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1. Introduction

The frailty approach, introduced in [1], provides a convenient tool in survival analysis
to model dependence between lifetimes of individuals, or between components, due to
common environmental conditions; according to this model, the frailty (an unobservable
random variable or vector that describes common risk factors) acts simultaneously on
the hazard functions of the lifetimes. In fact, frailty models have been considered in a
variety of contexts, such as medicine, biology, engineering, economics and demography,
and a number of monographs are entirely devoted to their definitions, properties and
applications in all these fields (see [2–6]).

We recall here the basic ideas of this approach and, for the sake of simplicity, we restrict
ourselves to the case of bivariate vectors of random lifetimes. Generalizations and results
in any dimension can be directly obtained, and hence are omitted throughout the paper.
Given the vector X = (X1, X2), it is said to be described by a bivariate correlated frailty
model if its joint survival function is defined as

F̄X(x1, x2) = E

[
2∏
i=1

ḠVi

i (xi)

]
, xi ∈ R+, (1.1)

where V = (V1, V2) is a frailty random vector taking values in R2
+, while Ḡi, for i = 1, 2,

is any survival function, commonly called the baseline survival function of Xi (and, of
course, different from the survival function of Xi unless Vi = 1 a.s.). Note that this model
is based on the assumption that the components in the vectors are independent given
the vector of frailties V.

Suppose that the frailty random vector V has a joint distribution function given by H
with marginal distributions H1 and H2. From (1.1), the vector X has a joint distribution
function given by

F̄X(x1, x2) =

∫ +∞

0

∫ +∞

0
Ḡv11 (x1)Ḡv22 (x2)dH(v1, v2), (1.2)

and a probability density function given by

fX(x1, x2) =

∫ +∞

0

∫ +∞

0
v1v2g1(x1)g2(x2)Ḡv1−1

1 (x1)Ḡv2−1
2 (x2)dH(v1, v2). (1.3)

When the frailty is common to both components in vector X, that is, when V is a
univariate random variable, then it is called a shared frailty model (see, e.g., [2]). In this
case, the joint distribution function is given by

F̄X(x1, x2) = E

[
2∏
i=1

ḠVi (xi)

]
, xi ∈ R+. (1.4)

Different conditions for stochastic comparisons between shared frailty models and cor-
related frailty models have been provided in recent literature. Misra et al. [7] compared,
by using stochastic ordering, multivariate shared frailty models arising from different
choices of frailty distribution, generalizing the results given in [8, 9] for the univari-
ate frailty models. Khaledy and Shaked [10] simplified the proof of some partial results
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given by Misra et al. [7] as particular cases of comparison between multivariate mix-
tures. Mulero et al. [11] used the shared frailty model to provide sufficient conditions for
the stochastic comparisons of residual lifetimes by assuming independence between the
baseline survival functions. Several dependence properties of correlated frailty models
have been studied by Khaledy and Kochar [12] and later by Li and Da [13], who also
investigated stochastic comparisons in these models.

In the references cited above the conditional independence between the components
given the frailties is always assumed. However, this assumption could provide an over-
estimation problem. For example, Hua [14] studied a tail order of copulas to describe
the strength of the dependence in tails of a joint distribution (see below for definition of
copula). Particularly, a copula based on a scale mixture with a generalized Gamma ran-
dom variable was used for modeling asymmetric tail negative dependence. In that paper,
a dataset for aggregate loss modeling of a medical expenditure panel survey is studied.
The empirical analysis suggested that, when the upper tail appears to be negatively
dependent, a misspecified independence model that is often used in aggregate loss mod-
eling may overestimate the aggregate loss. Other examples where the non-independence
between the components appears in a natural way when the environmental factors are
fixed can be read in [15] and [16]. In such cases, the dependence structure is modeled
by a Gaussian copula whose parameters can be considered as the corresponding frailties
parameters.

Due to these considerations, frailty models with the conditional dependence hypoth-
esis, and univariate frailty, have recently been defined and studied in [17, 18]. Here, a
more general model is studied, defined by considering the conditional dependence hy-
pothesis and a bivariate frailty. A number of the results presented in this paper extend
properties and statements about the shared frailty model given in [17], several stochastic
comparisons results dealing with multivariate conditionally independent frailty models
provided in [7], and some results given in [19].

Certain preliminary definitions and results should be recalled in order to describe the
main statements presented in the following sections.

First, we recall that the copula of a random vector X = (X1, X2), which is a common
tool to describe the structure of dependence between its components, is the function
C : [0, 1]2 → [0, 1] defined as

C(u, v) = F (F−1
1 (u), F−1

2 (v)), u, v ∈ [0, 1],

where F is the joint distribution function of X; Fi, for i = 1, 2, is the cumulative distribu-
tion function of Xi; and F−1

i (u) = sup{x : Fi(x) ≤ u}, u ∈ [0, 1], is the right continuous
version of the inverse of Fi. The copula is unique whenever the marginal distributions Fi
are continuous. We also recall the notion of survival copula, which similarly describes the
dependence structure between the components of the random vector, but considers the
survival function F̄i of the marginal Xi instead of its cumulative distribution Fi. Given
the vector X = (X1, X2) as above, the function CS : [0, 1]2 → [0, 1], defined as

CS(u, v) = F̄ (F̄−1
1 (u), F̄−1

2 (v)), u, v ∈ [0, 1],

is called the survival copula. Further details, properties and applications of these two
notions may be found in [20].

Two properties of scalar functions, recalled here, will also be used. Let ∧ and ∨ denote
the coordinatewise minimum and maximum, respectively, i.e., given the vectors x =
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(x1, ..., xn) and y = (y1, ..., yn) ∈ Rn, let x ∧ y = (min{x1, y1}, ..,min{xn, yn}) and
x∨y = (max{x1, y1}, ...,max{x2, y2}). A function φ : Rn −→ R is said to be multivariate
totally positive of order 2 (abbreviated to MTP2) if

φ(x)φ(y) ≤ φ(x ∧ y)φ(x ∨ y) for all x,y ∈ Rn,

while it is said to be supermodular if, for all x,y ∈ Rn,

φ(x) + φ(y) ≤ φ(x ∧ y) + φ(x ∨ y).

The definitions of certain multivariate stochastic orders considered throughout the pa-
per are now recalled. Let X = (X1, X2) and Y = (Y1, Y2) be random vectors with corre-
sponding distributions F (x), G(x), survival functions F̄ (x), Ḡ(x), and density functions
f(x), g(x). X is said to be smaller than Y in the

i) usual stochastic order (denoted by X ≤st Y), if the inequality E[ψ(X)] ≤ E[ψ(Y)]
is satisfied for any increasing function ψ : R2 −→ R such that the expectations
exist;

ii) increasing [componentwise] concave order (denoted by X ≤icv [≤iccv]Y), if
E[ψ(X)] ≤ E[ψ(Y)] for any increasing and [componentwise] concave function
ψ : R2 −→ R;

iii) supermodular order (denoted by X ≤sm Y), if E[ψ(X)] ≤ E[ψ(Y)] for any super-
modular function ψ : R2 −→ R;

iv) upper [lower] orthant order (denoted by X ≤uo [lo] Y), if F̄ (x) ≤ Ḡ(x) [F (x) ≥
G(x)] for all x ∈ R2;

v) hazard rate order (denoted by X ≤hr Y), if F̄ (x)Ḡ(y) ≤ F̄ (x ∧ y)Ḡ(x ∨ y) for all
x,y ∈ R2;

vi) weak multivariate hazard rate order (denoted by X ≤whr Y), if

G(x)

F (x)
is increasing in x ∈ {x : G(x) > 0};

vii) likelihood ratio order (denoted by X ≤lr Y), if f(x)g(y) ≤ f(x ∧ y)g(x ∨ y) for
every x and y in R2.

All the multivariate stochastic orders defined above are well-known, and have been
applied to compare random vectors in a variety of contexts, such as reliability, risk theory,
and actuarial sciences. A list of equivalent definitions, properties and applications may be
found in [21]. The purpose of this paper is to study the relationships between stochastic
comparisons of the frailty vectors and the corresponding comparisons of the random
lifetime vectors. For example, it is intuitive to believe that the more stochastically the
frailty increases, the less stochastically the random lifetime vectors are.

Some conventions used in this paper are now clarified. By “increasing” and “decreas-
ing” we mean “non-decreasing” and “non-increasing”, respectively. We also denote =ST

to indicate equality in law. For any random vector X, or random variable, we denote
[X|A] as a random vector, or random variable, whose distribution is the conditional dis-
tribution of X given A. Finally, by considering a vector with the distribution defined as
in (1.1), X̃i denotes the random variable whose survival function is the baseline survival
function Ḡi, for i = 1, 2.

The paper is organized as follows. In Section 2, the generalized bivariate frailty model
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is defined, and the hazard rates of the corresponding distribution are described and char-
acterized. Moreover, two particular frailty models are defined through different interpre-
tations. In Section 3, several conditions for stochastic comparisons between generalized
bivariate frailty models are provided. In the last section, certain examples dealing with
the Gamma, the Lognormal and other frailty models, are proposed.

2. Generalized bivariate frailty models

A natural generalization of model (1.2) can be obtained by removing the assumption of
independence among the frailties V1 and V2. To this end, let us consider the absolutely
continuous joint survival function F̄ (t1, t2|v1, v2) parametrized by a frailty vector (v1, v2).

Definition 2.1 The vector X = (X1, X2) is said to be described by a generalized
bivariate frailty model if its joint survival function is defined as

F̄X(x1, x2) =

∫ +∞

0

∫ +∞

0
F̄ (x1, x2|v1, v2)dH(v1, v2), xi ∈ R+, (2.1)

where H is the joint distribution function of a frailty random vector V = (V1, V2) that
takes values in R2

+.

Note that the conditional independence hypothesis is not needed in the generalized
bivariate frailty model, and that it can be considered as a bivariate generalization of the
model provided in [17].

Two particular cases of generalized bivariate frailty models are extensively examined
below. The first one is the bivariate exponential frailty model, which is a generalization
of the model considered in Example 2.1 in [17], and defined by assigning,

F̄ (x1, x2|v1, v2) = e−v1φ1(x1,x2)−v2φ2(x1,x2), xi ∈ R+ (2.2)

where the functions φi(x1, x2), i = 1, 2, are proper non-negative differentiable functions in
both arguments, such that F̄ (x1, x2|v1, v2) is a survival function. Among other properties,

φi(0, 0) = 0, φi(+∞,+∞) = +∞ and ∂φi(x1,x2)
∂xj

> 0, for i, j = 1, 2 should be verified. Note

that if φ1 = φ2 = − ln F̄ holds in (2.2), then this model coincides with the multiplicative
model studied in Section 4 in [17] and in Section 5 in [18].

The second particular case is based on a representation of F̄ (x1, x2|v1, v2) in terms of
the copula. In fact, representing it as CS(Ḡv11 (x1), Ḡv22 (x2)), where the Ḡi are baseline
survival functions and CS is a survival copula, one can obtain the model

F̄X(x1, x2) = E
[
CS(ḠV1

1 (x1), ḠV2

2 (x2))
]

=

∫ +∞

0

∫ +∞

0
CS(G

v1
1 (x1), Ḡv22 (x2))dH(v1, v2), xi ∈ R+, (2.3)

where H is the joint distribution function of the frailty vector V = (V1, V2). We will refer
to this model as the Bivariate Model with Marginal Frailty Distributions (BMMFD).

Note that when CS is the independence copula, that is when CS(ḠV1

1 (x1), ḠV2

2 (x2)) =

ḠV1

1 (x1)ḠV2

2 (x2) for all x1, x2, then the survival functions given in (1.1) and (2.3) are
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the same. In addition, if V1 = V2 a.s., then the shared frailty model defined in (1.4) is
obtained.

It is worth mentioning that, in the model defined in (2.3), the marginal survival function
of the i-th component is F̄i(x) =

∫∞
0 Ḡvii dHi(vi), therefore, Ḡi(x) = exp[−φ−1

i ◦ F̄i(x)],

where φ−1
i is the inverse Laplace transform of Hi. Thus, the model defined in (2.3)

coincides with the family of multivariate distributions generated by the mixture described
in [22].

A characterization of the hazard gradient of a vector, which is described by a gen-
eralized bivariate frailty model, is now studied. To this end, recall that, given vector
X = (X1, X2) with survival function F̄X(x1, x2), a well-known bivariate generalization
of the failure rate function is the hazard gradient

λ(x1, x2) = (λ(1)(x1, x2), λ(2)(x1, x2))

where

λ(i)(x1, x2) = − ∂

∂xi
ln F̄X(x1, x2), i = 1, 2.

As pointed out in [23] and references therein, the hazard gradient uniquely determines
the distribution F̄X.

Let

λ(i)(x1, x2|v1, v2) = − ∂

∂xi
ln F̄ (x1, x2|v1, v2)

denote the failure rate function of the i-th unit with the j-th (i 6= j) unit surviving until
time xj , conditioned on V = v, with v = (v1, v2). The following result is the bivariate

version of Theorem 2.1 in [19] and shows that the components λ(i)(x1, x2) of the hazard
gradient of X are the averages of the conditional hazard components. In order to simplify
the proof of results given in the next section, we use a slight modification in the notation
used in [19]. It is assumed that h is the corresponding density function of H and that
the conditional distribution of V, given X1 > x1, X2 > x2, is absolutely continuous, such
that the conditional density exists.

Theorem 2.1 Let the vector X have the survival function as defined in (2.1). Let the
joint distribution function H and the conditional distribution of V, given X1 > x1, X2 >
x2, be absolutely continuous. Therefore the population failure rate function of the ith
component of vector X with the j−th component of fixed age xj is the expected value of

λ(i)(x1, x2|v1, v2) with respect to the conditional distribution of the frailty effect V, given
X1 > x1 and X2 > x2. That is,

λ(i)(x1, x2) = E[λ(i)(x1, x2|Ṽ(x1,x2))],

where Ṽ(x1,x2) =st [V|X1 > x1, X2 > x2].

Example 2.1 Assume that the vector X is described by a bivariate exponential frailty
model, i.e., it has a distribution as described in (2.2). Given that λ(i)(x1, x2|v1, v2) =

6
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− ∂
∂xi

ln F̄ (x1, x2|v1, v2), it follows that

λ(i)(x1, x2|v1, v2) =
∂

∂xi
(v1φ1(x1, x2) + v2φ2(x1, x2))

= v1
∂

∂xi
φ1(x1, x2) + v2

∂

∂xi
φ2(x1, x2).

Therefore, for the bivariate exponential frailty model, one has

λ(i)(x1, x2) =

∫
R2

[
v1

∂

∂xi
φ1(x1, x2) + v2

∂

∂xi
φ2(x1, x2)

]
h(v1, v2|X1 > x1, X2 > x2)dv1dv2

=
∂

∂xi
φ1(x1, x2)E[V1|X1 > x1, X2 > x2] +

∂

∂xi
φ2(x1, x2)E[V2|X1 > x1, X2 > x2]

= λ
(i)
10 (x1, x2)E[V1|X1 > x1, X2 > x2] + λ

(i)
20 (x1, x2)E[V2|X1 > x1, X2 > x2],

where λ
(i)
10 (x1, x2), for i = 1, 2, is the i-th component of the hazard gradient without

incorporating the frailty effect v1 and where v2 = 0; and where λ
(i)
20 (x1, x2), for i = 1, 2, is

the i-th component of the hazard gradient without incorporating the frailty effect v2 and
where v1 = 0.

3. Stochastic comparisons of generalized bivariate frailty models

In this section, some stochastic comparisons between generalized frailty models are pre-
sented. From now on, unless stated otherwise, we assume that X1 and X2 are two bi-
variate random vectors that have survival functions defined as in (2.1), that is,

F̄Xk
(x1, x2) =

∫ +∞

0

∫ +∞

0
F̄ (x1, x2|v1, v2)dHk(v1, v2), xi ∈ R+ for k = 1, 2, (3.1)

where Hk is the joint distribution function of the vector frailty Vk = (Vk1, Vk2), for
k = 1, 2. Note that [X1|V1 = (v1, v2)] and [X2|V2 = (v1, v2)] have the same survival
function for all (v1, v2) in R2. From now on, it is said that [X1|V1 = (v1, v2)] =st

[X2|V2 = (v1, v2)] =st [X|V = (v1, v2)].

The first two statements deal with comparisons in the usual stochastic order and the
likelihood ratio order. The proof of the former immediately follows from Theorem 3.3 in
in [24], while the proof of latter follows from Theorem 2.4 in [25]. For this reason, both
these proofs are omitted.

Theorem 3.1 Let Xk = (Xk1, Xk2), with k = 1, 2, be two random vectors that have
survival functions defined as in (3.1). If [X|V = (v1, v2)] is increasing [decreasing] in the
stochastic order in (v1, v2) and if V1 ≤st V2, then X1 ≤st [≥st]X2.

Theorem 3.2 Let Xk = (Xk1, Xk2), with k = 1, 2, be two absolutely continuous bivari-
ate random vectors that have survival functions defined as in (3.1). Let f(x1, x2|v1, v2)
denote the density corresponding to the distribution F (x1, x2|v1, v2). If V2 ≤lr V1 and
if f(x1, x2|v1, v2) is MTP2 in (x1, x2, v1, v2), then X1 ≤lr X2.

Further details, and examples of distributions that satisfy the assumptions of these
two statements, may be found in [24, 25] and references therein.
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The next statements describe conditions for the weak hazard order between generalized
frailty models. Particularly, Theorem 3.3 and 3.4. can be considered generalizations of
Theorem 3.1 in [17].

Theorem 3.3 Let Xk = (Xk1, Xk2), k = 1, 2, be two bivariate random vectors that have
survival functions defined as in (3.1). If

a) [V2|X1 > x1, X2 > x2] ≤st [V1|X1 > x1, X2 > x2] for all (x1, x2) ∈ R2
+;

b) λ(i)(x1, x2|v1, v2), for i = 1, 2, is an increasing function in (v1, v2) for all (x1, x2) ∈ R2
+,

then X1 ≤whr X2.

Proof. From Theorem 6.D.2 in [21], it is sufficient to prove that

λ
(i)
X1

(x1, x2) ≥ λ(i)
X2

(x1, x2), for i = 1, 2, (x1, x2) ∈ R2
+.

Let ∆
(i)
X1,X2

= λ
(i)
X1

(x1, x2)− λ(i)
X2

(x1, x2), i = 1, 2. From Theorem 2.1, it follows that

∆
(i)
X1,X2

= E[λ(i)(x1, x2|Ṽ1(x1,x2))]− E[λ(i)(x1, x2|Ṽ2(x1,x2))],

where Ṽi(x1,x2) =st [Vi|X1 > x1, X2 > x2]. Hence, from (a) and (b), ∆
(i)
X1,X2

≥ 0 holds
for i = 1, 2. Thus, the result is obtained. �

Note that assuming conditionally independence hypothesis, Theorem 3.3 above and
Theorem 3.11 in [24] are similar. However, the conditions in Theorem 3.3 are weaker, as
well as the conclusion, since the multivariate hr order implies the multivariate whr order

A preliminary result is needed for the following result, which provides alternative con-
ditions for the weak hazard order. To this end, let hk, with k = 1, 2, denote the density
function of Vk, let hVkj

, j = 1, 2, denote the density function of the j-th marginal of Vk,
and let h[Vki|Vkj=vkj ] denote the density function of [Vki|Vkj = vkj ].

Lemma 3.1 Let V1 = (V11, V12) and V2 = (V21, V22) be two bivariate frailty random
vectors such that V2 ≤lr V1. Therefore, [V21|X1 > x1, X2 > x2, V22 = v2] ≤lr [V11|X1 >
x1, X2 > x2, V12 = v2] for all (x1, x2) ∈ R2

+ and v2 ∈ R+.

Proof. First, observe that whenever V1 = (V11, V12) and V2 = (V21, V22) are two bivariate
random vectors such that V2 ≤lr V1, then

[V2i|V2j = t] ≤lr [V1i|V1j = t] for i 6= j and for all t ∈ R+. (3.2)

In fact, V2 ≤lr V1 if h2(x)h1(y) ≤ h2(x ∧ y)h1(x ∨ y) for every x and y in R2
+. In

particular, for x = (x, t) and y = (y, t), it follows that

h2(x, t)h1(y, t) ≤ h2(x ∧ y, t)h1(x ∨ y, t). (3.3)

By dividing by hV22
(t)hV12

(t) in both sides of equation (3.3), it follows that

h[V21|V22=t](x) h[V11|V12=t](y) ≤ h[V21|V22=t](x ∧ y) h[V11|V12=t](x ∨ y).

8
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Thus, [V21|V22 = t] ≤lr [V11|V12 = t] for all t ∈ R+, i.e., (3.2) holds for i = 1 and j = 2
(and the proof for i = 2 and j = 1 is similar).

Now, from (3.2), the ratio h[V21|V22=v2](w1)/h[V11|V12=v2](w1) = g(w1|v2) is a decreasing

function in w1, for all v2 ∈ R+. Moreover, for (x1, x2) ∈ R2
+, we have

H[V21|X1>x1,X2>x2,V22=v2](u1) =

∫ u1

0 F̄ (x1, x2|w1, v2)h[V21|V22=v2](w1)dw1∫∞
0 F̄ (x1, x2)|w1, v2)h[V21|V22=v2](w1)dw1

=

∫ u1

0 F̄ ((x1, x2|w1, v2)g(w1|v2)h[V11|V22=v2](w1)dw1∫∞
0 F̄ (x1, x2)|w1, v2)g(w1|v2)h[V11|V22=v2](w1)dw1

.

From the monotonicity of g(w1|v2), and by using a similar development to the proof in
Theorem 2.4 in [17], the result is obtained. �

Note that, in general,

λ(1)(x1, x2|v1, v2) = −∂F̄ (x1, x2|v1, v2)/∂x1

F̄ (x1, x2|v1, v2)

= − F̄X2
(x2|v1, v2)∂F̄X1

(x1|v1, v2, X2 > x2)/∂x1

F̄X2
(x2|v1, v2)F̄X1

(x1|v1, v2, X2 > x2)

= λ(1)(x1|v1, v2, X2 > x2). (3.4)

Similarly, it can be proved that λ(2)(x1, x2|v1, v2) = λ(2)(x2|v1, v2, X1 > x1).

For simplicity, we denote, for i, j = 1, 2, with i 6= j,

λ
(i)
k (xi|vj , Xj > xj) =

∫ ∞
0

λ(i)(xi|v1, v2, Xj > xj)h[Vki|X1>x1,X2>x2,Vkj=vj ](vi)dvi, (3.5)

where h[Vki|X1>x1,X2>x2,Vkj=vj ](vi) is the marginal density function of [Vki|X1 > x1, X2 >
x2, Vkj = vj ].

The following result can now be proved.

Theorem 3.4 Let Xk = (Xk1, Xk2), k = 1, 2, be bivariate random vectors that have
survival functions defined as in (3.1). Let

a) V2 ≤lr V1;
b) λ(i)(x1, x2|v1, v2), i = 1, 2 be an increasing function in (v1, v2) for all (x1, x2) ∈ R2

+;

c) λ
(i)
1 (xi|vj , Xj > xj), i = 1, 2 and j 6= i be increasing in vj or λ

(i)
2 (xi|vj , Xj > xj), i =

1, 2, be increasing in vj.

Then X1 ≤whr X2.

Proof. From Theorem 6.D.2 in [21], it is sufficient to prove that λ
(i)
X1

(x1, x2) ≥
λ

(i)
X2

(x1, x2), for i = 1, 2. The proof for i = 1 is given, the proof for i = 2 is similar
and is therefore omitted.

9
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Let ∆
(1)
X1,X2

= λ
(1)
X1

(x1, x2)− λ(1)
X2

(x1, x2). It follows that

∆
(1)
X1,X2

=

∫ ∞
0

∫ ∞
0

λ(1)(x1, x2|v1, v2)[h1(v1, v2|x1, x2)− h2(v1, v2|x1, x2)]dv1dv2

=

∫ ∞
0

∫ ∞
0

λ(1)(x1|v1, v2, X2 > x2)h[V11|X1>x1,X2>x2,V12=v2](v1)h[V12|X1>x1,X2>x2](v2)dv1dv2

−
∫ ∞
0

∫ ∞
0

λ(1)(x1|v1, v2, X2 > x2)h[V21|X1>x1,X2>x2,V22=u2](v1)h[V22|X1>x1,X2>x2](v2)dv1dv2

=

∫ ∞
0

λ
(1)
1 (x1|v2, X2 > x2)h[V12|X1>x1,X2>x2](v2)dv2 −∫ ∞

0

λ
(1)
2 (x1|v2, X2 > x2)h[V22|X1>x1,X2>x2](v2)dv2.

Moreover, assume that in assumption c) the hazard rate λ
(1)
1 (x1|v2, X2 > x2) is increas-

ing (note that if λ
(1)
2 (x1|v2, X2 > x2) is increasing, then the proof is similarly obtained

by interchanging the corresponding roles of these functions). By adding and subtracting∫∞
0 λ

(1)
1 (x1|v2, X2 > x2)hV22|{X1>x1,X2>x2}(v2)dv2, it follows that

∆
(1)
X1,X2

=

∫ ∞
0

λ
(1)
1 (x1|v2, X2 > x2)[h[V12|X1>x1,X2>x2](v2)− h[V22|{X1>x1,X2>x2](v2)]dv2

+

∫ ∞
0

[λ
(1)
1 (x1|v2, X2 > x2)− λ(1)2 (x1|v2, X2 > x2)]h[V22|X1>x1,X2>x2](v2)dv2.(3.6)

The first and second terms on the right-hand side of (3.6) are denoted by A and B,
respectively, that is

A = E[λ
(1)
1 (x1|Ṽ12, X2 > x2)]− E[λ

(1)
1 (x1|Ṽ22, X2 > x2)],

where Ṽ12 =st [V12|X1 > x1, X2 > x2] and Ṽ22 =st [V22|X1 > x1, X2 > x2], and

B =

∫ ∞
0

[λ
(1)
1 (x1|v2, X2 > x2)− λ(1)

2 (x1|v2, X2 > x2)]hV22|{X1>x1,X2>x2}(v2)dv2.

From assumption a), and given that the multivariate likelihood ratio order is closed
under marginalization (see Theorem 6.E.4.b in [21]), it follows that V22 ≤lr V12. Moreover,
from Theorem 2.4 in [17] and given that the ≤lr order implies the multivariate ≤st order,
it follows that [V22|X1 > x1, X2 > x2] ≤st [V12|X1 > x1, X2 > x2]. Therefore, A ≥ 0,

given that from hypothesis c), λ
(1)
1 (x1|v2, X2 > x2) is increasing in v2 for all (x1, x2).

It can now be proved that the second term on the right-hand side of (3.6) is also

non-negative. Denote ∆
(1)
12 = λ

(1)
1 (x1|v2, X2 > x2)− λ(1)

2 (x1|v2, X2 > x2). From (3.4) and
(3.5),

∆
(1)
12 =

∫∞
0
λ(1)(x1, x2|v1, v2)[h[V11|X1>x1,X2>x2,V12=v2](v1)− h[V21|X1>x1,X2>x2,V22=v2](v1)]dv1

= E[λ(1)(x1, x2|Ṽ11, v2)]− E[λ(1)(x1, x2|Ṽ21, v2)], (3.7)

10
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where Ṽ11 =st [V11|X1 > x1, X2 > x2, V12 = v2] and Ṽ21 =st [V21|X1 > x1, X2 >
x2, V12 = v2]. From a), Lemma 3.1 and b), it follows that (3.7) is non-negative and,
therefore, B ≥ 0. Thus, the result is obtained. �

As a particular case, if the vectors Xk = (Xk1, Xk2), k = 1, 2, are defined according to
the bivariate exponential frailty model, i.e., if F̄ (x1, x2|v1, v2) is defined as in (2.2), then
a simpler statement can be provided.

Theorem 3.5 Let Xk = (Xk1, Xk2), k = 1, 2 be two bivariate random vectors that have
survival functions defined as in (3.1), and let F̄ (x1, x2|v1, v2) be defined as in (2.2). If
V2 ≤lr V1, then X1 ≤whr X2.

Proof. If F̄ (x1, x2|v1, v2) is defined as in (2.2), then

λ
(i)
k (x1, x2) =

∂

∂xi
φ1(x1, x2)E[Vk1|X1 > x1, X2 > x2] +

∂

∂xi
φ2(x1, x2)E[Vk2|X1 > x1, X2 > x2].

Therefore,

∆
(i)
X1,X2

=
∂

∂xi
φ1(x1, x2)

[
E[V11|X1 > x1, X2 > x2]− E[V21|X1 > x1, X2 > x2]

]
+

∂

∂xi
φ2(x1, x2)

[
E[V12|X1 > x1, X2 > x2]− E[V22|X1 > x1, X2 > x2]

]
.

Moreover, given that the order ≤lr is closed under marginalization, and by using The-
orem 2.4 from [17], [V2i|X1 > x1, X2 > x2] ≤st [V1i|X1 > x1, X2 > x2] holds. Thus, since
∂φj(x1,x2)

∂xi
≥ 0 for all i, j = 1, 2, it follows that ∆

(i)
X1,X2

≥ 0, and the result is obtained. �

For the same model as above, the upper orthant order (which is weaker than the usual
stochastic order) can be obtained under mild conditions, as stated in the following result.

Theorem 3.6 Let Xk = (Xk1, Xk2), k = 1, 2, be two bivariate random vectors that
have survival functions defined as in (3.1) and F̄ (x1, x2|v1, v2) defined as in (2.2). If
V2 ≤st V1, then X1 ≤uo X2.

Proof. Since g(x1,x2)(v1, v2) = −e−v1φ1(x1,x2)−v2φ2(x1,x2) is an increasing function in

(v1, v2), for every (x1, x2) ∈ R2
+, then by inequality V2 ≤st V1, it immediately follows

that

F̄X1
(x1, x2) =

∫ ∞
0

∫ ∞
0

e−v1φ1(x1,x2)−v2φ2(x1,x2)h1(v1, v2)dv1dv2

= −E[g(x1,x2)(V1)]

≤ −E[g(x1,x2)(V2)]

=

∫ ∞
0

∫ ∞
0

e−v1φ1(x1,x2)−v2φ2(x1,x2)h2(v1, v2)dv1dv2

= F̄X2
(x1, x2),

which constitutes the assertion. �

11
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The following statements deal with the BMMFD, i.e., the model of survival functions
defined as in (2.3). Recall that X̃ki denotes the random variable whose survival function
is the baseline survival function Ḡki, for k = 1, 2 and i = 1, 2.

Theorem 3.7 Let Xk = (Xk1, Xk2), for k = 1, 2, be two bivariate random vectors with
survival functions given by a BMMFD. If

a) V2 ≤st V1;
b) X̃1i ≤st X̃2i, i = 1, 2;

then X1 ≤st X2.

Proof. Let Xk, with k = 1, 2, be two vectors with the survival function defined as in
(2.3). Now, consider a new random vector Y having survival function given by

F̄Y(x1, x2) =

∫ +∞

0

∫ +∞

0
CS(Ḡv111(x1), Ḡv212(x2))dH2(v1, v2).

First, we prove that Y ≤st X2. For fixed (v1, v2) and k = 1, 2, let X
(v1,v2)
k be a random

vector with survival function defined as

F̄
X

(v1,v2)

k

(x1, x2) = CS(Ḡv1k1(x1), Ḡv2k2(x2)).

Observe that, for any fixed (v1, v2), the vectors X
(v1,v2)
1 and X

(v1,v2)
2 have the same

survival copula C
(v1,v2)
S = CS(uv11 , u

v2
2 ). Moreover, by hypothesis (b), X

(v1,v2)
1 and X

(v1,v2)
2

have ordered univariate margins. Thus, from Theorem 4.1 in [26], X
(v1,v2)
1 ≤st X(v1,v2)

2 .

By the closure under mixture of the st order, and given that X2 is the mixture of X
(v1,v2)
2

with respect to V2 and that Y is the mixture of X
(v1,v2)
1 with respect to V2, it follows

that

Y ≤st X2. (3.8)

It will now be proved that X1 ≤st Y. Let φ be an increasing function. Observe that

E[φ(Xk)] =

∫
R2

φ(t)dF̄Xk
(t)

=

∫
R2

φ(t)d

[∫ +∞

0

∫ +∞

0
CS(Ḡv1k1(t1), Ḡv2k2(t2))dHk(v1, v2)

]
=

∫ +∞

0

∫ +∞

0

[∫
R2

φ(t)dCS(Ḡv1k1(t1), Ḡv2
k2(t2))

]
dHk(v1, v2)

=

∫ +∞

0

∫ +∞

0

[∫
[0,1]2

φ(Ḡ−1
k1 (u

1/v1
1 ), Ḡ−1

k2 (u
1/v2
2 ))dCS(u1, u2)

]
dHk(v1, v2)

= −E[ψk(Vk)] (3.9)

12
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where

ψk(v1, v2) = −
∫

[0,1]2
φ(Ḡ−1

k1 (u
1/v1
1 ), Ḡ−1

k2 (u
1/v2
2 ))dCS(u1, u2).

Therefore, E[φ(X1)] = −E[ψ1(V1)] and, analogously, E[φ(Y)] = −E[ψ1(V2)]. Now,
given that φ is increasing, then ψ1 is also increasing. Thus, from hypothesis (a), it follows
that E[φ(X1)] = −E[ψ1(V1)] ≤ −E[ψ1(V2)] = E[φ(Y)], i.e.,

X1 ≤st Y. (3.10)

Therefore, the assertion follows from (3.8) and (3.10). �

Remark 3.1 Note that the proof of Theorem 3.7 is immediately obtained assuming that
X̃1i =st X̃2i, i = 1, 2, since for any increasing function φ,

E[φ(Xk)|V] =

∫
[0,1]2

φ(Ḡ−1
k1 (u

1/v1
1 ), Ḡ−1

k2 (u
1/v2
2 ))dCS(u1, u2)

is decreasing in (v1, v2). That is, [X|V = (v1, v2)] is stochastically decreasing in (v1, v2).
Thus, from Theorem 3.1, the corresponding multivariate usual stochastic order between
X1 and X2 holds.

Remark 3.2 Consider the survival functions F̄
X

(v1,v2)

k

(x1, x2) = CS,k(Ḡ
v1
k1(x1), Ḡv2k2(x2))

for k = 1, 2, where CS,1(u, v) ≤ CS,2(u, v) for all u, v ∈ [0, 1]. That is, assume that
the copulas CS,1 and CS,2 are ordered in concordance sense (see [20], for details on the
concordance order). If a) and b) in Theorem 3.7 are verified, then it is easy to show that
X1 ≤uo X2.

Remark 3.3 Note that, when CS is the independence copula, then Theorem 3.7 reduces,
as a particular case, to Theorem 2.4 in [7].

The following two statements describe suitable conditions for the orthant orders be-
tween two BMMFDs.

Theorem 3.8 Let Xk = (Xk1, Xk2), k = 1, 2 be two bivariate random vectors with
survival functions given by a BMMFD. Assume that the survival copula CS(u, v) is convex
in each component. If

a) V2 ≤iccv V1;
b) X̃1i ≤st X̃2i, i = 1, 2;

then X1 ≤uo X2 and X2 ≤lo X1.

Proof. First, the statement for the ≤uo is shown. Observe that, since CS is a copula
and Ḡvi2i(xi) is a decreasing function in vi, it follows that −CS(Ḡv121(x1), Ḡv222(x2)) is an
increasing function in v = (v1, v2). Furthermore, observe that, for fixed x ∈ R2

+, the
equality F̄X2

(x) = −E[ψ2(V2)] holds, where ψ2(v) = −CS(Ḡv121(x1), Ḡv222(x2)). Note that
the function ψ2(v) is a componentwise concave function. In fact, for λ ∈ (0, 1), v1, w1 ∈ R

13
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and fixed v2, it is obtained that

ψ2(λv1 + (1− λ)w1, v2) = −CS(Ḡ
v1+(1−λ)w1

21 (x1), Ḡv222(x2))

≥ −CS(λḠv1(x1) + (1− λ)Ḡw1(x1), Ḡv222(x2))) (3.11)

≥ −λCS(Ḡv1(x1), Ḡv222(x2))− (1− λ)CS(Ḡw1(x1), Ḡv222(x2)), (3.12)

where (3.11) follows from the convexity in v1 of Ḡv1(x1), while (3.12) follows from the
componentwise convexity of CS .

Therefore, ψ2 is concave in the first argument when the second argument is held fixed.
Analogously, it can be shown that ψ2 is concave in the second argument when the first
one is held fixed.

Thus, ψ2 is an increasing and componentwise concave function and, from assumption
a), it follows that −E[ψ2(V2)] ≥ −E[ψ2(V1)].

Finally, from b), it follows that, for all v,

ψ2(v) = −CS(Ḡv121(x1), Ḡv222(x2))

≤ −CS(Ḡv111(x1), Ḡv212(x2))

= ψ1(v).

Thus, E[ψ2(V1)] ≤ E[ψ1(V1)], and therefore F̄X2
(x) = −E[ψ2(V2)] ≥ −E[ψ2(V1)] ≥

−E[ψ1(V1)] = F̄X1
(x) for all x, and the result is obtained.

The proof for the ≤lo order is now given. That is, it should be shown that F2(x1, x2) ≥
F1(x1, x2) for all (x1, x2) in R2

+. Let (x1, x2) be a fixed point in R2
+. It is well-known that

Fi(x1, x2) = 1− Fi1(x1)− Fi2(x2) + F̄i(x1, x2) for i = 1, 2.

Therefore, it will be sufficient to show that F11(x1) ≥ F21(x1) and F12(x2) ≥ F22(x2).
Thus,

−F̄11(x1) =

∫
R2

−F̄1(x1, 0|v1, v2)dH1(v1, v2)

≥
∫
R2

−F̄2(x1, 0|v1, v2)dH1(v1, v2),

where the last inequality follows from hypothesis b). By taking into account that
F̄2(x1, 0|v1, v2) = Ḡv121(x1) is a decreasing and convex function in v1, it is obtained by
applying a) that∫

R2

−F̄2(x1, 0|v1, v2)dH1(v1, v2) ≥
∫
R2

−F̄2(x1, 0|v1, v2)dH2(v1, v2)

= −F̄12(x1).

Consequently, −F̄11(x1) ≥ −F̄12(x1), i.e., F11(x1) ≥ F12(x1). The inequality F21(x2) ≥
F22(x2) can be proved similarly. Thus, the result is obtained. �

Examples of survival copulas CS satisfying the assumptions in Theorem 3.8 are those

14
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in the Farlie-Gumbel-Morgenstern family, defined as

CS(u, v) = uv(1 + β(1− u)(1− v)), with − 1 ≤ β ≤ 1

(see [20], for details on Farlie-Gumbel-Morgenstern copulas). In fact, it can be easily
verified that these copulas are componentwise convex whenever the parameter β < 0.
Note also that componentwise convexity is satisfied whenever the copula is convex. How-
ever, as described in [20], page 102, the only copula satisfying general convexity is the
Fréchet-Hoeffding lower bound copula.

Recall that the increasing concave order is weaker than the increasing componentwise
concave order (see Theorem 7.A.22 in [21]). It is interesting to observe that, for the case
of independence copula, the previous result also holds if the order ≤iccv between the V1

and V2 is replaced by ≤icv. This fact, which generalizes Theorem 2.5 in [7], is proved in
the following statement.

Theorem 3.9 Let the bivariate vectors Xk, with k = 1, 2, have survival functions defined
as in (1.1). If

a) V2 ≤icv V1;
b) X̃1i ≤st X̃2i for any i = 1, 2;

then X1 ≤uo X2 and X2 ≤lo X1.

Proof. First, X1 ≤uo X2 is proved. For any fixed x ∈ R2
+, we can write F̄X2

(x) =

−E
[
ψ2(V2)

]
, where ψ2(v) = −[

∏2
i=1 F̄2i(xi)

vi ]. Given that V2 ≤icv V1 and that ψ2 is
an increasing and concave function of (v1, v2) ∈ R2

+, it follows that

E[ψ2(V2)] ≤ E[ψ2(V1)]. (3.13)

Now, from X̃1i ≤st X̃2i it follows that −[
∏2
i=1 F̄2i(xi)

vi ] ≤ −[
∏2
i=1 F̄1i(xi)

vi ], and, there-
fore, that

E[ψ2(V1)] ≤ E[ψ1(V1)], (3.14)

where ψ1(v) = −[
∏2
i=1 F̄1i(xi)

vi ]. From (3.13) and (3.14), it follows that E[ψ2(V2)] ≤
E[ψ1(V1)], that is, F̄X1

(x) ≤ F̄X2
(x), and therefore X1 ≤uo X2.

Finally, X2 ≤lo X1 is similarly shown as in Theorem 3.8. �

The last result provides conditions to compare two BMMFDs, with marginal distribu-
tions defined by univariate frailties, in the supermodular order sense.

Theorem 3.10 Let Xk = (Xk1, Xk2), k = 1, 2 be two bivariate random vectors with
survival functions given by a BMMFD. If

a) V1 ≤sm V2;
b) X̃2i =st X̃1i, i = 1, 2;

then X1 ≤sm X2.

Proof. First, observe that if ϕ(x, y,u) is a supermodular function in (x, y) for every fixed

15
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u ∈ Rn, µ−integrable in u ∈ Rn (where µ is a measure in Rn), then

Φ(x, y) =

∫
ϕ(x, y,u)dµ(u) (3.15)

is also a supermodular function in (x, y). In fact, on considering x1 < x2 and y1 < y2,
through assumptions on ϕ(x, y,u), then

ϕ(x1, y1,u) + ϕ(x2, y2,u) ≥ ϕ(x1, y2,u) + ϕ(x2, y1,u) for all u,

and hence

Φ(x1, y1) + Φ(x2, y2) =

∫
[ϕ(x1, y1,u) + ϕ(x2, y2,u)]dµu

≥
∫

[ϕ(x2, y1,u) + ϕ(x1, y2,u)]dµu

= Φ(x2, y1) + Φ(x1, y2).

Now, let φ : R2 → R be a supermodular function. If ψ is defined as

ψ(v1, v2) =

∫
[0,1]2

φ(Ḡ−1
k1 (u

1/v1
1 ), Ḡ−1

k2 (u2)1/v2)dCs(u1, u2), (3.16)

then E[φ(Xk)] = E[ψ(Vk)] holds. Note that the right-hand side in (3.16) does not de-

pend on k, since X̃2i =st X̃1i. It is easy to verify that, for fixed u, hi(vi) = Ḡ−1
ki (u

1/vi
i )

is decreasing in vi. Thus, since φ is supermodular, for every fixed u, the function

φ̃(v1, v2,u) = φ(Ḡ1
k1(u

1/v1
1 ), Ḡ1

k2(u
1/v2
2 )) is supermodular in (v1, v2). From the supermod-

ularity of (3.15), it follows that ψ(v1, v2) is supermodular, and hence

E[φ(X1)] = E[ψ(V1)] ≤ E[ψ(V2)] = E[φ(X2)].

Therefore, the assertion is obtained. �

4. Examples

4.1. Bivariate correlated gamma proportional hazard frailty model

Yashin and Iachine [27] showed how methods and ideas from different research areas
could be merged in a new approach based on a bivariate survival model of correlated
frailty. Using Danish twin survival data, they showed how that model could be used for
genetic analysis of important demographic characteristics such as human mortality and
longevity. Analogous to the bivariate correlated gamma frailty model due to [27], and to
its reversed version studied by Li and Da [13], we propose here an example of stochastic
comparison for a similar model. Consider the frailty vector V1 = (V11, V12), such that
V11 = Y01+Y1 and V12 = α(Y01+Y2), where the variables Y01, Y1 and Y2 are independent,
and such that Y01 ∼st Γ(k01, λ1), Y1 ∼st Γ(k1, γ1) and Y2 ∼st Γ(k2, γ2). Therefore, V11

and V12 are gamma distributed and correlated.
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Assume that ρ1 is the correlation coefficient between V11 and V12. By straightforward
computations

ρ1 =

[
1 +

k1λ
2
1

k01γ2
1

]−1/2 [
1 +

k2λ
2
1

k01γ2
2

]−1/2

.

Similarly, let V2 = (V21, V22) be a frailty vector, such that V21 = Y02 + Y1 and V22 =
α(Y02 + Y2) where Y02 ∼st Γ(k02, λ2), and ρ2 is the corresponding correlation coefficient.

Note that, K01

λ2
1
≤ K02

λ2
2

if, and only if, ρ1 ≤ ρ2.

Assume that, for k = 1, 2, the bivariate vector Xk has the survival function defined
as in (2.1) and F̄k(x1, x2|ν1, ν2) = F̄ (x1, x2|ν1, ν2) is defined as in (2.2), for φi(x1, x2) =
− ln Ḡi(x1, x2), i = 1, 2, where Ḡi is a joint baseline survival function. Note that in this
case,

F̄ (x1, x2|ν1, ν2) = eν1 ln Ḡ1(x1,x2)+ν2 ln Ḡ2(x1,x2)

= Ḡ1(x1, x2)ν1Ḡ2(x1, x2)ν2

can be considered as a generalization of the multiplicative model given, for example, in
[17]. The following statement holds.

Theorem 4.1 Let X1 and X2 be defined as described above.

i) If k01 ≤ k02 and λ1 ≥ λ2, then X2 ≤uo X1.
ii) If k01 ≤ k02, k1 ≤ k2 and λ1 ≥ λ2, then X2 ≤whr X1.

Proof. i) From Example 3.1 in [28], λ1Y01 ≤disp λ2Y02 is verified. Thus, by applying Theo-
rem 3.B.11 and Theorem 3.B.13 in [21], Y01 ≤st Y02 holds. If Zk = (Y0k, Y1, Y2) for k =
1, 2, and by taking into account that Y0k, Y1, and Y2 are independent, then Z1 and
Z2, have the same copula. Consequently, from Theorem 6.B.14 in [21], Z1 ≤st Z2.
Therefore, by using Theorem 6.B.16 a) in [21], it follows that V1 ≤st V2. Finally, by
applying Theorem 3.6, it is obtained that X2 ≤uo X1.

ii) If k01 ≤ k02, k1 ≤ k2 and λ1 ≥ λ2, then V1 ≤lr V2 (similar to the proof of Proposition
5.1 (iii) in [13]). Therefore, from Theorem 3.5, X2 ≤whr X1 holds.

�

Assume now that, for k = 1, 2, the bivariate vector Xk has the survival function as
defined in (1.1), that is,

F̄Xk
(x1, x2) = E

[
2∏
i=1

ḠVki

ki (xi)

]
, xi ∈ R+.

Theorem 4.2 Let X1 and X2 be defined as described above. If

i) k01 < k02, λ1 < λ2, and λ1

k01
= λ2

k02
;

ii) X̃2i ≤st X̃1i for any i = 1, 2;

then X2 ≤uo X1.
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Proof. By using i) and Proposition A.9 in [29], Y01 ≥cx Y02 holds. Now, by applying
Theorem 4.A.34 in [21], Y01 ≤icv Y02 is verified. Consequently, by taking into account a
statement similar to Theorem 7.A.6 in [21] with respect to the icv order, and from a)
in Theorem 7.A.5 in [21], it is easily obtained that V1 ≤icv V2. Thus, by Theorem 3.9,
X2 ≤uo X1. �

4.2. Bivariate log-normal frailty model

The log-normal distribution is, along with the gamma distribution, one of the most com-
monly used distributions to model variables with necessarily positive range. In particular,
this distribution has been used to model the distribution of the univariate frailty model
as well the correlated frailty model (see, among others, [3, 5, 30]; and references therein).

In this example, we consider two frailty vectors Vk = (Vk1, Vk2), k = 1, 2, with a
bivariate log-normal distribution. That is, for k = 1, 2, assume

Vk ∼st LnN(µ,Σk),

where LnN denotes the bivariate log-normal distribution, µ = (m1,m2) and Σk =(
s2 rks

2

rks
2 s2

)
, where mi, s

2 and rk are the mean, variance and correlation of the re-

spective normal distributions. The mean, variance and correlation of the frailties are
related to these parameters as follows:

µi = E[Vki] = emi+
s2

2 ,

σ2
ki = V ar(Vki) = e2mi+s2(es

2 − 1),

ρk = Corr(Vk1, Vk2) =
erks

2 − 1

es2 − 1
.

Assume that, for k = 1, 2, the bivariate vectors Xk have survival functions given by a
BMMFD, with the same baseline survival functions Ḡki = Ḡi, for i = 1, 2, but with
different frailties Vk, as above. The following result gives conditions for the comparison
of X1 and X2 in the supermodular order in terms of the order between the correlation
of the frailty vectors V1 and V2.

Theorem 4.3 Let the vectors X1 and X2 be defined as described above. If r1 ≤ r2, then
X1 ≤sm X2.

Proof. It is known that two normally distributed bivariate vectors are ordered in the
PQD order (see page 388 in [21]) if their covariance matrices are ordered (see Example
9.A.8, in [21]). Moreover, from Theorem 9.A.9 in [21], it follows that the PQD order is
closed under increasing transformations of the components of the vectors. Therefore, if
r1 ≤ r2, then V1 ≤PQD V2.

Furthermore, observe that the two vectors have the same marginal distributions. Thus,
given that the PQD and sm order are equivalent in the bivariate case whenever the
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compared vectors have the same margins (see page 395 in [21]), it follows that V1 ≤sm
V2. From Theorem 3.10 the inequality X1 ≤sm X2 is obtained. �

4.3. A bivariate additive Gamma frailty model

Assume that, for k = 1, 2, the bivariate vectors Xk have survival functions given by a
BMMFD, with the same baseline survival functions Ḡki = Ḡi, for i = 1, 2. Let Vi =
(Vi1, Vi2) be frailty vectors such that Vi1 = Y0i + Y1i and Vi2 = Y0i + Y2i, where the
variables Y0i, Y1 and Y2 are independent and such that Y0i ∼ Γ(k0i, λ), Y1i ∼ Γ(k1i, λ)
and Y2i ∼ Γ(k2i, λ). As follows from Proposition 3.1. in [31], if k02 ≤ k01, and k02−k01 =
k11−k12 = k21−k22, then V2 ≤sm V1. Therefore, by applying Theorem 3.10, X2 ≤sm X1.

5. Conclusions

The frailty approach is commonly used in reliability theory and survival analysis to model
the dependence between lifetimes of individuals or components subjected to common
risk factors; according to this model the frailty (an unobservable random vector that
describes environmental conditions) acts simultaneously on the hazard functions of the
lifetimes. Several interesting conditions have been described in this paper for stochastic
comparisons between random vectors that are defined according to these models by
assuming conditional dependence hypothesis for the frailty vector.

Two particular cases of generalized bivariate frailty models have been considered. The
first one is the bivariate exponential frailty model and the second particular case is based
on a representation of F̄ (x1, x2|v1, v2) in terms of copula. The multivariate upper and
lower orthant orders for the populations are obtained in the first model by comparing
the corresponding frailty vectors in the usual multivariate stochastic order. For this
model, we also investigate the weak hazard rate order for the populations in terms of the
multivariate likelihood ratio order of the frailty vectors. However, for the second model,
the populations are ordered in the usual multivariate stochastic order if the random frailty
vectors are also ordered in the same order. For this model, the upper orthant order and
the supermodular order of the populations are obtained when the random frailty vectors
are ordered in the increasing componentwise concave order and the supermodular order,
respectively. The examples used herein are common in the literature on multivariate
frailty.
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