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Abstract

A new property defined on the class of symmetric copulas is introduced and studied
along this note. It is shown here that such a property can define a family of bivariate
distribution functions satisfying all the characteristics listed in Kimeldorf and Sampson
(1989) to be considered as a positive dependence notion. Applications, relationships
with other positive dependence notions, further properties and the corresponding neg-
ative dependence notion are discussed as well.
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1 Preliminaries

In the last decades, the concept of positive dependence has played a significant role in many
areas of applied probability and statistics, such as reliability or actuarial theory (see, e.g, the
monographs by Joe (1997), Drouet-Mari and Kotz (2001), or Lai and Xie, 2006). Starting
from the seminal papers by Kimeldorf and Sampson (1987) and (1989), many different
notions of positive (or negative) dependence have been studied and applied in the literature
to mathematically describe the different aspects and properties of this intuitive concept.
Among others, recent theoretical and applied developments in this field are described in
Genest and Verret (2002), Colangelo et al. (2005) and (2006), Durante et al. (2008), Cai
and Wei (2012), Abhishek et al. (2015), and Bignozzi et al. (2015).

Since positive dependence involves several different aspects, Kimeldorf and Sampson in
(1987) and in (1989) provided a unified framework for studying and relating three basic
concepts of bivariate positive dependence: positive dependence orderings (i.e., comparisons
based on dependence), positive dependence notions (i.e., classes of distributions satisfying
some dependence properties) and measures of positive dependence. Dealing with positive
dependence notions, a general statement for a bivariate property to be considered as a
positive dependence notion, or for a class of bivariate distributions to be considered a positive
dependence class, has been formulated in Kimeldorf and Sampson (1989) as follows. Here, F
denotes the set of all bivariate distribution functions. Moreover, given any bivariate random
vector (X, Y ) having joint distribution F , and given G ⊆ F , the notation (X, Y ) ∈ G will
be sometimes used here and along the paper in place of F ∈ G, whenever it will simplify the
presentation.

Definition 1.1. A subset P+ of the family F is a positive dependence notion if it satisfies
the following seven conditions.

(C1) (X, Y ) ∈ P+ implies P (X > x, Y > y) ≥ P (X > x)P (Y > y) for all x, y ∈ R.

(C2) F+ ⊆ P+, where F+ denotes the set of upper Frèchet bounds, i.e., the set of bivariate
distributions F such that F (x, y) = min

(
F (x,+∞), F (+∞, y)

)
.

(C3) If (X, Y ) is a pair of independent variables, then (X, Y ) ∈ P+.

(C4) (X, Y ) ∈ P+ implies (φ(X), Y ) ∈ P+ for all increasing functions φ.

(C5) (X, Y ) ∈ P+ implies (Y,X) ∈ P+.

(C6) (X, Y ) ∈ P+ implies (−X,−Y ) ∈ P+.

(C7) Given the sequence {Fn, n ∈ N}, if Fn ∈ P+,∀n ∈ N , and Fn → F in distribution as
n→∞, then F ∈ P+.

It should be pointed out that these seven conditions are logically independent, that is,
if any six of them hold, then the seventh need not necessarily to hold (see Kimeldorf and
Sampson, 1989).
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Many of the most well–known positive dependence notions satisfy these axioms. This
is for example the case of the Positive Quadrant Dependence (PQD) notion, of the Totally
Positive of order 2 (TP2) notion and of the notion of Association, as shown in Kimeldorf
and Sampson (1989) and the references therein.

Moreover, since all the monotone dependence properties based on the level of concordance
between the components of a random vector (thus, based on rank invariant properties) are
entirely described by its copula, whenever it exists and whenever it is unique, all the seven
conditions described above can be translated in a more general setting in terms of families
of copulas, without taking care of the marginal distributions (except assuming that they
are continuous, to ensure a unique representation of the joint distribution with copulas).
See, for example, Nelsen et al. (1997) or Fernandez Sanchez and Úbeda-Flores (2014) on
relationships between copulas and positive dependence notions, indexes and orders. To
provide the definition of positive dependence notion in these terms, we recall the definition
of copula, and of survival copula.

Let (X, Y ) be a random vector with the joint distribution function F ∈ F and marginal
distributions F1 and F2. The function C : [0, 1]2 → [0, 1] such that, for all (x, y) ∈ R2,
satisfies

F (x, y) = C(F1(x), F2(y)).

is called copula of the vector (X, Y ). In this case, it also holds

C(u, v) = F (F−11 (u), F−12 (v)),

for all u, v ∈ [0, 1], where F−1i denotes the quasi-inverse of Fi. Such a copula is a bivariate
distribution function with margins uniformly distributed on [0, 1] ⊂ R, and is unique when-
ever F1 and F2 are continuous. For further details on copulas we refer the reader to the
standard references Joe (1997) and Nelsen (2006). In a similar way is defined the survival
copula, which is commonly considered in reliability analysis instead of the copula: given
(X, Y ) as above, and denoted F , F 1 and F 2 its joint survival function and the marginal
survival functions, its survival copula K is defined as

K(u, v) = F (F
−1
1 (u), F

−1
2 (v)) = u+ v − 1 + C(1− u, 1− v)

for all u, v ∈ [0, 1]. See Nelsen (2006) for details.

Using copulas (or survival copulas), and recalling that the copula of a random pair is scale-
invariant, thus that (C4) is automatically satisfied, restricting to continuous distribution
functions one can restate the conditions described in Definition 1.1 as follows.

Definition 1.2. Let C+ be a family of bivariate copulas, and let P+ be the subset of F of
all continuous distribution functions F such that the copula associated with F belongs to C+.
The family P+ is a positive dependence notion if C+ satisfies the following six conditions.

(C1′) C(u, v) ≥ uv for all (u, v) ∈ [0, 1]2 and for all C ∈ C+.

(C2′) The upper Frèchet copula C+ defined as C+(u, v) = min
(
u, v) belongs to C+.

(C3′) The independence copula C⊥ defined as C⊥(u, v) = uv belongs to C+.
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(C5′) If C ∈ C+ then C∗ ∈ C+, where C∗(u, v) = C(v, u), u, v ∈ [0, 1].

(C6′) If C ∈ C+ then for the corresponding survival copula K it holds K ∈ C+.

(C7′) Given the sequence {Cn, n ∈ N}, if Cn ∈ C+, ∀n ∈ N , and Cn → C in distribution as
n→∞, then C ∈ C+.

The motivation of the present study is described now. It is an established fact that
the common univariate comparisons among random lifetimes, such as the orders st (usual
stochastic order), hr (hazard rate order) and lr (likelihood ratio order), are based on com-
parisons among the marginal distributions of the involved variables, without taking into
consideration their dependence structure. Due to this reason, bivariate characterizations of
the most well-known stochastic orders have been defined and studied by several authors, in
order to be able to take into account their mutual dependence as well. These character-
izations gave rise to new stochastic comparisons, commonly called joint stochastic orders,
namely, st:j (usual joint stochastic order), hr:j (joint hazard rate order) and lr:j (joint
likelihood ratio order), which are equivalent to the original ones under assumption of inde-
pendence, but are different whenever the variables to be compared are dependent. Also, an
alternative weaker version of the joint hazard rate order, namely, hr:jw (weak joint hazard
rate order) has been defined, studied and applied in Belzunce et al. (2015). See Shaked and
Shanthikumar (2007) for definitions and properties of all these orders (except for the hr:jw
one), and Belzunce et al. (2015) and references therein for a list of applications in different
fields.

Recently, relationships between standard stochastic orders and the corresponding joint
ones have been investigated in Belzunce et al. (2015) and in Pellerey and Zalzadeh (2015),
who provided conditions on the survival copula of a pair of absolutely continuous random
lifetimes such that implications between some standard orders and the corresponding joint
orders are satisfied, as described in the following propositions.

Proposition 1.1. Let (X, Y ) be a random vector having continuous marginal distributions
and survival copula K. If K is symmetric, i.e., such that K(u, v) = K(v, u) for every
(u, v) ∈ [0, 1]2, and if it satisfies

K(u, γv) ≥ [≤] K(γu, v) (1.1)

for all u ≤ v and γ ∈ (0, 1), then X ≤hr Y ⇒ X ≤hr:wj Y [X ≤hr:wj Y ⇒ X ≤hr Y ].

Proposition 1.2. Let (X, Y ) be a random vector with absolutely continuous marginal dis-
tributions. Let its survival copula K be such that

1. K is symmetric;

2. K is twice differentiable and such that its mixed second partial derivative k(u, v) =
∂2

∂u∂v
K(u, v) is non-increasing in u and non-decreasing in v for all u ≥ v [non-

decreasing in u and non-increasing in v for all u ≥ v].
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Then

X ≥lr Y ⇒ X ≥lr:j Y and X ≥hr Y ⇒ X ≥hr:j Y
[X ≥lr:j Y ⇒ X ≥lr Y and X ≥hr:j Y ⇒ X ≥hr Y ]

It is interesting to observe that the property described in (1.1) has been firstly introduced
by Bassan and Spizzichino (2005) in the study of bivariate notions of aging, and further stud-
ied and applied to dependence analysis by Durante and Ghiselli Ricci (2009), who called it
supermigrativity [submigrativity ] and showed that it generates a positive dependence prop-
erty in the sense of Kimeldorf and Sampson (1989).

For this reason, motivated by the fact that the assumption on the survival copula required
in Proposition 1.1 is actually a positive dependence notion, in this short note we consider
in details the assumptions stated in Proposition 1.2, providing a more general property
valid also for non absolutely continuous copulas, and showing that it satisfies the conditions
described in Definition 1.2, i.e., that it is a positive dependence notion. In fact, roughly
speaking, the assumption that should be satisfied by the survival copula in Proposition 1.2
has an immediate interpretation: it essentially means that for every point (u, v) below the
diagonal and for any point (û, v̂) contained in the closed triangle with vertices (u, v), (u, u)
and (v, v) it should holds k(û, v̂) ≥ k(u, v) (and similarly for points above the diagonal).
In other words, the survival copula has probability mass mainly concentrated close to the
diagonal.

In the next section we will also investigate its relationship with the supermigrativity
notion, and some of its properties.

2 A new positive dependence property

Let U = {(u, v) : 0 ≤ u ≤ v ≤ 1}. To define a generalization of the property that should be
satisfied by the survival copula in Proposition 1.2, we firstly need to define an order among
points (u, v) ∈ U and an order among subsets of U . Here, given two vectors x = (x1, x2) and
y = (y1, y2) of real numbers, the notation x ≤ y stands for x1 ≤ y1 and x2 ≤ y2.

Definition 2.1. Given the points (u1, v1) and (u2, v2) in U , we say that (u1, v1) precedes
(u2, v2) according to the right lower corner order (shortly (u1, v1) �rlc (u2, v2)) if (u1, v1) ≤
ϕ(u2, v2), where ϕ is the symmetry on the unit square given by ϕ(u, v) = (u, 1− v).

Definition 2.2. Given two Borel sets A1 and A2 contained in U , we say that A1 precedes
A2 according to the right lower corner order (shortly A1 �rlc A2) if there exists a bijection
ψ : A1 −→ A2 such that (u, v) �rlc ψ(u, v) for all (u, v) ∈ A1.

Now we can provide the definition of two new classes of copulas satisfying the statement
of Proposition 1.2. For it, let us denote with λ(A) the Lebesque measure of the set A ⊆ R2,
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i.e., its area, and let µC be the measure induced by the copula C (see Durante and Sempi,
2015)).

Definition 2.3. Let A1 be any Borel set entirely contained in U . Given a symmetric
copula C, i.e. such that C(u, v) = C(v, u), we say that C is componentwise unimodal
[ componentwise bimodal] if, and only if, µC(A1) ≥ µC(A2) [µC(A1) ≤ µC(A2)] for any
Borel set A2 such that λ(A1) = λ(A2) and A1 �rlc A2.

The componentwise unimodality of a copula C is equivalent to the condition stated in
Proposition 1.2 whenever its derivative c exists. Thus, the componentwise unimodality is a
generalization of such a condition to non absolutely continuous copulas. The same can be
stated for its counterpart, componentwise bimodality.

The reason of the name for these two properties is as follows. Assume that the copula
admits a density. Then fix one of the components (say, u), and look at the conditional density

cu(v) = c(u, v)/
∫ 1

0
c(u, v)du. If the inequality without the brackets is satisfied, then such a

conditional density is unimodal, assuming maximum value in correspondence of v = u, i.e.,
in correspondence of the diagonal. Viceversa, assume that the inequality within the brackets
is satisfied; then such a conditional density is bimodal, assuming local maximums in 0 and
1.

It should be mentioned that conditions for unimodality of copulas have been studied in
Cuculescu and Theodorescu (2003). However, the concepts of multivariate unimodality stud-
ied there (central convex, block, and star unimodality) are different from the componentwise
unimodality considered here, and no direct relationships between these notions exist.

Examples of copulas satisfying the property stated in Definition 2.3 are those in the
Cuadras-Augé family, defined as C(u, v) = (uv)1−θ[min(u, v)]θ, with θ ∈ [0, 1], or those in
the Frechét family, defined as mixtures between the independence copula and the upper
Fréchet-Hoeffding copula (see Nelsen, 2006, for definitions of these copulas). Another class
of copulas satisfying componentwise unimodality is a particular subset of those studied in
Durante (2006), i.e., the family of copulas defined as Cf (u, v) = min(u, v)f(max(u, v)), with
u, v ∈ [0, 1] for an increasing and continuous mapping f from [0, 1] into [0, 1] satisfying

f(1) = 1 and such that t 7−→ f(t)
t

is decreasing on (0, 1] (see also Durante et al., 2008, on
this family). It can be seen that, wherever f is also concave, then the corresponding copula
is componentwise unimodal.

Other families of copulas satisfying Definition 2.3 can be obtained by construction. For
example, denoted with 1A(u, v) the indicator function of the set A ⊂ [0, 1]2, and considered
the sets A1 = [0, α] × [0, β], A2 = [1 − α, 1] × [1 − β, 1], B1 = [0, α] × [1 − β, 1] and B2 =
[1 − α, 1] × [0, β], the absolutely continuous copulas having densities cα,β,δ(u, v) = 1 + δ ·
1A1∪A2(u, v) − δ · 1B1∪B2(u, v), with δ ∈ [0, 1] and α, β ∈ [0, 1/2), and all their mixtures,
satisfy the componentwise unimodality property, as one can easily verify. Other examples
may be found in Pellerey and Zalzadeh (2015).

Dealing with componentwise unimodality, first we show that it implies supermigrativity.
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For it, observe that supermigrativity [submigrativity] is equivalent to

C(u′, v′) ≥ [≤] C(u, v) (2.1)

for all 0 ≤ v ≤ v′ ≤ u′ ≤ u ≤ 1 such that u′v′ = uv = k for some k ∈ (0, 1] ⊆ R.

Proposition 2.1. Let C be a componentwise unimodal copula. Then C is supermigrative.

Proof. Fix any v ≤ v′ ≤ u′ ≤ u such that uv = u′v′ = k for some k ∈ (0, 1] ⊆ R, and
consider the regions A,A′, B,B′, H,D and E shown in Figure 1, where u′′ = u−v′+v. Note
that u′′ ∈ [u, u′] because of the convexity of v(u) = k/u, i.e., because 0 ≤ v′− v ≤ u−u′. By
(2.1), the statement is proved if from componentwise unimodality of the copula C follows
that the total probability mass collected by C over the union A′∪B∪B′∪H is greater than
the probability mass collected over the union D ∪ E, being

C(u′, v′) = C(u′, v) + µC(A′ ∪B ∪B′ ∪H),

and
C(u, v) = C(u′, v) + µC(D ∪ E).

First observe that, since u′v′ = uv = k, it also holds λ(D ∪ E) = λ(A′ ∪ B ∪ B′ ∪H) =
λ(A ∪B ∪B′ ∪H).

Moreover, by construction, λ(A) = λ(A′) = λ(E), λ(D) = λ(B ∪ B′ ∪ H), and, by
symmetry, λ(D) = λ(H) + 2λ(B).

Let now B∗ ⊆ D be any region in D such that λ(B∗) = λ(B). Observing that A �rlc E,
B �rlc B∗ and B ∪ H �rlc H − B∗, from the componentwise unimodality assumption (see
Definition 2.3) it holds

µC(A′) = µC(A) ≥ µC(E) (2.2)

and

µC(B∪B′∪H) = µC(B)+
(
µC(B)+µC(H)

)
≥ µC(B∗)+

(
µC(D)−µC(B∗)

)
= µC(D). (2.3)

Thus, from (2.2) and (2.3) we obtain

µC(B ∪B′ ∪H) + µC(A′) ≥ µC(D) + µC(E),

i.e., the assertion.

The following example shows that a supermigrative copula (or survival copula) is not
necessarily a componentwise unimodal copula (survival copula).

Example 2.1. Let C be the Clayton copula, i.e., let it be defined as C(u, v) = max{0, (u−θ+
v−θ − 1)−1/θ} for θ ∈ [0, 1], whose corresponding density is

c(u, v) = (1 + θ)(uv)θ(uθ + vθ − uθvθ)−(1+2θ)/θ. (2.4)
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Figure 1: The regions defined in Proposition 2.1.

Such a copula satisfies the supermigrativity property for θ > 0 (see Durante and Ghiselli
Ricci, 2012), but it is not componenwise unimodal, being, for example, c(0.125, 0.25) =
1.539 > c(0.25, 0.25) = 1.493 when θ = 1. Thus, for fixed v = 0.25 the maximum of its
density is not reached in the diagonal.

As for Proposition 2.1, a relationship between componentwise bimodality and submigra-
tivity may be stated as follow. The proof is similar to the proof of the above proposition,
and therefore it is omitted.

Proposition 2.2. Let C be a componentwise bimodal copula. Then C is submigrative.

The following example shows that the implication described in Proposition 2.2 is strict.

Example 2.2. Let C be defined as C(u, v) = uv − uv(1 − u)(1 − v). It is easy to verify
that it satisfies the submigrativity property, i.e., that the inequality ≤ holds in Equation
(1.1). Moreover, it is an absolutely continuous copula, having density c(u, v) = 2u(1− v) +
2v(1− u), which is clearly not componentwise unimodal (being monotone in v for any fixed
u ∈ [0, 1]). Actually, this copula is a member of the Farlie-Gumbel-Morgenstern family,
defined as Cθ(u, v) = uv − θuv(1− u)(1− v), with θ ∈ [−1, 1], and similar behaviors can be
observed for all values in [−1, 0) of the parameter θ.

As mentioned in previous section, the property of componentwise unimodality can be
used to introduce a new positive dependence property. To do it, let us denote with Ccu
the class of copulas which are componentwise unimodal, and with Fcu the subset of all
distribution functions F ∈ F such that the copula associated with F belongs to Ccu.
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The following proposition states that the class Ccu satisfies the conditions described in
Definition 1.2, thus that Fcu defines a positive dependence notion in the sense of Kimeldorf
and Sampson (1989).

Proposition 2.3. The set Ccu is a class of copulas defining positive dependence in the sense
of Definition 1.2.

Proof. Property (C1′) follows from Proposition 2.1, observing that supermigrativity implies
C(u, v) ≥ C(1, uv) = uv for all u, v ∈ [0, 1]. Properties (C2′) and (C3′) can be easily
obtained from the definition of componentwise unimodality. (C5′) follows by the fact that
componentwise unimodal copulas are symmetric.

For the proof of (C6′), given a copula C ∈ Ccu denote with K its corresponding survival
copula, and by µK the measure induced by K. Observe that, given any two Borel sets
R1 and R2 contained in U , one has µK(R1) ≥ µK(R2) if, and only if, µC(R′1) ≥ µC(R′2),
where R′i is obtained by applying to Ri the isometry φ(u, v) = (1 − u, 1 − v). Moreover,
being the copula symmetric, µC(R′i) = µC(R′′i ), where R′′i is the symmetric region of R′i with
respect to the diagonal v = u. Since the regions R′′i ; i = 1, 2, are contained in U , and since
R′′1 �rlc R′′2 whenever R1 �rlc R2, as one can easily verify, the assertion µK(R1) ≥ µK(R2)
for any R1 �rlc R2, with Ri ⊆ U , immediately follows.

For the proof of (C7′), given n ∈ N, let (Un, Vn) be a vector with uniformly distributed
margins such that Cn is its joint distribution function, with Cn ∈ Ccu. Suppose that Cn
converges to copula C in distribution, where C is the distribution function of a random
vector (U, V ). Then, for any A and A′ contained in U and such that A �rlc A′, one has
µCn(A) ≤ µCn(A′), or, equivalently,

P ((Un, Vn) ∈ A) ≥ P ((Un, Vn) ∈ A′).

By convergence in distribution it holds

P ((U, V ) ∈ A) = lim
n−→∞

P ((Un, Vn) ∈ A) ≥ lim
n−→∞

P ((Un, Vn) ∈ A′) = P ((U, V ) ∈ A′),

i.e., µC(A) ≤ µC(A′), and the assertion follows.

It should be pointed out that, viceversa, componentwise bimodality can be considered as
a negative dependence notion, satisfying the Negative Quadrant Dependence (NQD) notion,
i.e., implying the inequality C(u, v) ≤ uv for all u, v ∈ [0, 1]. This assertion follows from
Proposition 2.2 and from the fact that the submigrativity property for a copula C implies
C(u, v) ≤ C(1, uv) = uv.

The class Fcu of bivariate distribution function having componentwise unimodal cop-
ula satisfies an interesting property of positive dependence, namely, the mixture condition
defined by Kimeldorf and Sampson (1989), recalled here.

Definition 2.4. A set P of continuous distribution functions having the same pair of
marginal distributions satisfies the mixture condition if

F1, F2 ∈ P implies αF1 + (1− α)F2 ∈ P (2.5)

for all α ∈ [0, 1]
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Note that the set P in Definition 2.4 contains only the bivariate distributions with the
same marginals, while the set Fcu defined above contains bivariate distributions with both the
same and different margins. However, the next statement shows that a linear combination of
two distributions in the class Fcu having the same margins distribution satisfies the mixture
condition (2.5).

Proposition 2.4. The class Fcu satisfies the mixture condition.

Proof. Let F and G be two bivariate distributions having the same margins FX and FY and
copulas CF and CG, respectively, both componentwise unimodal. It is easy to verify that
the distribution H defined as H = αF + (1−α)G has same margins FX and FY . Observing
that

H(x, y) = αF (x, y) + (1− α)G(x, y)

= αCF (FX(x), FY (y)) + (1− α)CG(FX(x), FY (y)), (2.6)

one gets

CH(u, v) = H(F−1X (u), F−1Y (v))

= αCF (FX(F−1X (u)), FY (F−1Y (v))) + (1− α)CG(FX(F−1X (u)), FY (F−1Y (v))),

where CH(u, v) is the copula of H, that is,

CH = αCF + (1− α)CG. (2.7)

By using (2.7) and the fact that the integration with respect to a linear combination of
measures is a linear combination of integrals with respect to each measure, it follows

µCH
(A1) = αµCF

(A1) + (1− α)µCG
(A1) ≥ ααµCF

(A2) + (1− α)µCG
(A2) = µCH

(A2),

for any A1 and A2 such that A1 �rlc A2. Thus, CH ∈ Ccu, i.e., H ∈ Fcu
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[4] Bignozzi, V., Puccetti, G., and Rüschendorf, L. (2015). Reducing model risk via positive
and negative dependence assumptions. Insurance: Mathematics and Economics, 61, 17–
26.

[5] Cai, J., and Wei, W. (2012). On the invariant properties of notions of positive de-
pendence and copulas under increasing transformations. Insurance: Mathematics and
Economics, 50(1), 43–49.

[6] Colangelo, A., Scarsini, M., and Shaked, M. (2005). Some notions of multivariate posi-
tive dependence. Insurance: Mathematics and Economics, 37 (1), 13–26.

[7] Colangelo, A., Müller, A., and Scarsini, M. (2006). Positive dependence and weak con-
vergence. Journal of Applied Probability, 43 (1), 48–59.

[8] Cuculescu, I. and Theodorescu, R. (2003). Are copulas unimodal? Journal of Multi-
variate Analysis, 86, 48–71.

[9] Drouet-Mari, D., and S. Kotz. 2001. Correlation and Dependence. London: Imperial
College Press.

[10] Durante, F. (2006). A new class of symmetric bivariate copulas. Journal of Nonpara-
metric Statistics, 18(7-8), 499-510.

[11] Durante, F., Foschi, R., and Spizzichino, F. (2008). Threshold copulas and positive
dependence. Statistics & Probability Letters, 78 (17), 2902–2909.

[12] Durante, F., and Ghiselli Ricci. R. (2009). Supermigrative semi-copulas and triangular
norms. Information Sciences, 179 (15), 2689–2694.

11



[13] Durante, F., and Ghiselli Ricci, R. (2012). Supermigrative copulas and positive depen-
dence. AStA Advances in Statistical Analysis, 96, 327–342.
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[16] Fernández Sánchez, J., and Úbeda-Flores, M. (2014). Semi-polynomial copulas. Journal
of Nonparametric Statistics, 26 (1), 129–140.

[17] Genest, C., and Verret, F. (2002). The TP2 ordering of Kimeldorf and Sampson has the
normal-agreeing property. insightful, 57(4), 387–391.

[18] Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall, Lon-
don.

[19] Kimeldorf, G., and Sampson, A.R., (1987). Positive dependence orderings. Annals of
the Institute of Statistical Mathematics 39, 113–128.

[20] Kimeldorf, G., and Sampson, A.R.(1989). A framework for positive dependence. Annals
of the Institute of Statistical Mathematics, 41 (1), 31–45.

[21] Lai, C. D., and Xie, M. (2006). Stochastic Ageing and Dependence for Reliability.
Springer Science & Business Media.

[22] Nelsen, R. B. (2006). An Introduction to Copulas, 2nd Edition, Springer.

[23] Nelsen, R. B., Quesada-Molina, J. J., and Rodŕıguez-Lallena, J. A. (1997). Bivariate
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