends are considered, the problem 

becomes a multiple-point boundary value problem. The boundary conditions at the edges of 

the adherends and of the overlap regions are satisfied finding appropriate expressions of the 

higher-order contributions to displacements. Since these relations are rather lengthy and 

tedious, here they are obtained using symbolic calculus, as already done in Chapter 2 for the 

development of the AD-ZZ model. 

A different representation for the adherends and for the overlap area can be used, because 

geometry and material properties change across the joint. In this way, always appropriate 

expressions of the coefficients of displacements are obtained together with the possibility of 

refining the model in the in-plane direction. 

If one assumes that no variation occurs in the transverse direction y as customarily, the 

transverse shear and the normal stresses should identically vanish over the free surface Ω1 and 
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Ω2 of the overlap (see Figure 4.1). Therefore, it is possible to enforce the following relations 

to hold in integral or point form: 

0; 0;    i=1,2

0; 0;     i=1,2
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The stresses are consistent with the applied loads as 
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 (4.2) 

N, M, Q being the in-plane, bending and shear resultants. All these conditions are used for 

computing an appropriate number of coefficients of displacements. Non-vanishing stresses 

can be enforced, because in real adhesive joints a fillet of surplus adhesive, the so-called 

spew-fillet can be formed at the end of overlap zone allowing transferring the shear stress.  

Since the adherends may have a different number of layers, a laminated model is developed 

whose number of layers is different across the joint, as shown in Figure 4.1.  

The middle surface Ω of the overlap is chosen as the plate reference surface. A rectangular 

Cartesian reference frame (x, y, z) with (x, y) in Ω and z normal to it is assumed as reference 

system. The effects of non-linear strains, which are important for SLJ and DLJ, are accounted 

for using the updated Lagrangian methodology, which offers an improved numerical 

efficiency than the standard Lagrangian approach.  

Material non-linearity can be accounted for by implementing stiffness coefficients that varies 

with the load magnitude, as successfully done in Ref. [122] (See Chapter 8). 
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Figure 4.1 Geometry and reference system for analysis of: a) single lap joints; b) double lap joints. 

The through-the-thickness variation of displacements across the thickness is postulated in the 

following general, piecewise form that considers four separated contributions, as indicated by 

the superscripts:  

       zyxUzyxUzyxUzyxUzyxu ipcci ,,,,,,,,),,( _0   (4.3) 

       zyxVzyxVzyxVzyxVzyxv ipcci ,,,,,,,,),,( _0   (4.4) 

       zyxWzyxWzyxWzyxWzyxw ipcci ,,,,,,,,),,( _0   (4.5) 

The first three contributions, ( )
0
, ( )

i
 and ( )

c
, are the same as in the model of Chapter 2.  

Instead, the new contributions with superscript 
c_ip

 aimed at fulfilling the continuity conditions 

in case of variation of the in-plane representation have the following expressions: 
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As for Eqs. (2.14), (2.15) and (2.19), Hk activates the contribution of the continuity functions 

starting from the variation of the in-plane representation. It could be noticed that for bonded 

joints this variation can happen only in one direction (x or y) and not in both at the same time. 

The piecewise contributions of Eqs. (4.6) – (4.8)
 
are incorporated in order to make continuous 

the stresses and their gradients up the desired order at the interfaces of the regions where the 

in-plane representation is changed, as prescribed by the elasticity theory. Generally speaking, 

the summations of Eqs. (4.6) – (4.8) can have infinite terms, since from equilibrium it is 

possible to deduce that the continuity should hold for the stresses and their in-plane gradient 

of any order. By the practical viewpoint, the summations can be truncated, without significant 

loss of accuracy. Accordingly, in the present work the summations of Eqs. (4.6) – (4.8) are 

considered, without significant accuracy loss as shown by the results of the next section. In 
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details, the terms of first order in the in-plane coordinate are aimed at fulfilling the continuity 

of the stresses; those of second order are aimed at satisfying the continuity of the stress 

gradients.  

As already done in Chapter 2, the explicit expressions of the continuity functions are 

evaluated in closed form using a symbolic calculus tool. 

By the practical viewpoint, bonded joints are treated as laminates with variable properties 

across the thickness and over the in-plane direction x. In particular considering the structure 

of Figure 4.2, the procedure proposed splits this domain into 6 different subdomains 

(irrespectively of the fact that the structure is a plate or a beam) each of which can have 

different mechanical properties. When modelling a single lap joint (Figure 4.1a), the 

subdomains Adherend 2 and Adherend 4 should disappear, therefore their mechanical 

properties are assumed to be 0 (nearly 0 in order to avoid numerical problems) within the 

solving procedure. Terms 4.6 – 4.8 restore continuity of stresses and their gradients at the 

interfaces Ω1 and Ω2, while, as customarily, U
c
, V

c
 and W

c
 restore continuity across the 

thickness, as explained in Chapter 2. 

 

Figure 4.2 Subdomains considered for modelling single lap joint with the present procedure.   

 

4.2 Applications to bonded joints 

Sample cases of SLJ and DLJ published in the literature are retaken and analysed by the 

present model in order to assess whether it can be successfully employed for studying 

adhesively bonded joints. 



Chapter 4:Study of bonded joints 

 

 

92 

 

In order to preliminary assess the capability of the present analytical model to treat case with 

in-plane discontinuity the two material wedge by Hein and Erdogan [208] is considered.  

All the computational times provided in the following sections are obtained carrying out the 

analyses on a laptop computer with dual-core CPU 1.80 GHz, 64 bit operating system and 4 

GB RAM. 

4.2.1 Two material wedge 

In order to assess the capability of the AD-ZZ model to predict continuous stresses under 

sudden in-plane variation of properties, first the sample case of a two-material wedge (two 

semi-infinite sectors under uniaxial traction) is considered (Figure 4.3). The goal is to 

compare the in-plane variation of the shear stress σxy across the material discontinuity to exact 

elasticity solution by Hein and Erdogan [208].  

In this sample case, the variation of solutions in the transverse direction with respect to the 

plane x, y of Figure 4.3 has no relevance. Here, just the in-plane shear stress is considered, 

being the one with the highest singularity strength at the corner interface. A Young’s modulus 

of 7.3 GPa and a Poisson’s ratio of 0.3 are assumed for the deformable sector, while a 

modulus larger by a factor 100 is assumed for simulating the rigid sector. 

 

 

Figure 4.3 In-plane variation of the normalized in-plane shear stress for the two material wedge by 

the present model and exact solution [208] (inset: exact solution by Hein and Erdogan [208]). 



Chapter 4:Study of bonded joints 

 

 

93 

 

The exact elasticity solution shows a strong stress concentration at the edge corners, which 

could produce a catastrophic failure in service when dissimilar materials are bonded together. 

Hence, the stress analysis should be carried out with the maximal accuracy at the interface of 

materials with dissimilar properties. Figure 4.3 reports the in-plane variation of the shear 

stress σxy across the material interface normalized as follows: 

xy

xy

xyMAX





  (4.9)

 

The present analytical solution is obtained assuming a subdivision of the domain of the two 

half plates into 16x16 subdomains (see Figure 4.2) whose side length is progressively reduced 

close to the corner interface. Each of the two half plates has length-to-width ratio of 50. One 

plate is clamped, the other is stretched (with no bending) in the x direction. Within each 

subdomains the in-plane variation of the d.o.f is assumed parabolic in the in plane coordinates 

x and y.  The continuity of the in-plane shear stress is enforced at the sides of subdomains by 

computing the appropriate expressions of the continuity functions appearing in Eqs. (4.6) – 

(4.8).  

The results of Figure 4.3 show the capability of the AD-ZZ model to accurately reproduce the 

variation of the shear stress σxy across the interface even in this case. The present structural 

model is shown able to capture a continuous stresses with a discontinuous gradient like in the 

exact solution.  

The strong stress concentration occurring at the interface of material with dissimilar 

properties shows the importance of enforcing the stress continuity under in-plane material 

discontinuity to accurately evaluate stresses. 

4.2.2 Adhesively bonded joints 

The sample cases by Diaz Diaz et al. [183], Radice and Vinson [184], Andruet et al. [188] 

Vaidya et al. [203] and da Silva and Adams [209] are considered in order to assess the 

capability of the present displacement-based multilayered plate model to describe the stress 

fields in adhesively bonded joints.  

 

Case A. As first application, the sample case by Radice and Vinson [184] is considered. In 

this study, a single-lap joint clamped at the left edge and simply supported at the right one 
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undergoing an axial load with intensity 40 kN/mm is analysed. The adherends are made of an 

aluminium alloy (E= 70 GPa, υ=0.33), while the adhesive is made of an epoxy resin (E= 4.82 

GPa, υ=0.4). The adherends are 50.8 mm long and 1.62 mm thick, the overlap length is 12.7 

mm, while the adhesive thickness is 0.25 mm. 

It could be remarked that the length- to-thickness ratio of the adherends is more than 30 and, 

in addition, they are made of isotropic material, therefore the present model does not require 

the computation of the continuity functions in the adherends, nor an extremely high order 

expansion across the thickness. Accordingly, a second order expansion is adopted both for the 

in-plane and the transverse displacements. Figure 4.4a shows how the shear stress σxz varies 

along the bond-line, whereas Figure 4.4b gives the variation of the peeling stress σz along the 

same line. According to [184], the variation of solutions in the transverse direction y is 

neglected. The results by the present model reported as a solid line are obtained using as trial 

functions in the overlap section the following ones: 
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In this way, the problem turns into a system of three equations in the three unknown 

amplitude of the in-plane and transverse displacement components and of the transverse shear 

rotation. The solution represented as a dashed line is obtained using in the overlap section the 

following Fourier series expansion with 30 components: 
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  (4.11) 

In both cases, the trial functions of the lower and upper adherends are those of Eq. (4.11) in 

order to respect the boundary conditions. In the former case, the problem is solved in 1.5 s, 

while 80 s are required in the latter one. It could be noticed that in this benchmark case the 

present model, thanks to its refined representation (high-order terms, transverse continuity and 

in-plane continuity), is proven to be able of capturing the stress fields with just one 

component in the series, so it appears suitable to efficiently solve the problem examined. The 

same consideration does not hold for lower order models such as the PWM3 of Section 2.1.3 

or the PWM4 of Section 2.1.4. 
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Figure 4.4 Single-lap joint with aluminium adherends. Span-wise distribution of: a) shear stress 

and b) peel stress at the mid-plane of the adhesive layer by Radice and Vinson’s elasticity model 

[184] and by the present model using different shape functions. 

Case B. As next case, the single-lap joint with CFRP adherends analysed by Vaidya et al. 

[203] and retaken by Khalili et al. [189] is considered. The mechanical properties of the 

adherends are: E1= E2= 50 GPa, E3= 7.2 GPa, G12= 5 GPa, G13= G23=3 GPa, υ12=0.3, υ 13= υ 

23=0.25. Those of the adhesive are: E= 2.8 GPa, υ=0.35. The adherends are 87.5 mm long and 

3 mm thick, the adhesive thickness is 0.33 mm, while the overlap length is 25.4 mm. The 

lower adherend is restrained against translation but free to rotate, while the other one is 

simply-supported at the edge, where a uniformly distributed traction load with intensity 7500 

N is applied. Figures 4.5a and 4.5b show the span-wise distributions of transverse shear stress 

and peel stress, as predicted by the present model and in [203]. Similarly to what done in the 

previous case, the variation of solutions in the transverse direction y is still neglected. Please 

note that the curves named BC1 are computed imposing the stress-free boundary condition at 

the edges of the adhesive, those referred as BC2 are instead achieved imposing the same value 

of the shear as Vaidya et al. [203] at the edge of the adhesive. This solution, even if it does not 

respect the condition of Eq. (4.1) is considered in order to show again that  the AD-ZZ model, 

thanks to its variable representation, can fulfil different boundary condition, as already shown 

in 3.1.5.  In both cases, the trial functions for the adherends are those of Eq. (4.11) while in 

the overlap the trial functions are those of Eq. (4.10). As far as the through-the thickness 

representation is concerned, in both cases a third-order representation of the in-plane 
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displacement and a fourth-order one for the transverse displacement is adopted. Differently to 

Case A, two computational layers are considered across the thickness of the adherends in 

order to accurately represent their stress variation. Nevertheless more computational layers 

are considered than in the former case, the processing time is still comparable, since just 1.7 s 

are required to solve the problem. Also in this case the representation with a single component 

gives quite accurate result with the lowest computational effort. 

 

 

Figure 4.5 Single-lap joint with CFRP adherends. Span-wise distribution of: a) shear stress and b) 

peel stress by Vaidya et al. [203] (FEA) and by the present model enforcing or not the free-edge 

stress boundary conditions. 

Case C. It is now considered the case analysed by Diaz Diaz et al. [183] of a double-lap joint 

with adherends made of different materials. The outer adherends are assumed to be made of 
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steel (E= 210 GPa, υ=0.3), while the inner adherend is assumed to be orthotropic (E1= 120 

GPa, E3= 10 GPa, G13= 5 GPa, υ 13= 0.3). The adhesive is an epoxy resin (E= 4 GPa, υ=0.3). 

The thickness of the adherends is 3 mm, while that of the adhesive is 0.5 mm. The overlap 

length is 40 mm. The joint is undergoing a traction load of 5000 N. A comparison is presented 

with the results by the structural model of Ref. [183] and by a finite element model therein 

considered for comparisons. The analysis with the present model is carried out considering a 

second order expansion of the in-plane displacement and a third order expansion of the 

transverse displacement across the thickness of the outer adherends and of the adhesive. 

Instead, a third order expansion of the in-plane displacement and a fourth order expansion of 

the transverse displacement across the thickness are adopted within the inner orthotropic 

adherend. As no information about the total length of the adherends and about their boundary 

conditions can be gathered from Diaz Diaz et al. [183], only the overlap section is simulated 

by the present model. Figures 4.6 shows the span-wise distribution of transverse shear and 

transverse normal stresses between lower outer adherend and adhesive and between inner 

adherend and adhesive, as predicted by the present model using the single component 

representation of Eq. (4.10), i.e. M,N=1, and the series expansion of Eq. (4.11) with M,N=30. 

As it takes only 1.3 s, obviously the first approach is dramatically faster, since 65 s are 

required to perform the analysis with 30 components. The comparison with the reference 

results shows that the fastest approach is also quite accurate and thus efficient, considering 

that the use of many components in the series does not produce a consistent accuracy 

improvement, while it considerably increases the processing time and the memory occupation. 
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Figure 4.6 Double-lap joint with heterogeneous adherends. Span-wise distribution of shear stress 

between a) lower adherend and adhesive and b)  inner adherend and adhesive and of  peel stress 

between c) lower adherend and adhesive and d) inner adherend and adhesive by Diaz-Diaz et al. 

[183] (analytical and FEA) and by the present model using different trial functions. 

Case D. In order to verify whether the method employed to model non-linearity provides 

accurate results, it is now considered the single-lap joint studied by Andruet et al. [188]. The 

joint has aluminium adherends (E= 68.3 GPa, υ=0.3) and epoxy resin adhesive (E= 2.5 GPa, 

υ=0.3); it is clamped at left edge and simply supported at the right one, where an average 

tensile stress with intensity 200 MPa is applied. The thickness of the adherends is 1.6 mm, 

that of the adhesive is 0.1 mm. The overlap length is 20 mm, while the adherends are 60 mm 

long. 

Figure 4.7 shows the results obtained by the present variable kinematics model either 

imposing the boundary constraints prescribed by the theory of elasticity, which are named as 

BC1, or imposing the same value of the shear stress computed by Andruet et al. [188] at the 

free edge of the adhesive, here named as BC2. 

In both cases, a third order piecewise variation of the in-plane displacement and a fourth order 

variation of the transverse displacement is chosen, using as trial functions those of Eq. (4.10). 

Irrespectively of the constraints imposed, the computational time is 1.5 s. As far as the in-

plane representations of displacements in the adherends are concerned, the same trial 

functions already adopted for Case A are employed. 

The results show that also in this case the present model provides predictions in very good 

agreement with the reference ones. This confirms the correct implementation and the 

effectiveness of the updated Lagrangian approach in taking into account the effects of 

geometric nonlinearity, as already pointed out in the literature. 
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Figure 4.7 Non-linear analysis of single-lap joint. Span-wise distribution of: a) shear stress and b) 

peel stress by Andruet et al. [188] (FEA) and by the present model enforcing or not the free-edge 

stress boundary conditions. 

Case E. In order to compare the numerical results of the present model to those obtained 

through experimental tests, the failure loads of titanium/composite double lap joints presented 

by da Silva and Adams [209] are considered. The adherends are made of titanium (Ti-6Al-

4V) and of a 0°/90° laminate obtained by staking two plies of carbon fabric HTM552, 

impregnated with a BMI resin composite. According to [209], different adhesives are 

considered, namely Supreme 10HT or AV119. Table 4.1 reports the comparisons between 

experimental and numerical results obtained assuming for the d.o.f. the in-plane 

representation reported in Eq. (4.11) considering M= N= 35. For what concerns the 
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representation across the thickness, a third order piecewise variation of the in-plane 

displacement and a fourth order variation of the transverse displacement are chosen. The 

failure loads reported in Table 4.1 are computed considering the stress-based failure criteria of 

Refs. [210] and [211]. The good agreement shown with respect to the results of experiments 

[209] confirms that the present model accurately predicts the stresses and, besides, that stress-

based criteria like [210] and [211] can be successfully used for determining the strength of 

bonded joints. 

  

Composite inner 

adherend 

Composite outer 

adherend 

Supreme 

10HT 

Ref. [209] 24.40 38.54 (± 1.21) 

Present (FC [210]) 26.20 40.50 

Present (FC [211]) 26.35 40.30 

AV119 

Ref. [209] 21.89 (± 1.11) 37.33 (± 3.93) 

Present (FC [210]) 23.48 39.19 

Present (FC [211]) 23.15 39.51 

Table 4.1 Comparison between failure loads [kN] predicted by the present model and those 

experimentally measured in Ref. [209] for titanium/composites double lap joints. (FC= Failure 

Criterion). 

Applications to linear and nonlinear benchmark test cases of joints taken from the literature 

presented in this section have shown that the AD-ZZ model can accurately and efficiently 

treat bonded joints with laminated adherends. In fact, for all the examined cases, accurate 

results were obtained in few seconds carrying out the analyses on a laptop computer. 
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Chapter 5: Variable stiffness composites and 

stitching 

In this chapter two techniques for improving the energy absorption properties of laminated 

and sandwich composites are presented: variable stiffness composites and the use of textile 

composites. Their application is aimed at improving the structural performances of composite 

structures. 

Indeed, the former tool acts directly on the energy contributions that rule the deformation of 

the structure. An energy tuning takes place, because variable stiffness composites enable to 

minimize the energy absorbed through unwanted modes (i.e., the ones involving interlaminar 

strengths and causing delamination) and maximize that absorbed through desired modes (i.e., 

the ones involving membrane strengths).  

The appropriate in-plane distribution of plate stiffness coefficients is obtained making the 

strain energy contributions of interest extremal under in-plane variation of the plate stiffness 

properties, and enforcing proper conditions. These constraints range from the imposition of 

the thermodynamic constraints, to the choice of a convex or a concave shape for the stiffness 

coefficients (in order to minimize or maximize the energy contributions of interest), to the 

imposition of a mean value for these coefficients. In order to obtain these stiffness variations, 

in-plane fibre orientations are varied. 

Therefore, the new approach VSC, based on a variable spatial distribution of stiffness 

properties, can limit the detrimental effects of damage and can improve the structural 

performances of fibre reinforced and sandwich composites by tuning their energy absorption 

properties. With this approach, contrasting objectives can be conjugated, like the 

improvement of stiffness and, contemporaneously, of delamination strength.  

In this chapter, the present technique is applied to laminates or to the face sheets of sandwich 

composites.  
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For what concerns textile composites, as explained forward, the most interesting application is 

stitching or tufting of sandwiches, which implies the insertion of through-the-thickness 

reinforcements in the structure. Stitching basically involves sewing high-tensile strength yarn 

(e.g. glass, carbon or Kevlar), through an uncured prepreg laminate or dry fabric plies using 

an industrial sewing machine. Stitching of prepreg laminates is more difficult, because the 

tackiness of the uncured resin makes sewing difficult and some of the in-plane fibres may be 

broken and/or distorted. This damage can adversely affect the mechanical properties of 

stitched laminates. Because of this problem, stitching is mostly used with dry fabric preforms. 

The tufting process consists of the insertion of a threaded needle into dry fabrics or sandwich 

preforms, and its removal from the piece along the same trajectory. The thread remains in the 

place by the friction between fibre and core, creating a 3D structure. 

In both cases, these reinforcements considerably enhance transverse normal strength and 

stiffness of sandwiches, thus reducing interlaminar stresses at critical interfaces and damage 

in sandwiches undergoing impact loading.  

In order to get an evaluation of the effects due to transverse reinforcement on the mechanical 

properties of stitched sandwiches, virtual material tests using 3D finite element are performed. 

Then, the homogenized mechanical coefficients evaluated in this way are provided to the AD-

ZZ model, which evaluates the stress and displacement fields of the structures.  

Since the numerical results show that the interlaminar stresses can be consistently reduced 

using these techniques, keeping a high stiffness, future applications are expected, where the 

local effects are accounted for in a much more detailed way. In subsequent sections the 

features of these techniques will be briefly summarized, their implementation process 

discussed in detail, and the numerical applications presented. 

However, first of all, the analysis of the state-of-the-art is premised in order to explore in 

which way the same problem has been solved in literature. 

5.1 State of the art 

Various techniques have been recently published in literature with the aim of preventing the 

damage accumulation typical of composite structures and obtaining improved structural 

performances.  
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Many authors chose to apply the Functionally Graded Materials as a promising technique for 

avoiding unwise stress concentrations at interfacial material discontinuities that conventional 

fibre reinforced and sandwich composites usually exhibit, by virtue of the gradual variation of 

their physical properties. Among many other authors, here the contribution of Fuchiyama and 

Noda [212] is reminded. It seems from the results published in [212] that the design of FGM 

introduces technological difficulties and their theoretical performances can differ a lot from 

the practical ones, observed in experimental tests. 

As an alternative, an improvement in the impact and delamination resistance and in 

dissipation can be achieved by stacking layers with different absorption and dissipation 

properties, namely, plies with customary properties and viscoelastic layers, as proposed by 

Suzuky et al. [213]. However, since the viscoelastic layers must be as thick and numerous as 

the structural layers in order to achieve good performances, this method unfortunately makes 

the structures too flexible and it is not effective for sandwich composites, because the number 

of damping layers to be incorporated is lower than in laminated composites. Moreover, the 

stresses in the adhesive film which bonds the viscoelastic layers to the host structure could 

limit the strength and the service life. 

Several studies dealing with methods, which seek to simultaneously improve stiffness, energy 

absorption and dissipation, have been recently published. Jung and Aref [214] seeks to 

conjugate stiffness with energy dissipation by combining different materials with different 

absorption and stiffness properties. Lakes [215] shows that the structural hierarchy makes 

possible to obtain both the desired stiffness and the damping properties. 

Furthermore, McCoucheon et al. [216] shows that the energy dissipation can be increased 

without remarkable stiffness loss by inserting fluid filled micro-tubes into a matrix material, 

where the fluid flow is induced by the composite deformation. However, all these solutions 

introduce quite strong technological complications. 

Recently, variable stiffness composites in which the orientation of the fibres minimizes the 

stresses have been studied, for example, by Pedersen [217] and Setoodeh et al. [218]. 

Moreover, other research studies by Zinoviev and Ermakov [219] and Georgi [220] 

investigated the effects of the fibres’ orientation (constant over the plate) for finding 

configurations able to dissipate a large amount of the incoming energy, while keeping the 

wanted strength and stiffness properties unchanged. 
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Other authors suggested the use of advanced technological skills such as stitching, lap and T 

joints, or short rods in order to improve the transverse shear strength of multilayered materials 

and limit the detrimental effects of local damage and delamination propagation. These tools 

oppose cracks and sliding displacements by inducing bridging tractions, as shown by Cox 

[221]. As far as laminates are concerned, stitching is largely employed. Gui and Li [222] 

demonstrated that this technique can improve the buckling behaviour, while Mouritz [223] 

showed that the fracture toughness of stitched laminates is much higher than the equivalent 

unstitched ones. Shah Khan and Mouritz [224] reported that the translaminar strength of fibre 

reinforced polymer (FRP) composites can be improved considerably with a thread of carbon, 

glass or Kevlar.  

Many approaches have been suggested for sandwiches: stitching of faces and stitching 

through-the-thickness (Potluri et al. [6]), integrated pile core (Judawisastra et al. [7]) and 

vertical composite columns, 3D pins or shear keys implanted in the core (Wang et al. [8], 

Vaidya et al. [9] and Nilanjan [10]) and folded core (Heimbs et al. [225]). These techniques 

have been proven successful in improving the performance of sandwiches under impact 

loading (Potluri et al. [6], Vaidya et al. [9] and Heimbs et al. [225]), the fatigue behaviour 

(Judawisastra et al. [7]) and the shear properties (Nilanjan [10] and Wang et al. [226]). 

However the Advanced Composites Technology (ACT) program proposed by NASA [227] 

demonstrated that stitching through-the-thickness is the most effective technical skill in 

reducing costs and improving damage tolerance of aircraft structures. Another available 

technique, which inserts reinforcement in the through-the-thickness direction, is tufting [228], 

whose characteristics have been discussed above. 

Summarizing, among many solutions explored in literature, here the author has chosen to 

exploit i)the great tailoring capability, offered by fibre-reinforced composites, and the effects 

of varying the fibre orientation over the space and ii) the great improvement on transverse 

normal strength and stiffness brought by the insertion of through-the-thickness reinforcement 

by stiching or tufting.  
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5.2 Variable stiffness composites 

The process has the aim of finding a proper distribution of the stiffness properties that 

minimises the energy absorbed through unwanted modes (e.g., modes involving interlaminar 

strengths) and maximises that absorbed by desired modes (e.g., modes involving membrane 

strengths). This distribution is determined by solving the Euler-Lagrange equations, obtained 

by making extremal the in-plane, bending and out-of-plane shear contributions to strain energy 

under spatial variation of the stiffness properties. Once the expressions of the optimal stiffness 

have been obtained, the in-plane variation of the fibre orientation can be computed by 

inverting the stress-strain relations for each lamina of arbitrary orientation. 

In this way the amount of the energy stored by specific modes can be minimised, or 

maximised, as desired, so this technique works as an energy “tuning”.  

In order to find the stationary condition for the strain energy contributions, the first step 

requires writing the strain energy of the AD-ZZ model.  

The procedure starts by imposing zero its first variation under variation of the functional 

d.o.f.; note that this constraint associated with the variation of the external work represents the 

equilibrium condition.  

Enforcing the vanishing of the first variation of the strain energy, with the stiffness properties 

as primary variables, a set of governing equations is obtained, the so called Euler–Lagrange 

equations that represent the relations enabling the stiffness properties to make the strain 

energy contributions extremal. The closed form or the numerical solution of these equations 

gives the variable distribution of the stiffness properties. 

The strain energy due to bending is the contribution by the terms that multiply w
0
, while the 

terms that multiply γx
0
, γy

0
 represent the strain energy due to transverse shears. The process 

has the objective of finding stiffness distributions that simultaneously solve these equations. 

In this procedure, the in-plane contributions multiplying u
0
 and v

0
 are disregarded since 

laminated and sandwich composites have a larger strength and stiffness in the in-plane 

direction than in the thickness one. However, in-plane stresses should be assessed, as their 

excessive relaxation may cause the failure. 

Generally speaking, the stationary condition for the bending energy is obtained integrating by 

parts the virtual variation of the strain energy under variation of the functional d.o.f. and 

collecting the contributions that multiply each displacement d.o.f.: 
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Notice that the [MR
i
] matrices have different dimensions, and, their expressions are as 

follows: 
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Where WR are: 
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In (5.4), Bij are the membrane – bending coupling stiffness coefficients of the AD-ZZ model, 

Dij are the bending stiffness coefficients of the AD-ZZ model and Fij are the higher-order 

stiffness coefficients of the AD-ZZ model (see the Appendix for their definition).  

The stationary condition for the transverse shear energy in the plane (x, z) is obtained again 

integrating by parts the virtual variation of the strain energy under variation of the functional 

d.o.f. and collecting the contributions that multiply each displacement d.o.f. : 
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Where [SR]: 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

x

y

x

y

z

SR

SR

SR

SR

SR





    
    
 

   
 

   
 
  

  

 (5.6) 



Chapter 5:Variable stiffness composites and stitching 

 

 

110 

 

Once again, the matrices [SR
i
] have different dimensions and, their expressions are as 

follows: 
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In Eq. (5.8), Bij , Dij and Fij are as explained above, while Eij and Hij are higher-order stiffness 

coefficients of the AD-ZZ model (see again the Appendix for their definitions). The quantities 

for the shear energy contribution in the plane (y, z) are not reported, since they are similar to 

those for the plane (x, z), substituting x with y. 

As outlined by Eqs. (5.4) and (5.8), the terms MRij and SRij are spatial derivatives of the 

stiffness properties obtained after integrating by parts the derivatives of the displacement 

d.o.f. So Eqs. (5.1) and (5.5) represent partial differential equations.  

As mentioned above, the procedure disregards the equations involving in-plane energy, since 

laminated and sandwich composites have weak out-of-plane properties and strong in-plane 

properties. Thus, considering Eqs. (5.1) and (5.5) just the lines that multiply δw
0
, δγx

0
 and δγy

0
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require a simultaneous solution. In particular, since the extremal condition under variation of 

the stiffness properties yields irrespectively of the response, equations (5.1) and (5.5) can be 

split into a set of partial differential equations of the following form: 

0;0;0 543   jjj MRMRMR  (5.9) 

0;0;0 543   jjj SRSRSR  (5.10) 

The distribution of the spatial stiffness properties that make extremal the bending and 

transverse shear energy contributions is obtained by the simultaneous solution of Eqs. (5.9) 

and (5.10). In particular, considering the coefficients defined in Eqs. (5.4) and (5.8) these 

equations determine a set of partial differential equations up to the fourth order in (x, y). This 

set of equations has to be solved simultaneously, and the solutions of the problem for the face 

plies are represented by exponential functions for elastic coefficients with indices 11, 12, 13, 

16, 22, 23, 26, 36, 66 and constant for elastic coefficients with indices 44, 45, 55, since just 

first order derivatives of the stiffness properties with these indices are involved in Eqs. (5.4) 

and (5.8). This is physically consistent since the orientation of the fibres over the plane (x, y) 

does not affect the transverse shear properties of the plies. 

Therefore the solution of the extremal problem is   

   1 1
1 2

1 2

1

44

45

55

    i,j=1,2,3,6
x y
n n

P
px pyij ij

ij p x i y

p

C A e k A e k

C L

C M

C N

  



      
      









 (5.11) 

The appropriate amplitude, phase, mean value and period in Eq. (5.11) are determined 

enforcing conditions such as the stiffness at the bounds, a convex or a concave shape and 

thermodynamic constraints related to the conservation of energy. Also the mean values of the 

mechanical properties (i.e. the mean value of the functions and of their powers of various 

orders) of the variable stiffness ply should be imposed to be the same of that with straight 

fibre.  

Once the stiffness coefficients Cij (x, y) have been defined, the law of variation of the fibre 

orientation angle is obtained inverting the stress-strain relations for lamina of arbitrary 

orientation (see. Ref. [133]). As already done for the development of the AD-ZZ model, also 

in this case the solution to (5.9) and (5.10) is computed through symbolic calculus. 



Chapter 5:Variable stiffness composites and stitching 

 

 

117 

 

Here, the fibre paths shown in Figure 5.1 are considered, which represent a solution 

compatible with the governing equation (5.11): MB minimizes the bending component of the 

strain energy, MS minimizes the shear component of the strain energy of each ply. From the 

practical viewpoint, MB distribution is obtained imposing maximum bending stiffness at the 

centre of the ply and minimum at the edge. The in-plane variations of the most significant Cij 

for the MB ply are reported in Figure 5.1. From this figure, it is possible to notice that MB 

determines a significant increase of C11 at the centre of the ply, and a reduction at its edges.  

For what concerns C12, which represents the local in-plane shear stiffness, its magnitude is 

significantly high at bounds of the ply, while at the centre it remains almost unchanged with 

respect to the straight fibre case. This trend is also the same of the coefficient C22. The 

coupled effects of the distributions of C11, C12 and C22 imply, as desired, an increase of the 

bending stiffness at the centre of the ply and a decrease at the bounds, where the shear 

stiffness in the in-plane direction grows. Finally, with MB distribution, the transverse shear 

stiffness decreases maintaining a value almost constant.  

The MS distribution is obtained imposing maximum bending stiffness at the edge of the ply 

and minimum at the centre, as shown by the stiffness distributions reported in Figure 5.1. This 

figure shows that the in-plane distribution C11 is higher at the bounds than at the centre of the 

ply, while for C12 and C22 the trend is the opposite. In fact, they have low value at bounds and 

high value at the centre. C44 remains almost constant and similar to the original value. By the 

practical point of view, MS distribution determines a transfer of energy from bending in the x-

direction, to bending in the y-direction and to in-plane shear. 
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Figure 5.1 Fibre distributions and in-plane distributions of the Cij for the MB and MS plies. 
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5.3 Stitching 

The insertion of a through-the-thickness reinforcement introduces the idea of 3D material. 

Within this framework, several approaches, validated by comparisons with experimental 

results or 3D FEA, have been suggested for modelling the mechanical behaviour of this kind 

of materials. According to Prodromou et al. [229], they can be broadly classified into four 

classes, here referred as: i) analytical methods, ii) methods based upon inclusion method, iii) 

methods based upon cell method and iv) FEM methods. The analytical methods (see, e.g. 

[230] - [231] - [232]) are based on laminate theory and orientation averaging techniques. In 

these models, the composite is discretized into small volume elements, which can be treated 

as unidirectional lamina with transverse isotropic properties. Making the assumption of either 

iso-stress, or iso-strain, the macroscopic properties are determined by volume averaging the 

response of a composite representative body. These methods give an accurate prediction for 

in-plane on-axis moduli, while shear and out-of-plane properties could be predicted with 

significant errors, as outlined in [229] and [233]. Inclusion methods [234], [235] adopt a mean 

field approach based upon the equivalent inclusion theory [236], for evaluating the 

mechanical properties. However, comparisons with experiments showed that average errors 

relative to experimental results of at least 10 % can be found with this technique, as reported 

in [229].The cell method [229], [237] is based on the theory of continuum media. It firstly 

split the structure into representative volume elements, which repeat itself throughout the 

material. The following step requires defining the macroscopic average stresses and strains 

from the microscopic ones, next continuity of traction and displacements should be imposed 

at the interfaces between the constituent volumes. In the final step, the overall elasto-plastic 

behaviour is determined by expressing it as a constitutive relationship between the average 

stress, strain and plastic strain, in conjunction with the effective elastic stiffness tensor of the 

composite. With respect to the inclusion methods, it is possible to halve the average errors 

relative to experimental results, as shown in [229]. According to [229], the most accurate 

approach to date available is that based on material testing carried out with full scale finite 

element analysis (FEA), as proposed in [238] and [239]. Accordingly, here, the author has 

chosen to adopt this strategy to evaluate the homogenized mechanical properties of the 

stitched structure employed by the AD-ZZ model to compute stresses and displacements. In 
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particular, virtual material tests are carried out using the mixed solid element developed in 

Ref. [240].  

 

Figure 5.2 a) 3D model of stitched sandwich. b) Transverse section. Loading scheme for calculating 

c) in-plane moduli, d) transverse modulus and e) shear moduli with 3D FEA. 

The first step is creating the geometrical model of the structure, (Figure 5.2). Once the 

geometrical model is created, the elastic coefficients of the structure are computed carrying 

out the analysis with the 3D FE model [240]. Its nodal d.o.f. are the three displacements and 

the three interlaminar stresses to meet the stress and displacements continuity requirements at 

the interfaces. The reason for this choice is that the computational effort required is not larger 

than that required by displacement-based counterpart solid elements, while accuracy and 

convergence are dramatically improved.  

The in-plane moduli are evaluated with the loading scheme of Figure 5.2c. The loading 

scheme of Figure 5.2d is employed to compute the transverse modulus E3, while that of 

Figure 5.2e is adopted to obtain the shear moduli G13 and G23. Using stresses and strains 

computed with the FEA and the constitutive equation {σ}=[C]{ε}, the homogenized elastic 

properties are computed in a straightforward way [241]: 
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 (5.12) 

It could be noticed that through other loading conditions all the homogenized 

macromechanical coefficients of [C] are evaluated. 

The procedure explained is carried out using a specific value of the stitching spacing, but, as 

outlined in [6], this parameter plays a fundamental role in varying the stiffness of the 

structure. Accordingly, this effect is taken into consideration employing the rule of mixture 

proposed by Mori and Tanaka [234]: 

 
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 (ij 12,13,23)

  (ij 12,13,23)

i f i st b i st

ij f ij st b ij st

ij f ij st b ij st

E E k V E E

k V

G G k V G G

   

    
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    

 (5.13) 

The subscripts “f”, “st” and “b” refer respectively to the stitched or tufted layer, to the 

standard layer and to the binder. The symbol “V” corresponds to the reinforcement percentage 

volume in the considered layer. Thus, V allows accounting for the effects of the stitching 

spacing. Finally, “k” is an index that enables to vary the mechanical properties of the material 

constituting the binder. Please note that the relation of Eq. (5.13) represents a conservative 

approach with respect to the effective correlation between elastic coefficients and stitching 

spacing, as shown in [242]. It could be remarked that no more than 60 seconds on a laptop 

computers are required to carry out each analysis, while, in order to verify the accuracy of the 

present technique, two cases are considered for which their mechanical properties have been 

evaluated from experiments.  

As first case, it is analysed the stitched laminate studied by Yudhanto et al. in [243], who 

proposed experimental evaluations of the in plane moduli for a T800SC-24kf dry preforms 
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with tow orientation of [+45°/90°/-45°/0°2/+45°/90°2/-45°/0°]s, stitched with a 200 denier 

Vectran
®

 thread. The preform is impregnated with epoxy resin XNR/H6813. Table 5.1 reports 

comparisons between the experimental results and the coefficients computed using the 

method explained above. From these numerical results it could be noticed that virtual material 

tests provide results in good agreement with experiments. 

 
Stitch pitch (mm) 

 
6 3 

Ex (MPa) 
Experiment [243] 

 
51.1 ± 1.9 51.7 ± 3.1 

Present 
 

52.2 52.7 

υxy (MPa) 
Experiment [243] 

 
0.314 ± 0.013 0.324 ± 0.005 

Present  0.317 0.325 

Table 5.1 Comparison between the mechanical properties calculated by Yudhanto et al. [243] and 

the present ones. 

For a further assessment, it is considered the sandwich studied by Lascoup et al. in [244]. This 

paper presents experimental results for a sandwich with a 20 mm polyurethane foam core and 

1 mm E-glass fibre faces. Different configurations are analysed by varying the stitching 

spacing (i.e. three values of the stitching step in the x direction are considered) and the angle 

between through-the-thickness reinforcement and faces (here indicated with α). The 

reinforcing thread is made of 2400 TEX glass fibre (E=13.7 GPa) and its diameter is 2.7 mm. 

The stitching spacing in the y direction is fixed and its value is 24 mm. Accordingly to the 

behaviour shown in [6], reducing the stitching spacing has a significant bearing in increasing 

transverse and shear modulus. From Table 5.2, it could be noticed that virtual material tests 

provide results included in the natural dispersion of experiments, therefore the accuracy of the 

method proposed in this section can be considered satisfactory. 

Stitching step= 12.5 mm 

   
α=45°  

Ez (MPa) 

Experiment [244] 
 

206.7 ± 13.3  

Analytical [244]  208.1  

Present 
 

207.5  

Gxz (MPa) 

Experiment [244] 
 

28.0 ± 2.1  

Analytical [244]  42.1  

Present  26.4  

Stitching step= 25 mm 

   
α=45° α=60° 

Ez (MPa) 

Experiment [244] 
 

95.5 ± 2.1 133.5 ± 9.9 

Analytical [244]  93.9 149.3 

Present 
 

96.1 134.1 

Gxz (MPa) Experiment [244] 
 

19.4 ± 2.3 14.8 ± 1.7 
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Analytical [244]  21.9 13.4 

Present  20.1 15.4 

Stitching step= 50 mm 

   
α=45°  

Ez (MPa) 

Experiment [244] 
 

57.9 ± 4.8  

Analytical [244]  36.9  

Present 
 

59.9  

Gxz (MPa) 

Experiment [244] 
 

15.9 ± 0.7  

Analytical [244]  10.9  

Present  16.2  

Table 5.2 Comparison between the mechanical properties calculated by Lascoup et al. [244] and the 

present ones. 

5.4 Numerical results of VSC and stitching 

In this section applications of the procedures discussed in this chapter will be presented to 

static and dynamic analyses of laminates and sandwiches. 

5.4.1 Applications to laminates and sandwiches 

As first application aimed at showing the effects of variable stiffness composites on stresses, it 

is considered the simply-supported laminated square plate by Pagano [145] having a length-to-

thickness ratio S of 4. Two loading conditions are analysed, namely a static one with the plate 

undergoing a bi-sinusoidal loading and a dynamic one with a triangular blast pulse acting on 

the upper face of the plate. It is reminded that this structure, already considered in Chapter 3, 

is made of MAT p (EL/ET=25; GLT/ET=0.5; GTT/ET=0.2; υLT=0.25), while the lay-up 

considered are reported in Figure 5.3.  
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Figure 5.3. Lay-ups considered for analysis of a [0°/90°/0°] laminated plate with variable stiffness 

composites. 

Shear stresses and the transverse displacement are reported where they assume their 

maximum, in the following normalized form:  
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 
 
 

 (5.14) 

Figure 5.4a represents the through-the-thickness variation of the shear stress σx̅z of the lay-ups 

considered while Figure 5.4b represents the through-the-thickness variation of the shear stress 

σy̅z. 
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Figure 5.4 Through-the-thickness distribution of the transverse shear stresses a) σ̅xz and b) σy̅z for 

the laminated plate with variable stiffness composites. 

In Table 5.3 is reported the deflection in the centre of the plates for the considered lay-ups.  

 

 Un Opt VSC 1 VSC 2 VSC 3 

w  1.954 1.919 1.903 1.890 

gain  -1.80% -2.60% -3.30% 

Table 5.3 Deflection in the centre of the plates. 

Figure 5.5 represents the central deflection of the laminated plate with variable stiffness 

composites under a triangular pulse loading. 
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Figure 5.5 Time history for the laminated plate with variable stiffness composites undergoing 

triangular blast pulse loading.  

From the reported results it can be noticed the effects of variable stiffness composites. 

Remembering that the aim of the process is the reduction of the interlaminar stresses, from 

this viewpoint the most efficient lay-up seems VSC 1, whose interlaminar shear stress 

sensibly decreases with respect to the standard case. This is physically consistent, since with 

this stacking sequence the difference between the material properties of adjacent plies is 

reduced. Instead, for what concerns results about the transverse displacement the best lay-ups 

is VSC 3, which is characterized by the simultaneous presence of plies that minimize the 

bending component of the strain energy and of plies that minimize the shear component of the 

strain energy.  

It is now considered a sandwich with core in MAT4, while the faces are in M10. The 

mechanical properties of M10 are: E1=36.23 GPa, E3=7.21 GPa, G13=5.68 GPa, υ13=0.3263, 

ρ= 2.54 kg/dm
3
. It is reminded that the mechanical properties of MAT 4 are: E1=E3=0.05 

GPa, G13=0.0217 GPa, υ13=0.15, ρ= 0.166 kg/dm
3
.  

The thickness of the layers are (0.2 h/0.3 h)s, while the length to thickness ratio (L/h) is 10, 

where L=100 mm and, as reported in Figure 5.6, five lay-ups are considered (VSC 1-VSC 5), 

by varying the position across the thickness of standard, MB and MS plies. Of course, the 

position of these layers across the thickness is determined directly comparing the response of 

all the stack-up possible options since few constituent layers are considered. As for the 

previous case, applications will be presented both for statics and dynamics considering the 
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beam undergoing a sinusoidal loading in the former case and a triangular blast pulse loading 

in the latter one.  

 

Figure 5.6 Variable stiffness plies and lay-ups considered for analysis of sandwich beam. 

According to the results presented in Ref. [245], the choice of considering this specific value 

of L/h is done considering that for thick structures the effect of the variable stiffness 

composites is limited due to their high stiffness. This is also corroborated by the results of 

Figure 5.7, which reports the gain (gain= wbasic/wVSC2) by VSC 2 configuration when the 

length-to-thickness ratio grows. On the other hand, extremely thin structures would not 

underline the capability of the AD-ZZ model in describing the effects of the transverse shear 

deformations and the out-of-plane stresses. 
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Figure 5.7 Improvement due to variable stiffness composites as function of the length-to-thickness 

ratio for a sandwich beam. 

The numerical results of Figure 5.8 – 5.9 are normalized as follows: 

 2
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 (5.15) 

 

 

Figure 5.8 Through-the-thickness distribution of a) transverse shear stresses σ*xz and b) transverse 

displacement w* for the sandwich plate with variable stiffness composites. 
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For what concerns shear stress, VSC 1 – 3 and 4 have similar behaviour, since all these 

configurations determine an increase of the stress in the faces and a reduction in the core. In 

particular, for VSC 1 this reduction of shear stress in the core (and at the interfaces between 

core and faces) is of 6%. It is reminded that core materials have in general low strengths, thus 

reducing stresses in this zone of the structure has a significant bearing. VSC 2 and 5, instead, 

determine a decrease of the shear in the faces and an increase of this quantity in the core. So 

they seem to be less attractive than the other configurations. 

In terms of the transverse displacement, the best results are obtained by VSC 1 and 3. This is 

physically consistent, since these two lay-ups have the MB plies as outer layers, where the 

effects of bending are stronger. Accordingly, the MB fibre distribution, which minimizes the 

effects of bending, is more effective when placed in this position. 

 

Figure 5.9 Time history for the sandwich beam with variable stiffness composites undergoing 

triangular blast pulse loading. 

In Figure 5.9 only the results from VSC 1 and VSC 3 are reported, since the time history of 

the other lay-ups is not significantly different from that of the standard one. Both 

configurations have similar behaviour: they reduce the amplitude and the frequency of the 

oscillations. 

Results presented in this section for laminates and sandwiches confirm that variable stiffness 

composites can be interesting, since they improve static and dynamic structural performances. 
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5.4.2 Stitching of sandwiches  

Attention is now focused on evaluating whether stitching can be useful for improving strength 

and stiffness of sandwiches. Applications are presented to three simply supported damaged 

sandwich beams undergoing sinusoidal loading and then to a square plate with the same 

boundary conditions and bi-sinusoidal loading. The beams are characterized by a length to 

thickness ratio of 4, they have a (MAT 1/2/3/1/3/4)s stacking sequence and the following 

thickness ratios of the constituent layers (0.010/ 0.025/ 0.015/ 0.020/ 0.030/ 0.4)s.  

Damage is modelled using the ply-discount theory as in [107] and in Chapter 3. In particular, 

three cases are studied: i) the damage of the core, simulated reducing G13 of MAT 4 of a 10
2
 

factor, ii) the damage of the upper face of the structures, simulated reducing E1 of the 

materials constituting the upper face of a 10
2
 factor, and iii) the damage of the upper face of 

the structures, simulated reducing E3 of the material constituting the upper face and the core 

of a 10
2
 factor. Displacements and stresses are reported normalized in the following form, 

according to Ref. [107], where the exact solutions for cases i) and iii) have been computed: 

  2

0 0 0

, ,
0, 2 2

x x
x

xz
xz x

L L
E w z z

z
w

p hp p




 

   
   
       (5.15) 

Stress and displacement fields are represented in Figure 5.10. Both a T300 reinforcement 

(mechanical properties of T300 are: E1=139 GPa, E3=9.4 GPa, G13=4.5 GPa, υ13=0.0209, ρ= 

1.86 kg/dm
3
) and a parametric one (different values of the index “k” (see Eq. (5.13))) have 

been considered. In both cases, the reinforcing thread has circular section with a 2.5 mm 

diameter, and the reinforcement percentage volume ‘V’ is 0.1. 
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Figure 5.10 Through-the-thickness distribution of a) transverse shear stress σx̅z and b) in-plane 

stress σx̅x for sandwich beam with damaged core. Through-the-thickness distribution of c) 

transverse shear stress σx̅z and d) in-plane stress σx̅x for sandwich beam with damaged upper face 

(E1 degraded). Through-the-thickness distribution of d) transverse shear stress σx̅z and e) transverse 

displacement w̅ for sandwich beam with damaged upper face (E3 degraded). 

Please note that in Figure 5.10 the sandwiches stitched considering k=1 are named as 

‘reinforced’, while those with no reinforcement are named as ‘standard’. Numerical results 

show that stitching is effective in reducing the detrimental effects of out-of-plane stresses 

(Fig. 5.10a, 5.10c and 5.10e) and transverse displacement (Fig. 5.10f). In particular numerical 

results for the case with k=1/10000 demonstrate that a great improvement of stress and 

displacement can also be obtained considering a reinforcing binder with very low mechanical 

properties. Stress recovery could also be obtained with the insertion of viscoelastic layers 

(see, e.g. [213]), although at the expense of a consistent stiffness loss, as outlined before. 

The last case of analysis considers the sandwich plate examined in Ref. [162]. The aim is to 

show whether the beneficial effects of through-the-thickness reinforcement can be obtained 

also for sandwich plates. The mechanical properties of the Graphite/Epoxy faces are: 

E1=132.38 GPa E2=E3=10.76 GPa, G13=5.65 GPa, G12=5.62 GPa, G23=3.61 GPa, 

υ12=υ13=0.24, υ23=0.49; the mechanical properties of the foam core are: E1= E2=E3=0.035 

GPa, G13= G12= G23= 0.0123 GPa, υ12=υ13= υ23=0.4. T300 reinforcement with circular section 

and 2.5 mm diameter and a reinforcement percentage volume ‘V’ of 0.1 have been 

considered. The plate is square (Lx= Ly= 1 m) and characterized by a length to thickness ratio 

of 10, with the following thickness ratios of the constituent layers (0.1/0.4)s. Figure 5.11a 

represents the through-the-thickness variation of the transverse shear stress σxz, while Figure 

5.11b represents the through-the-thickness variation of the transverse shear stress σyz. As in 

Figure 5.10 the sandwiches stitched considering k=1 are named as ‘reinforced’, while those 

with no reinforcement are named as ‘standard’. From the numerical results of Figure 5.11, it 

could be remarked that through-the-thickness reinforcement is effective in reducing the 

interlaminar shear stresses also in sandwich plates.  
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Figure 5.11. Through-the-thickness distribution of a) transverse shear stress σxz and b) transverse 

shear stress σyz for the square plate. 

As general remarks, it could be outlined that stitching determines an increase of transverse 

shear stresses in the core, and a reduction in the faces. Since experimental results reported in 

[244] show that stitching through-the-thickness increases the strength of the structure, a great 

reduction of the delamination index can be obtained. This justifies the experimental results 

reported in [6] and [228], showing a reduced damage under impact loading. 

In light of the achievements brought by variable stiffness composites and stitching, in the next 

section, these techniques will be applied simultaneously to improve structural performances 

of a sandwich plate with M10 faces.  
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5.4.3 Variable stiffness composites and stitching coupled 

The aim of this section is to verify whether variable stiffness composites and stitching can 

improve performances of a sandwich with M10 faces and initially straight fibres up to those 

of a sandwich having T300 faces with straight fibre orientation, here named as reference case. 

For doing this, it is again considered the sandwich beam with M10 faces of Section 5.4.1. It is 

reminded that this beam has a length-to-thickness ratio of 10 and the thickness ratios of the 

constituent layers are (0.2 h/0.3 h)s. The reference structure, instead, is a sandwich beam with 

the same geometric characteristics but with T300 faces. The lay-ups of Figure 5.6 are again 

considered and in particular the faces of VSC 1 and VSC 3 lay-ups are stitched using a 

reinforcing thread in T300. Numerical results are reposted in Figure 5.12 normalized 

according to Eqs. (5.15). 
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Figure 5.12 Through the thickness distribution of a) normalized transverse shear stress σ*xz and b) 

normalized transverse displacement w* for the lay-ups considered. c) Time history for the lay-ups 

considered. 

This strategy improves the bending stiffness of the sandwich with M10 faces as shown in 

Figure 5.12b. In fact, for both the lay-ups considered, a 7% reduction of the transverse 

displacement is obtained with respect to the results of Figure 5.8. As it can be noticed in 

Figure 5.12a, the behaviour of VSC 1 and VSC 3 with stitched faces is similar: an increase of 

the shear stress in the faces is obtained, coupled with a reduction of its value at the face-core 

interface. The increase of the bending stiffness is also underlined by the time history reported 

in Figure 5.12c. Indeed, it could be noticed a decrease of the amplitude of the oscillations, as 

well as a decrease of their period. 



Chapter 5:Variable stiffness composites and stitching 

 

 

137 

 

However stitching is more effective when applied to “weak” materials such as that 

constituting to core of the sandwich beam. Therefore, in order to further improve the 

performances of the sandwich with M10 faces, it is possible to consider VSC 1 and VSC 3 

stitched across all the thickness with a reinforcing thread made of T300 (named as ‘VSC 1 all 

stitched (T300)’ and ‘VSC 3 all stitched (T300)’).  

The improvements are evident. Indeed, the transverse displacement of the sandwich with M10 

faces is now considerably lower than that of the beam with T300 faces. The transverse shear 

stress is considerably lower in the faces, while an increase is obtained in the core. It could be 

noticed that, differently to the previous cases, VSC 3 lay-up obtains lower value of transverse 

displacement with respect to VSC 1. 

The improvements in terms of stiffness are evident also for dynamic loading, as it can be 

noticed from Figure 5.12c. In fact, the insertion of a reinforcing binder determines a 

significant decrease of the amplitude of the oscillations, coupled with a decrease of their 

period. 

Bearing in mind the effectiveness of stitching across the whole thickness of the sandwich, it is 

possible to consider a reinforcing thread, whose mechanical properties are lower than those of 

one in T300. In particular the results of Figure 5.12 named as ‘VSC 1 all stitched (DISP)’ and 

‘VSC 3 all stitched (DISP)’  are obtained considering a reinforcing binder with E1=0.72 GPa, 

E3=0.21 GPa, G13=0.2 GPa, υ13=0.2613. With this configuration, the transverse displacement 

of the sandwich with M10 faces is the same than that with T300 faces. As far as the shear 

stress is concerned, a reduction of its value in the faces is obtained, while, an increase in the 

core is achieved. 

The time history reported in Figure 5.12c shows that the two lay-ups have similar dynamic 

behaviour.  

From the numerical results previously presented, it is possible to underline a consistent 

increase of the stiffness given by variable stiffness composites and stitching. Applying the 

delamination criterion of Ref. [8] ‘VSC 1 all stitched (DISP)’ obtains a 4% reduction of the 

delamination index in the faces and obtains a 7% increase of the delamination index at the 

face-core interface. For what concerns ‘VSC 3 all stitched (DISP)’, a 6% reduction of the 

delamination index in the faces and a 4% increase of the delamination index at the face-core 

interface are obtained. 
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Results presented in this chapter showed that variable stiffness composites and stitching could 

be interesting methods aimed at improving performances and damage tolerance of laminates 

and sandwiches undergoing static and dynamic loads. Each technique can be applied 

separately from the other or alternatively they could be coupled.  

Appendix: Stiffness matrices of the AD-ZZ model 

Herein, the expression of the stiffness matrices of the AD-ZZ model employed in Eqs. (5.4) 

and (5.8) are defined. 

Considering the quantities defined in Chapter 2 and Eq. (1.1) and by substituting the 

expressions of strains and stresses by the AD-ZZ model into (2.49) the following stiffness 

matrices are defined: 
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Chapter 6: Formulation of a C
0 
theory 

As already stated, one of the main drawbacks of the AD-ZZ model is that derivatives of 

various orders of the functional d.o.f. are incorporated in the displacement fields. This is due 

to the fact that expressions of zig-zag functions and of higher-order “adaptive” contributions 

are obtained once for all in a physically consistent way enforcing differential equations like 

the continuity of interlaminar stresses, the boundary conditions and indefinite equilibrium 

equations. Regrettably, derivatives are unwise contributions when finite elements are 

developed, since they should appear as nodal d.o.f. Consequently, computationally inefficient 

interpolating functions must be used. Techniques for eliminating derivatives such those 

proposed by Zhen and Wanji [72] and Sahoo and Singh [246] could be employed, resulting in 

an increase of the nodal d.o.f. Thus, using these techniques, the advantage of having just the 

minimal number of functional d.o.f., i.e. five, brought by the AD-ZZ model becomes merely 

apparent.   

The aim of the present chapter is to develop and assess a technique that converts derivatives 

of the d.o.f. by updating the strain energy expression and the work of forces, as in [247], [248]  

and [249]. The objective is finding a priori corrections of displacements in closed form, 

which make the energy of the AD-ZZ model with all the derivatives neglected equivalent to 

that of its initial counterpart model containing all the derivatives. This idea was already 

successfully applied in [247] and [249], where energy updating was developed as a post-

processing technique to improve the predictive capability of shear deformable commercial 

finite elements. Here, the same idea is used for eliminating the derivatives of the functional 

d.o.f. directly (i.e. in a non-iterative closed form) from the AD-ZZ model, so to obtain a C
0
 

equivalent model with just five d.o.f. able to account for zig-zag and layerwise effects. 

Differently to [247] and [249], here Hermite’s polynomial representations of the d.o.f. are 

used over the domain, whose order depends upon the order of derivatives appearing in the 



Chapter 6:Formulation of a C0 theory 

 

 

140 

 

model, instead of using spline functions interpolating results of a preliminary finite element 

solution over a patch of elements.  

In this chapter accuracy and efficiency of the updating technique will be assessed comparing 

the results of the model [119] to its equivalent counterpart free from derivatives, considering 

closed form solution of reference sample cases with intricate through-the-thickness 

displacement and stress distributions, for which exact elasticity solutions are available for 

comparisons. They are chosen because many models give poor predictions for such extreme 

test cases, or require a large number of variables across the thickness in order to be accurate. 

As already done previously, extremely thick cases are considered in order to highlight the zig-

zag and layerwise effects. 

6.1 Theoretical formulation 

In the present section, the main steps towards development of a C
0
 formulation of the AD-ZZ 

model are presented.  

As shown by [247] and [249], it is possible to locally improve the accuracy of a finite element 

analysis using an iterative post-processing technique working on a spline interpolation of 

finite element results. Numerical results therein presented demonstrated that in the most 

critical regions, a solution as accurate as the one by a layerwise model can be obtained.  

As outlined above, the idea of taking advantage of an energy updating process, here referred 

as SEUPT, can also be used for deriving a modified expression of a structural model. Indeed, 

differently to what proposed in [247] and [249], the corrective displacements can be found in 

a direct (i.e. non iterative) closed form, as outlined forward in this section. 

In particular, a C
0
 model can be obtained from the zig-zag model of Chapter 2 constructing 

energy equivalent displacement field free from derivatives of the functional d.o.f.  

Closed form expressions of this displacement field are computed once for all in a 

straightforward way through SEUPT starting from the AD-ZZ model, hereafter referred as the 

original model (OM), in order to obtain the equivalent C
0
 model (EM).  
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6.1.1 Equivalence of models  

Hereon all the quantities that refer to the OM model are indicated with the superscript 
OM

, 

while those referring to the EM model with the superscript 
EM

. Accordingly, the displacement 

components of the AD-ZZ model constituting the OM model are indicated as u(x, y, z)
OM

, 

v(x, y, z)
OM

, w(x, y, z)
OM

 while their counterparts representing the EM model obtained by 

SEUPT are indicated as u(x, y, z)
EM

, v(x, y, z)
EM

, w(x, y, z)
EM

 or in compact form as OM  

and EM , respectively. Displacements OM  are assumed as the sum of terms   that are just 

functions of the d.o.f. and terms   containing all the derivatives of the d.o.f.  

( , , ) ( , , ) ( , , )OM x y z x y z x y z     (6.1) 

The basic assumption of SEUPT is that each term   can be removed, since its energy 

contributions are accounted for incorporating corrective terms free from derivatives Δu
0
, Δv

0
, 

Δw
0
, Δγx

0
, Δγy

0
 (in compact form  ): 

),,(),,(),,( zyxzyxzyxEM    (6.2) 

The expressions of the   terms will be derived from the energy balance, which is written 

in compact form as:  

(.) | (.) | (.) | (.) | 0E Λi Λ f Λm           (6.3) 

its contributions being: 

   
1

(.) |
2

T

Λi

V

dV       the strain energy     (6.4) 

     (.) |Λ f

V S

b u dV t u dS        the work of external forces                   (6.5) 

  
..

(.) |Λm
V

u u dV        the work of inertial forces (6.6) 

The symbols {σ} and {ε} represent strain and stress vectors, respectively, {b} and {t} the 

body and surface forces, ρ the density and {u} the displacements of OM or EM models. The 

energy balance (6.3) (for both the models) is split into five independent balance equations, 

one for each primary variable, using the principle of virtual work (inertial forces accounted 

for): 

0

(.) | 0
u

E  
  ; 
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0

(.) | 0
v

E  
  ; 

0

(.) | 0
w

E  
  ; (6.7)

 

0

(.) | 0
x

E



  
  ; 

0

(.) | 0
y

E



  
  ; 

Then, the corrective displacements Δu
0
, Δv

0
, Δw

0
, Δγx

0
, Δγy

0
 appearing in each of these sub-

integrals δ∫(.)|E are computed by imposing each contribution by the OM model to be 

equivalent by the energy standpoint to its counterpart by the EM model:  

0 0

(.) | (.) | 0
u OM u EM

E E     
     ; 

0 0

(.) | (.) | 0
v OM v EM

E E     
     ; 

0 0

(.) | (.) | 0
w OM w EM

E E     
     ; (6.8) 

0 0

(.) | (.) | 0
x xOM EM

E E

 

     
     ; 

0 0

(.) | (.) | 0
y yOM EM

E E

 

     
     ; 

The volume integrals are carried out as  
zyx

000

(.)  so to obtain the corrective 

displacements as spatial functions. Eqs. (6.8) impose that the contributions of each d.o.f. of 

the EM model are equivalent by the energy standpoint to those by the OM model. Therefore, 

whether the consistent displacement field by the OM model satisfies the energy balance, the 

modified displacements by the EM model satisfy it too. Thus, they represent an admissible 

solution, as explained next. Please, note that previous Eqs. (6.8) can be written since OM and 

EM models have the same functional d.o.f. 

Depending on whether the structural problem is solved in closed form, or via a finite element 

discretization, OM  and EM  will contain either unknown amplitudes of trial functions or 

nodal quantities. Through symbolic calculus, the corrective displacements, whose expressions 

hold for any set of loading and boundary conditions, lay-up and geometry, are obtained in 

closed form as functions of these unknowns in a straightforward way. 
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Numerical results will show that this technique is potentially useful for the development of a 

C
0
 finite element. 

 

Figure 6.1 Stages of the procedure employed to obtain the equivalent C
0
 model 

6.1.2 Steps for deriving the equivalent C
0
 EM model  

The steps for obtaining the model EM from the model OM are the following ones (see the 

flow chart of Figure 6.1 for a synthesis). 

First, in order to obtain closed form expressions of corrective displacements Δu
0
, Δv

0
, Δw

0
, 

Δγx
0
, Δγy

0
 of general validity from Eqs. (6.8), appropriate spatial distributions of 

displacements under the same loading and boundary conditions should be postulated. Instead 

of assuming a spline interpolation of nodal results as in the former applications of SEUPT 

(see e.g. Icardi [247] and [249]), here an analytical solution is assumed that admits a direct 

solution in closed form. In this form, besides to be useful for solving Eqs. (6.8), it will speed 

up computations. 
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Assume that the domain Ω (i.e. the analysed structure) is decomposed into subdomains, 

irrespectively of whether the problem will be solved by an analytic approach or via finite 

elements, and consider a generic subdomain Ω* inside it. The d.o.f. variation inside Ω* is 

expressed through Hermite’s polynomials, since they represent the interpolation scheme for 

developing a conforming element from the OM model. In particular, it is reminded that the 

conditions (2.6), (2.7) and (2.22) imposed to define higher-order terms and continuity 

functions of the AD-ZZ model involve derivatives of the functional d.o.f. up to the third 

order. Therefore, in order to respect the conformity conditions (see [250], [251]), as 

interpolation functions at least products of 5
th

 order Hermite polynomials in x and y should be 

assumed. This interpolation makes continuous the d.o.f. and their derivatives at the bounds of 

Ω*. According to this, each d.o.f. of the OM model, here represented in compact form by the 

symbol , is expanded as the sum of Hermite’s polynomials i  (the superscript ρ refers to 

the interpolated quantity, the index i  is used for indicating the values assumed at the vertices 

of the square sub-region Ω*) in x and y as follows: 

, , ,, ,

4 4 4 4 4 4

, , , , ,

1 1 1 1 1 1

.....y xy yyx xx

i i i i x i i y i i xx i i xy i i yy

i i i i i i

   

     

                   (6.9) 

. Terms have been reported only up to the second order of derivation, but additional similar 

terms can be included for obtaining the continuity also of higher-order derivatives. The 

purpose of SEUPT is finding a C
0
 formulation represented by the equivalent EM model that 

allows for a computationally efficient Lagrangian representation. This solution is obtained 

from Eqs. (6.8) assuming the Hermitian representation (6.9) for the OM model and the 

Lagrangian representation for the EM model. Since the continuity of displacement derivatives 

and stresses at nodes and sides is an essential requirement that cannot be satisfied by the 

Lagrangian interpolation, it should be preliminary enforced in the OM model by computing 

terms Δ
c_ip

 of Eqs (4.6), (4.7) and (4.8).  

Once solved Eqs. (6.8), the EM model is made equivalent in terms of energy to the OM 

model. This means that the  two models  determine the same results for deflections, buckling 

loads, free vibration frequencies and whenever the solution is just related to the energy. 

However,  the OM model could be unable to satisfy all the boundary constraints on stresses, 

which require imposing equivalence between the two models in a point form. Hence, all the 

quantities containing derivatives of the d.o.f. (i.e. strains and stresses) should be determined 
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by substituting the closed form expressions of the d.o.f. of the EM model into the analytic OM 

expressions obtained through symbolic calculus. Explicit expressions being rather lengthy, 

this is represented in compact form as: 

   

   

EM OM

EM OM

 

 




 (6.10) 

These operations that are crucial for obtaining accurate stress predictions by the EM model 

are inexpensive, since they require a little fraction of time, because it is just required a 

substitution of data into analytic expressions provided once for all by symbolic calculus. Note 

that this procedure is similar to what happens for displacement-based finite elements, where 

the solution provides the nodal values of variables, which are then put into constitutive 

relations to find stresses. 

6.1.3 Application to simple models 

Hereafter it is shown how SEUPT can improve the accuracy of a model up to that of another 

one. To this purpose, two rather simple models for which results can be easily obtained by 

hands are considered in order to illustrate the procedure. The first model is the FSDPT, whose 

displacement field is as follows: 

0 0 0

,( , , ) ( , ) ( , ) ( , )x xU x y z u x y z x y w x y        

0 0 0

,( , , ) ( , ) ( , ) ( , )y yV x y z v x y z x y w x y      (6.11) 

0( , , ) ( , )W x y z w x y  

The model (6.11) is updated by using SEUPT up to that of the following cubic model: 

0 0 0 3

,( , , ) ( , ) ( , ) ( , ) ( , ) ( , )x x x xU x y z u x y z x y w x y C x y z D x y z          

0 0 0 3

,( , , ) ( , ) ( , ) ( , ) ( , )y y yV x y z v x y z x y w x y D x y z       (6.12) 

0( , , ) ( , )W x y z w x y
 

here named R-HSDPT. Eqs. (6.12) are based on the HSDPT model by Reddy [13], with the 

addiction of the term linear in z (i.e. Cxz). The unknowns Dx and Dy are computed by 

imposing the boundary conditions for shear stresses (i.e., Eqs 2.6), while Cx is added in order 
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to show the capability of the present approach to treat different boundary conditions. Consider 

a plate clamped in x=0. In order to satisfy the equilibrium at this point one should impose: 

2

2

h

xz v

h

dz R



  (6.13) 

Where Rv is the constraint force at the clamped edge. From Eq. (6.13) it is possible to easily 

obtain: 

44

v
x

R
C

Q h
  (6.14) 

It could be noticed that this term, not depending on the functional d.o.f., allows fulfilling the 

constraints on the clamped edge even if at his point all the functional d.o.f. vanish. Successful 

applications of this idea are presented in Icardi and Sola [120]. 

For what concerns SEUPT, two corrective terms Δγx and Δγy are now searched in order to 

make the strain energy of the FSDPT model (6.11) equivalent to that of the R-HSDPT (6.12). 

Therefore, considering the strain energy of the two confronted model, Eqs. (6.8) turn into: 

0 0

0 0

(.) | (.) | 0

(.) | (.) | 0

x x

y y

FSDPT R HSDPT

E E

FSDPT R HSDPT

E E

 

 

 

 





    
   

    
   

 

 

 (6.15) 

Note that in Eqs. (6.15) only contributions that depend on the functional d.o.f. are included, 

therefore the terms (6.14) is not considered in this system. The corrective terms Δγx and Δγy 

are obtained in a straightforward way, by solving Eqs. (6.15): 

2

2

2

2

4
( , ) ( , )

3

4
( , ) ( , )

3

x x

y y

x y z x y
h

x y z x y
h

 

 

  

  
 (6.16) 

Note that, these expressions hold for any set of loading and boundary conditions, lay-up and 

geometry, but, above all, they do not imply the introduction of new d.o.f. In addition, these 

computations could be performed numerically when solving the static or dynamic problem or 

when developing finite elements using symbolic calculus. As explained above, this second 

approach has been adopted here since it allows doing these computations only once, thus 

dramatically improving efficiency. Finally, it is underlined that Eqs. (6.16) impose 
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equivalence between the two models only in terms of energy, thus, the updated model is 

unable to satisfy the boundary constraint fulfilled by the terms (6.14). To overcome this 

problem, as mentioned above, it is necessary to impose equivalence between the two models 

in a point form as in Eqs. (6.10). 

Once solved these last equations, the two models considered are  coincident. . 

6.2 Numerical applications of SEUPT 

Numerical assessments will be presented with the aim of showing whether the present version 

of SEUPT provides an effective way for obtaining the EM C
0
 equivalent version of the zig-

zag model OM [119], without losing accuracy. It is reminded that in Chapter 3 this model has 

been already proven to be accurate and computationally efficient when closed form solutions 

are considered, since it achieves the accuracy of layerwise models with just five d.o.f. 

Therefore, the aim of present numerical results is to assess the accuracy of the C
0
 equivalent 

EM model comparing its predictions to those of the OM model.  

To reach this goal, as benchmark test cases, multi-layered beams with simply-supported edges 

in cylindrical bending under sinusoidal transverse distributed loading are considered, which 

simulate laminated and sandwich beams with laminated faces. These apparently quite 

unrealistic test cases, owing to their loading and boundary conditions, are considered because 

the exact 3D elasticity solution is available, so it can be used as a reliable reference solution 

for comparing the predictions of EM and OM models. To this reason, these test cases are 

often considered in literature by researchers who assess the accuracy of available theories. 

Therefore, in addition to exact results, also a large amount of approximate results by a variety 

of models is available for comparisons. Interest to these cases is also due to the possibility of 

obtaining results in closed form by the EM and OM models as Navier’s solutions, which do 

not suffer from round-off and discretization errors intrinsic of numerical solutions like those 

by finite elements. It could be observed that when analytical solutions can be found, as for the 

test cases here considered, there is no need of  C
0
 models because the derivatives of the d.o.f. 

do not represent a drawback for this type of solution, while they are for finite elements. 

Therefore, analytical results by the EM model seem apparently meaningless, but instead they 

represent a necessary preliminary stage because, before developing finite elements, since the 
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capability of the EM equivalent C
0
 model of preserving features and advantages of the OM 

model should be assessed.  

The comparison between EM and OM models is extended also to damaged sandwich beams. 

The damage is simulated reducing the elastic moduli, according to the ply discount theory, as 

already done previously. Simply-supported, sandwich beams with damaged faces and/or core, 

undergoing sinusoidal transverse loading are considered and, in addition, the damage is 

assumed to be distributed over the entire length, because in this case the exact elasticity 

solution can be still found [107] and used for comparisons. As stated above, owing to the 

reduction of elastic moduli used for simulating the damage rise, intricate through-the-

thickness distributions of out-of-plane stresses take place as a consequence of asymmetric, 

distinctly different properties, which make the samples considered a very severe test case for 

the models.  

As further assessment, the case of a cantilever beam will be considered in order to show 

whether the EM model likewise the OM model can treat boundary conditions of practical 

interest that are difficult to satisfy.   

6.2.1 Simply-supported edges and sinusoidal loading 

Symmetrical cross-ply plate - As a preliminary assessment, it is considered the simply 

supported [0°/90°/0°] laminated square plate analysed in [145] and [246] and customarily 

considered as benchmark by many researchers. The constituent material is mat-p (EL/ET=25; 

GLT/ET=0.5; GTT/ET=0.2; υLT=0.25) and each layer has the thickness equal to h/3. Different 

length to thickness ratios are considered in Table 6.1 where the stress field and the transverse 

displacement are reported normalized as follows: 

2 2 2

2 0 2 0 2 0

3

0 0 4 0

L LL L
, , , , 0,0,

2 2 2 L 2 2 6 L 2 L

L LL L 100
0, ,0 ,0,0 , ,0

2 L 2 L 2 2

y yx x
xx yy xyxx yy xy

x x x

y yx x T
xz yzxz yz

x x x

h h h h h h

p p p

E hh h
w w

p p L p

     

   

     
       

    

    
      

    

 (6.17) 

The numerical results of Table 6.1 show that the OM model is accurate and it does not suffer 

from locking, since always accurate results are obtained. 
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Lx/h Model w  xx  yy  xy  xz  yz  

4 

Exact [145] 2.006 0.755 0.556 0.0505 0.2560 0.216 

Ref. [246] 1.9597 0.7819 0.5195 0.051 0.2335 0.1885 

OM present 1.9988 0.761 0.549 0.0508 0.2573 0.219 
 

10 

Exact [145] 0.7405 0.59 0.288 0.0289 0.357 0.123 

Ref. [246] 0.7316 0.596 0.2792 0.0288 0.3094 0.107 

OM present 0.7402 0.591 0.285 0.0289 0.359 0.120 
 

20 

Exact [145] - 0.552 0.2115 0.0234 0.385 0.094 

Ref. [246] 0.5098 0.558 0.2088 0.0234 0.3286 0.084 

OM present 0.5105 0.553 0.2110 0.0234 0.382 0.090 
 

50 

Exact [145] - 0.541 0.185 0.0216 0.393 0.084 

Ref. [246] 0.4439 0.5465 0.186 0.0218 0.3347 0.0766 

OM present 0.4451 0.542 0.185 0.0216 0.390 0.085 
 

100 

Exact [145] 0.4347 0.539 0.181 0.0213 0.3947 0.083 

Ref. [246] 0.4343 0.5448 0.182 0.0215 0.3355 0.0755 

OM present 0.4346 0.538 0.181 0.0213 0.3949 0.083 

Table 6.1 Non-dimensional deflection and stresses of simply supported laminated [0°/90°/0°] plate 

under bi-sinusoidal loading. 

Asymmetrical cross-ply beam - As a subsequent test, it is considered the [0°/90°/0°/90°] 

asymmetrical cross-ply beam formerly analysed in [72] having 4 layers in mat-p of equal 

thickness (0.25h/0.25h/ 0.25h/0.25h). Because the lay-up is asymmetrical, this sample case is 

suitable to investigate whether the EM model provides accurate results, the stress fields being 

strongly asymmetrical too.  

As already mentioned above, these results refer to an extremely thick case with a length-to-

thickness ratio (Lx/h=S) of 4 and simply-supported edges, undergoing a sinusoidal distributed 

transverse loading 















x
L

m
Pxp

x

M

m

m


sin)(

1

0  (6.18) 

Like in [72], in the present case just a single component, i.e. M=1, is considered. Solution to 

this case is assumed as a series expansion as follow: 
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0 0 0

1 1 1

( , ) cos ( , ) sin ( , ) cos
M M M

m m x m

m m mx x x

m m m
u x y A x w x y C x x y D x

L L L

  


  

     
       

     
    (6.19) 

The trigonometric functions (6.19) are chosen because they satisfy the simply-supported 

kinematic boundary constraint conditions w
0
= w,x

0
 = 0, whereas Am, Cm and Dm constitute the 

unknown amplitudes. Once substituted in the governing equations, obtained applying the 

Rayleigh-Ritz method in standard form, the unknown amplitudes are computed in a 

straightforward way solving an algebraic problem. The results of Figure 6.2 have been 

computed considering M=1 in Eqs. (6.19) and choosing a third order expansion of the in-

plane displacement, a fourth-order expansion of the transverse displacement and a single 

computational layer for discretizing each physical layer. It is reminded that, nevertheless four 

different computational layers are considered, the number of functional d.o.f of the OM model 

does not increase. In the present case they are just three, like for the FSDPT model, since no 

variation rise in the y direction. Of course, the overall number of d.o.f., i.e. the dimension of 

the algebraic system depends upon the expansion order chosen in Eq. (6.19). In the present 

case it corresponds to a 3x3 system. 

The results of Figure 6.2 are reported in the following normalized form:  

    2
2

0 0 0 0 0

L L L
, , ,

0, 0,2 2 2
x x x

xx xx
xz

xz xx zz

z z E w z
z E u z

u w
p p p hp hp

 


  

     
     
           (6.20) 

Figure 6.2a represents the through-the-thickness variation of the shear stress σ̅xz predicted by 

the AD-ZZ model (OM model) and by its equivalent C
0
 counterpart EM, compared to the 

exact solution found in [72] applying the Pagano’s method [144]. Figure 6.2b represents the 

through-the-thickness variation of the in-plane displacement u̅ by the OM, by the EM models, 

and by the exact solution [72]. These results show that the predictions of models OM and EM 

are in good agreement with each other and with  the exact solution thus demonstrating the 

effectiveness of the present technique in obtaining an equivalent C
0
 model. It should be 

observed that the results of Figure 6.2a are obtained directly from constitutive equations. 

Thus, as already shown in Chapter 3, no post-processing techniques are required to obtain 

accurate results, as confirmed by the correct variation of the displacements of Figure 6.2b. 
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Figure 6.2 Exact solution and through-the-thickness distribution of: a) normalized transverse shear 

stress; b) normalized in-plane displacement by the OM Model [119] and by the present EM Model 

for a laminated [0°/90°/0°/90°] beam. 

Sandwich beam - Now the sample case of a sandwich beam with asymmetrical properties is 

considered in order to assess the quality of results provided by the EM model when the 

properties of the constituent layers are distinctly different.  

It is here retaken the same sample case already considered in Chapter 3, for which the exact 

3D elasticity solution was obtained again applying the technique [144]. It is reminded that the 

face layers are made of materials MAT1 to MAT3, while the core is made of material MAT4 

(MAT 1: E1=E3=1 GPa, G13=0.2 GPa, υ13=0.25; MAT 2: E1=33 GPa, E3=1 GPa, G13=0.8 

GPa, υ13=0.25; MAT 3: E1=25 GPa, E3=1 GPa, G13=0.5 GPa, υ13=0.25; MAT 4: E1=E3=0.05 
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GPa, G13=0.0217 GPa, υ13=0.15), the lay-up sequence being chosen as (MAT 1/2/3/1/3/4)s, 

with the following thickness ratios of the constituent layers (0.010/0.025 

/0.015/0.020/0.030/0.4)s. Also in this case, a length-to-thickness ratio (Lx/h=S) of 4 is 

considered.  

The loading and boundary conditions, the series expansion used for representing the 

displacements (6.19) and the normalisation (6.20) are still used. 

It can be seen from the results of Figure 6.3 that the equivalent C
0
 EM model gives as 

accurate results as the OM model also for this case. In particular, both models are shown to 

accurately predict the interlaminar stresses directly from constitutive equations even when the 

variations are rather intricate. The success of the EM model shows that a C
0
 equivalent 

formulation can be obtained by SEUPT in order to eliminate the derivatives of the d.o.f. that 

follows from the enforcements of the physical constraints inside any physically-based zig-zag 

model. 
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Figure 6.3 Exact solution and through-the-thickness distribution of: a) normalized transverse shear 

stress; b) normalized transverse stress; c) normalized in-plane displacement; d) normalized 

transverse displacement by the OM Model [119] and by the present EM model for a sandwich beam 

with damaged upper face. 

6.2.2 Clamped edges 

Since a distinctive feature of the OM model consists in the possibility of enforcing a non-

vanishing transverse shear stress at clamped edges, where the mid-plane displacements and 

shear rotations must vanish, it should be tested whether this capability is preserved by the EM 

equivalent model. As already mentioned, it is reminded that once displacements and shear 

rotations are enforced to vanish within conventional models having the mid-plane 

displacements and shear rotations as functional d.o.f., a vanishing transverse shear is obtained 

that gives rise to poor results. On the contrary, the OM model can correctly enforce these 

boundary conditions because high-order contributions can be determined by enforcing any 

desired set of boundary conditions, the coefficients appearing in these terms being computed 

through the enforcement of the desired conditions.  

In order to assess whether the equivalent C
0
 EM model can accurately describe the stress field 

with clamped edges, the cantilever sandwich beam subjected to a uniform transverse loading 

of Ref. [129] is again considered. It is reminded that the structure has the faces in 

unidirectional Carbon-Epoxy laminates (E1= 157.9 GPa, E2=E3= 9.584 GPa, G12= G13= 5.930 

GPa, G23= 3.277 GPa, ν12= ν13= 0.32, ν23= 0.49) and a PVC foam core (E= 0.1040 GPa, ν= 

0.3). It has a length-to-thickness ratio of 10 and the thickness ratios of the constituent layers 

are [0.1h/0.8h/0.1h]. 

As already done in Chapter 3, according to [129], the trial functions for the displacement 

d.o.f. are represented as products of orthogonal one-dimensional Gram–Schmidt polynomial 

in the x and y directions. 

Figure 6.3 reports the through-the-thickness distribution of the transverse shear stress, which 

is normalized as follows: 

0
, ,

5 2

yx
xz xz

x

LLh
z

L p
 

 
  

 
 (6.21) 

The results show that the EM model accurately predicts the through-the-thickness variation of 

the transverse shear stress at clamped edges. Being in good agreement with the results given 
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in [129], the equivalent EM model is still shown successful. 

 

Figure 6.4 Normalized transverse shear stress by the present EM Model and by the 3D FEM [129] 

for a cantilever sandwich beam. 

Results presented in this section have demonstrated that through SEUPT a C
0
 formulation of 

the AD-ZZ model can be easily obtained preserving its accuracy. For what concerns 

efficiency, the application of SEUPT claims for nearly 630 s when the symbolic calculus has 

to be carried out to compute the closed form expressions of the d.o.f. of the EM model. 

Instead, if the closed form expressions of the EM d.o.f. are already known the computational 

times of the analysis are the 10% higher than those of the AD-ZZ model. These times refer to 

analyses performed on a laptop computer with a 1.80 GHz double-core processor and 4 GB 

RAM. 

The next chapter focuses the attention on the formulation of  finite elements of class C
0
 based 

on the AD-ZZ model, taking advantage of SEUPT. 

 



Chapter 7:Finite element implementations 

 

 

156 

 

Chapter 7: Finite element implementations 

In the previous chapter the effectiveness of SEUPT in obtaining a C
0
 formulation of the AD-

ZZ model without prejudicing its accuracy has been demonstrated. As stated above, the 

following step implies developing finite elements taking advantage of this technique.  

7.1 C
0
 displacement based finite element 

In the present Section, the main steps towards the development of a displacement based finite 

element of class C
0
 will be summarized and its accuracy will be assessed. 

7.1.1 Formulation 

Because no derivatives are involved as nodal d.o.f., serendipity interpolation functions can be 

used. Thus, the vector of nodal unknowns can be assumed as:        

 Q   0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 8 8 8 8 8, , , , * , ...., , , , , *
T

x y x yu v w u v w           (7.1) 

(see Figure 7.1).  
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Figure 7.1 a) Reference system for the element in the natural plane; b) the distorted meshing used 

in Table 7.2 . 

Such a parabolic representation is not chosen to integrate local equilibrium equations for 

predicting interlaminar stresses like for the standard shear deformable elements. Instead, it is 

just chosen in order to obtain accurate results with a relatively coarse meshing. Indeed, as 

shown by the numerical results given previously, either the AD-ZZ model or its equivalent C
0
 

counterpart obtained through SEUPT accurately predict stresses from constitutive equations, 

with no need of any post-processing operation like integration. It is well known that the 

accuracy of isoparametric elements can be improved by computing stresses at selected points 

inside elements and by altering the elastic coefficients for transverse shear (see Cook et al. 

[252]). This is unnecessary for the present element because the consistency of the discretized 

strain fields is guaranteed by the AD-ZZ model used for computing them. Another reason that 

justifies the choice of considering an eight node element is that accuracy of isoparametric 

quadrilateral element is too poor, as shown in the literature. As a general remark, it is also 

underlined that parabolic interpolation allows the edges to be curved, though this feature is 

not exploited here. 

Since a separate representation of w
0*

, γx
0*

, γy
0*

 is chosen, the element does not suffer from 

shear locking, as shown forward by numerical results for thin laminates. Indeed, as indicated 

by Prathap [250], this separate representation prevents from loss of the consistent relation 

between shear forces and bending moments of elements.  

The variation of a generic variable q inside the element is represented as customarily by: 
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    QNq   (7.2) 

 N  being the matrix of shape functions. At corners nodes (i=1, 2, 3, 4) they are expressed by: 

1
(1 )(1 )( 1)

4
i i i i iN          (7.3) 

while at mid-side nodes they are: 

21
(1 )(1 )

2
i iN      for (i= 5, 7) (7.4) 

21
(1 )(1 )

2
i iN      for (i= 6, 8) (7.5) 

Where ξi and ηi can assume the value ± 1. 

To standardize the computation of integrals, mapping is used for obtaining a square element 

with unit sides from any quadrilateral element in the physical plane  





8

1i

ii Nxx  and 



8

1i

ii Nyy  (7.6) 

An isoparametric formulation is chosen in order to efficiently compute the Jacobian matrix 




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J ][  (7.7) 

So to obtain the physical derivatives
x


, 

y


 from the derivatives
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x
 (7.8) 

The strains are expressed as: 

  }{}{ QB  (7.9) 

(herein just infinitesimal strains are considered) and the stresses as: 

   }{}{ QBD  (7.10) 

[D] being the matrix of 3D elastic coefficients. Using previous definitions, the stiffness matrix 

is obtained from the strain energy functional as: 
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dVBDBK
Ve

T ]][[][][   (7.11) 

Ve being the volume of the element, while the mass matrix is obtained from the kinetic energy 

functional as:     

dVNNM
Ve

T ][][][    (7.12) 

ρ being the density. The vector of nodal loads is obtained from the expression of the work of 

external forces as: 

       FNdSfNdVXNFe T

Se

T

Ve

T ~
][][][    (7.13) 

 X  being the vector of body forces,  f  the vector of surface forces applied on the surface

eS  and  F
~

 the point forces. Then, equilibrium equation is obtained (Zienkiewicz and Taylor 

[251]): 

   [ ] [ ]{ }K Q M Q Fe   (7.14) 

The computation of integrals involved in the former relations is carried out using a 3x3 

Gaussian integrations scheme. Selective reduced integration is unnecessary because locking is 

avoided. In multilayered structures, the integrals are carried out summing the contributions 

layer-by-layer. 

7.1.2 Applications 

The accuracy of the displacement-based finite element will be assessed by comparing its 

results with exact solutions of sample test cases available in the literature and to the results by 

the AD-ZZ model in closed form.  

Lay-up, loading and boundary conditions traditionally used by researchers for assessing the 

accuracy of models are considered. All the computational times reported in this section are 

obtained performing the analyses on a laptop computer with a 1.80 GHz double-core 

processor and 4 GB RAM. 

Case A. First, the classical sample test case of a simply supported, unsymmetrical [0°/90°] 

laminated square plate undergoing bisinusoidal loading is analysed. The exact solution for this 

sample case recently retaken by Thai and Choi [253] to test their model was provided by 

Pagano [145]. 



Chapter 7:Finite element implementations 

 

 

160 

 

The two constituent layers are in MAT p (EL/ET=25; GLT/ET=0.5; GTT/ET=0.2; υLT=0.25) and 

each has thickness equal to the laminate half thickness (h/2). Different length to thickness 

ratios are considered in Table 7.1 where the transverse displacement is reported normalized as 

follows: 

3

2

4 0

LL 100
, ,0

2 2

yx

x

E h
w w

L p

 
  

   (7.15) 

The numbers in square brackets in Table 7.1 are the computational time required by the AD-

ZZ model and by the present implementation (superscript F). Due to the symmetry of the 

problem just a quarter of the plate is discretized considering a 9x9 meshing. Results of Table 

7.1 confirm that the present finite element does not suffer from locking and it is as accurate as 

the AD-ZZ model.  

L/h 
Exact 

[145] 

Thai and Choi 

[253] 

AD-ZZ 

model [119] 
Present 

2 [1.20 s;3.05
F
 s] 4.9362 5.4059 5.0536 5.0735 

5 [0.89 s;2.62
 F

 s] 1.7287 1.7584 1.7299 1.7315 

10 [0.78 s;1.93
 F

 s] 1.2318 1.2373 1.2325 1.2336 

20 [0.65 s;1.45
 F

 s] 1.1060 1.1070 1.1065 1.1065 

100 [0.51 s;1.35
 F

 s] 1.0742 1.0636 1.0743 1.0743 

Table 7.1 Transverse displacement for a simply supported [0°/90°] laminated plate, as predicted by: 

present element, AD-ZZ model (Icardi and Sola [119]) and exact solutions. 

Case B. Now it is considered a sandwich plate subjected to doubly sinusoidal transverse 

loading, whose exact solution was derived by Zhen and Wanji [72]. The mechanical 

properties of face plies, made of a high modulus graphite/epoxy composite, are: E1=172.4 

GPa, E2=E3=6.89 GPa, G12=G13=3.45 GPa, G23=1.378 GPa, υ12=υ12=υ23=0.25, while those of 

the foam core are: E1=E2=0.276 GPa, E3=345GPa, G13=G23=0.414 GPa, G12=0.1104 GPa, 

υ12=υ13=υ23=0.25. The thickness of the face sheets at the upper and the lower surfaces are 

equal to 0.1h, whereas the thickness of core is of 0.8h. In Table 7.2, stresses and 

displacements for different length-to-thickness ratios (L/h) are reported normalized as 

follows: 
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 (7.16) 

The results of Table 7.2 show again that the finite element obtains accurate results both for 

thick and thin structures with low computational cost. Thus, it is still shown that the finite 

element model gives results having the same accuracy as those predicted in closed form by 

the OM model over which it is based. 

Convergence tests reported in Table 7.2 show the capability of the element to accurately 

predict the out-of-plane critical stresses with a rather coarse discretization. Progressively 

refined results are obtained from a 3x3 to a 9x9 meshing on a quarter of the plate, due to 

symmetry of the problem, as reported in Table 7.2 along with computational times (number in 

square brackets). Results regarding analyses with distorted meshing (results with superscript 

D) are also reported in Table 7.2. 

L/h   
u

xx  
l

xx  xz  yz  

4 

Zhen and Wanji [72]  1.5622 -1.5622 0.1505 0.1325 

AD-ZZ Model [1.15 s] 1.5622 -1.5300 0.1505 0.1363 

Present (3x3) [1.88 s] 1.7030 -1.6857 0.1326 0.1243 

Present (5x5) [2.22 s] 1.5779 -1.5986 0.1370 0.1317 

Present (9x9) [2.88 s] 1.5622 -1.5250 0.1505 0.1375 

Present (9x9) 
D 

[2.89 s] 1.6403 -1.6088 0.1594 0.1442 

    

 

 

10  

Zhen and Wanji [72]  1.1686 -1.1686 0.2957 0.0506 

AD-ZZ Model [1 s] 1.1686 -1.1650 0.2957 0.0506 

Present (3x3) [1.66 s] 1.1983 -1.1855 0.2605 0.0456 

Present (5x5) [1.98 s] 1.1722 -1.1621 0.2898 0.0493 

Present (9x9) [2.2 s] 1.1686 -1.1599 0.2957 0.0506 

Present (9x9) 
D
 [2.24 s] 1.1856 -1.176 0.3015 0.0515 

    

 

 20 Zhen and Wanji [72]  1.1101 -1.1101 0.3174 0.0360 
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AD-ZZ Model [0.66 s] 1.1101 -1.1101 0.3174 0.0360 

Present (3x3) [0.92 s] 1.1105 -1.1105 0.3180 0.0356 

Present (5x5) [1.23 s] 1.1103 -1.1103 0.3177 0.0359 

Present (9x9) [1.66 s] 1.1101 -1.1101 0.3174 0.0360 

Present (9x9) 
D
 [1.68 s] 1.1106 1.1106 0.3178 0.0362 

 

Table 7.2 Stress field for a simply supported sandwich plate, as predicted by: present element, AD-

ZZ model (Icardi and Sola [119]) and exact solutions. [Superscript D stands for distorted mesh (see 

Figure 7.1)]. 

Case C. The next case considers the square sandwich plate studied by Sahoo and Singh [246]. 

The structure is clamped on all the four sides and it is undergoing a bisinusoidal distributed 

load of intensity q
0
. The faces are realized in MAT p (EL/ET=25; GLT/ET=0.5; GTT/ET=0.2; 

υLT=0.25). The mechanical properties of the foam material constituting the core are: E1/ETF 

=E2/ETF =0.04, E3/ETF =0.5, G13/ETF =G23/ETF =0.06, G12/ETF =0.016,  υ12=υ13=υ23=0.25. The 

thickness distribution of the layers is [0.1h/0.8h/0.1h]; where h is the overall thickness of the 

plate. Table 7.3 reports displacements and stresses for different length-to-thickness ratios, 

normalized as follows: 
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 (7.17) 

Due to the symmetry of the problem, also in this case just a quarter of the plate is discretized 

considering a 9x9 meshing. As previously, the numbers reported in square brackets still 

represent the computational times required by the AD-ZZ model and by the FEM model 

(superscript F) to perform the analyses.  

The numerical results of Table 7.3 show that the present element can accurately treat also 

structures with clamped edges.  

L/h 

 

w  xx  yy  xy  xz  

2 [1.45 s;3.6
 F

 s] 

Sahoo and Singh [246]  17.3124 2.2047 0.2366 0.0868 0.1061 

AD-ZZ Model 17.3125 2.2047 0.2366 0.0868 0.1061 

Present 17.3125 2.2048 0.2366 0.0868 0.1065 
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5 [1.30 s;3.25
 F

 s] 

Sahoo and Singh [246]  3.9718 0.7798 0.1506 0.0493 0.1962 

AD-ZZ Model 3.9719 0.7798 0.1506 0.0493 0.1963 

Present 3.9719 0.7798 0.1506 0.0493 0.1964 

       

10 [1.13 s;2.98
 F

 s] 

Sahoo and Singh [246]  1.4269 0.5184 0.0774 0.0300 0.2719 

AD-ZZ Model 1.4269 0.5184 0.0774 0.0300 0.2719 

Present 1.4269 0.5184 0.0774 0.0300 0.2719 

Table 7.3 Stress and displacement fields for a clamped sandwich plate, as predicted by: present 

element, OM model (Icardi and Sola [119]) and exact solutions. 

Case D. Aiming at verifying the accuracy of the present element also for angle-ply structures 

a four-layered antisymmetric [30°/-30°/30°/-30°] square plate is analysed. The constituent 

layers, each having thickness h/4, are in mat p (EL/ET=25; GLT/ET=0.5; GTT/ET=0.2; 

υLT=0.25). The plate is simply supported, it has a length-to-thickness ratio (L/h) of 4 and it is 

undergoing a bi-sinusoidal loading. According to Savoia and Reddy [254], who provides the 

exact 3D solution for this case, the quantities reported in Figure 7.2 are normalized as follows: 
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 (7.18) 

As a general remark to the results of Figure 7.2, it could be noticed that considering the 

interfaces between the layers 1-2 and 3-4 the through-the-thickness distributions of in-plane 

displacements have a slope, which varies, but without reversing as postulated by 

geometrically-based zig-zag function (1.8). For what concerns the accuracy of the present 

model, the results of Figure 7.2 confirm it for this case, even for the completely antisymmetric 

distribution of the transverse shear stress σ̅yz. Computations have been carried out considering 

225 elements on a quarter of the plate (inset in Figure 7.2) and they take 10 s to be performed.     
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Figure 7.2 (a and b) Normalized transverse shear stresses; (c and d) in-plane displacements by 

Savoia and Reddy [254] (exact 3D solution) and by the present element for an angle-ply [30°/ − 

30°/30°/ − 30°] laminated plate 

Case E. The natural frequencies of the simply-supported laminate analysed by Mantari at al. 

[255] and by Noor [256] that provides the exact solution, are computed with those computed 

by the present element. Different E1/E2 ratios are considered, while the other mechanical 

properties are: E3/E2=1, G12/E2= G13/E2=0.6, G23/E2=0.5, υ12=υ13=υ23=0.25, ρ=1. The length-

to-thickness ratio is 5, the stacking sequence is [0°/90°/90°/0°] and the thickness of the layers 

is [0.25h/ 0.25h/ 0.25h/ 0.25h]. According to Mantari at al. [255], the results reported in Table 

7.4 are normalized as follows: 

2

2

xL
f f

h E


  (7.19) 

The numbers in square brackets reported in Table 7.4 represent the computational times (in 

seconds) required by the present finite element implementation to perform the analysis. The 

results by the present model given in Table 7.4 have been obtained considering a 9x9 meshing 

within a quarter of the laminate. As a general remark to the results of Table 7.4, it could be 

noticed that the frequencies are higher as the E1/E2 ratio grows, according to the fact that they 

are proportional to the stiffness. For what concerns the present element, all the natural 

frequencies are evaluated with the due accuracy even when the constituent material is strongly 

directional. Also in this case, few seconds are required to perform all the analyses, showing 

again the efficiency of the present element. 
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E1/E2   f̅ Exact [256]   f̅ [255]   f̅ Present 

3 [3.5] 

 

6.618 

 

6.565 

 

6.599 

10 [4.26] 

 

8.210 

 

8.286 

 

8.225 

20 [5.65] 

 

9.560 

 

9.552 

 

9.558 

30 [6.98] 

 

10.272 

 

10.305 

 

10.275 

40 [8.03]   10.752 

 

10.826 

 

10.751 

Table 7.4 Comparison between the frequencies of a multilayered composite plate computed by Noor 

[256] (exact solution), Mantari el al. [255] and by the present finite element implementation. 

Case G. As a further assessment of the present element for static analyses, the simply 

supported sandwich beam (i.e. plate in cylindrical bending) with damaged core of Chapter 3 is 

considered. It is reminded that the beam has a (MAT 1/2/3/1/3/4)s lay-up with the following 

thickness ratios of layers (0.010/0.025/0.015/0.020/0.030/0.4)s., while the constituent material 

have the following mechanical properties MAT 1: E1=E3=1 GPa, G13=0.2 GPa, υ13=0.25; 

MAT 2: E1=33 GPa, E3=1 GPa, G13=0.8 GPa, υ13=0.25; MAT 3: E1=25 GPa, E3=1 GPa, 

G13=0.5 GPa, υ13=0.25; MAT 4: E1=E3=0.05 GPa, G13=0.0217 GPa, υ13=0.15. Note that in 

order to study a beam with plate elements, the structure is modelled as a rectangular plate with 

the Lx >> Ly (see inset in Figure 7.3). In addition, as shown in (7.20) results are evaluated at 

the center of the structure, where free edge effects are not present.  

The G13 modulus of MAT4 is reduced by a factor 10
2
 for simulating the complete failure of 

the core under transverse shear and the damage is assumed to be spread over the entire length 

of the sandwich beam. 

Figure 7.3 reports the comparison between the exact solution [107] and the results by the 

present element, normalized as follows: 
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 (7.20) 

As evidenced by the numerical results, the present finite element implementation provides 

results in good agreement with the exact 3D solution also for this case. 
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Figure 7.3 Comparison between exact solution [107] and solution by the present element for a 

sandwich beam with damaged core: a) normalized transverse shear stress; b) normalized transverse 

normal stress; c) normalized in-plane displacement. 

Applications presented in this section have shown that the finite element developed through 

SEUPT obtains accurate results requiring low computational times in a variety of cases. 

Therefore, the present energy updating technique and finite element appear as a good 

alternative to those to date available for developing finite elements from zig-zag models. 

Indeed, it uses a standard interpolating scheme and it offers a great accuracy with the minimal 

number of unknown nodal variables at an affordable processing cost. 

7.2 C
0
 mixed finite element 

In the present Section the main steps towards the development of a mixed finite element of 

class C
0
 will be summarized and its accuracy will be assessed. 

7.2.1 Formulation 

Based on the SEUPT technique discussed above, an eight-node mixed plate element with 

standard Lagrangian interpolating functions is developed. According to [257], here  the term 

mixed is used for indicating that the  only fields to be varied in the sense of Variational 

Calculus (i.e. master fields) are internal fields (i.e. defined inside the volume of the domain). 

As nodal d.o.f., the nodal components of displacements u(x, y, z)
EM

, v(x, y, z)
EM

, w(x, y, z)
EM

 

and the stresses σxz
J
, σyz

J
, σzz

J
 at the reference middle plane are assumed (see Figure 7.4). With 

this choice of the nodal d.o.f., only the continuity conditions on  σxz, σyz, σzz are met, while 

that on σzz,z is disregarded.  
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Figure 7.4 Reference system for the element in the natural plane. 

Since stresses and displacements can be varied separately, the Hellinger-Reissner multi-field 

principle is the governing functional: 

 1

2

u

HR ij ij ij ijkl kl i i i i HR HR
V V S

S dV bu dV t u dS U W                  (7.21) 

The symbol Sijkl represent the components of the elastic compliance tensor (i.e., the inverse of 

the elastic stiffness tensor Cijkl) so that Sijkl σkl= ε
σ

ij represents the strains obtained from the 

stress-strain relations 

Accordingly, ½ σij Sijkl σkl is the complementary energy density in term of the master stress 

field. The slave fields are the strains ε
σ

ij and ε
u

ij: 

 , ,

1
;

2

u

ij ijkl kl ij i j j iC u u      (7.22) 

The vector of the nodal d.o.f. for the generic element (e) in its natural reference system J is 

thus represented by: 

              ( ) ( ) ( ) ( ) ( ) ( )
 , , , , ,

T
T EM EM EM J J J

e i i i xzi yzi zzi
e e e e e e

q u v w     (7.23) 

where i is the node number (i=1, 8). 

Nevertheless the transverse normal stress gradient is not assumed as a functional d.o.f., in 

order to avoid stress derivatives as nodal d.o.f., the numerical results will show that the 

boundary conditions (2.22) will be spontaneously satisfied, as already shown by Icardi [109] 

and Icardi and Atzori [240] using layerwise plate elements and solid ones, respectively. 
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Therein, accurate solutions were obtained either for regular problem involving laminates and 

sandwiches (even when they are thick and the properties of their constituent layers are 

distinctly different), or singular problems like the case of a two material wedge with certain 

side angles and materials with dissimilar properties. Even no cases were found where the lack 

of the enforcement of continuity of the transverse normal stress gradient gives incorrect 

results.  

Hereon the basic steps towards derivation of the present element will be summarized. Details 

concerning standard aspects will be omitted, being explained in common textbooks. The 

displacements, represented in synthetic form as D and the interlaminar stresses as S, are 

interpolated separately as: 

8 8

1 1

;e e e e

disp stressD D N S S N    (7.24) 

Generally speaking, in order to fulfil the equilibrium conditions in point-wise form (i.e. self-

equilibrating elements), the order of N
e
stress should be higher than that of N

e
disp. However, 

here, differently to customary mixed elements the nodal stresses are not required to be 

represented in a point-wise self-equilibrating form, since, similarly to what happens for 

displacement based elements, the basic assumption is that the intra-element equilibrium 

conditions are met in an approximate integral form (i.e. through energy balance), as 

postulated by Zienkiewicz and Taylor [251]. Accordingly, the same inner representation in (x, 

y) can be assumed both for displacements and stresses, i.e. N
e
disp= N

e
stress=N. In the present 

case, the shape functions of Eqs. (7.3) – (7.5) are chosen. Thus no derivatives of the d.o.f 

should be chosen as nodal quantities. Consequently, C
1
 or higher-order interpolating functions 

are unnecessary. 

The option of using the same representation for displacements and stresses is chosen because 

it makes easier the development of mixed elements without compromising accuracy, as shown 

since the pioneering paper by Loubignac et al. [258]. In addition, an identical interpolation for 

displacements and stresses is acceptable by the viewpoint of numerical stability of mixed 

elements, as discussed forward. 

Representations (7.3) - (7.5) meet the compatibility condition, as the displacements and the 

interlaminar stresses being nodal d.o.f. and having the same representation for adjacent 

elements are continuous inside and at the edges of the elements. Consistency is also ensured 

at the through-the-thickness interfaces, being the present element based on the AD-ZZ model.  
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However, since the membrane stresses are not assumed as nodal d.o.f., they could be 

discontinuous between adjacent elements, as for classical displacement based elements with 

Lagrangian shape functions.. With these assumptions, the stresses within the finite element 

are represented as: 

            
           
           

 ( )

ˆ

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

stress
e

stress

stress

D

N q
N

N



 
  

 
  
 
 



 (7.25) 

[D̂] being the matrix that defines the in-plane stress components 

       ( ) ( )
ˆ  *

T

xx yy xy e eS B q D q     
 

 (7.26) 

[S*] being the related elastic coefficients and [B] the derivatives of the shape functions. 

The “stiffness” matrix is derived in a straightforward, standard way from the internal energy 

functional UHR substituting the discretized displacements and stresses: 

           ( ) ( ) ( ) ( )

1ˆ ˆ ˆˆ
2

T TeT T

e e e e
V

q K q q C B C S C dV q        
         (7.27) 

while the vector of generalized nodal forces is obtained from the work of forces WHR 

substituting the finite element discretization of displacements.  Assembly of the stiffness 

matrix and of the vector of nodal forces is carried out with the standard techniques. 

The integrals defining the stiffness matrix and the nodal force vector are computed either in 

exact form using symbolic calculus, so to avoid numerical instabilities, or through Gaussian 

integration, because a reduced integration scheme could be used (even if it was never applied 

for obtaining the numerical results given next).  

To standardize the computation of integrals, as customarily, a topological transformation is 

carried out from the physical plane (x, y) to the natural plane (η, θ) similarly to what done in 

Eqs. (7.6) – (7.8). 

As well known, stability, solvability and locking phenomena of mixed elements are governed 

by rather complex mathematical relations (see, Babuska [259] and Brezzi [260]). In particular, 

certain choices of the shape functions could not give meaningful results. A necessary 

condition for solvability, which in most cases suffices for acceptability of mixed elements, is 

that the number of displacement d.o.f. nu must be equal (like in the present element), or larger 

than the number of stress d.o.f. nσ. Sufficient conditions for solvability (see, Olson [261]) are 
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that for a single element that is free of boundary conditions i) the number of zero eigenvalues 

of [K̂]
 e 

is equal to the number of rigid body modes, ii) the total number of positive 

eigenvalues is equal to the number of stress d.o.f., iii) the total number of zero and negative 

eigenvalues is equal to the number of displacement d.o.f. However, even when these 

admissibility tests are passed, erroneous, highly oscillating results could be obtained.  For 

homogeneous, isotropic materials this problem is usually overcome by relaxing the stress 

continuity impositions, but in laminated and sandwich composites the interfacial stress 

continuity conditions cannot be skipped, otherwise the physical meaning of solution is lost. 

The opposite possibility is that nevertheless these tests are failed, mixed elements could be 

effective for solving regular problems. Accordingly, mixed elements should be tested 

considering sample cases with the same features of the practical cases to be solved, whose 

solution in exact or approximate numerical form is available for comparisons. 

In the forthcoming section, solvability, convergence and accuracy tests of the element will be 

presented, considering laminates and sandwiches for which either exact solution in closed-

form or in numerical form are available in the literature for comparison. 

7.2.2 Applications 

First of all, an eigenvalue solvability test is presented. In accordance with Olson [261], this 

test is carried out over a single finite element in the shape of a square plate with sides of unit 

length and free of boundary conditions (thickness should be sufficiently small to have a plane-

stress, plane-strain problem). The same isotropic material analysed by Mijuca [262] in a 

similar test is here considered with the following mechanical properties E1 (= E2 = E3) =1 and 

υ=0.3. The results of this test are reported in Table 7.5.  

According to the rules discussed above, the finite element shows a number of zero 

eigenvalues (6) equal to the number of rigid body modes. At the same time, the total number 

of positive eigenvalues (24) is the same as the number of generalized stress d.o.f. and the total 

number of zero and negative eigenvalues (24) is equal to the number of generalized 

displacement d.o.f. These conditions being satisfied in the test, the sufficient condition for 

solvability is passed by the present mixed element. Thus, it can be applied to solution of other 

sample cases in order to verify its behaviour in problems of practical interest. 
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Mode Eigenvalue Mode Eigenvalue Mode Eigenvalue Mode Eigenvalue Mode Eigenvalue Mode Eigenvalue 

1 0.58 2 0.27 3 0.28 4 0.19 5 0.19 6 0.10 

7 0.08 8 0.07 9 0.062 10 0.062 11 0.054 12 0.054 

13 0.049 14 0.022 15 0.022 16 0.018 17 0.018 18 0.018 

19 0.017 20 0.016 21 0.016 22 0.006 23 0.006 24 0.005 

25 0 26 0 27 0 28 0 29 0 30 0 

31 −0.022 32 −0.022 33 −0.027 34 −0.059 35 −0.059 36 −0.073 

37 −0.073 38 −0.082 39 −0.11 40 −0.11 41 −0.138 42 −0.155 

43 −0.192 44 −0.21 45 −0.21 46 −0.23 47 −0.38 48 −0.69 

Table 7.5 Solvability test for an isotropic material. 

Aiming at verifying the convergence rate of the present element, the sample case analysed by 

Zhen et al. [35] is considered, with a length-to thickness ratio of 4. The analysis is carried out 

for a plate that undergoes a bisinusoidal loading and is simply supported at the edges. The 

constituent material is mat p (EL/ET=25; GLT/ET=0.5; GTT/ET=0.2; υLT=0.25) and the stacking 

sequence is [15°/-15°]. Table 7.6 reports the through-the-thickness variation of the in-plane 

stress for different meshing schemes by the present element and by Zhen et al. [35], 

normalized as follows: 
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The results of Table 7.6 show that the present element is as accurate as the 3D solutions 

reported in Ref. [35], and even with rather coarse meshing the accuracy is satisfactory.  This 

confirms that mixed elements are accurate without requiring a very fine discretization as 

already underlined in the literature. 

z/h -0.5 -0.2 0.0
-
 0.0

+
 0.2 1 

       3D [35] -0.9960 -0.0373 0.4526 -0.4719 0.0260 1.0446 

       Zhen et al. [35] 4x4 -1.0292 -0.0371 0.4719 -0.4926 0.0240 1.0812 

Present 4x4 [2.33] -1.0291 -0.0371 0.4721 -0.4924 0.0250 1.0791 

       Zhen et al. [35] 8x8 -0.9992 -0.0356 0.4582 -0.4771 0.0235 1.0481 

Present 8x8 [8.51] -0.9991 -0.0362 0.438 -0.4751 0.0239 1.0465 

       Zhen et al. [35] 12x12 -0.9925 -0.0353 0.4552 -0.4738 0.0234 1.0411 

Present 12x12 [17.1] -0.0995 -0.0372 0.4531 -0.4729 0.0249 1.0451 

       Zhen et al. [35] 14x14 -0.9910 -0.0353 0.4546 -0.4732 0.0234 1.0396 

Present 14x14 [20.2] -0.9961 0.0374 0.4525 -0.4718 0.0261 1.0446 
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Table 7.6 Normalized in plane stress for a [15°/-15°] square plate by Zhen et al. [35] and by the 

present mixed element with progressively refining meshing. 

As a further assessment of the convergence rate, the laminated [0°/90°/0°] plate for which Vel 

and Batra computed the exact 3D solution in Ref. [167] is considered. The plate is square and 

has a length to thickness ratio (Lx/h) of 5. The constituent material is again MAT p 

(EL/ET=25; GLT/ET=0.5; GTT/ET=0.2; υLT=0.25), and for what concerns boundary and loading 

conditions, the plate is simply supported on two opposite edges, clamped on the other two and 

it is undergoing a bi-sinusoidal normal load with intensity p
0
 on the upper face, whereas the 

bottom one is traction free. The results of Table 7.6 report the transverse displacement 

component at the centre of the plate w̅ and the transverse shear stress σ̅xz near the clamped 

edge  normalized according to [167] as: 
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 (7.29) 

Like in the previous case, the numbers in square brackets represent the computational time 

required to perform the analysis on a laptop computer with an 1.80 GHz double-core 

processor and 4 GB RAM. The numerical results show that the present finite element provides 

very accurate results as compared to the exact 3D solution. Also in this case it is shown that 

even with a rather coarse discretization the accuracy is good. 

  z/h -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50 

xz
 

Ref. [42] 0.000 2.609 3.227 2.643 2.113 2.093 2.100 2.668 3.340 2.734 0.000 

Present (3x3) [1.97] 0.000 2.720 3.830 2.949 2.450 2.360 2.450 2.950 3.950 2.920 0.000 

Present (5x5) [2.70] 0.000 2.650 3.450 2.734 2.325 2.248 2.299 2.750 3.430 2.805 0.000 

Present (9x9) [9.26] 0.000 2.607 3.227 2.643 2.114 2.094 2.099 2.668 3.340 2.735 0.000 

w
 

Ref. [42] 1.152 1.158 1.162 1.167 1.173 1.180 1.188 1.198 1.208 1.218 1.227 

Present (3x3) 1.613 1.545 1.450 1.406 1.375 1.340 1.333 1.388 1.398 1.415 1.443 

Present (5x5) 1.234 1.288 1.291 1.299 1.304 1.306 1.309 1.295 1.299 1.305 1.312 

Present (9x9) 1.153 1.158 1.161 1.168 1.172 1.180 1.188 1.197 1.207 1.217 1.228 

Table 7.7 Normalized shear stress and transverse displacement for a [0°/90°/0°] square plate by Vel 

and Batra [167] (exact 3D solution) and by the present mixed element with progressively refining 

meshing. 

With the goal of verifying the accuracy of the present mixed element for structure with 

abruptly changing material properties and general boundary conditions, the cantilever 

piezoactuated beam studied by Robbins and Reddy [263] is considered. As already done in 



Chapter 7:Finite element implementations 

 

 

175 

 

Section 7.2.2, in order to study a beam with plate elements, the structure is modelled as a 

rectangular plate with the Lx >> Ly (see inset in Figure 7.5). The structure is made of an 

underlying aluminium beam substructure (thickness 15.2 mm), an adhesive film (thickness 

0.254 mm) and a piezoactuator (thickness 1.52) bonded on the upper face. The mechanical 

properties of the constituent materials are: Ealum=69 GPa, Galum=27.5 GPa, υalum=0.25; Ead=6.9 

GPa, Gad=2.5 GPa, υad=0.4; E1piezo=69 GPa, E3piezo=48 GPa, Gpiezo=21 GPa, υ13piezo=0.25, 

υ31piezo=0.175. Piezoactuator, adhesive and aluminium substructure form an unsymmetrical 

three material laminate that exhibits bending/extension coupling. The only acting loads for 

this case are the self-equilibrating loads induced by the piezoactuator. According to Robbins 

and Reddy [263], a bending deformation is provided by applying an uniform actuation strain 

of 0.001 to the piezoelectric layer via an applied electric field. Thus, at each node of the 

structure is applied a displacement in the x direction obtained integrating the actuated strain 

over the section of the beam. The length of the beam is 152 mm. 

Figure 7.5a shows the spanwise variation of membrane, transverse shear and transverse 

normal stresses near the top of the aluminium substrate (z1= 6.61 mm) and at the centre of the 

adhesive layer (z2= 6.84 mm), while Figure 7.5b represents the stress fields across the 

thickness close to the free edge. The stress distributions are presented in the following 

normalized form, according to [263], where the exact solution for this case is presented:  
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 (7.30) 

The subscripts alum, ad, piezo and tot being used for indicating the cross sectional area and 

the elastic moduli of the substrate structure, of the adhesive and of the piezoactuator layer, 

respectively, which are considered as isotropic materials.  

The results of Figure 7.5 show that the present mixed element is accurate also for this case in 

which a singular-like stress field arises. In details, in Figure 7.5a it can be noticed that the 

element accurately describes the unwanted dangerous stress concentrations that appear at the 

free end of the beam without showing erroneous oscillating results close to the edge. Also the 

through-the-thickness distribution of the stresses is well described as shown in Figure 7.5b, in 
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particular the mixed element is capable of capturing the sharp variation of the bending stress 

that can be seen near the bonding layer also in this case with a reasonably refined meshing. 

For this case of analysis the present element required 47 s.  

 

 

Figure 7.5 Normalized variation of the stress field for a cantilever piezoactuated beam a) along the 

span and b) across the thickness (inset meshing scheme adopted). 

Numerical results presented in this section have shown that the mixed finite element 

developed obtains accurate results requiring low computational times in a variety of cases. 

Also solvability and convergence have been demonstrated. 
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Chapter 8: Applications to impact studies 

As already stated above, composite materials can suffer from layerwise effects that are 

responsible of local micro-failures and, consequently, of relevant loss of strength and 

stiffness. As the damaged area may increase in size under loading in service till causing a 

premature failure, the basic requirement is that composites must carry the ultimate design load 

even when they are damaged. Therefore, accurate numerical simulations are required to 

understand whether the service life of composite structures may be hampered by the rise and 

growth of damage in service and whether and when the damaged structure needs repair or 

substitution. 

Within this framework, manufacturers have found a high susceptibility to impact damage 

from dropped tools, vehicular collisions and to damage caused by drilling. A critical case for 

aircraft structures is impact from crushed stones during taxiing manoeuvres and take-off. The 

readers are referred to the papers by Richardson and Wisheart [264], Morinière et al. [265] 

and by Abrate [266] - [267] for a comprehensive review of low-velocity impact studies on 

laminates. Methods for predicting delamination induced by low-velocity impacts are 

discussed by Elder et al. [268]. A review of numerical and experimental impact studies on 

sandwich panels, a discussion of their damage mechanisms and of failure criteria used in the 

simulations are given by Chai and Zhu [269]. An overview of damage models is also given by 

Garnich and Akula Venkata [270], Liu and Zheng [271] and Corigliano [272]. The damage 

analysis of honeycomb sandwich panels carried out by Horrigan and Staal [273] is cited as a 

further study in this field. A comparison between simulations and experiments is given by 

Salerno et al. [274]. The effects of stacking sequence on the impact and post-impact 

behaviour are shown by Aktas et al. [275], those of the impactor shape are studied by 

Mitrevski et al. [276]. Multiple impacts are investigated by Damanpack et al. [277] and 

Chakraborty [278]. The impact behaviour of different honeycomb core cells is shown by 

Yamashita and Gotoh [279]. 
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Structural models play a central role in the simulation procedure since they should accurately 

describe the behaviour of composites, but, in light of the iterations required to solve the 

impact problem, they should also require low computational time.  

Studies by Oñate et al. [48] - [49], Icardi and Ferrero [114], Palazotto et al. [280], Kärger et 

al. [281] and Diaz Diaz et al. [282] have shown that ZZ-F and even equivalent single layer 

models (ESL) can be can be successfully adopted for impact and damage analyses in order to 

save costs. Accordingly, in the present chapter, a simulation procedure (IMPSIM) based on 

the AD-ZZ model of Chapter 2 is developed.  

In particular, the progressive damage analysis is carried out at each time step using stress-

based criteria, extending a pre-existing damaged area at the previous iteration to the points 

where the ultimate condition is reached at the next one, as customarily. The residual 

properties of the damaged area are determined using the continuum damage mesomechanic 

model by Ladevèze et al. [283], [284] that accounts for the effects of hard discontinuities in 

homogenized form through a modified version of the strain energy of the structure. The 

transverse cracking rate and the delamination ratios are computed using stress-based criteria 

at each time-step, then the homogenized energy that accounts for the damage is computed and 

used for evaluating stresses at each point.    

For what concerns contact, IMPSIM adopts the modified Hertzian contact law of [114] to 

compute the contact force for laminates. Instead, the refined contact model by Palazotto et al. 

[280]  that forces the target to conform to the shape of the impactor is employed to compute 

the contact radius when sandwiches are analysed.  

Hertzian contact is chosen being proven to be accurate by a plenty of studies (see, e.g. Yigit 

and Christoforou [285] for laminates and Choi [286] for sandwiches), nevertheless it is 

developed for isotropic media. A different alternative approach accounting for the 

heterogeneous nature of composites is developed by Chao and Tu [287]. In this case, the 

contact stresses are derived via an energy variational approach, accounting for three-

dimensional boundary conditions and interlaminar continuity.  Another alternative approach is 

developed by Zhou and Stronge [288], where the load- indentation law of sandwiches is 

obtained via FEA (ABAQUS/Explicit) assuming elastic the face sheets and rigid-perfectly 

plastic the core. Application of these more advanced contact models is left to a future study. 

The Newmark’s implicit time integration scheme is used by IMPSIM for solving transient 

dynamic equations, despite experiments have shown that low-velocity impact studies could be 
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carried out also in static form (see, Li et al. [289]). This choice is enabled by the 

computational efficiency of the AD-ZZ model, which allows carrying out dynamic analyses 

with low costs.  

Differently to [114], where non-linear strains of von Karman type are adopted, here, the 

updated Lagrangian approach is chosen to efficiently account for geometric nonlinearity. 

Accordingly, the deformations at each new time step are obtained from the geometry of the 

structure at the previous step, not from the initial unloaded configuration.  

Since core crushing is governed by the properties of the cellular structure of honeycomb, it 

cannot be appropriately accounted for by the present multi-layered AD-ZZ model that 

describes the core as a thick layer with homogenized properties, even if it adopts a high-order 

piecewise representation of the transverse displacement. Therefore, the variable, apparent 

elastic moduli of the core while it collapses/buckles under transverse compressive loading are 

computed apart, once for all, through a detailed three-dimensional finite element analysis and 

provided to the AD-ZZ as variable properties at each load level.  

 

Figure 8.1 Stages of IMPSIM 
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8.1 Contact force modelling 

Since, in the literature, the contact pressure profile is shown to be less important than the load 

and the area over which it acts, the contact stress is assumed to be distributed according to the 

Hertzian law, like in homogeneous isotropic materials:   

 22 /1)0()( contactRrr      ( 0)( r  if contactRr  ) (8.1) 

In the former equation, R contact is the radius of the contact area, while σ(r), σ(0) are the 

Hertzian stress intensity at a distance r from the centre and at the centre, respectively. The 

impactor is assumed to be spherical, because no details regarding the real shape of the contact 

area and the real distribution of the force acting on it are available for other impactor shapes. 

The analysis of laminates is carried out assuming R contact as a fixed variable, while for 

sandwiches it is computed at each step by forcing the target to conform to the shape of the 

impactor. 

8.1.1 Laminates  

In the loading phase, the contact force F is related to the indentation depth α through the 

contact stiffness Kc in standard form as:     

( )c contactF K R   (8.2) 

A 3D Finite element analysis, here referred as PFEA-1 is performed apart once for all as a 

virtual material test (VMT) for determining R contact. A non-linear model (RADIOSS -MAT25) 

is adopted to account for the failures occurring in the target structure, as described next. The 

exponent υ is set in agreement with experiments in the literature. In the unloading phase 

0

0

q

m

m

F F
 

 

 
  

 
 (8.3) 

and the exponent q is set according to experiments. In the previous equation, Fm is the 

maximum of the contact force, αm is the relative indentation depth at each loading step and α0 

is the permanent indentation. In case of bounces, the following reloading law is assumed: 

pkF )( 0

'    (8.4) 

Again, the contact stiffness k’ is computed through VMT accounting for contact stiffness 

degradation due to the damage arose in the loading phase. The exponent p is still set 
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according to experiments. Literature shows that υ= p= 1.5 and q= 2.5 are the appropriate 

choices for laminates. 

8.1.2 Sandwiches  

A constant contact radius is inappropriate when analysing sandwich panels with lightweight 

soft core. Thus, the iterative algorithm by Palazotto et al. [280] is applied that forces the 

impact area to conform to the shape of the impactor at any load increment to compute the 

contact radius. Since the solution depends both on the current configuration and the previous 

history and local deformations can be quite large, the problem is solved using a modified 

version of the Newton-Raphson method: 

 ( 1) ( 1) ( 1) 0i i i i

c
S

d d      
 
K F  (8.5) 

The secant stiffness matrix [K(d)]S is computed using the AD-ZZ model of Chapter 2. The 

symbols d
 (i-1)

 and δ
i
 represent the converged solution at the previous load increment Fc

(i-1)
  

and the residual force, respectively. The displacement amplitude vector d
(i-1)

 is updated by Δd
i
 

in order to make the structure in equilibrium with Fc
i
. Displacements are applied during 

iterations till the impactor and the indentation radii conform: 

 ( 1)i i i

T
d d    

 
K  (8.6) 

[K(d)]T being the tangent stiffness matrix computed using the AD-ZZ model. The updated 

vector of displacement d.o.f. d
i
 is computed as:  

( 1)i i id d d   (8.7) 

The process is repeated till the convergence tolerance is reached. Namely, the convergence 

tolerance is compared with the percentage of variation of the solution, from the current to the 

previous iteration using the norm of displacements  

 
2i n

j

n

d d   (8.8) 

  to compute   

1i i

i

d d
D

d

 
    (8.9) 
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The iterative process is stopped when D   1 %. Once a converged solution is obtained, the 

simulation procedure goes on.   

8.2 Damage and post-damage modelling    

The failure analysis of composites is a topic still open to discussion. As already reminded, the 

characteristic feature of composites is to absorb the incoming energy through a complex 

interaction of local failures in their microstructure. For example, carbon epoxy composites 

often fail by matrix or fibre failure, while glass-fibre-reinforced composites often fail by a 

fibre-matrix interaction. The fibres can fail by traction, shear, compressive instability, or 

brittle failure. The matrix can fail by apparently ductile shear, brittle fracture, or by 

microcracks parallel to fibres caused by transverse-tension loading. Since all these failure 

modes influence each other, they should not be assessed independently. Sandwich composites 

fails either by general and local instability modes (i.e. rippling, face damping), core failure, 

skin indentation, debonding, wrinkling, etc., or as a consequence of fibres and matrix failure 

or delamination of skin layers like in laminated composites. 

Since an accumulation of damage in service can adversely affect the structural performances, 

obviously, an accurate assessment of the local damage mechanisms and of the post-failure 

behaviour is mandatory within the framework of the damage tolerance design. This calls for 

sophisticated computational models and suitable stress decomposition techniques, which 

accurately capture the three-dimensional stress fields at the level of constituents and, 

evidently, for accurate failure models at the microstructure level.  

Forty years of extensive studies have progressed significantly the knowledge. Bibliographical 

review papers, papers where the accuracy of criteria is assessed and monographs dealing with 

the failure mechanisms of composites are available in the specialized literature. Recent papers 

in which a comprehensive bibliographical review is provided, are Rowlands [290], Nahas 

[291], Echaabi and Trochu [292], Paris [293], Tennyson and Wharam [294] and Tong [295]. 

Nevertheless a variety of failure criteria based on various approaches are available, an 

efficient stresses and damage computation suitable for designers still remains under 

discussion. Being outside the aims of the present work a comprehensive review of failure 
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criteria and damage models, in the present section, just the failure criteria and the damage 

model assumed within IMPSIM are recalled. 

8.2.1 Stress based failure criteria.  

The 3-D Hashin and Rotem’s criterion [296] with in-situ strengths is used for predicting the 

fibre and matrix’s failures. Tensile failure is ruled by: 

  1
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X
t
 being the tensile strength of fibres, S12=13 the in-situ shear strength of the matrix resin and 

σ11, τ12 and τ13 the tensile and shear stresses acting on the fibres. Compressive failure is 

predicted by: 

cX11 , )0( 11   (8.11) 

cX  being the compressive strength of fibres. Matrix failure under traction is described by: 
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while under compression it is described by: 
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Delamination failure is predicted using the Choi-Chang’s criterion [297]: 
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where Y
n+1

=Yt
 n+1

 if σy̅y > 0, or Y
n+1

=Yc
 n+1

 if σy̅y < 0, aD  is an empirical constant that is set 

after consideration of the material properties, σi̅j is the average stress at the interface between 

the n
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 ply and the n+1
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The symbol ‘i’ stands for in situ, while ‘t’ and ‘c’ stand for traction and compression, 

respectively. This criterion is chosen because numerical tests in literature have shown its 

accuracy for laminates undergoing low velocity impact loading.   

The failure of honeycomb core under compression and transverse shear is predicted using the 

criterion by Besant et al. [298]: 

n n n

yzxzzz
core

cu lu lu

e
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     
       

     
    (e core > 1) (8.16) 

cu  and lu  being the core strengths in compression and transverse shear. It is assumed n = 

1.5, since numerical tests in literature have shown that results with this choice are quite 

accurate. However, results do not considerably vary changing the exponent from 1 to 2. 

The failure of foam core is estimated according to the rule suggested by Evonik for Rohacell 

core ( [299], [300]), using as safety factor vR /11 : 
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2  dka  and  1112 /3 RRk  are 

determined from experiments, while 


11R , 


11R  and 12R represent  the strengths of the foam 

under traction compression and shear, respectively.  

Core crushing failure under out-of-plane normal and shear stresses is also predicted using the 

criterion by Lee and Tsotsis [301] 
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cZ , 
xS , 

yS being the compressive yield strength and the out-of-plane shear strengths, 

respectively. As both criteria (8.16) and (8.18) refer to honeycomb failure, the failed region is 

computed as the envelope of failures predicted by each of these two criteria. Strengths and 

material properties assumed in sections 8.5 and 8.6 are taken from material databases and 

from experiments published in the literature. 
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8.2.2 Mesoscale damage model.  

In order to account for the effects of hard discontinuities in homogenized form, the mesoscale 

damage model (DML) by Ladevèze et al. [283], [284] is used. It provides a modified strain 

energy expression from which stresses are computed, considering materials damaged as in the 

reality by the standpoint of energy functionals. Therefore, no factors are guessed to modify 

the initially health properties in the failed regions adopting this damage model. 

DML replaces the discretely damaged medium containing matrix cracks, delaminations and 

fibres failures with a continuous homogeneous medium, equivalent from an energy 

standpoint, whose strain energy expression incorporates damage indicators computed as the 

homogenized result of damage micromodels. Micro-meso relations, representing the 

homogenized result of micromodels, are derived from damage variables and associated forces. 

Displacement, strain and stress fields on the microscale are denoted as U
m
, ε

m
 and σ

m
, 

respectively. These quantities are expressed as the sum of the solution of a problem P̃ in 

which damage is removed and the solution of a residual problem P̅ where a residual stress is 

applied around the damaged area. The homogenized potential energy density of the generic 

ply is expressed as ( [283], [284]): 
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The meaning of symbols is as follows: I̅22, I̅12, I̅23, I̅13 and I̅33 are the damage indicators, each 

defined as the integral of the strain energy of the elementary cell for each basic residual 

problem under the five possible elementary loads in the directions 22, 12, 23, 13, 33; [M̅1], 

[M̅2], [M̅3] are operators that depend on the material properties, |S| is the deformation, <.>+ 

represents the positive part operator. The homogenized potential energy density of the generic 

interface is expressed as ( [283], [284]): 
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k̃1, k̃2 and k̃3 being the elastic stiffness coefficients of the interface, I̅
1
, I̅

2
 and I̅

3
 the three 

damage indicators and γj the deformation. The coefficients of stresses in equations (8.19) and 

(8.20) represent the elastic properties of the homogenized model equivalent to the discretely 
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damaged real model. The damage is quantified in terms of cracking rate L
h

   and 

delamination ratio E
h

 , which are damage variables that links the damage state to the loss 

of stiffness of the damage mesoconstituent, L being the distance between two adjacent cracks, 

h  being the length of the crack across the thickness and E  being the length of the 

microcrack. Experiments show that the range of practical interest for   is [0; 0.7] and for   

is [0; 0.4].  

In the present procedure, the damage indicators are determined numerically through 3-D FEA 

VMT (PFEA-3). The elementary cell is discretized by 3-D elements once for all outside the 

time-loop cycle, considering discrete values of fibre failure and matrix cracking rates and 

delamination ratios of the elementary cell obtained at various load levels applying criteria 

(8.10) to (8.14). 

The modified elastic properties by the mesoscale model are provided to the AD-ZZ model 

that is used for carrying out the analysis. The progressive failure analysis is performed at each 

time step applying criteria (8.10)-(8.18) under the forces provided by the contact model (8.1)-

(8.9) and the modified elastic coefficients of the mesoscale model (8.19)-(8.20). The damage 

computed at the previous step by the criteria (8.10)-(8.18) is extended at the next step to the 

points where the ultimate stress is reached. Instead of carrying out the analysis at an infinite 

number of points, a discrete representation is used that identifies small square damaged cells 

of the domain over which the ultimate stress is reached or just passed (up to an assumed 

magnitude tolerance, see Fig. 8.13), in a fashion similar to that of finite elements.  

Accordingly, the domain is subdivided into fictitious small square cells, whose damage state 

computed at the central point is assumed constant over the area of the cell. A layer loop 

computes the stresses across the thickness at the central point of each cell, which is used for 

carrying out the damage analysis. Obviously, the smaller is the dimension of cells, the better 

is accuracy and the larger is the computational effort.  
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8.3 Core crushing simulation 

The behaviour of the “soft” material constituting the core needs to be accurately described, 

because a large amount of energy is absorbed through various folds and failure modes of the 

core structure. Thus, a discrete modelling is required for simulating with the due accuracy the 

effects that local phenomena have upon energy absorption mechanisms, which are strongly 

affected by the through-the-thickness properties.  

As shown in many works taken from literature (see, e.g. [302] and [303]), honeycomb core 

behaves linearly at low strains, buckles and then undergoes progressive folding, finally 

followed by densification. Indeed, depending on the nature of the wall material, cells collapse 

by elastic buckling, plastic yielding, creep or brittle fracture. Collapse ends once the opposite 

cell walls come in contact. 

Being non-uniform and complex, deformation patterns and stress distributions of honeycomb 

require a constitutive description under multi-axial conditions. In particular, shear stress has 

considerable influence on the crush behaviour, since the energy absorption rate is largely 

influenced by the ratio between the shear stress and the other stresses. The ratio of skin 

thickness to side length and honeycomb relative density have also a large influence. The inner 

cells deform completely in the axial collapse model under transverse loading with respect to 

the plane of the panel, while the outer cells along the sides exhibit collapse patterns with 

shear. Compared to metallic core, Nomex
TM

 honeycomb is relatively brittle, as it starts to 

fracture after reaching a critical loading. Accordingly, in metallic honeycomb the collapse 

mechanism is plastic and starts after buckling, while Nomex
TM

 honeycomb undergoes 

buckling of cells, followed by debonding failure at the cell interfaces and fracture. 

Homogenized models cannot properly treat crushing of honeycomb, as it highly depends on 

geometry and material properties. Therefore, micromechanical approaches giving a detailed 

representation of the real geometry, which explicitly models core using shell elements, are 

required. In addition, a self-contact algorithm should be used for preventing from 

interpenetration between the folds in the cell walls. Modelling of foam core needs use of 3-D 

solid elements and appropriate homogenized material properties that are determined from 

experiments.  

At the peak load, the elastic properties of core should be very accurately computed, 

appropriately reducing the properties of the failed regions, otherwise the peak is lower and 
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wider than in the reality [303]. Numerical tests show that if properties are inappropriately 

progressively reduced, the assumption of an elastic-plastic model can lead to an 

underestimated load peak. 

As microbuckling and local failure of core are highly mesh sensitive [303], a very refined 

meshing is required. Indeed, a coarse discretization causes a higher initial load peak and 

higher load in the densification regime. However, very small elements are inappropriate if 

their dimension is not larger than the thickness of the honeycomb foil. Using reasonable 

meshing, the influence of cell size can be accurately predicted in the 3D finite element 

analysis with an affordable computational effort and then it can be used for designing 

honeycomb cores with desired energy absorption properties and given crush loads. 

A more advanced option is using a homogenized discrete/finite model used in a semi-adaptive 

coupling technique, as discussed by Aktay et al. [303], since the discrete particles describe 

very accurately the crushing behaviour with a low cost. With this technique, elimination of 

elements that failed under contact compression stresses is avoided, so the contact force 

information is not lost. 

Here a detailed, preliminary finite element analysis (PFEA-2) is carried apart once for all in 

order to compute the apparent elastic moduli of the core while it collapses/buckles under 

transverse compressive loading. The reason of this choice is that a discrete modelling of 

honeycomb may determine overloading computations when simulating structures of industrial 

complexity. 

According to what discussed above, in the PFEA-2 phase, a detailed representation of the 

honeycomb structure is adopted to compute the tangent moduli of the core while it crushes. 

Shell elements with elastic-plastic isotropic material are used for discretizing core, paying 

attention to employ a self-contact algorithm. Please consider that the relatively brittle 

behaviour of Nomex 
TM

 is simulated through the failure criteria. The cell walls bonded 

together are modelled using double shell elements. Instead, foam core is discretized by solid 

elements with nonlinear material behaviour derived from experiments. Specifically, the 

hardening curve of foam core is obtained by curve-fitting the results of numerical 

compression tests.  

The variable, apparent elastic moduli of the core are determined as the tangent moduli at each 

load level computed from the average ratio of stresses and strains. These moduli are 

determined in any sub-region in which the area around the contact point is ideally subdivided 
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and then they are provided to the AD-ZZ model for the analysis. Despite the core is 

apparently treated as a homogeneous material by the AD-ZZ model, the effects of crushing 

are accounted for locally, assuming elastic properties variable with position. Even if, here the 

solving procedure is analytical, elastic properties variable with position can be treated 

splitting the analysed structure into different subdomains (i.e. one for each variation of the 

mechanical properties), similarly to what done in Chapter 4, in order to treat joints. At the in-

plane interfaces between these subdomains the AD-ZZ model through terms (4.6) – (4.8) 

restores in-plane continuity of stresses and gradients.  

Even though the AD-ZZ model is based on infinitesimal strain-displacement relations, the 

nonlinear effects, considered when computing the apparent, variable elastic properties of the 

core, are also taken into consideration when the structural analysis with the AD-ZZ model is 

carried out, because the updated Lagrangian methodology is used. This approach evaluates 

the deformations at each new time step from the geometry of the structure at the previous 

step, not from the initial unloaded configuration.  

PFEA-2 is started below the lowest failure load predicted by the criteria of Besant et al. [298] 

and Lee and Tsotsis [301]. 

In order to assess the accuracy of the simulation procedure, the experimental crushing 

behaviour obtained by Aminanda et al [302] and Flores-Johnson et al. [304] for honeycomb 

and foam cores are compared with those obtained using the PFEA-2.  

Figure 8.2a reports the force-displacement curve for the Aluminium alloy honeycomb, 

analysed by Aminanda et al. [302]. It has cell size of 6 mm and cell wall thickness of 0.12 

mm. The analysis is carried out applying quasi-static load in the thickness direction on a 

25x25 mm plate. In agreement to what expected, the curve shows an initial linear elastic and 

stiff response, then, once reached the maximum value of the force, the curve presents a sharp 

drop due to the beginning of the vertical edge deformation. During this phase the force 

reaches a plateau, and finally the diagram shows the condensation phase. As it can be seen, 

numerical results behave in accordance with experiments. 

Figure 8.2b reports the strain-stress behaviour for foam cores with different density, under 

uniaxial compression test. The analyses are carried out considering two cubes with 100 mm 

edges made with Rohacell 51WF and 110WF foams. According to Flores-Johnson et al. 

[304], the compressive load is applied in quasi-static conditions. 
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As for the honeycomb core the numerical results are in good agreement with the experimental 

ones. Both cores initially show linear elastic and stiff response, followed by elastic-plastic 

behaviour, without work hardening. After this phase, the material cannot absorb further 

energy, thus stress rises sharply without significant increase of the strain. 

 

 

 

Figure 8.2 Crushing behaviour detected by the present simulation procedure and a) by Aminanda et 

al [302] for sandwich with honeycomb core, b) by Flores-Johnson et al. [304] for sandwiches with 

foam core. 
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8.4 Solution of the structural problem   

The problem is solved adopting the AD-ZZ model assuming the through-the-thickness 

variation of the displacement field as postulated by Eqs. (4.3) – (4.5) 

Solution is found in closed form at each time step within the framework of the Rayleigh-

Ritz’s method, assuming the in-plane variation of functional degrees of freedom u
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for clamped edges, or as: 
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for edges that are freely movable in the in-plane directions. 

At clamped edges, the mechanical boundary conditions 
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dzdyQ xzx     ;   dzdxQ yzy    (8.23) 

are satisfied by an appropriate choice of the higher order terms of the AD-ZZ model, Γ being 

the contour of the plate. Qx, Qy are assumed to be uniformly distributed over Γ when the 

edges are sufficiently far from the impact point located at the centre of the plate. This 

assumption is valid for large length side-to-thickness ratios. 

Application of the Rayleigh-Ritz method for studying impact, which is a non-conservative 

problem, is allowed since IMPSIM studies this problem as a sequence of conservatives 

problems (one for each time-step) in which the contact force and the stiffness coefficients are 

fixed. 

The dynamic governing equations in matrix form are obtained from (8.21) or (8.22), then they 

are solved using Newmark’s time integration scheme. Once unknown amplitudes Amn, …, Emn 

are computed at each time step, stresses are calculated and the damage analysis is carried out. 

The expressions of linear, secant and tangent stiffness matrices of the AD-ZZ model are 

deduced from (8.21) or  (8.22), once they are substituted in (4.3), (4.4) and (4.5) according to 

[251]. The consistent mass matrix of the AD-ZZ is computed considering the inertia 

contributions within governing functionals, like the dynamic version of the principle of virtual 

work. 

8.5 Application to indentation of sandwiches 

As a preliminary application of the simulation procedure described above, in this section 

numerical results dealing with indentation of sandwiches are compared to experiments taken 

from literature (see Figure 8.3 for a simplified representation of the loading scheme). Please 

note that all the computational times reported in this section refer to analyses carried out on a 

laptop computer with dual-core CPU 1.80 GHz, 64 bit operating system and 4 GB RAM. 
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Figure 8.3 Schematic representation of the loading conditions for indentation. 

8.5.1 Panels with Rohacell foam core 

As first case, let us consider the sandwich plate analysed by Flores-Johnson and Li [305] with 

sides 100 x 100 mm. The faces are in Toho Tenax carbon fibre HTA plain weave fabric 5131, 

whose mechanical properties are E11= E22=33.38 GPa, υ12=0.051, σ1T= σ2T=124 MPa, σ1T= 

σ2T=684 MPa. The faces have a stacking sequence [0°/90°]. 

Different Rohacell foam cores have been considered. In details, the foams used are 51WF, 

71WF, 110WF and 200WF. The mechanical properties of the foams are chosen according to 

the indication of the manufacturer and they are summarized in Table 8.1. The thickness of the 

faces is 0.416 mm, while the thickness of the core is 10 mm. The indentation is carried out 

considering a hemi-spherical indenter with 20 mm diameter. 

Properties 51WF 71WF 110WF 200WF 

Density [kg/m
3
] 52 75 110 205 

Compressive strength [MPa] 0.8 1.7 3.6 9 

Tensile strength [MPa] 1.6 2.2 3.7 6.8 

Flexural strength [MPa] 1.6 2.9 5.2 12 

Shear strength [MPa] 0.8 1.3 2.4 5 
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Elastic modulus [MPa] 75 105 180 350 

Shear modulus [MPa] 24 42 70 150 

Table 8.1 Mechanical properties of Rohacell foams ( [299]- [305]). 

The results presented in Figure 8.4 are in good agreement with the experiments by Flores-

Johnson and Li [305]. It could be noticed that, except that for the 110 WF, all the force-

indentation curves present a typical behaviour: an initial part where force and displacement 

grow, then the force reaches a peak, drops down and raises again. These phenomena are 

accurately described by the present simulation procedure. Please note that in this case 15 

elements across the thickness have been considered during the PFEA-2, while the mesoscale 

model determines a reduction of the mechanical properties that is strongly influenced by the 

foam constituting the core. Indeed, for the sandwich with 51 WF core the mechanical 

properties of the upper face are reduced of 40% and those of the core of 50%. Instead, the 

panel with 71 WF core requires a 40% reduction of the mechanical properties of the upper 

faces and 35% reduction of the mechanical properties of the core. In the analysis of the plate 

with 110 WF core the degraded mechanical properties are 30% and 35% lower than the 

undamaged ones of the core and the upper face respectively. Finally the last case needs a 20% 

decrease of the mechanical properties of the 200 WF core and 25% reduction of those of the 

upper face. The computational times are similar for the four cases considered, and they vary 

from 427 s for the sandwiches with 51 WF core and 431 s for the sandwich with 200 WF 

core.  

For all the cases considered in Figure 8.4, it is reported as an inset the comparison between 

the damage predicted by the present simulation procedure and that experimentally detected in 

[305]. Note that the results by the present analytical procedure are obtained applying the 

stress-based criteria in a grid of points. If in a generic point the failure criteria predicts the 

damage, a small square area (fictitious) is considered damaged, as explained in Section 8.2.2. 

The damage reported in Figure 8.4 is the envelop of all the damaged areas computed by the 

procedure. A more detailed application of this procedure is presented in Section 8.6.3. 

As a general remark, it could be observed that in all these cases the present simulation 

procedure provides results in good agreement with the experimental ones. In details, as also 

outlined in [305], it can be seen that the damage is more localised for sandwiches with greater 
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core density due to the increase of stiffness, which enhances the local effect of the 

indentation. 
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Figure 8.4 Comparison between experimental [305] and present numerical force–indentation 

curves for sandwich panels with a) 51WF foam core, b) 71WF foam core, c) 110WF foam core and 

d) 200WF foam core. 

Flores-Johnson and Li in [305] presents also experimental results for the indentation of a 100 

x 100 mm sandwich plate loaded by hemi-spherical indenter with different diameter, indenter 

A has 16 mm diameter, indenter B has 20 mm diameter, indenter C has 25 mm diameter. The 

plate has Toho Tenax carbon fibre HTA plain weave fabric 5131 faces and Rohacell 51WF 

core. Once again, the faces have a stacking sequence [0°/90°], the thickness of the faces is 

0.416 mm, while the thickness of the core is 10 mm.  

Numerical results reported in Figure 8.5 are in good agreement with the experimental ones. 

Also in this case during the PFEA-2 15 elements have been considered across the thickness of 
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the core, while the indenter diameter has an influence on the results by the mesoscale model. 

Specifically, with indenter A the mechanical properties of the upper face are degraded of 70% 

while those of the core of 65%. The results by the indenter B are the same described above, 

while those by indenter C are a 25% reduction of the mechanical properties of the core and a 

32% of those of the upper face. As far as computational times are concerned, 361 s are 

required to carry out the analysis when indenter A is considered, 427 s when indenter B is 

considered and 525 s when indenter C is considered. 
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Figure 8.5 Comparison between experimental [305] and present numerical force–indentation 

curves for 51WF foam cored sandwich panels with a) indenter A, b) indenter B and c) indenter C. 

8.5.2 Panels with honeycomb core  

Consider the 152.4x152.4 mm sandwich plates with honeycomb core analysed by McQuigg 

[306]. The skins of the sandwich construction are obtained using two plies of style 7781 plain 

woven E-glass fabric with 40% epoxy resin content, whose strength and modulus in the warp 

and fill direction are 413.6 MPa and 20.7 GPa, respectively, for compressive loading, and 

372.3 MPa and 20.7 GPa, respectively, for tensile loading. The in-plane shear strength and 

modulus are 88.6 MPa and 2.76 GPa, respectively. The in-plane Poisson's ratio is 0.14 and the 

interlaminar shear strength is 24.13 MPa. The plies are directionally aligned in the 0° 

direction and the thickness of the skins is 0.508 mm. The Nomex
TM

 honeycomb core has a 

25.4 mm thickness, with 3.175 mm cell size, 0.018 mm foil gauge, and a density of 48.1 

kg/m
3
. 

The indentation is carried out using a hemi-spherical indenter with 12.7 mm diameter acting 

at 0.75 Lx and 0.25 Ly, being Lx and Ly the size of the panel in the x and y direction, 

respectively. The panel is clamped on all four edges. 

The results for this case reported in Figure 8.6 are still in accordance with the experimental 

ones. As far as PFEA-2 is concerned, 30 elements have been considered across the thickness 

of the honeycomb, while the mesoscale model calls for a 38% reduction of the mechanical 
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properties of the upper face and a 34% reduction of those of the core. In this case, the analysis 

takes 295 s.  

 

Figure 8.6 Comparison between experimental force-indentation curves by McQuigg [306] and those 

obtained using the present simulation procedure. 

As explained above, the core density has a significant bearing in determining the energy 

absorption of the structure. Accordingly, attention is now focused on the experimental 

indentations of 139.7x139.7 mm sandwich panels with honeycomb core with different 

densities, carried out by McQuigg [306]. The panel named as 3 PCF-XX has Nomex
TM

 

honeycomb core with density of 48.1 kg/m
3
, 3.175 mm nominal cell size and 0.018 mm foil 

thickness, while that named 6 PCF-XX has Nomex
TM

 honeycomb core with density of 96.11 

kg/m
3
, 3.175 mm nominal cell size and 0.038 mm foil thickness. In both cases the cores are 

12.7 mm thick. 

The skins of both the 3PCF-XX and the 6PCF-XX panels are made of two plies each of style 

6781 woven S2-glass fabric cloth with 35% epoxy resin content. The resin is MTM45-1, 

while the thickness of the faces is 0.508 mm and their stacking sequence is [0°/45°]. 

According to [306], the warp direction strength and moduli are 561.65 MPa and 29 GPa, 

respectively, for tensile loading, and 575.23 MPa and 29 GPa, respectively, for compressive 

loading. The fill direction strength and moduli are 555 MPa and 28 GPa, respectively, for 

compressive loading, and 476.22 MPa and 27.7 GPa, respectively, for tensile loading. The in-

plane shear strength and modulus are 37.58 MPa and 3.79 GPa, respectively. The in-plane 

Poisson's ratio is 0.138. The indentation is carried out using a hemi-spherical indenter with 
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12.7 mm diameter and the panels are clamped on all four edges. In these cases, the PFEA-2 is 

carried out considering a discretization with 15 elements across the thickness of the 

honeycomb, while the results by the mesoscale model are influenced by the honeycomb 

density. In details, for the 3PCF-XX plate a 33% reduction of the mechanical properties of the 

core and a 36% reduction of the properties of the upper faces are required, while for the 

6PCF-XX sandwich these values decrease to 27% and 30% for the core and the upper face, 

respectively. The computational costs are no longer affected by the honeycomb density; 

indeed, the analysis on the 3PCF-XX panel requires 558 s, while that on the 6PCF-XX panel 

takes 561 s. As for the former cases, the numerical results in Figure 8.7 are in good agreement 

with the experimental ones. It could be noticed that, an increasing of the core density 

determines a growth of the peak in the force value.  

 

Figure 8.7 Comparison between experimental force-indentation curves by McQuigg [306] and those 

obtained using the present simulation procedure. 

8.6 Application to impact studies 

In light of the accurate results obtained by IMPSIM for the indentation of sandwiches, in the 

next sections, contact force and damage evaluation of laminates and sandwiches subjected to 

impact are presented. 
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8.6.1 Contact force of laminates 

First, the sample case of a 230x 127 laminated plate with a [45°/0°/-45°/90°]2s lamination 

scheme and with all the edges clamped tested by the author is presented. The plate is 

subjected to the impact of a steel hemispherical nose of 1.15 kg at different levels of energy 

(1.5 J and 2.5 J). Each of its 16 layers is made of AS4/3502 Graphite-Epoxy and its total 

thickness is 2.48 ± 0.0254 mm.  

The acceleration time-history is detected through an accelerometer mounted on the impactor 

nose and connected to a data acquisition system. The contact force time-history is obtained 

multiplying the impactor mass by the measured acceleration. Since the arm carrying the 

impactor nose follows a circular trajectory, attention has been paid to assure that the impact 

force is perpendicular to the impacted panel, as assumed in numerical simulations. A 

sampling frequency of 10
5
 Hz is used.   

The results of Figures 8.8 and 8.9 show the numerical simulation to be appropriate, its results 

being in good agreement with experiments. It is worthwhile to note that just 350 s are 

required to carry out the analysis on a laptop computer, thus the efficiency of IMPSIM is still 

proven.  The results with and without enforcement of the target to conform the shape of the 

impactor are shown to be equivalent for this case. Thus, the iterative algorithm of Section 

8.1.2 is reputed unnecessary when laminates are analysed. 

 

Figure 8.8 Comparison between simulated and experimental contact force for a laminated [45°/0°/-

45°/90°]2s plate impacted at 1.5 J. 
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Figure 8.9 Comparison between simulated and experimental contact force for a laminated [45°/0°/-

45°/90°]2s plate impacted at 2.5 J 

8.6.2 Contact force of sandwiches   

The experimental contact force time history detected by Kärger et al. [281] is compared to 

that predicted by IMPSIM, with and without enforcing the panel to conform to the shape of 

the impactor in order to show that soft media requires the application of algorithm of Section 

8.1.2. 

The thin top face sheet (thickness = 0.633 mm) is made of   Cytec 977-2/ HTA. The thick 

bottom face sheet (thickness = 2.7 mm) is made of CFRP fabric plies and UD tapes, with a 

[(0°2/45°/90°/-45°)s]s lay-up. The core, which is 28 mm thick, is made of NOMEX 4.8-48 

honeycomb. This sandwich panel is completely supported at the edges and it is impacted by a 

steel sphere with energy of 8 J, having a diameter of 25.4 mm carried by an impactor with a 

mass of 1.10 kg 

The results of simulations reported in Figure 8.10 show that a quite accurate prediction of the 

contact force is obtained at each instant of time only if: (i)  the iterative algorithm of Section 

8.1.2 is considered that computes the contact radius at each step; and if  (ii) PFEA-2, i.e. the 

detailed FEA representation of the real geometry of core is carried apart in order to account 

for the buckling of cell walls under transverse compressive loading, as described in Section 

8.3, which provides apparent elastic moduli of the core at each time step in accordance with 

the applied load. The fundamental role played in this simulation by the core crushing 
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behaviour is clearly shown, because, disregarding it, totally wrong results are obtained. So, 

the homogenized model can be used for successfully carrying out the progressive damage 

analysis only if appropriate apparent properties are provided at each load level, as obtained 

apart by PFEA-2. 

 

Figure 8.10 Contact force for a sandwich plate impacted at 8 J by experiment [281] and the present 

simulation procedure. 

As in this case the algorithm that accounts for the core crushing behaviour is activated, the 

computations at each time step are a little bit slower than in previous cases where a laminate 

was considered. However, just 550 s are required to compute the contact force time history, 

hence the simulation procedure is still proven to be accurate and cost-effective. 

In order to evaluate whether accurate predictions of the contact force of sandwiches can be 

obtained at different levels of energy, attention is now focused on the sandwich panel with 

PVC foam core (Divinycell H250) and laminated carbon fabric/epoxy faces (AGP370-5H/ 

3501-6S) studied by Schubel et al. [307], for impact energies ranging from 7.75 to 108 J. A 

sphere with a radius of 12.7 cm mounted on an impactor with a mass of 6.22 kg is left to fall 

onto the panel. Increasing the heights of the mass drop, the above mentioned impact energies 

are obtained. The sandwich plate has sides of 27.9 cm, thickness of 2.82 cm and it is simply 

supported. The core is 25.4 mm thick, while the laminated face sheets are obtained stacking 

four plies of prepreg for a total thickness of 1.37 mm. According to [307], the mechanical 

properties of the faces are: ρ= 1600 kg/m
3
, E1= 77 GPa, E2= 75 GPa, G12= 6.5 GPa, G13= 5.1 

GPa, G23= 4.1 GPa, υ12 = 0.07.  
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Figure 8.11 shows the comparison between the experiments of Ref. [307] and the contact 

force time histories predicted by IMPSIM at the three energy levels of 7.75, 41.1 and 108 J. It 

is seen that the present simulation obtains accurate contact force time histories in all three 

cases. No increasing errors are seen increasing the impact energy. Thus, it is reputed that the 

present modelling approach can be successfully used in the practical applications, at least for 

energies up to a hundred of J. 
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Figure 8.11 Comparisons between experimental [307] and numerical contact forces for a sandwich 

plate with foam core considering an impact energy of a) 7.75 J, b) 41.1 J and c) 108 J. 

In the next section, the damage predicted by the present simulations is compared to that 

detected via ultrasonic cartography.  

8.6.3 Damage evaluation 

A composite panel with I stiffeners having a length of 800 mm (Lx), a width of 330 mm (Ly) 

and a skin thickness (t) of 3 mm formerly tested by Icardi and Zardo [308] is now considered. 

The panel is clamped at the short sides and is kept free at the long sides.  It is impacted at the 

centre with impact energy of 40 J (mass of the impactor 5.45 kg, velocity 3.83 m/s). The skin 

layers are 0.25 mm thick, they are stacked with a [45°/-45°/0°/0°/45°/-45°/-45°/45°/0°/0°/-

45°/45] sequence and have the following mechanical properties: E1= 130 GPa, E2= 8 GPa, 

G12= 5 GPa, G13= 5 GPa, G23= 2.5 GPa, ν12= 0.3, ρ= 1557 kg/m
3
. The strengths are: St11= 1.67 

GPa, St22= 0.06 GPa, Sc11= 1.08 GPa, Sc22= 0.17 GPa, S12= S13= S23= 0.07 GPa, where Stii 

represents the strength to traction in directions i, Scii represents the strength to compression in 

directions i while Sij represents the shear strength over the plane ij. The impactor is made of 

steel (E= 210 GPa, ν= 0.3) and has a nose sphere with a diameter of 25.4 mm.   

The comparison of the contact force predicted by the simulation to that experimentally 

detected presented in Figure 8.12 shows again the high predictive capability achieved by 

IMPSIM. 
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Figure 8.12 Comparison between the experimental contact force [308] and that computed with the 

present procedure for a laminate with I stiffeners. 

Instead, for what concerns the damage analysis, Figure 8.13 shows the comparison of the 

overlapped damaged area measured through C-SCAN (dashed line) [308], and that predicted 

by the present simulation with (light-grey regions) or without (dark-grey regions) in-plane 

stress continuity (4.6) – (4.8). Since ultrasonic scanning detects delaminations from the waves 

that reflect back, just delamination damage is reported in Figure 8.13. The results of this 

figure show that a correct prediction of the overlap damage is obtained in any case, but much 

accurate results are obtained if in-plane stress continuity is considered. Thus, this further 

continuity condition is shown to have a significant bearing in improving results and it does 

not merely represent a theoretical achievement. As an elapsed time of 490 s is required to 

complete the analysis, in-plane continuity does not adversely affect computational costs.  

For what concerns the simulation procedure, it could be noted that the centre of each 

arbitrarily chosen sub-region for damage analysis corresponds to a point pi where the damage 

criteria of Section 8.2.1 are applied in order to determine whether or not materials are failed. 

If in pi one of the damage criteria predicts failure, the corresponding sub-region is considered 

damaged and therefore it is coloured in grey. Stresses in pi are determined assuming the 

modified expression of the strain energy resulting by the damage mesoscale model (8.2.2) 

with the damage indicators computed by PFEA-3.   
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Figure 8.13 Overlap induced damage for a laminate with I stiffeners by: C-SCAN [308] (dashed 

line), present procedure without considering in-plane continuity (dark-grey square sub-regions) or 

considering it (light-grey square sub-regions). 

Table 8.2 shows the extension of the delaminated area at each interface, as measured in [308] 

and as computed by the present simulation procedure. These results confirm the accuracy of 

IMPSIM, as the damage predicted at each interface is always in good agreement with 

experimental results.  

Delaminated area [mm
2
] 

Physical interface Experimental [308]  Present 

1
st
 960 950 

2
nd

 790 758 

3
rd

 430 400 

4
th

 310 250 

5
th

 160 115 

6
th

 135 102 

7
th

 95 75 

8
th

 50 44 

Table 8.2 Delaminated area [mm
2
] at the interfaces for a laminate with I stiffeners by the present 

procedure and by experiment [308]. 

The comparisons of numerical results with experiments presented in this chapter showed the 

superior predictive capability of the present simulation procedure. 
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Accordingly, all non-classical contributions considered within it (i.e. the piecewise variable 

high order representation of the transverse displacement, the transverse normal stress and 

stress gradient continuity at the layer interfaces and the fulfilment of the stress compatibility 

under sudden in-plane variation of properties) are important for improving accuracy of 

displacement, stress and strain energy density fields, as they determine more accurate results. 

It is important to underline that such a high level of accuracy is achieved with a computational 

effort comparable to that of equivalent single layer theories, thus with no increased costs. 
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Conclusions 

The research work presented in this Thesis is devoted to the development and assessment of 

accurate and computationally efficient theories and numerical tools for describing stress and 

displacement fields of composites structures and for increasing their structural performances.  

The basis and the starting point of the activity was the AD-ZZ model presented in Chapter 2. 

It is a recently developed 3D multilayered plate model with variable zig-zag representation of 

displacements, which can adapt itself to the variation of solution. It has a fixed number of 

functional d.o.f. and it constitutes a reformulation of a previous “adaptive model” aimed at 

reducing processing time. Thanks to the incorporation of physically-based zig-zag functions 

and high-order terms, the AD-ZZ model is able to fulfil the conditions on stresses prescribed 

by the elasticity theory and the equilibrium conditions across the thickness of the structure. In 

addition, the through-the-thickness representation can be refined where stress field has steep 

gradients. With the goal of reducing computational times, a symbolic calculus tool is 

employed for determining the expressions of the displacements’ coefficients in closed form 

once at a time. Since these computations are carried apart, the processing time of the present 

model is of up 15 times lower than that required by the model from which it derives. In order 

to make clearer the motivations and the ideas that played a central role in the development of 

the AD-ZZ model, a briefly overview of the recent approaches adopted in literature for 

modelling composite structures was premised in Chapter 1. In particular, attention was 

focused on theories that adopt physically-based or cinematically-based zig-zag functions. The 

former approach was shown to be preferable as its hypotheses are of more general validity. 

Therefore the brief overview of Chapter 1 was mainly earmarked to global-local model, 

sublaminate approach, Refined Zig-Zag Theory by Tessler and co-workers and their 

applications to problem of practical interest. The basic concepts adopted by these theories for 

improving accuracy are substantially two: adding new unknowns that are calculated by 

imposing to fulfil specific conditions prescribed by the elasticity theory or refining the 
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interpolation in the area where the stress field has steep gradients. The development of the 

AD-ZZ model has taken inspiration by these two cornerstones.  

The analytical results presented in Chapter 3 were devoted to investigate the AD-ZZ model 

prediction capabilities over a wide range of problems mainly concerning laminated and 

sandwich structures subjected to several boundary and load conditions (either static or 

dynamic). Though unrealistic for engineering applications, all the structures considered were 

characterized by extremely low length-to-thickness ratios in order to enhance the zig-zag and 

layerwise effects, thus making these cases more severe for the model. Numerical results 

confirmed the predictive capabilities of the AD-ZZ model, which is able to find directly from 

constitutive equations results as accurate as the exact solutions for the majority of the cases 

analysed even with strongly asymmetric structures. The problems solved in Chapter 3 

constituted also the occasion to compare the accuracy of the AD-ZZ model to that of the main 

approaches overviewed in Chapter 1.   

As an application of the AD-ZZ model to problem of practical interest, in Chapter 4, new 

terms were added to the displacement field postulated in Chapter 2 in order to treat under a 

unified approach bonded joints and laminated structures. Formally, these contributions are 

similar to the zig-zag functions of the AD-ZZ model, but they act in the in-plane direction. 

The closed form expressions of in-plane continuity are calculated through symbolic calculus, 

thus computational effort is not increased, since the number of functional d.o.f. does not vary. 

Applications to linear and nonlinear benchmark test cases of joints taken from the literature 

were presented. Numerical results showed that the AD-ZZ model can accurately and 

efficiently treat bonded joints with laminated adherends. Indeed, for all the examined cases, 

accurate results were obtained in few seconds carrying out the analyses on a laptop computer. 

As a result of the enforcement of physical constraints, such as the stress continuity at the 

interfaces, the AD-ZZ model contains derivatives of the d.o.f., which make unwise the direct 

implementation of a finite element based on it. Accordingly, in the present research work a 

technique was proposed with the aim of obtaining a C0 model from a variable kinematics zig-

zag one. The objective was finding a priori corrections of displacements in closed form, 

which make the energy of the C0 model with all the derivatives neglected equivalent to that of 

the initial model containing all the derivatives of the functional d.o.f. In order to describe the 

in-plane variation of displacements, Hermite’s polynomial representations of the d.o.f. were 

used, whose order depends upon the order of derivatives appearing in the model. From these 
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polynomials, the modified expressions of displacements were computed a priori in closed 

form using symbolic calculus. Numerical results presented in Chapter 6 confirmed the 

validity of the updating technique, as it preserves the accuracy of the equivalent model though 

keeping fixed the number of functional d.o.f. and thus requiring a low computational effort. 

From the equivalent C0 model an eight-node multi-layered isoparametric plate element with 

standard d.o.f. and interpolating scheme was developed. In addition, taking advantage of the 

strain energy updating technique, also a quadrilateral, eight-node, mixed plate element was 

presented. It has displacements and interlaminar stresses at the reference mid-plane as nodal 

d.o.f. For both the elements introduced in Chapter 7, accuracy, solvability and convergence 

were assessed considering multi-layered monolithic structures with cross-ply and angle-ply 

lay-up and sandwich-like structures with different loading and boundary conditions, for which 

exact solutions are available in the literature. In all the cases, accurate results were obtained, 

requiring low computational costs. 

The application of variable stiffness composites and the stitching of sandwiches, discussed in 

Chapter 5, demonstrated to be effective methods for improving structural performances. The 

basic idea of variable stiffness composites is to minimize the energy absorbed through 

unwanted modes (i.e., involving interlaminar strengths) and maximize that absorbed through 

desired modes (i.e., involving membrane strengths), by finding a suitable in-plane variable 

distribution of stiffness properties. This distribution is found making extremal the energy 

contributions of interest under the properties spatial variation. Therefore, this new tailoring 

concept requires the orientation of the reinforcement fibres to be varied. As a result, an energy 

transfer takes place from bending to in-plane and out-of-plane shears energy modes, or vice 

versa, with respect to layers with customary properties. The variable stiffness distribution is 

obtained enforcing conditions, which range from the imposition of thermodynamic 

constraints, to the choice of a convex or a concave shape (in order to make minimum or 

maximum the energy contributions of interest), to the imposition of their mean value. The 

numerical applications here presented dealing with laminates and sandwiches subjected to 

static or blast pulse loading, showed that variable stiffness composites can consistently reduce 

the through-the-thickness interlaminar stress concentrations and they can keep substantially 

unchanged the bending stiffness (or even increasing it), when appropriately positioned across 

the thickness. Instead, for what concerns analysis of stitched structures with a smeared model 

such as the AD-ZZ, the main modelling problem is the evaluation of the homogenized 
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mechanical properties due to the contribution of the through-the-thickness reinforcement. For 

doing this, virtual material testing performed with mixed solid element was carried out, then, 

in order to quantify the effect of the stitching spacing the rule of mixture was adopted. Once 

the homogenized properties of the stitched structures have been evaluated, they are used by 

the AD-ZZ model for performing the analysis. Numerical applications showed, first of all, the 

effectiveness of this technique for evaluating the mechanical properties of stitched structures. 

In addition, applications to stitched structures demonstrated that also stitching is a powerful 

method for improving structural performances.  

Finally, in Chapter 8, a simulation procedure based on the AD-ZZ model has been proposed 

to study of low velocity impacts on laminated and sandwich composites, with honeycomb or 

foam core. The contact radius and force were computed assuming the stress distribution to be 

Hertzian and forcing the impacted surface to conform to the impactor shape by an iterative 

procedure. In details, for sandwich composites that are rather deformable at the impact point, 

the crushing behaviour was evaluated apart through a preliminary finite element analysis. 

Fibre and matrix failure and delamination were simulated using simple stress-based criteria; 

the post-failure degradation was obtained reducing the elastic properties according to the 

mesoscale damage model. Sample cases were considered for which experimental results are 

available. The comparisons of the present simulations with these experiments showed that the 

present computational model is rather accurate in all the cases considered, although it requires 

a low computational effort.  

Concluding, the research activity presented, supported by the numerical results, encourages 

the adoption of the theories and numerical tools herein developed for laminated and sandwich 

structures. In particular, the work identifies in the AD-ZZ model and the subsequent 

theoretical developments that originate from it (SEUPT - IMPSIM), very appealing numerical 

tools by virtue of their accuracy and efficiency. In addition, variable stiffness composites and 

stitching of sandwiches presented in this research work demonstrate to be effective method 

for improving structural performances of composites, being easy to produce with the current 

manufacturing techniques. 
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