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Summary

Silicon Nanowires (SiNWs) are considered the fundamental component blocks of
future nanoelectronics. Many interesting properties have gained them such a promi-
nent position in the investigation in recent decades. Large surface-to-volume ratio,
bio-compatibility, band-gap tuning are among the most appealing features of SiNWs.
More importantly, in the ongoing process of dimension miniaturization, SiNWs com-
patibility with the existing and reliable silicon technology stands as a fundamental
advantage. Consequently, the employment of SiNWs spred in several application
fields: from computational logic where SiNWs are used to realize transistors, to
bio-chemical sensing and nanophotonic applications.
In this thesis work we concentrate our attention in the employment of SiNWs in
computational logic and bio-chemical sensing. In particular, we aim at giving a con-
tribution in the modelling and simulation of SiNW-based electron devices. Given
the current intense investigation of new devices, the modelling of their electrical
behaviour is strongly required. On one side, modelling procedures could give an
insight on the physical phenomena of transport in nanometer scale systems where
quantum effects are dominant. On the other side, the availability of compact models
for actual devices can be of undeniable help in the future design process.
This work is divided into two parts. After a brief introduction on Silicon Nanowires,
the main fabrication techniques and their properties, the first part is dedicated
to the modelling of Multiple-Independent Gate Transistors, a new generation of
devices arisen from the composition of Gate-All-Around Transistors, finFETs and
Double-Gate Transistors. Interesting applications resulting from their employment
are Vertically-stacked Silicon Nanowire FETs, known to have an ambipolar be-
haviour, and Silicon Nanowire Arrays. We will present a compact numerical model
for composite Multiple-Independent Gate Transistors which allows to compute cur-
rent and voltages in complex structures. Validation of the model through simulation
proves the accuracy and the computational efficiency of the resulting model.
The second part of the thesis work is instead devoted to Silicon Nanowires for
bio-chemical sensing. In this respect, major attention is given to Porous Silicon
(PS), a non-crystalline material which demonstrated peculiar features apt for sens-
ing. Given its not regular microscopic morphology made of a complex network of
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crystalline and non-crystalline regions, PS has large surface-to-volume ratio and a
relevant chemical reactivity at room temperature. In this work we start from the
fabrication of PS nanowires at Istituto Nazionale di Ricerca Metrologica in Torino
(I.N.Ri.M.) to devise two main models for PSNWs which can be used to understand
the effects of porosity on electron transport in these structures. The two modelling
procedures have different validity regimes and efficiently take into account quantum
effects. Their description and results are presented.
The last part of the thesis is devoted to the impact of surface interaction of molecular
compounds and dielectric materials on the transport properties of SiNWs. Know-
ing how molecules interact with silicon atoms and how the conductance of the wire
is affected is indeed the core of SiNWs used for bio-chemical sensing. In order to
study the phenomena involved, we performed ab-initio simulations of silicon surface
interacting with SO2 and NO2 via the SIESTA package, implementing DFT code.
The calculations were performed at Institut de Ciencia De Materials de Barcelona
(ICMAB-CSIC) using their computational resources.
The results of this simulation step are then exploited to perform simulation of
systems made of an enormous quantity of atoms. Due to their large dimensions,
atomistic simulations are not affordable and other approaches are necessary. Con-
sequently, calculations with physics-based softwares on a larger spatial scale were
adopted. The description of the obtained results occupies the last part of the work
together with the discussion of the main theoretical insight gained with the con-
ducted study.
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Chapter 1

Introduction

Silicon nanowires are quasi one-dimensional (1D) structures with a diameter smaller
than 100 nm with a consequently large surface to volume ratio. This property can be
exploited in many electronic devices [1]: with a gate wrapped around the nanowire,
it is possible to optimally control the charge density in the nanowire potential via the
gate potential. This has paved the way towards the adoption of silicon nanowires
in computational logic. When it comes to sensing devices, the small volume will
allow effectively controlling the potential of the nanowire by even a very small input
signal, making the approach very sensitive specifically for chemical sensing and bio-
sensing [2, 3]. But also the field of energy generation and storage can benefit from
the quasi 1D structure. In the solar cells the nanowires allow to more efficiently
collect the incoming solar radiation [51] whereby in Li-ion batteries the structure
allows for volume expansion [5].

A large number of techniques exist to fabricate silicon nanowires. These can be
classified into bottom-up and top-down fabrication techniques. In top-down fabri-
cation, lithography is used to define the fabricated structure that is then transferred
from the photo-resist to the substrate by etching or a similar way of structuring the
already available material. In the bottom-up approach, the material is added to the
substrate in a self-organized way.

This chapter will review the current status of silicon nanowire technology. In
the first part the silicon nanowire fabrication techniques will be summarized and
there advantages and disadvantages will be discussed. The second part will then
review the very important field of silicon nanowire based electron devices. Devices
that are targeted to extend the current semiconductor roadmap are discussed to-
gether with approaches that are intended to add new functionality to semiconductor
devices. The section on silicon nanowire based sensors will then focus on devices
that can take full advantage of the know-how from integrated circuit manufacturing
and illustrate further concepts. Finally, the possibilities for enhancing solar cells
and Li-ion batteries will be discussed. The last part of this introduction is focused
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1 – Introduction

on the general properties of silicon nanowires with particular attention on quantum
confinement potential and nanowire passivation.

1.1 Fabrication Techniques for Silicon Nanowires

Fabrication techniques of Silicon Nanowires are generally classified in top-down and
bottom-up techniques. Traditionally semiconductor technology is driven by top-
down fabrication using photo lithography, an approach which has successfully al-
lowed to scale down device dimensions up to the 10 nm range [6]. In contrast,
bottom-up techniques have the potential to produce very complex structures with-
out defining their details by a mask [7]. Both fabrication methodologies are possible
for silicon nanowires, each with its own advantages and drawbacks. In particular,
in the top-down fabrication, an ideally simple path from present planar structures
to FinFETs and nanowire-based devices can be envisioned. However, the etching of
the nanowire from the bulk silicon gives non-perfect geometry and requires advanced
lithography. On the other hand, an excellent crystal quality and small diameter can
be obtained through bottom-up processes. Neverthless, the realization of complex
structures like integrated circuits is still too far to be true. Therefore, combinations
of both paradigms are considered.

The most exploited nanowire synthesis method is the vapor liquid solid (VLS)
growth mechanism. In the VLS technique the growth results from a phase changes
that are mediated through a catalyst particle. That means that the material to be
grown, in this case silicon, is delivered in the gas phase, either molecularly or in the
form of a gas compound that is introduced into the growth chamber. Figure 1.1
shows a schematic sketch illustrating the widely adopted VLS growth.

In the case of Si, molecular Si precursors can be evaporated either by Si effu-
sion cells, or pulsed vapor deposition. Silicon gas precursors include mono-silane
(SiH4), trichlorosilane (SiHCl3) or higher order silanes. The catalyst particle acts
as a collector of silicon. When employing gas precursors, the catalytic nature leads
to lowering of the dissociation energies of the gas. Consequently, a high concentra-
tion of silicon atoms is found at the catalyst particle surface, leading to diffusion
into the cluster. An important implication of the VLS mechanism is that the size
of the Au cluster defines the diameter of the nanowire without the need of further
lithographic means. In addition, the catalyst position on the substrate dictates the
nanowire placement.

For top-down fabrication of nanowires well-established technologies from silicon
VLSI circuit technology can be applied. To form horizontal nanowires that are
electrically isolated from the substrate, two approaches are commonly used. In the
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1 – Introduction

Figure 1.1. Schematic view of VLS growth of silicon nanowires. a) Gold particles
formed on the growth substrate. b) VLS growth using silane as silicon precursor.

simplest one, a SOI substrate is used and the nanowire is etched into the thin active
silicon layer using an anisotropic etching process [8]. In the other approach bulk
silicon and a deep reactive ion etch (DRIE) process are used together to structure
a stack of nanowires [9]. Figure 1.2 shows both approaches schematically. The
latter approach is such that the footprint is small and there will be several parallel
nanowires to carry the current in a device using nanowires.

According to the procedures just described, the bottom-up fabrication will lead
to a vertical arrangement of nanowires and the top-down arrangement will lead to a
horizontal arrangement of nanowires. If horizontal nanowires have to be fabricated
by the bottom-up technique, the alignment is very critical. In general the nanowires
will be dispersed on the receiving substrate. For basic research, it can be sufficient
to simply use a direct writing lithography technique to further built the required
device. However, for mass fabrication an alignment of the structures will be required.
Although some promising approaches have been shown, so far no technique for
reliable mass fabrication is available. Therefore, the top-down approach seems to
be the approach of choice for the mass fabrication of horizontal silicon wires using
a silicon substrate. Also vertical wires can be achieved by using lithography and a
subsequent anisotropic etching [10, 11], this technique has the drawback that very
high aspect ratios have to be etched and dimensional control is very critical. On
the other hand, the bottom-up approach naturally yields vertical devices [12] and
the precise positioning can be controlled by a defined positioning of the catalyst
particles.

Besides the fabrication of the nanowires themselves, a few critical processing
steps have to be available to fabricate electron devices. The most important are: the
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Figure 1.2. Horizontal silicon nanowires fabricated by top down fabrication. a)
Starting with SOI substrate and etching using anisotropic reactive ion etching.
b) Starting with bulk substrate and etching with deep reactive ion etching and

subsequent oxidation. From [1].

previous mentioned alignment of nanowires in case that bottom-up grown nanowires
will be used, the doping of nanowires, the formation of contacts to the nanowires
and finally the formation of a well-defined dielectric shell.
For alignment, a number of techniques have been proposed [13, 152]. Dielectrophore-
sis has been used successfully for wire alignment [15, 16]. Microfluidic alignment [81],
contact printing [18, 19] and Langmuir-Blodgett techniques can also be used [20, 21].
However, all methods still face issues with either wire density for high integration
or rather low yield of the desired structures or both. Therefore, for high device den-
sities comparable or beyond the state of the art, CMOS top-down approach is still
the more preferred choice to define the nanowire location. However, for applications
on flexible substrates or in sensors with parallel nanowires [19] some of the available
procedures like contact printing could already be sufficient.

Doping of nanowire structures is also a critical issue. In modern CMOS fabri-
cation, most doping steps are done using ion implantation. This, however, is not
straightforward due to the geometry of silicon nanowires. Specifically the defined
doping in a vertical arrangement is problematic. In bottom-up grown structures
different options exist to dope the wires during growth. In case of catalyst-enabled
growth, it is an intriguing idea to use the catalyst itself as dopant for the nanowire.
Nevertheless, especially p-doping by using aluminum catalysts has recently shown
very promising results [22].
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To contact the nanowires a metal to nanowire contact is required. This can be
the limiting factor for the device construction [23]. Using a metal silicide is very
favorable method [161, 25].

Finally in order to achieve reproducible device properties it is important to pas-
sivate the nanowire surface and form a good gate insulator for a field effect tran-
sistor (FET). The natural oxide of silicon is one of the main reasons why silicon
has considerably outperformed every other semiconductor for high density and high
performance circuits and systems [26]. Therefore, it is natural to also use silicon
dioxide in silicon nanowire devices and indeed it can deliver excellent properties
[27]. However, also here the higher k value of materials like hafnium dioxide (HfO2),
which is established in CMOS technologies today, is of benefit [28].

1.2 Devices Based on Silicon Nanowires

Silicon demonstrates unique properties in structures with a 1D shape. Quantum
confinement of electrons and holes is predicted to be substantial only at aggressive
diameters below of 3 nm [29]. Note that this is in contrast to III-V semiconductors,
where confinement is visible already at larger diameters. Thus, the behavior of Si
nanowires is considered as quasi 1D. The band structure is strongly modified for Si
nanowires with diameters below 10 nm. The band gap increases for smaller diame-
ters and a direct band gap can be obtained for sufficiently small diameters [29, 30].
Thanks to these effects and properties, silicon nanowires with very small dimensions
can be used in devices in many different ways. One example is represented by field
effect devices, where a gate electrode is wrapped around the nanowire, hence provid-
ing an optimum geometric gate coupling. In addition to this, if the silicon thickness
is small enough to allow a full depletion at low voltages the best scaling behavior
of the device can be achieved [31]. Moreover, the density of states can be exploited
allowing to design nanowire field effect devices to operate either in a classical gate
capacitance limited mode or the quantum capacitance limit. In the latter the chan-
nel charge remains constant when scaling down the gate oxide thickness leading to
an improved power of delay product [32].

Logic devices benefit largely from the excellent gate control when implemented
in a nanowire structure. However, for viable applications additional requirements
have to be fulfilled. Thus, alternative concepts to the conventional MOSFET have
emerged. The most important of these are illustrated in Fig. 1.3. With ever
decreasing device dimensions doping becomes more and more problematic. On the
one side the doping profiles need to be controlled much more precisely. However,
due to diffusion during dopant activation an ideal steplike profile is hard to achieve
even if very short millisecond annealing is used. Second, the number of dopants
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in the active channel region decreases. Since the relative variability will scale with
N≈1/2 [33] doping fluctuations will make the control of the threshold voltage nearly
impossible [34]. In addition to these difficulties, it has been proven by calculations
and experiments, that for certain nanowire geometries, the ionization energies of
dopants are higher than in bulk [35, 36]. For nanowires without a surrounding gate
dopant deactivation takes place, i.e. to achieve the same doping effect, a higher
dopant concentration is needed, especially for thin nanowire diameters.

Figure 1.3. Different options for electron devices using silicon nanowires. The
top drawing a) shows a generic 3-D view of a silicon nanowire device with metallic
source/drain regions and the surrounding gate. The cross sections b-e illustrate
different device concepts: b) Conventional nanowire MOSFET, c) Schottky Barrier

FET, d) Junctionless FET and e) Tunnel FET. From [1].

Both the Schottky barrier field effect transistor (SBFET) [37, 38] and the junc-
tionless transistor [39] can help to control these issues. In the SBFET, the highly
doped source and drain regions are replaced by metal-semiconductor Schottky junc-
tions, and the silicon body of the transistor can be undoped. The device benefits
from the nanowire geometry since very sharp and defined silicide junctions can be
used [40]. For charge transport this implies that two energy barriers are introduced
along the current path. The thickness of these barriers is efficiently controlled by
the gate due to the electric field enhancement at the tip-like metal electrode geom-
etry. The on-state for sufficiently small gate lengths is given by tunneling through
the Schottky barriers, while the off-state is controlled by thermionic emission over a
high and thick energy barrier. The undoped channel eliminates issues of threshold
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voltage control caused by doping fluctuations. In the junctionless device, the whole
nanowire is highly doped. Thus, the formation of a very sharp junction in the scaled
device is elegantly avoided.

One of the biggest challenges for further device scaling is the inability to scale
the threshold voltage due to the thermal limit of 60 mV/dec for the subthreshold
slope. Since lowering the supply voltage is of very high importance both for physical
device scaling and reduction of the power consumption it is one of the most pressing
issues to find ways in order to reduce the subthreshold slope below this value. One
promising option is the tunneling field effect transistor (TFET) [41].

The TFET would also greatly benefit from the nanowire geometry. From an
electrostatic point of view, the nanowire geometry with a surrounding gate stack fa-
cilitates sufficient band bending for band-to-band tunneling. Furthermore, for suf-
ficiently small diameters the energy distribution of density of states exhibits van
Hoove singularities. Hence, a comparatively high amount of states are available for
band to band tunneling at the conduction and valence band edges. As the energetic
window for band to band tunneling cuts the high energy tail of the Fermi distri-
bution function, the tunnel FET principally enables a switching behaviour with a
reduced subthreshold swing below 60 mV/dec at room temperature. However, like
in Schottky FETs, the tunneling transmissibility through the energy barriers limits
the on-current through the device. Therefore, from today’s point of view TFET
are alternatives for low operating power. Recently, encouraging results have been
shown demonstrating a performance that is coming close to the requirements for an
actual implementation [42, 43]. In a recent publication [44] the combination of a
junctionless transistor and a tunnel FET is described, combining features of both
device types.

All those devices target an improvement of the classical CMOS technology, ex-
ploiting the enhanced electrostatic control within the nanowire geometry. However,
silicon nanowires also enable a new type of transistor, in which the device polarity
can be controlled by an electrical signal [45]. Therefore the same physical device can
be used at different times as p-channel or n-channel transistor. These so called recon-
figurable field effect transistors (RFET) or Multiple-Independent Gate transistors
hold the potential to lower the transistor count needed for the same functionality
and be used in complex array configurations. The different concepts to build such
a device are illustrated in Fig. 1.4.

In the electrostatic doping approach [46], shown in Fig. 1.4-a, the back- gate is
used as program gate to select electron or hole transport. The program gate bends
the silicon bands at both junctions simultaneously. Negative program gate voltages
increase the barrier height at the conduction band and thereby block electrons. At
the same time the energy barrier height for holes is the natural Schottky barrier
height. Its thickness is diminished and thermal assisted tunneling of holes can take

7



1 – Introduction

Figure 1.4. Schematic cross sections of the different concepts for reconfigurable
silicon nanowire devices. In the electrostatic doping device (a) the back gate is used
to adjust the barrier heights and a top gate controls the current trough the device.
The simultaneous control of both Schottky barriers (b) can also be accomplished
by using top gates and an additional control gate in the middle then controls the
carrier flow. In the RFET (c) approach the program gate above the drain junction
and the control gate above the source junction control the polarity and the current

flow respectively

place. Correspondingly, positive program gate voltages block holes and enable elec-
tron injection. Once the program gate is set to a specific polarity, the top gate is
then used to adjust the amount of current flowing from source to drain. The use
of buried and common gates, as employed in Fig. 1.4-a, implies having a compar-
atively weak gate coupling to the active region and therefore a high gate operation
voltage. Moreover, the independent operation of neighboring devices, as required in
integrated circuitry, can only be solved by substantial technological means leading
to a limited scalability of this structure.

In the approach sketched in Fig. 1.4-b, the two outer top gates are kept at the
same potential and provide a similar function as the back gate in Fig. 1.4-a. Thus,
this concept allows the individual control of different devices in one chip. In the
top-down realization a surrounding gate architecture is provided for both control
and program gates [47]. Moreover, in a single device numerous nanowire channels
are vertically stacked in parallel to enhance the drive current. The three gates can
also be connected independently to allow the control of the threshold voltage of the
device.

The RFET device shown in Fig. 1.4-c uses two independent top gates each
overlapping one of the Schottky junctions. One of them is used to control the
polarity. The other is used to control the amount of current flowing through the
device. In contrast to the other polarity control concepts and to conventional CMOS,
the main part of the active region is ungated.

Recently significant progress has been made both in understanding and designing
the appropriate transport mechanisms and showing the benefit of building circuits
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out of the reconfigurable devices [48]. If CMOS circuits are to be constructed from
such devices, it has to be considered, that the geometry cannot be adjusted according
to an unbalanced current output of p-channel and n- channel devices since the
same device has to be usable in both configurations. Therefore, the output has
to be symmetrical for both carrier types. Using stress engineering this could be
demonstrated in the approach with two top gates illustrated in Fig. 1.4-c [49].

1.3 Silicon Nanowire Based Solar Cells

Energy generation from renewable sources and storage of electrical energy can ben-
efit from silicon nanowires as well, as they have the potential to increase the optical
absorption and collection efficiency in solar cells [50, 51]. Single nanowire solar cells
can be used to study the parameters that influence the performance of nanowire
based photovoltaics [51, 52]. Additionally, they allow a simple integration with
nanowire based electronics and sensors [51]. For general purpose solar cells, how-
ever, the single wire elements have to be arranged in large arrays [53]. The low
cost bottom-up growth, which is compatible with different types of substrates, is
the fabrication method of choice for such devices. In order to accomplish all the
requirements, a coaxial structure is the best one. First of all, the possibility to fabri-
cate radial pn- junctions has shown promising results. Figure 1.5 shows a schematic
view of a silicon nanowire array based solar cell using this concept. Moreover, the
flexibility of combining different materials in the nanowire arrangement is utilized
as can be seen, for example, in [54].

Figure 1.5. a Schematic view of a silicon nanowire based solar cell with a radial
pn-junction. b SEM micrographs from top view and cross section of the solar cell,

as well as from the silicon nanowire array. From [55]
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1.4 Silicon Nanowire Based Sensors

A sensor transforms a physical or chemical signal of the environment into an elec-
trical signal [56]. Normally, the sensor device can be split into the active sensing
part, which translates the input signal into an intermediate signal and the trans-
ducer that translates the intermediate signal into the final electrical signal. In many
cases, the two parts are closely linked. The quasi 1-D properties of nanowires can be
utilized in transducers and in some cases also for the active sensing part of the chain.
Especially chemical and biochemical sensor research has intensively utilized silicon
nanowires in the last decade [57]. The research on chemical and biochemical
sensors is again strongly driven by the exploitation of the extremely high surface to
volume ratio combined with excellent mechanical stability. Having in mind that ex-
cellent field effect transistor devices can be constructed, it is a natural consequence
to apply the idea which Bergveld first explored in 1971 [58] in the ion sensitive field
effect transistor (ISFET) to measure variations in the impedance. The transfer of
these ideas to nanowire-based devices was therefore already demonstrated more than
a decade ago [161]. For biochemical sensors the diameter of the nanowires can be
as small as the species to be detected. This enables a very high sensitivity of the
sensor device even if parallel nanowires are used in order to increase the device cur-
rent, since the current percolation paths are effectively blocked already by a single
molecule per nanowire. Looking at a single nanowire this situation paves the way
to single molecule detection as demonstrated in [60].
It is important to point out that nanowire based devices have their specific advan-
tage when it comes to a very sensitive detection in small volumes and therefore can
enable biosensors that are not possible using a planar transducer.

The small size, flexible fabrication and mechanical properties of nanowires can
also be utilized to extend the functionality of biological sensors. Nanoscale FET de-
vices can be integrated at the tip of a kinked silicon nanowire, as it is reported in [61].
Here, the nanoscale connections are made by the arms of the kinked nanostructure.

1.5 Electronic Properties of SiNWs

Silicon nanowires are, due to their small dimensions, greatly sensitive to the structure
details, interface properties which determine the electron properties of the devices.
Analogously, in the limit of very large diameter, their properties converge to those
of bulk Si. Pristine nanowires turned out to have a limited relevance, at least to
date, because experimentally grown SiNWs are always passivated. However, the
study of bare unpassivated wires is still interesting for two reasons: a) it leads to
the conclusion that passivation is essential to obtain nanowires with predictable and
easy to control electrical properties and b) it sheds a light on some atomic-scale
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mechanisms of fundamental interest.
An interesting example in this sense is the electronic structure of [100] SiNWs

with [100] facets. While other facets, like the [111] facets, have an electronic struc-
ture similar to the corresponding infinite surface [100] facets can be very different.
In the Si [100] surface each surface atom has two dangling bonds. Wires dominated
by such facets have been reported to be metallic. Rurali and Lorente [62], more-
over, showed that thin 100 SiNWs sustain two different reconstructions of the [100]
facet that turn the wire metallic or semimetallic, in agreement with Ismail-Beigi
and Arias [63]. The metallicity rapidly vanishes as the diameter is increased and
the semiconducting electronic structure of the Si [100] surface is reobtained.

Such wires are not desirable for electronics application: on the one hand, one
wants to work with semiconducting systems; on the other hand, although some ap-
plication can be found for metallic SiNWs, e.g., interconnects, the metallicity should
be much more robust, so that it does not depend on the atomic-scale structure of
the wire.

A comprehensive study of the surface reconstruction and electronic structure of
pristine [110] wires has been carried out by Singh et al. [64]. The cross section
chosen for these wires is such that they have [100] and [110] facets. These [110]
SiNWs turned out to be indirect band-gap semiconductors, with the states of the
valence band top and the states of the conduction band bottom originating at dif-
ferent facets. However, small variations of the atomic-scale structure or of the cross
section can result in major changes in the electronic structure.

1.5.1 Passivated Nanowires

As mentioned surface passivation is required to obtain ultrathin nanowires that are
semiconducting and have a predictable and controllable band gap. Notwithstanding,
the electronic structure of the nanowires still depends on the growth orientation, on
the cross-section shape, and on the diameter. The band gap is strongly anisotropic
[65] and, for wires of comparable diameters, it follows the ordering

E100
g > E111

g > E110
g (1.1)

with the orientation effect still sizeable up to 3 nm in diameter; see Fig. 1.6.

1.5.2 Quantum confinement

One of the most intriguing physical effect that arise in confined systems like SiNWs is
the so-called quantum confinement. Such a regime is conveniently described through
the particle-in-a-box model system in most quantum mechanics text books (Brans-
den and Joachain, 2000). The simplified situation considered is an infinite potential
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Figure 1.6. Band structures of [100],[110], [111] and [112] SiNWs with a diameter
of 3nm cross sections in the insets. The arrows indicate the fundamental band gap
which is direct for [100] and [110] SiNWs and indirect for [111] and [112] SiNWs.

From Ng et al., 2007.

well where the motion of the particles is restricted to be in the direction of the con-
finement. As the motion of the particles is restricted, their kinetic energy increases
and it is readily shown that the eigenstate energies are given by

En =
~2n2π2

2m∗d2
(1.2)

where m∗ is the effective mass and d is the width of the potential well. Accord-
ing to the equation, not only the energy levels, but also the spacing between them
increases as the confinement becomes more pronounced, i.e., the smaller d is. Quan-
tum confinement has a critical impact on semiconductors because it affects directly
their most important electronic property: the energy bandgap. Semiconducting
nanowires provide a good approximation of the model situation described above.
Clearly, the potential well is not infinitely deep and realistic wire cross sections are
difficult to describe analytically, thus there is a need for a detailed electronic struc-
ture modelling.

The first experimental proofs of quantum confinement in nanostructured Si were
reported in the pioneering works of Canham [66] and Lehmann and Gosele [67],
where a simple electrochemical etching process was used to create crystalline Si
nanostructures with visible luminescence at room temperature. As TEM images
revealed later (Cullis and Canham, 1991), the etched structures consisted of rather
disordered bundles of nanowires. Buda et al. [68] performed DFT calculations of the
band-gap upshifts in perfect H-terminated SiNWs as a function of wire thickness.
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These works showed that the fundamental gap is direct at the Γ point. This makes
by itself the probability of radiative recombination higher than in bulk Si, since no
phonon is required in the electron-hole recombination process. Unfortunately, as it
is well known, standard local and semilocal implementations of DFT fail to account
quantitatively for the band-gap of semiconductors and one must resort to self-energy
corrections to the Kohn-Sham gap to obtain good agreement with the experimental
values. Yet, the trends are expected to be qualitatively correct: Williamson et al.,
reported band-gap upshift of up to 2 eV for wires of 12 Å diameter. They also
showed that a generalization of eq. 1.2 gives a good description of the quantum
confinement for wires wider than 23 Å, whereas thinner wires show significant de-
viations from this idealized EMT picture. In such a range Buda et al. [68] showed
that with the more realistic DFT potential the band gap scales as the inverse of
the diameter d, rather than 1/d2 as predicted by particle-in-a-box arguments where
infinitely hard walls are assumed.
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Chapter 2

Multi-Gate Transistors: an
Introduction

Since the 1990’s the cooperation among semiconductor companies and academia led
to the elaboration of an instrument to predict more precisely the future of the indus-
try. They called it International Technology Roadmap for Semiconductors (ITRS)
organization. It issues a report that serves as a benchmark for the semiconductor
industry, describing the type of technology, design tools, equipment and metrology
tools that need to be developed to keep pace with Moore’s law.

The most important technology of semiconductor industry has been silicon CMOS,
and the building block of CMOS is the MOS transistor or MOSFET. With the aim of
fulfilling the rythm of Moore’s law, the linear dimensions of transistors have reduced
by half every three years. The sub-micron dimension barrier was overcome in the
early 1980’s, and currently semiconductor manufacturers are producing transistors
with a 20nm gate length. The first integrated circuit transistors were fabricated on
”bulk” silicon wafers, but at the end of the 1990’s, a significant improvement was
obtained by switching to a new type of substrate called SOI (Silicon-On-Insulator)
in which transistors are made in a thin silicon layer deposited on top of a silicon
dioxide layer. Both circuit speed and power consumption improved with SOI tech-
nology due to the fact that SOI devices have reduced parasitic capacitances and
enhanced current drive.

2.1 Short-Channel Effects

In the ongoing reduction of transistors’ dimensions, the distance between the source
and drain terminals in MOSFETs reduces dramatically with a consequent weaken-
ing of the capability of the Gate electrode in controlling the potential distribution
and the current flux in the channel. Hence, pernicious effects called Short-Channel
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Source Drain

BULK

Gate

Fully-Depleted SOI

Gate

Source Drain

Buried Oxide

Figure 2.1. Bulk MOSFET and SOI MOSFET

Effects start afflicting MOSFETs functionalities making it impossible to shrink their
dimensions below 20nm. If no solution to overcome this limitation could be envi-
sioned, a saturation in the transistors density on chip would certainly occur.

Short-Channel Effects arise when the control on the channel region exerted by
the gate is affected by the electric field lines going from drain to source. These lines
propagate through the depleted areas associated with the junctions. Their impact on
the channel can be reduced, for example, increasing the doping concentration in the
channel. However, in very small devices doping become far too high (1019at/cm3)
to allow for the device to work properly. In a ”fully depleted SOI” device, on the
contrary, the electric field lines addense in the buried oxide (BOX) before reaching
the channel region. In this tipology of devices, short-channel effects can be more
or less intense depending on the silicon and oxide thickness and on the doping
concentration.

In order to give a quantitative description of Short-Channel Effects, a series
of parameters has been defined. But, before proceeding with the introduction of
these parameters, it is necessary to remind the defintion of threshold voltage. The
threshold voltage is defined as the difference between the gate and source voltage
capable of determining a given surface charge density in the channel.

When increasing the applied drain-source voltage, the potential energy barrier
in the channel lowers; its lowering can be quantified through the change of threshold
voltage when the applied voltage is high (e.g. 1V) and low (e.g. 0.1V). We have
just defined the DIBL (Drain Induced Barrier Lowiering)

DIBL = VTH(high Vds)− VTH(low Vds) (2.1)

Similarly, the effect of the channel length can be expressed via the change in the
threshold voltage in condition of long-channel and short-channel device. This quan-
tity is called ”Threshold Roll-off”:

∆VTH = VTH, long−channel − VTH, short−channel (2.2)
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Figure 2.2. Structure of a Double-Gate Transistor.

To conclude, we define a parameter able to express how much the sub-threhsold
region has been modified; the ”Subthreshold Swing” is given by:

S =
∂VGS

∂ log IDS
(2.3)

2.2 Multi-Gate Transistors

Multi-Gate transistors represent an alternative to silicon-on-inulator MOSFETs in
the attempt to increase the current drive and better control the short-channel effects.
Some examples of Multi-Gate Transistors are: Double-Gate Transistors, Tri-Gate
Transistors, FinFETs, Gate-All-Around Transistors. With the name ”double-gate”
we usually refer to the case of a single gate electrode on two opposite sides of the
device structure. Analogously, things are defined for the ”tri-gate”. An exception is
represented by the MIGFET (Multiple-Independent Gate FET) where two different
gate electrodes can be biased with different voltages.

2.2.1 Double-Gate and FinFET

The first paper on Double-Gate MOSFET(fig.2.2) was published by Sekigawa and
Hayashi in 1984. In that work the authors showed how a huge decrease in the short-
channel effects could be obtained with the insertion a fully-depleted SOI device
between two connected gate electrodes. This device had the name XMOS because
its cross-section looked like the greek letter Ξ. By adopting this configuration a
better control in the depleted channel region could be obtained compared with the
traditional SOI MOSFET; in particular, the impact of the electric field by the drain
on the channel is less intense.

The first fabricated Double-Gate MOSFET was, however, the ”fully DEpleted
Lean-channel TrAnsistor (DELTA, 1989)”: the device is made by a narrow and high
silicon region called ”fin”. A modification of DELTA is the known FinFET (fig. 2.3)
whose structure is similar the that of DELTA with the exception of an oxide layer
(called ”hard mask”) on the silicon fin. The ”hard mask” was introduced to prevent
the formation of parasitic channels in the inversion corners in the high section of
the device.
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Figure 2.3. Structure of a FinFET.

Source
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Figure 2.4. Structure of a Gate-All-Around Transistor.

The MIGFET (Multiple-Independent Gate FET) is a double-gate device whose
gate electrodes are not connected together and can be biased with different voltages.
The main characteristic of MIGFET is the possibility to tune the threshold voltage
of the device by changing the potential on one of the gates.

2.2.2 Gate-All-Around transistors (GAA)

The structure which offers the best control on the channel region is the ”Gate-All-
Around” Transistor (see fig.2.4). In this case, a metal gate entirely wraps the silicon
channel exerting the strongest electrostatic control. Moreover, the section of this
device can be squared or circular although devices with different cross-sections have
been investigated.
A collection of the most important Multi-Gate devices is shown in fig.2.5.
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Figure 2.5. Collection of Multi-Gate Devices.
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Chapter 3

The Model

3.1 Introduction

In this Chapter we will present the core of the Model. Specifically, the structure
definition and the modelling approach are introduced in sect. 3.2 while the de-
scription of Quantum-Mechanical and Short-Channel Effects is postponed to sect.
3.3.4. Given the simplicity of the modelling procedure we are going to expose, some
generalizations for more complex structures were possible; we will delve into them
in sect. 3.4. Only in the next chapter we will present the validation results of our
methodology.

3.2 Structure definition and Objectives

To apply the proposed methodology, the device is divided into a series of slices (Si)
for which an electrical model is available. The overall structure is thus decomposed
into a series of sections and the study is brought back to the analysis of simpler parts.
In the case of Fig. 3.1-a, for example, a single slice is represented by a single-gate
Gate-All-Around MOSFET (Fig. 3.2-a). The constitutive sections don’t need to be
identical or to share the same parameters (they can lack a gate or differ in length). In
Section 3.4, we will show, as an explicative case, how to modify the procedure when
gateless sections are present and the silicon channel of the device is uniformly doped.

In the proposed method, the electrical behaviour of the single slice (hereinafter
section) is supposed to be known and expressed through a model. This allows the
current flowing in it to be calculated with a formula which, for GAA MOSFETs,
has the form
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b) c)

Figure 3.1. General structure of a device with multiple sections and two examples
of application: a) Cascade of N Gate-All-Around MOSFETs: current and voltages
are related the gate voltages and VDS ; b) Structure of a Gate-All-Around Vertically
Stacked Silicon Nanowire FET where different structures in a) are connected in
parallel between metallic contacts and biased by three different gate potentials; c)
Schematic representation of a Gate-All-Around Silicon Nanowire array: nanowires
on the top layer bias the transistors on the bottom one: resulting current flows

through the sections.

IDS = µ
2πR

L

∫ VDS

0

Q(V )dV (3.1)

where µ is the mobility of carriers, L is the length of the section, R its radius, Q(V )
and V the density charge and the potential along the channel, respectively. Between
the drain and source terminals, a potential VDS is applied. The drain current of any
single section Si is then function only of the charge densities at its source and drain
ends and can be thus computed independently provided that the potentials VDi and
VSi are known.

For the entire structure of Fig. 3.1, the objective is to analyze the voltages and
current along the device with no constraint on its parameters: the lengths of the
sections L1,L2,L3, the applied voltages to the gates Vg1,Vg2,Vg3, the radius of the
nanowire R and the oxide thickness tox.
The following hypothesis are necessary: no voltage drop occurs across the contacts
between two adjacent sections Si,Si+1; the current flowing in each section is the same
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Figure 3.2. Gate-All-Around Single-Gate MOSFET and a two-section structure.

(IDSi = IDSi+1
). The fundamental ideas behind the proposed methodology will be

outlined in the following section.

3.3 The core of the Multi-Gate Device Model

This section presents the method for calculating the voltages and currents along a
structure constituted by only two physical sections in order to show the main steps
in a simple case.

3.3.1 Generalities

Alg. 1 presents the steps to follow for the analysis of a two-section structure when
the charge model in [113] is adopted to describe each section. This scheme is in
principle almost independent of the employed charge-based model. A different choice
of model would imply slight modifications in the overall method, basically requiring
to solve the equations (for current, charge, etc.) outlined in Section 3.3.3 for the
new expressions. The considered two-section device is depicted in Fig. 3.2-b. Its
electrical behavior is exhaustively described by Vs and Vd, the potentials at its source
and drain terminals, Vp1 the potential at the interface between the sections, IDSi the
current along the section Si and Qsi, Qdi the charge densities at source and drain,
respectively. The method consists of estimating the charge densities in the structure
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and then of calculating the potentials and currents with successive approximations.
A traditional approach in determining charge and current would proceed by reducing
the number of variables in the equations. However, the strongly non-linear equations
to solve do not usually admit closed-form solutions and require numerical solutions.
Here, we introduce a procedure that allows us to accurately estimate the potential
Vp1 after few mathematical steps, that will provide the basis to the calculation of
the current. All the steps are discussed in details in the following section.

Algorithm 1 Procedure for two sections

1: procedure
2: Estimate Qs2 with Qs2,in . from (3.11)
3: Calculate Vp1 . from (3.12)
4: repeat
5: Calculate Qd1 . from (3.13)
6: Calculate IDS1 . from (3.15)
7: Calculate Qs2 . from (3.16)
8: Calculate Vp1 . from (3.17)
9: until ‖Vp1 − Vp1@previousiteration‖ < ε

10: return Vp1, IDS1
11: end procedure

3.3.2 Discussion About Convergence

The introduced relaxation method allows us to compute the solution of a non-linear
system starting from an initial estimate. Its value is then gradually refined by
applying repeatedly an operator until the method converges to a sufficient accuracy.
In our case, we refine the value of the intermediate potential Vp1. The refinement

process can be described, such that an operator Ô is applied to Vp1 at step m in
order to obtain its value at step m+ 1:

Vp1(m+ 1) = ÔVp1(m) (3.2)

This procedure is iterated until the solution is sufficiently accurate, or equivalently
until the error between two successive approximations becomes smaller then an
arbitrary threshold ε:

Err(m) := ‖Vp1(m+ 1)− Vp1(m)‖ < ε (3.3)
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This condition can be rewritten in terms of the operator Ô, as:

Err(m) = ‖ÔVp1(m)− Vp1(m)‖ = ‖(Ô − 1)Vp1(m)‖
= ‖(Ô − 1)ÔVp1(m− 1)‖
= ‖Ô(Ô − 1)Vp1(m− 1) + K̂Vp1(m− 1)‖
≤ ‖Ô‖Err(m− 1) + ‖K̂‖‖Vp1(m− 1)‖

(3.4)

In (3.4), we expressed the error at step m as a function of the error at the preced-
ing step and we introduced the non-linear operator K̂ := [Ô,Ô − 1] defined as the
commutator of the two operators in brackets, with 1 is the identity operator. At
this point, a formal analysis would be required to validate the convergence of the
error. However, such formal proof is difficult due to the strong non-linearity of the
operators involved, as highlighted in the following sections. Moreover, the nature
itself of the operator Ô depends on several physical parameters (channel lengths,
gate voltages, ...) which can vary over a large physical domain, thus making the an-
alytical treatment difficult. Hence, a general proof for the gradual reduction of the
error will not be proposed here. We resort, instead, to present a heuristic reasoning
which justifies the convergence of the approach.
In the considered device structure, the currents flowing through the different sec-
tions are the same, namely IDS1(Vp1(m)) = IDS2(Vp1(m)). According to the device
physics, the two currents are continuous functions of Vp1, respectively monotonically
increasing and decreasing. The value of Vp1(m+1) is computed by evaluating one of
the members of the equation and solving the resulting expression for a new value of
Vp1. If the value of Vp1 used as an estimate is larger than its exact solution, then the
next value Vp1(m+1) will be smaller than the exact solution since only a smaller po-
tential allow the same current to flow through the devices. The same consideration
holds if the estimate of Vp1 is larger than the exact solution. Thus, the sequence of
values of Vp1 are alternatively larger and smaller with respect to the exact value Vp0.
If the initial difference between the initial guess and the exact solution is not too
large, the method will converge to the exact solution in most cases. For the initial
value adopted in the paper, convergence has been verified by extensive simulation
for a large variety of parameters’ choice. In case of missed convergence, a different
initial guess can be used.

3.3.3 Closed Form Expressions Derivation

The introduced procedure requires to solve closed form expression a certain number
of times. This number depends on the accuracy to be met: for greater accuracy, a
better estimate of Qs2 is required. Results will show that this number is usually very
small and dependent on the number of sections. In what follows, the equation for
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the potential has been written for intrinsic channel. In Section 3.4.3, the derivation
for a doped channel will be shown.

According to the hypothesis that the current flowing in each section is the same,
we start by imposing the condition IDS1 = IDS2. By referring to the formula for the
current from the model in [113], this is equivalent to (3.5):

µ
2πR

L1

[
2
kT

q
(Qs1 −Qd1) +

Q2
s1 −Q2

d1

2COX
+
kT

q
Q0 log

[
Qd1 +Q0

QS1 +Q0

]]
=

= µ
2πR

L2

[
2
kT

q
(Qs2 −Qd2) +

Q2
s2 −Q2

d2

2COX
+
kT

q
Q0 log

[
Qd2 +Q0

QS2 +Q0

]] (3.5)

where kT/q (henceforth Vth) is the volt-equivalent of temperature, where Boltzman-
n’s constant k must be in units of J/K and the temperature T is in units of K. The
unit of charge q is 1.6022× 10−19C. Q0 is a constant with the dimension of a charge,
whom value is (4εSi/R)× (kT/q), and COX is the oxide capacitance of a cylindrical
capacitor given by εOX/(R log(1 + tOX/R). Qdi and Qsi relate to the potentials at
the source and drain ends by the charge-control equation (3.6), where V = Vsi and
V = Vdi for the two cases Qdi and Qsi respectively:

VGSi −∆ϕ− V−
kT

q
log

(
8

δR2

)
=

Q

COX
+

+
kT

q
log

(
Q

Q0

)
+
kT

q
log

(
Q+Q0

Q0

) (3.6)

where ∆ϕ is the difference between gate metal and silicon working functions. No
analytical solution for the charge densities and Vp1 can be found from (3.5) and
(3.6). However, we can actually realize that, in our problem, we have:

Vs1 < Vd1 ≡ Vp1 (3.7)

Vs2 ≡ Vp1 < VDS (3.8)

These inequalities express the fact that, assuming that the potential on the source
of the structure is zero (Vs1 = 0V ) and that a positive voltage VDS is imposed to the
whole structure (a negative VDS does not imply modifications due to the symmetry),
a positive voltage drop occurs on each of the two inner regions between their drain
and source terminals. This is to say that the drain potential is larger than the source
potential on both inner devices. These considerations made, the monotonic trend
of charge with voltage revealed by (3.6) yields consequently:

Qd1 < Qs1 (3.9)

Qd2 < Qs2 (3.10)
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As a first approximation, we can neglect Qd1 and Qd2 in (3.5) in order to find an
initial estimation of Qs2 and solve the resulting equation (3.11). We stress here
that this is only an initial estimate for the charge densities at the drain contacts,
which will be corrected by successive iterations of the procedure. The obtained
approximate initial value of Qs2 is called Qs2,in:

1

2COXL2

Q2
s2,in +

2Vth
L2

Qs2,in − Q2
s1

2COXL1

− 2VthQs1

L1

= 0 (3.11)

With the obtention of Qs2,in, Vp1 is easily found by directly solving the charge-control
equation (3.6) as:

VG2 −∆ϕ− Vp1 −
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+
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This value of Vp1 is, however, only a rough estimate whose accuracy needs to be
improved. We proceed then and compute Qd1 through (3.13) and (3.14):

Qd1 = COX
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2
th

Q0

+

√(
2COXV 2

th

Q0

)2

+B

 (3.13)

B = 4V 2
th log2

(
1 + exp

(
VGS1 − VT +∆VT − Vp1

2Vth

))
(3.14)

These relations, taken from [114], give reasonably accurate solutions to (3.6). The
parameters non explicit here, such as VT ,∆VT or V0, can be found in [114]. In partic-
ular, VT corresponds to the threshold voltage and plays a crucial role in describing
the quantum mechanical and short-channel effects in the device, as it will be de-
scribed in the next subsection. From Qd1, the current IDS1 in the first section is
given by (3.15):

IDS1 = µ
2πR

L1

[
2
kT

q
(Qs1 −Qd1) +

Q2
s1 −Q2

d1

2COX
+

+
kT

q
Q0 log

[
Qd1 +Q0

Qs1 +Q0

]] (3.15)
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The current must be equal in the two sections. Imposing again the condition (3.5),
we now get a new equation for Qs2 (3.16):

1

2COX
Q2
s2 + 2VthQs2 −

Ids1L2

2πµR

Q2
s1

2COXL1

− 2VthQd2+

− Q2
d2

2COX
+ VthQ0 log

(
Q2
d2 +Q0

Qs2,in +Q0

)
= 0

(3.16)

Finally, a more accurate estimate of Vp1 can be found by substituting this new value
in (3.17):

Vp = VG2 −∆ϕ−
kT

q
log

(
8

δR2

)
− Qs2

Cox
+

− kT

q
log

(
QS2

Q0

)
− kT

q
log

(
Qs2 +Q0

Q0

) (3.17)

The introduced procedure allows us to describe voltages and currents in a struc-
ture consisting of two different sections by means of a limited number of computa-
tional steps. It does not require numerical solutions of nonlinear equations, which
usually represent a consequent overhead on the computational efficiency and time
requirements. A fundamental feature of the proposed method is its iterative nature.
Steps can be repeated in sequence in order to meet the accuracy requirements (see
Alg. 1). Yet, good accuracy of data after only one iteration has been verified for
two-sections devices (two iterations are necessary for three-sections). This will be
shown in next sections.

3.3.4 Quantum mechanical (QME) and Short-Channel ef-
fects (SCE)

When the dimensions of the sections enter the nanometer range (< 10nm), quan-
tum mechanical effects start affecting the behaviour of the device. Consequently,
the charge density should be computed taking into account the quantum potential
confinement inside the channel. Following [124] and [125], this effect produces a
bandgap opening which can be described with a semiempirical shift of the threshold
voltage VT in the compact model on which our procedure relies. The change of VT
is

∆VT (QME) =
∆Eqm
q

where ∆Eqm is the shift of the conduction band due to potential confinement. Its
actual expression depends on the geometry of the sections and on the assumption
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made on the shape of the confining potential.
Analogously, SCE and DIBL are modelled with an extra shift in the threshold voltage
given by

∆VT = −2γSCE(VTo − V ) + γDIBLVds

where VTo is the long-channel threshold voltage while the parameters γSCE and
γDIBL are determined trough extrapolation from simulation results.

3.4 Generalizations of the method to more com-

plex structures

The method illustrated in the preceding section can be extended to more complex
structures. Indeed, our method presents features which make it useful to describe
a wide variety of problems. The most important is its independence on the model
adopted for describing each section. In the following, we describe how to modify it,
while maintaining the same model in each section, when the number of connected
devices is arbitrary (subsect. A), when devices without gate contact are considered
(subsect. B) and when doped-channel sections are present in the structure (subsect.
C). The whole procedure will be illustrated and schematized. Finally, some consid-
erations are made about the possibility of adapting the method also to devices with
different geometry with respect to Gate-All-Around MOSFETs (subject. D).

3.4.1 Arbitrary Number of Gates

The method enables an efficient description of structures with an arbitrary number
of gates as illustrated in Fig. 3.3. By referring to the model proposed in [113], the
extension of the algorithm proposed to this general case is almost straightforward
(see Alg. 2). By supposing that the current flowing in each of the n devices is the
same, we impose that for i = 2,...,n:

IDSi = IDS1

The choice of current IDS1 in the above equation is arbitrary and any other current
in the device could be adopted. Under the initial assumption Qdi << Qsi, this leads
to the following equation to a first estimate Qsi,in of Qsi:

1

2COXLi
Q2
si,in +

2Vth
Li

Qsi,in −
Q2
s1

2COXL1

− 2VthQs1

L1

= 0 (3.18)
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Vs=0V

Vp1

Vp(N-1)
Vd

.....

Figure 3.3. N -section Structure.

The voltages at the interface of adjacent sections Vpi can then be described with the
charge-control equation:

VGi−∆ϕ− Vpi −
kT

q
log

(
8

δR2

)
=

Qsi,in

COX
+
kT

q
log

(
Qsi,in

Q0

)
+
kT

q
log

(
Qsi,in +Q0

Q0

) (3.19)

The charge densities at the drain, instead, are given by (3.13) and (3.14). The
current comes from:

IDSi = µ
2πR

Li

[
2
kT

q
(Qsi −Qdi) +

Q2
si −Q2

di

2COX
+

+
kT

q
Q0 log

[
Qdi +Q0

Qsi +Q0

]] (3.20)

with i = 1,..,n− 1. Given the currents, the charge densities at source ends Qsi and
the values for Vpi are obtained from the following equations respectively:

1

2COX
Q2
si + 2VthQsi −

IDS1Li
2πµR

Q2
s1

2COXL1

− 2VthQdi+

− Q2
di

2COX
+ VthQ0 log

(
Q2
di +Q0

Qsi,in +Q0

)
= 0

(3.21)

Vpi = VG(i+1) −∆ϕ−
kT

q
log

(
8

δR2

)
−
Qs(i+1)

Cox
+

− kT

q
log

(
QS(i+1)

Q0

)
− kT

q
log

(
Qs(i+1) +Q0

Q0

) (3.22)
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The aforementioned procedure is summarized in Alg. 2, for an illustrative num-
ber of sections equal to three. Starting from an estimate of Qs2 and Qs3, the proce-
dure iterates four closed form calculations to attain voltage (Vp1, Vp2) and current
(Ids) results.

Algorithm 2 Procedure for three sections

1: procedure
2: Estimate Qs2 and Qs3 with Qs2,in and Qs3,in

3: . from (3.18)
4: repeat
5: Calculate Qd1 and Qd2 . from (3.13)
6: Calculate IDS1, IDS2 and IDS3 . from (3.20)
7: Calculate Qs2 and Qs3 . from (3.21)
8: Calculate Vp1 and Vp2 . from (3.22)
9: until Accuracy not met

10: return Vp1, Vp2, IDS1
11: end procedure

3.4.2 Gateless Sections

As stated in the previous chapter, not all parts of complex devices are gated. Fig.3.4
shows an example of a structure where an inner section is not wrapped with a gate.
The problem of determining the potential along the structure and the resulting

L

Vs=0V

Vd

Vp1
Vp2

Figure 3.4. Structure with a gateless section

current can be addressed easily through the method already discussed with only
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slight modifications. Let us define the parameters related to a gateless section: LR
the length of the section, ND its doping level and R its radius. No control is actually
exerted externally on the charge density along the gateless section. In the context
of Fig. 3.4, where the inner part is gateless, this leads to a simple resistive behavior
of the slice:

Vp1 = Vp2 −RIDS2 (3.23)

where the resistance of the channel is related to the channel length and doping level
by:

R = ρ
LR
A

=
1

qµND

LR
2πR2

(3.24)

where A is the section of the channel, LR its length and ρ the channel resistivity. By
introduction of this new equation into the previous methodology, one gets a simple
algorithm to derive potentials Vp1,Vp2 and current IDS. Alg. 3 describes schemat-
ically the whole iterative process, that is again very close to the one presented in
Section 3.3.3 for a two-sections structure. The main difference between the two is
given by (3.23) which is now adopted to compute Vp1 instead of (3.22).

Algorithm 3 Procedure for structures with gateless sections

1: procedure
2: Estimate Qs2 with Qs2,in . from (3.11)
3: Calculate Vp2 . from (3.22)
4: repeat
5: Calculate Qd2 . from (3.13)
6: Calculate IDS2 . from (3.20)
7: Calculate Vp1 . from (3.23)
8: Calculate Qd1 . from (3.13)
9: Calculate IDS1 and Qs2 . from (3.20) and (3.16)

10: Calculate Vp2 . from (3.22)
11: until Accuracy not met
12: return Vp1, Vp2, IDS1
13: end procedure

3.4.3 Doped Channel Sections

We now adapt the general procedure to doped channel sections. The structure is
formally identical to the one shown in Fig. 3.3 and the change in doping level can be
described in the charge-model of a single section. By referring to the model in [113],
it suffices to reanalyze the entire procedure leading to the final formulas for current

32



3 – The Model

and charge densities along the channel and to modify the inputs of the problem.
The main difference which arises in the model’s deduction is a new solution of the
Poisson equation for the potential in a perpendicular direction to the channel length.
If NA is defined to be the channel doping (all the remaining quantities do not vary),
the solution becomes, after a few approximations not reproduced here for the sake
of brevity:

ψ(r) = −δNA

4ni

kT

q
R2 + δ

NA

4ni

kT

q
r2 + V +

kT

q
log

(
−8B

δ(1 +Br2)2

)
(3.25)

This is the first step to move forward a charge-control equation. By imposing the ap-
propriate boundary condition at the channel-oxide interface [113], one finally arrives
to (3.26) relating the charge density to the potential along the channel:

VGS −∆ϕ− V −
kT

q
log

(
8eα/(VtCOX)

δNA
ni
R2

)
=

=
Q− α
COX

+
kT

q
log

(
Q− α
Q0

)
+
kT

q
log

(
Q− α +Q0

Q0

) (3.26)

where the only new quantity is α = εSi
NA
2ni

kT
q
R, a parameter related to the device

structure and obviously to its channel doping. By noticing the numerous similarities
between this formula and (3.6), it is possible to apply slight substitutions to (3.26)
in order to fall back on the one previously discussed. The change of variables to be
accomplished is:

Q← Q∗ = Q− α (3.27)

δ ← δ∗ =
eα/(COXVt)

NA/ni
(3.28)

This small changes make it easy and effortless to include such a modification in the
general frame of the method for the solution of structures with doped channels.

3.4.4 Sections with Different Geometry

The proposed method also applies to problems where devices with a different ge-
ometry are involved. Again, this is performed by substituting the employed models
in the different sections. An interesting case is the cascade of FinFETs, where the
models from [106] and [125] can be effortlessly adopted in applying the methodology
discussed here, thanks to their evident similarities with [113] for Gate-All-Around
MOSFETs.
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Chapter 4

Verification and Results

This chapter focuses on techniques and procedures used to implement and verify
the results of the methodology we described in the previous chapters. Specifically,
we will deal with the tests that we performed for devices of growing complexity
(Sections 4.2 to 4.3) and under different biasing conditions (Sections 4.4).

4.1 Methodology

This methodology was developed in Matlab [126], mainly because the focus of the
work, at an early stage, was accuracy and scalability and Matlab language allows
rapid prototyping. The structure considered in the experiments is shown in Fig.
3.3. Most of the results shown are for two and three section devices, but data are
provided from experiments up to nine sections. The method was validated through
an extensive experimental comparison of results with the exact numerical solution
and with the output from a physics-based software. Specifically, we have computed
the potential at the interface between different sections in various multiple-gate
structures as a function of the applied voltages and structural parameters. Data
were then compared with two set of results calculated by TCAD software Atlas
including the computation of quantum mechanical effects [127]. The first set was
obtained numerically for the entire structure, while the second one considers the
values obtained just for potentials (Vp1, Vp2) from the numerical simulation. This
approach was chosen to better assess the validity of the algorithm that estimates
potentials into the structure and the relative importance of this step into the overall
procedure. Simulations in Atlas were performed under the assumption of a Boltz-
mann distribution for carriers in the silicon channel and of highly doped contacts
(1023cm−3). The latter condition guarantees a small voltage drop across the con-
tacts themselves. Complex structures analyzed present sections with channel radius
between 5nm and 10nm while their oxide thickness is 1.5nm. Quantum mechanical
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effects, and in particular the potential confinement, which are expected to play a role
in the device characteristics in this range of geometrical parameters, are taken into
account as described in section 3.3.4. Analogously, the short-channel effects, Drain
Induced Barrier Lowering (DIBL), sub-threshold swing and mobility degradation
are, indeed, consistently modelled in the charge-model adopted of each section. The
channel lengths of simulated devices range from 60nm to 300nm. These dimensions
of channel length are, instead, sufficiently high for ballistic transport not to take
place and for coherent transport not to become evident. Hence, diffusive regime of
transport is assumed.

4.2 Two-Section Structure

Fig. 4.1 shows the potential Vp1 in a two-section device for different values of gate
voltage Vg2 with varying drain-source voltage. Each section is 300nm long, has
radius R = 6nm and oxide thickness tOX = 1.5nm. The gate voltage applied to
the first section is Vg1 = 0.6V . The graph reveals that our numerical procedure,
after only one iteration step, gives accurate outputs if compared with the exact
numerical solution. Indeed, maximum relative errors of 1.6% are obtained after one
iteration. Thus, for a two-section structure, only one iteration is actually sufficient
to get accurate results. This is also true if we let other parameters vary in the same
structure, such as in Fig. 4.2 where the length of section L2 is varied between 60nm
and 450nm while L1 is kept at L1 = 300nm. We compared also the results with the
simulation data from TCAD Atlas.

Fig. 4.3 and Fig. 4.4 present the data from the simulator corresponding to the
plots of Fig. 4.1 and Fig. 4.2 respectively. Coherence of values is observable. Worst
relative errors of a few percent are obtained for relatively large VDS polarization
combined with shorter channel. For longer channels, relative errors well below 1%
are obtained over the full biasing range.
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Figure 4.1. Comparison of the exact solution of Vp1 with data from the model in
a two-section structure for different values of Vg2; in the inset a zoom of the region

with low Vds is shown.

4.3 Three-Section Structure

While augmenting the complexity of the structure by cascading more sections, the
method preserves its validity and accuracy. This is shown for a three-section device
in Fig. 4.5, where the potentials at the interface between the two sections are rep-
resented as a function of the total voltage applied. Data were obtained by iterating
just twice the proposed method. This led to a discrepancy in results from numerical
simulations that tops to a few tenth of percent across the full range of potentials
considered. A direct comparison was also made with Atlas simulation outputs. Fig.
4.6 plots the values of Vp2 for different Vg3 in a structure of three sections with
L1 = L3 = 300nm, L2 = 150nm, R = 6nm, Vg1 = 0.6V and Vg2 = 0.8V . Data
largely agree with simulation results, with relative errors of few percent over the full
biasing range (Vg2 from 1V to 2V), showing little sensitivity of the methodology to
variations in Vg2.

In Fig. 4.7, the potential Vp2 with varying VDS for different values of L3 are
shown. Data from Atlas stand close to the numerical model adopted also for high
voltages.

From the values of potentials obtained, the current has been estimated. Fig.
4.8 shows the current flowing in a three-section structure when Vg1 and Vg3 are kept
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Figure 4.2. Comparison of the exact solution of Vp1 with data from the model in
a two-section structure for different values of L2; region with low Vds is shown in

a larger scale in the right box of the figure.
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fixed while Vg2 is varied. Comparison with data from Atlas in linear and logarithmic
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scale shows good accuracy over the whole range of applied voltages. More precisely,
the figure reveals how the operating region of the central section changes when the
gate voltage applied is varied. For small values of Vg2 the section operates in sub-
threshold region since its gate voltage is lower than Vg1, thus limiting the overall
current flowing into the device. When Vg2 is increased over Vg1 = 0.6V , the section
exits the subthreshold region and enters saturation: then the current continues to
increase but with a lower growing rate.

4.4 Three-Section Structure with Fixed Gate Volt-

ages at Extremes

Structures with three sections are often used to realize double-gate devices by fixing
the same potential on the two lateral gates [116], thereby leading to the condition
Vg1 = Vg3. Fig. 4.9 and Fig. 4.10 show how Vp1 and Vp2 vary with VDS when
Vg2 is kept constant and Vg1 = Vg3. Exact numerical data and method output are
represented. Using the obtained values for Vp1 and Vp2, the current flowing in the
series of the sections has been subsequently evaluated and compared with numerical
exact. In Fig.4.11, a plot of relative errors on current value is shown. In the worst
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Figure 4.7. Comparison of the exact solution of Vp2 with data from TCAD Atlas
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case, the strongly non-linear error tops at 4%.

4.5 Gateless Section Structure

Finally, we present an example of data obtained for a structure with gateless section.
Fig. 4.12 shows the relative errors of Vp1 and Vp2 as a function of VDS with respect
to the exact values of potential. A maximum error of 1.8% is obtained. This
section is required to correctly model the region of multi-gate devices with uniform
doping level, as detailed before. Relative error tops for very low VDS, with 0.1% at
VDS = 1V .

4.6 Computation Times

A final discussion is worth doing on the timing efficiency of our model. The ex-
periments have been performed on MIG devices made of up to nine sections under
different biasing conditions, reported for each test. Some results are worth pointing
out for test cases that are particularly significant. For a three section structure,
relative errors on IDS of less than 4% are shown in Fig. 4.11. From a timing per-
spective, current evaluation for the mentioned cases required less than 0.2ms in an
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Figure 4.8. Current IDS in a three-section structure where Vg1 = Vg3 for different
values of Vg2. Dotted line: current from the model in linear scale; solid line: current
from the model in logarithmic scale. Points represent data from simulator Atlas in

linear and logarithmic scale.

interpreted language, with given drain and gate voltages. These times result one or-
der of magnitude shorter than computation times necessary for a numerical solution
where tenths of milliseconds are necessary. The method is, therefore, computation-
ally efficient.
Fig. 4.13 shows CPU times necessary to solve potentials and currents in structures
with a variable number of devices under a single bias condition. Both curves reveal a
linear trend with the number of devices connected. We kept the number of iterations
(1IT) of the model constant along the bottom curve (squares) obtaining an overall
proportionality of time and number of sections, but a variable accuracy (between
acc10% to more than acc40% in the worst case). In the other case, we adopted a
variable number of iterations in order to get a particular level of accuracy (acc3%).
One iteration (1IT) was necessary for a two-section structure, and three iterations
for all the others (3IT). Still the trend remains linear and the computation times
approximately doubles. Similar iterations performed using a spice engine (Eldo)
required more than one order of magnitude in time. Clearly, this is not affordable
in a context where thousand of devices are to be simulated in the same time.
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Figure 4.9. Comparison of values of Vp1 and Vp2 obtained from the method after
three iterations with exact results in a triple structure with Vg1 = Vg3, Vg2 = 0.7V .
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4.7 Discussions

Overall, our results indicate that the proposed methodology suits the need for ver-
satile, accurate and scalable modeling of MIG devices. Tests were performed by
varying the structural aspects of devices as well as the biasing conditions (see Fig.
4.1 to Fig. 4.7) over large ranges of parameters (e.g., 50nm to 400nm for section
length, 0V to 2V for potentials). Versatility was also demonstrated by simulat-
ing structures made of up to nine sections, each section potentially differing from its
neighborhood in different respects (length, diameter, etc...), as previously described.
Efficiency was shown both in terms of computation time required and in scalabil-
ity, due to the linear dependence of computation time on the number of sections,
irrespectively of the targeted accuracy (see Fig. 4.13). In addition, note that the
measured performance is underestimated, because an interpreted language has been
used to implement equations to speed up development and to focus on accuracy
rather than focusing on performances.

According to the performed analyses, and in particular those in Fig. 4.12, we
conclude that relative errors on potentials are always below 2% in the measurement
range. Results for current show analogous behavior, with only slightly degraded
performance (4% maximum relative error) for a three sections structure.

Therefore, it follows that the proposed methodology is well suited to be applied
in circuit simulators where efficiency and scalability are key enabling features.

4.8 Conclusion

This section concludes our contribution in modelling of MIG transistors. In particu-
lar, we presented a new iteration-based analytical model suitable to analyze complex
semiconductor structures with several cascaded devices. Based on the computation
of charge densities and potentials along the structure, it presents a high degree of
versatility: we illustrated its application to a series of two or more Gate-All-Around
MOSFETs. Nevertheless, no constraint actually holds on the topology and features
of the sections in the structure. FinFETs-based structures can easily be analyzed
through the methodology presented only with the modification of the analytical ex-
pressions for charge and currents in each section. Besides, generalizations of the
method have been discussed and the inclusion of gate-less sections with description
of quantum mechanical (QME) and short-channel effects (SCE) has been presented.
The method has an iterative nature, although only few numerical steps are neces-
sary to compute potentials and currents in the structure. Computational efficiency
of the method is a key feature. In particular, accuracy of 3% in potentials can be
obtained for up to nine sections in linear time, after just two or three iterations,
without nonlinear equations to be solved numerically.
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Verification has been demonstrated through extensive simulation on devices with
with channel lengths ranging from 50nm to 450nm and radius larger than 1nm.
The comparison of the data obtained with our model to results from commercial
physics-based software reveals a good agreement. Similarly, relative errors top at 1.8
percent on potentials and about 4% on currents with respect to exact numerical so-
lutions. The method is also timing efficient leading to accurate values of potentials
in a shorter amount of time than a numerical method would require. Computa-
tion times of one order of magnitude shorter have been found, still maintaining the
aforementioned accuracy and linear proportionality with the number of devices.
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Part II

SiNWs for Sensing



Silicon nanowire gas sensors, which have attracted much attention in recent years
are recognized to be a next generation building block for ultra-fast chemical sens-
ing systems. In comparison with bulk silicon field transistors, the sensors made of
silicon nanowires have many improved characteristics. In particular, (i) nanowire
gas sensors based on silicon would be readily integrated with sophisticated CMOS
integrated circuits that enable direct electrical detection without time-consuming
labeling chemistry. Moreover, (ii) they showed high surface-to-volume ratio and
consequent ultra-sensitivity. Due to their small size, few gas molecules are sufficient
to change the electrical properties of the sensing elements. This allows the detection
of a very low concentration of gas within several seconds. Not secondarily, (iv) sil-
icon nanowire-based sensors exhibit high chemical reactivity at room temperature.
These characteristics for gas sensing suggest that silicon nanowire devices could rev-
olutionize many aspects of sensing and detection in biology, medicine, and chemistry.

Among the many intriguing properties of silicon nanowires, high surface-to-
volume ratio stands as one of the most relevant. In this respect, Porous Silicon
(PS) has emerged as a very promising alternative to crystalline silicon in sens-
ing technology. Thanks to the irregular microscopic structure of this material, the
surface-to-volume ratio is dramatically increased largely improving the potentiality
with respect to crystalline silicon. We devote the next part of this thesis work to
Porous Silicon. Specifically, in the next chapters we will describe the fabrication
technology we used to fabricate our Porous Silicon Nanowires. Subsequently we
will face the problem of modelling of Porous Silicon Nanowires: two models will
be presented and discussed which, differing in the regime of validity and theoreti-
cal framework, are capable of describing the transport properties in PS-Nanowires.
Their technicalities and results will be described in details in the following chapters.
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Chapter 5

Porous Silicon

5.1 Introduction

Porous silicon (PS) is a material obtained via anodic dissolution of silicon in HF
solutions. Since the first report of PS formation in the 1950s, several studies have
been conducted, particularly after 1990 when luminescence of PS was discovered.
The findings revealed that PS has extremely rich morphological features with very
different properties from those of silicon. Moreover, the formation process of PS is
a very complex function of many factors such as HF concentration, type of silicon,
current density, and illumination intensity. In literature a large amount of data
on PS is available and, since it is not possible to cover all aspects of PS in one
chapter, we will focus here on the phenomena related to the properties of silicon:
the formation of PS and the resulting morphology.

5.2 Morphology

The so-called morphology, determined by the distribution of materials in space, is a
very difficult quantity to describe. Indeed, to characterize morphology of PS repre-
sents a very hard task due to its rich details with respect to the range of variations
in pore size, shape, orientation, branch, interconnection, and distribution. Qualita-
tively, the morphological features of PS present in the literature can be summarized
by Fig. 5.1. Six different aspects are taken into account: pore shape, pore orienta-
tion, shape of a pore bottom, fill of macropores, branching, and depth variation of
a PS layer.

As it will become clear from the description of the fabrication process of PS
Nanowires, the morphology of PS is determined by all factors involved in anodiza-
tion, particularly the factors related to the substrate. For example, doping con-
centration, which does not impact the nature of electrochemical reactions, largely
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determines the morphology of PS.
Hence, the morphology of PS can be classified according to the type and con-

centration of doping, into four main categories: (1) moderately doped p-Si (1015 −
1018at/cm3) (2) highly doped p-Si (> 1018at/cm3) and (3) n-Si and (4) lowly doped
(< 1018at/cm3). The PS formed on moderately doped p-Si has extremely small
pores ranging typically from 1 to 10 nm. The pores are highly interconnected as
illustrated in Fig. 5.1(5f). For heavily doped p and n types, the pores have diame-
ters typically ranging from 10 to 100nm. The pores show clear orientation and are
less interconnected as illustrated in Fig. 5.1(5e). For n-Si, the pores, with a wide
range of diameters from 10 nm to are generally straight and clearly separated as
shown in Fig. 5.1(5a-d). For lowly doped p-Si, the PS can have two distinctive and
continuous pore diameter distributions: large pores on the order of micrometers and
small pores on the order of nanometers as shown in Fig. 5.1(6c). The large pores
can be fully or partially filled by the small pores as shown in Fig. 5.1(4a-c).

The morphology of the PS formed on n-Si also strongly depends on illumination
conditions, that is, intensity, frequency, and direction (front or back). Very different
morphologies are produced by front versus back illumination. Back illumination
generally produces straight pores, whereas front illumination typically produces a
two-layer PS as shown Fig. 5.1(6c).

Among the morphological features, the average pore diameter of a PS, as a quan-
tifiable and easily measurable parameter, is most commonly determined. Pores can
be classified as micropore if the pore diameter is less than 2 nm, as mesopore if it is
between 2 and 50 nm, and as macropore if it is larger than 50nm. For simplicity, the
pores discussed in this thesis are categorized as only micropores (less than l0nm).

5.3 Fabrication

A proposed methodology of fabrication that presents clear advantages in terms of
costs, size control (shape, geometrical dimensions) an typology (doping type and
level) is Metal-Assisted Etching (Ma-E) [82]. The SiNWS synthesized by this ap-
proach are virtually aligned across large areas up to wafer-scale. Moreover, Ma-E can
be used both in presence of a quasi-continuous metal film or a patterned one. This
yields ordered arrays of nanowires with diameter defined by the initial sphere size.
Most interestingly, Ma-E results in the formation of pores in the etched structures
due to holes diffusion [111].
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Figure 5.1. Schematic illustration of morphological features of PS. From [88]

5.3.1 Introduction

First studies on Metal-Assisted Etching of Silicon were reported in 1997. Porous
Silicon was fabricated by etching a Si substrate with Aluminium in a solution com-
posed of HF , H2O and HNO3. In that first experimental setup, the necessary time
to etch Silicon was significantly decreased due to the presence of Al catalyst film
on the surface of the Si substrate. In a typical metal-assisted etching process, a
Si substrate is partly covered by a noble metal and it is subjected to an etchant
composed of HF and an oxidizing agent, typically hydrogen peroxide (H2O2). Si
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underneath the noble metal is etched much faster than the Si portion without noble
metal coverage. As a result, the noble metal digs the Si substrate, generating pores
in the Si substrate or, as a side effect, Si wires. Fig.5.2 shows the described process.

Figure 5.2. a) Silicon is partly covered with noble metal; b) After the dip in
the MaE solution, metal sinks in the substrate; c) At the end of the ecthing, Si

structures remain: memory of the metal layer morphology.

Various possible anode and cathode reactions have been suggested to describe
the metal-assisted etching analogous to the anodic etching of Si in HF or stain
etching of Si in HF/HNO3. However, there is a general agreement on the fact that
H2O2 is reduced at the metal (cathode reaction):

H2O2 + 2H+ → 2H2O + 2H+ (5.1)

Li and Bohm [111] and Harada [86] proposed that the reduction of protons into
hydrogen was another cathode reaction in addition to the reaction above (5.1):

2H+ → H2 ↑ +2H+ (5.2)

On the contrary, Chartier at al. [87] assert that the gas evolution during the etching
is due to an anode reaction. The conclusion of this study came from the hypothesis
that H2O2 instead of H+ is the principal reaction agent at the cathodic sites, because
in an HF solution without O2 and H2O2, the Si substrate covered with metal is not
etched. At the same time, the possibility that the gas generated from a decay of
H2O2 was excluded because gas evolution did not occur on a metal particle over Si
substrate in solution in the absence of HF. At the anode, the Si substrate is oxidized
and dissolved.

5.3.2 The Overall Etching Process

Based on the previous results, five steps can roughly describe he process in metal-
assisted etching (fig. 5.3):
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Figure 5.3. Scheme of the processes involved in metal-assisted chemical etching.
Numbers indicate the steps introduced in section 5.3.2

• The oxidant is preferentially reduced at the surface of the noble metal due to
the catalytic activity of the noble metal on the reduction of the oxidant.

• The holes generated due to the reduction of the oxidant diffuse through the
noble metal and are injected into the Si that is in contact with the noble metal.

• The Si is oxidized by the injected holes and dissolved at the Si/metal interface
by HF. The reactant (HF) and the byproducts diffuse along the interface
between Si and the noble metal.

• The concentration of holes has its maximum at the Si/metal interface. There-
fore, Si which is in contact with the metal is etched much faster by HF than
a bare Si surface without metal coverage.

• The holes diffuse from the Si under the noble metal to off-metal areas or to the
wall of the pore if the rate of the hole consumption at the Si/metal interface
is smaller than the rate of the hole injection.

Therefore, the off-metal areas or sidewalls of the pore may be etched and form
microporous silicon, analogous to the case of the electrochemical stain etching. An
example of this phenomenon is shown in fig. 5.4.
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Figure 5.4. Section of a Si p+ sample afer 5 minutes of MaE. It is possible to see
the porous silicon due to the hole diffusion where the metal did not sink into the

substrate.
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Chapter 6

Fabrication of PSNWs

In this section we will describe the process exploited for the fabrication of silicon
nanowires. Based on the Metal-Assisted Chemical Etching approach, to which we
devoted our discussion in the previous chapter, the details of the process will be given
and the images of the resulting devices presented. We conclude the chapter with the
analysis conducted through Transmission Electron Microscopy that we performed
on the wires we fabricated.

6.0.1 Metal and deposition technique tests

Sputtering is a Physical-Vapour Deposition (PVD) process involving the removal of
material from a target, in our case a clean solid cathode (fig. 6.1) [128, 129, 130].

Figure 6.1. Sketch of a plasma sputtering process.
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This is fulfilled by bombarding the target with positive ions emitted from a noble
gas discharge. When ions with high kinetic energy engrave the cathode (they are
accelerated by an electric field), the consequent collisions remove, or sputter, atoms
from the material. Transferring kinetic energy from impacting ions to surface atoms
is the basis of sputter coating. Emitted atoms thicken onto a substrate forming a
film of the same material of the target. To accomplish physical sputtering, elec-
trons would need very high kinetic energies (at least several hundreds of keV), since
the energy transfer between the light e− and the heavy atoms is very inefficient.
Therefore, ions are commonly used for this purpose because they can be accelerated
using electric fields unlike neutral atoms. The useful range for sputter deposition
is considered to be above the threshold of 5keV; sputtering is a rather inefficient
process where 95% of energy is dissipated as target heat. Nowadays, sputtering has
developed into a versatile deposition technique that could deposit most materials.
A vacuum chamber, a sputter source, vacuum sensors, a substrate holder and a
pumping system are components of a typical sputter deposition system. Rare gas is
ionized using large potentials at the source, resulting in the generation of a plasma
and deposition from a target material onto the substrate and chamber walls.

Figure 6.2. a) DC diodes; b) RF diodes; c) Magnetron

Figure 6.3. Basic Configuration of sputtering systems (from [130]

The two most common typologies of sputter sources are diodes (fig. 6.2-a and
6.2-b) and magnetrons (fig. 6.2-c). These configurations can be operated with di-
rect current (DC) or radio frequency (RF) potentials to generate a plasma through
the ionization of noble gas. An external potential is applied from an outside power
source, charging the target to a high negative voltage (3 to 5kV). A rare gas, usu-
ally Argon, is introduced into the vacuum chamber between the target and the
grounded substrate and chamber walls. The large difference in potential forms a
plasma, caused by ionization of the Ar atoms (Ar+). This ionization results in a
negatively charged electron and positively charged ion pair, instead of the plasma
that retains a neutral charge. Positively charged ions are attracted and accelerated
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by the electric field, resulting in a collision with the target material. Bombardment
of the target with these high-energy ions leads to sputtering of the target atoms,
forming a coating on the substrate and the chamber walls. In this type of configura-
tion, the target and the substrate holder can be considered a parallel plate capacitor.
A drawback of this typology of sputtering system is the low efficiency.
Magnetron sources overcome the limitations of the diode sources by using a mag-
netron field to control the motion of electrons. Magnetron sources use the prop-
erties defined in this physical law to control the electrons generated in the plasma
and apply them toward a plasma regeneration. The key difference between a planar
magnetron source and a diode one is that a permanent magnet is placed behind
the target. The resulting magnetic field confines the electrons to a circular path
on the surface of the target disk. These energized electrons further ionize the gas
molecules through collision, resulting in a large increase in plasma density at the
target surface and increase from the target, with reduced irradiation of the substrate
and chamber walls. Because the sputtered target atoms are relatively massive and
neutrally charged, they are not affected by the magnetic field and they migrate to
coat the substrate and exposed chamber surfaces. The key advantages of this type
of source include a vast improvement in efficiency compared to the diode source,
sputter deposition rate is improved because of the increased plasma density.

In our experimental setup, a target of gold palladium (Au/Pd 68/32 wt %) is
mounted in a Cressington Sputter Coater 108auto sputter system. The thickness of
the metal was measured by profiling.

6.0.2 Gold (Au) - thermal and e-beam evaporator

Evaporation deposition Evaporation is an ordinary method of thin-film depo-
sition; source material is evaporated in vacuum. Vacuum allows vapour particles to
go through directly to the substrate, where they recondense in a solid state. Evap-
oration is commonly used in a microfabrication; the coatings, also called films, are
usually in the thickness range of angstroms to microns and can be a single material
or can be multiple materials in a layered structure. The object to be covered by the
material evaporated can be any of a wide variety of things such as: semiconductor
wafers, solar cells, optical components, etc... Thermal Evaporation involves heating
a solid material inside a a high vacuum chamber, taking it to a temperature which
produces its vapour pressure. In vacuum, even a relatively low-vapour pressure is
sufficient to raise a vapour cloud inside the chamber. This evaporated material at
this point constitutes a vapour stream, which crosses the chamber and hits the sub-
strate, sticking to it as a coating.

There are two methods of heating the source material. One of these, often re-
ferred to as filament evaporation, is a simple electrical resistive heat element, or
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filament that exploits Joule effect. The filament source offers the safety of low volt-
age, although very high current is required, usually several hundreds amps.

The other common method to heat the material is to use an electron beam, or
e-beam; this is generally known as e-beam evaporation. This is a more ”high-tech”
approach to heat up a material and involves some high voltage (usually of the order
of 10kV), so e-beam systems always include extra safety features. The source itself
is an e-beam gun, where a small and very hot filament boils off electrons which are
then accelerated by the high-voltage, forming an electron beam with high energy. At
the standard 10kV, even 0.1A of this beam current will deliver 1kW of concentrated
power and this heats the material, which is contained in a hearth which is water
cooled to prevent its destruction. Examples of the structures obtained with the
described deposition techniques of gold on silicon substrate are shown in fig.6.4.
After the Metal-assisted etching procedure the structures look very different; in
particular, the e-gun evaporated approach produces nanowires with the same length,
very similar in diameter and well distributed over the sample (fig. 6.5).

Figure 6.4. Comparison between 10nm gold layer deposited by thermal and e-
beam evaporator. a) Thermal evaporator; b) e-gun evaporator.
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Figure 6.5. Comparison between 3 min MaE etch on a sample covered with gold
deposited by thermal and e-beam evaporator. a) Thermal evaporator; b) e-gun

evaporator.

6.1 Ordered sample

From the images shown, it is clear that it is practically impossible to pick sili-
con nanowires with similar geometrical features from the multitude of fabricated
nanowires. To overcome this problem, it is necessary to pattern the metal depo-
sition creating a mask that makes holes in a continuous metal layer; a proposed
solution is to use polysterene (PS) nanospheres. These nanospheres are fabricated
in many different dimensions, from 80nm to 500nm and beyond. To prepare the
silicon substrate for the nanosphere deposition, it was dipped in Piranha solution
(H2SO4 : H2O2,3 : 1) at 80◦C for one hour. Since the mixture is a strong oxidizing
agent, it removes most organic matter and it also hydroxylates surfaces (adds OH
groups), thus making them highly hydrophilic. Poysterene nanospheres with diam-
eter of 180nm± 5% in aqueous solution at 10% in weight were spread on the silicon
substrate by spin-coating in order to obtain a self-assembled monolayer packed into
the hexagonal closed packed planar structure. Initial acceleration and rotation speed
play a fundamental role in the success of the process. In our case, we used a com-
bination of two steps: in the first 10s the sample rotates at 500 rpm reaching this
speed in 1s; after that, 30s 350 rpm with maximum acceleration allowed (1066 rp-
m/s). Phase one is used to eliminate the dilution water from the substrate surface;
in the second part, nanospheres organize themselves. A portion of silicon substrate
covered by the monolayer can be seen in fig. 6.6-a.
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Figure 6.6. SEM images of the fabrication process of nanowires using polysterene
nanospheres to pattern the metal deposition. a) PS spheres are spinned over the

Si sample. b) O2 : Ar plasma etch is performed.

Figure 6.7. SEM images of the fabrication process of nanowires using polysterene
nanospheres to pattern the metal deposition. c) Gold layer is deposited and spheres

are removed. d) Nanowires are fabricated by MaE.

A 2 min oxygen and argon plasma etching (100W) was performed in order to
reduce their dimension down to 110/120nm.
At this stage, a 20nm thick gold film was deposited on the sample using an e-beam
evaporator. A so-called ”antidot” metal pattern remained on the silicon surface after
the spheres removal in ultrasonic bath. In fig.6.6-b and 6.7-c the reduced spheres and
the metal pattern after the spheres removal are shown. Metal-Assisted Etching was
performed dipping the sample in the chemical solution composed of deionized water,
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hydrogen peroxide and hydrofluoric acid (H2O : H2O2 : HF,1 : 1 : 3) heated to 60◦C
(fig.6.7-d). The diameter of the nanowires is the same of the reduced polysterene
nanospheres and all the nanowires have all the same diameter.
With this technique, an ordered and homogeneous sample of nanowires distributed
over the entire surface of the substrate has been obtained.

6.1.1 Solution

According to Balasundaram et. al. [131] the ratio between hydrofluoric acid and
hydrogen peroxide affects the porosity of the structures fabricated by Metal-assisted
etching. Fig.6.8 shows different nanowires obtained with different concentration of
acid in solution. A change in the porosity of the wire is found.

Figure 6.8. STEM images of MaE results with different etch solution. Concen-
trations, components and etch time are indicated. a) 3:1:1 HF : H2O2 : H2O,60s;

b) 10:1:5 HF : H2O2 : H2O; c) 30:1:30 HF : H2O2 : EtOH, 1h
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6.2 TEM Analysis

As discussed in the previous sections, the devices resulting via the Metal-Assisted
Etching process are Si nanowires characterized by a an irregular microscopic struc-
ture in which crystalline regions are immersed in a network of amorphous material
of Silicon and oxide. Differently stated, the nanowires have a porous structure which
largely affects their transport properties.

The first step in our modelling procedure of porous silicon begins with an analy-
sis of the fabricated devices: their microscopic structure is observed and the average
geometrical properties are extracted. Given the complicated structure of each single
device, whose atomistic configuration is made of millions of atoms, and given the
actual impossibility to control the wires’ properties through a manipulation of the
process parameters, a statistical approach represents the only viable methodology for
a correct description of the problem. Moreover, it has been verified experimentally
how a direct correspondence exists between, for example, the HF concentration and
the resulting average porosity of the wires. As a consequence, a statistical approach
will allow a simple and efficient connection between the physical real devices and
the parameters’ reduction which is always implied in the following modelling process.

In order to extract information on the fabricate devices, Transmission Electron
Microscopy (TEM) was performed after having scratched the NWs on a TEM grid.
Hence, their structural properties could be investigated and extrapolated data have
been used as a starting point for subsequent simulations. Fig. 6.9-a shows the inter-
nal structure of a NW: darker dots are nanocrystals of silicon immersed in a porous
structure. Using ImageJ software it has been possible to locate the nanocrystals
exactly and, consequently to statistically evaluate mean and distributions of their
geometrical properties. Starting from these images, a binary (b/w) copy is gener-
ated (fig. 6.9-b) and a graph of the area distribution can be plotted, like in fig.
6.9-c. According to the results in the picture nanocrystals have an average area of
4.1nm2.
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(a) TEM image of a single Si NW (marker: 50 nm)

(b) ImageJ b/w conversion

(c) Area distribution of Si nanocrystals

Figure 6.9. TEM image analisys
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Chapter 7

PS model

In this chapter we describe the procedure we followed to construct a simple model
for a porous silicon nanowire; this model is suitable for numerical analysis in the
physics-based software TCAD Atlas [127]. This physics-based software allows eas-
ily to describe complex geometrical semiconducting structure and to analyse their
relevant electrical quantities solving self-consistently different sets of equations for
modelling electron transport. The software will allow to conduct the electrical char-
acterization of a PS-NW: as a consequence, data on the main electrical quantities
of the material can be obtained together with their dependence on physical and
geometrical parameters.
As it is evident from Fig. 7.1, representing the results of elaboration of an image of
the fabricated nanowires, silicon nanocrystals are immersed among non-crystalline
regions forming an irregularly networked pore structure.
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Figure 7.1. Transmission Electron Microscope Image of silicon nanowire.

The model we describe here is intended to be a simulative model. The simulative
approach seems to be the most promising way to tackle the problem of modelling PS
nanowires. The uniform distribution of the pores along the channel and the statis-
tics of their geometrical properties make an analytical treatment of the electrical
problem rather impractical.
Moreover, at the best of authors’ knowledge, no models are present in physical simu-
lators for porous materials, nor physical data are present to describe their electrical
properties (mobility, energy gap, dielectric constant,...); the reason for this being
the unavoidable dependence of the electrical parameters of the materials from the
dimensions of the pores and from their effective shape.

In order for it to be effective, a physical model of these devices is strongly re-
quired.

The chapter is structures as follows. In the next section we give a description
of the structural model of PS nanowire as implemented in the simulator while the
transport models adopted to analyse the electrical quantities and the numerical
parameters are the focus of the following sections. Finally, the last section is devoted
to the presentation and discussion of the simulation results.
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7.1 PS-NW model

7.1.1 Structural model

We modelled a PS-NW as a 3D-wire with square section composed of p-doped crys-
talline silicon (NA = 1015 atoms/cm3). Its lateral surfaces are drilled through slit
pore segments randomly arranged and filled with air. These pores have a squared
section; their number, depth and position are randomly chosen according to the
geometrical properties of our fabricated devices in a way which will be explained in
the following. An image of a silicon nanowire with this structure is shown in Fig. 7.2.

Figure 7.2. Geometry of a Porous Silicon Nanowire as adopted in the model
described: pores dipping on the surface of silicon crystalline silicon.

This is the simplest model of a pore in a PS-NW (see fig. 7.3-a): air has been
inserted in the volume created from the slits. However, in general, non-crystalline
silicon and/or gas fill that space, thus changing the electrical conductivity of the
whole device. To keep things treatable by Silvaco Atlas software, air is actually the
proper choice. Secondarily, this allowed us to focus attention on the dependence of
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the nanowire resistivity from the physical parameters of the device. It is worthy to
be mentioned that the peculiar geometry chosen for the pores does not restrict the
range of devices to be simulated and subsequently does not limit the validity of the
obtained results. In fact, we left the pores the possibility to spatially overlap and
intersect each other so that ramified porous entities can arise thus making the pores’
geometry rather arbitrary. Fig. 7.3-b shows some examples of more complex pores
which could arise from the intersection of square-section pores.

(a) Sketch of a pore
(b) More complex pore geometry
arising from the intersection of sim-
ple pores.

Figure 7.3. Examples of pores geometry.

The contacts have been chosen to be non-rectifying metal contacts in order not
to include the effects of the Schottky contacts in the transport process.
We have described the structure of the PS-NW in Atlas software by means of a rect-
angular mesh, denser in correspondence of the interfaces between different materials
(silicon-air/metal) and sparser elsewhere. This guarantees a faster convergence of
the numerical method implemented in the nodes of the grid. The image of a mesh
as described in Atlas is depicted in fig.7.4.
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Figure 7.4. Atlas mesh of a PS NW (pores are coloured in purple).

7.1.2 Transport Model

The analysis of the transport properties in the structure of Porous Silicon Nanowires
just described requires the implementation of a set of equations, which, solved self-
consistently on the grid of points of fig. 7.4, allow to determine the relevant electrical
quantities in the semiconducting structure.
Since the geometrical dimensions of the wires considered are in the range of hun-
dreds of nanometers of length and tenths of nanometers in the cross-section side,
we adopted a semi-classical description of the carriers’ concentration. In particular,
we chose the Boltzmann distribution of the carriers in the channel. This parameter
is the input of a drift-diffusion model for current and electric field. Moreover, the
carriers’ mobility has been chosen to depend on the local electrical field according to
the model FLDMOB implemented in Silvaco Atlas. It takes into account the effect
of velocity saturation of the carriers through a reduction in the effective mobility
according to the Caughey and Thomas expression which provides a smooth transi-
tion between the low-field and high-field regimes ([127]). As it will become clear,
non-uniformities of the electrical field in the channel are responsible for a gradual
reduction of the current with the applied voltage. This mobility model coherently
describes the current saturation effect in presence of non-homogeneous electrical
fields.

The presence of pores with depths smaller than a 10nm actually demands for a
treatment of the quantum-mechanical effects arising in the structure. Specifically,
potential confinement in transverse direction is expected to play a role in the dis-
cretization of energy levels engendering a reduction of the charge density in the
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channel and a consequent decrease of current flow. To take into account the quan-
tum effects, calculations have been performed with the Quantum Bohm Potential
model implemented in Atlas.
The model introduces a position dependent quantum potential Q which is added
to the potential energy of a given carrier type. This quantum potential is derived
using the Bohm interpretation of quantum mechanics [132] and takes the form

Q = −h
2

2

γ∇(M−1∇(nα))

nα
(7.1)

where γ and α are two adjustable parameters, M−1 is the inverse of the effective
mass and n is the electron (hole) density. Q is added to the continuity equations
and the self-consistent cycle is solved.
In particular, the iterative scheme used to solve the non-linear BQP equation along
with a set of semi-classical equations is as follows. After an initial semi-classical
solution has been obtained, the BQP equation is solved on its own Gummel it eration
to give Q at every node in the device. The semi-classical potential is modified by
the value of Q at every node and the set of semi-classical equations is then solved
to convergence as usual (using a Newton or Block iterative scheme). Then, the
BQP equation is solved to convergence again and the process is repeated until self-
consistency is achieved between the solution of the BQP equation and the set of
semi-classical equations.

7.1.3 Numerical Parameters

The nanowire we analysed through simulations has a channel length of 100nm and
a squared section of 900nm2. In order to obtain valuable information about the
fabricated nanowires, we simulated many devices whose pores present geometrical
characteristics similar to those shown in fig. 7.3-b. According to the results of a
statistical analysis on the actual pores, their distribution along the simulated wire
is uniform while the pore depths and sides are normally distributed with average
values respectively µdepth = 19.2nm, µside = 6.3nm. The corresponding standard
deviations are σdepth = 11.4nm, σside = 3.2nm.

7.2 Simulation Results

Fig. 7.5 shows the current-voltage characteristics for some actual realizations of
silicon nanowires: each curve corresponds to a particular device with specific distri-
bution and properties of pores. As it is clear, the current behaviour is strongly non-
linear, each curve reaching a saturation value for sufficiently high voltage applied.
Specifically, in the regime of low voltage, the current in each nanowire increases
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linearly with a slope which is influenced by the concentration and dimensions of the
pores. A larger amount of silicon removed by the pores produces a greater differ-
ential resistivity of the device since less conductive paths are available for current.
As the voltage is increased, the current rate gradually decreases. This behaviour
can be justified by considering the distribution of the electrical field in the chan-
nel (Fig. 7.6): for sufficiently high voltage the electric field ceases to be uniform,
becoming more intense in certain particular regions (lighter regions in the figures).
There, the electric field will soon reach a value such that the mobility saturation will
occur according to the transport mobility chosen. The current flow in that region
will consequently be limited by the mobility of the carriers thus reducing the overall
charge flow along the device. Current will continue to increase with voltage until
more regions will be interested by a strong electrical field. Then the current will
plateau. The voltage at which the current deviates from linearity and the satura-
tion current are actually dependent on the specific configuration of pores along the
channel.
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Figure 7.5. Voltage-Current characteristics of some PS-NWs having different ge-
ometrical parameters (position, depth, side). Their position along the wire is

uniformly distributed, their depth and side are normally distributed.

Fig. 7.7 shows the differential resistivity of a PS-NW averaged over the ensemble
of devices which have been analysed. The vertical bars in the figure represent
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a)

b)

c)

Figure 7.6. Electric field distribution in a section of a PS-NW with L = 100nm
and section 900nm2 for a) V = 0.2V , b) V = 2.5V and c) V = 8V . The uniform
electric field for low voltages becomes non-uniform for higher voltages provoking the
velocity saturation of carriers in some channel regions. Higher voltages increases

the extensions of saturated regions and total current consequently plateaus.

the standard deviation. The resistivity naturally grows with voltage, while the
increment of the corresponding standard deviation can be easily explained: for high
voltages, a small difference in the variation of current for two devices can result in
a large difference in the differential resistivities: these consequently present a larger
deviation from the average value.

We finally discuss the results of the simulation of the ensemble of different
nanowires for different doping channels. Higher doping levels produce lower resis-
tivity as shown in Fig. 7.8 where the average resistivity and its standard deviation
computed at V = 1.0V are depicted. Moreover, larger deviations from the average
values are found for increasing doping level, due to the fact that, for fixed applied
voltage, electrical field in more doped channels is higher with respect to the elec-
trical fields in channels with lower doping. In more doped devices this reduces the
carriers’ mobility (increasing resistivity) counteracting the effects of the augmented
concentration of carriers through doping. Doping can then be used to trim the
sensitivity of the sensor, as well as applied voltage has to be carefully defined at
the PS-NW sensor engineering phase. In other words, detailed data on what can be
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Figure 7.7. Average differential resistivity of an ensemble of PS-NWs with L =
100nm and section 900nm2 as a function of the applied voltage. The vertical bars

represent the standard deviation.

obtained are essential during a sensor design and simulation phase, thus confirming
the importance of the modelling attempt presented in this work.

7.3 Conclusions

In this chapter we presented a simplified model for Porous Silicon Nanowires. Start-
ing from a TEM analysis of our fabricated devices, we devised a simple methodology
to study electron transport in highly non crystalline wires. In particular, the model
is apt to be implemented in a physics-based simulator due to the strong geometrical
correspondence between the crystalline and porous regions. The implementation of
the model in the software TCAD Atlas allowed to understand the main physical
phenomena taking place when current flows. A gradual reduction in the carrier
mobility has been found as the major cause of a current plateauing for high applied
voltage. In this respect, mobility decreases in correspondence of the constrictions in
the wire generated by neighbouring porous areas. As a consequence, a reduction in
the conductance followed.
The effects of doping analysed are fully in agreement with the classical theory of
doping: an increase in conductance (reduced resistivity) has been highlighted due

72



7 – PS model

14 15 16 17 18 19 20 21
−8

−6

−4

−2

0

2

4

Log
10

 of Doping Level N
A
 [at/cm

3
]

L
o
g

1
0
 o

f 
P

S
 R

e
s
is

ti
v
it
y
 [
o
h
m

*c
m

]

Figure 7.8. Differential Resistivity computed at V = 1.0V averaged over a large
number of nanowires with different channel doping.

to the larger amount of carriers available for transport.
The methodology described in this chapter presents some intrinsic limitations. On
one side, it relies on the availability of software capable to simulate physical quan-
tities in the structure. Devising a model which could be implemented without any
other dependency is actually a problem worthy to be investigated. On the other side,
the dimensions of the wires considered were so large that a classical drift-diffusive
regime of transport was assumed to hold. Quantum effects, in particular quantum
potential confinement due to porous regions, was taken into account via a potential
correction known as Bohm potential. When the dimensions of the wires and of the
pores are dramatically reduced entering the nanometer regime, the drift-diffusive
transport is not realised and a description of quantum transport becomes necessary.
To overcome these limitations a new model has been devised: we built a simulative
tool which allows to describe in a fully quantum manner the problem of transport
in PSNWs highlighting the pivotal role played by quantum effects (potential con-
finement and coherence). The presentation of this model is given in the upcoming
chapters.
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Going smaller

The preceding chapters were focused on the description of a simulative model for
Porous Silicon Nanowires. There, we presented a methodology to simulate a porous
silicon structure which allowed to understand the main transport mechanisms in-
volved in the conduction process. This enlightened the pivotal role played by the
path constrictions in the structures: the high-field mobility saturation occurring
in the same regions has been adduced as the principal cause of the non-linear be-
haviour of current with voltage. Before going ahead, an important remark is in order
on the dimension scale of the devices analysed. We studied nanowires with lengths
of hundreds of nanometers. The transport properties in these structures are mainly
related to drift-diffusion process, efficiently described by semi-classical models. On
the other side, quantum effects are strongly limited to the potential confinement
effect in the direction perpendicular to transport. Hence, a quantum correction, like
the one implemented in the model, is capable of taking into account the physics
behind conduction.
These premises pose the problem of transport modelling in PSNWs with smaller
dimensions. In this intriguing situation, the channel length is of the order of a few
nanometers and the section side is smaller the 10nm. The corresponding configu-
ration of the device makes unavoidable a fully quantum treatment of the problem,
now largely dominated by quantum effects and coherent transport.
The aim of this chapter is to give an overview of the quantum theory of transport in
coherent structures. In the first section a description of the main features of quan-
tum transport is given. Then, the known Landauer-Buttiker formalism is presented
and the main parameters entering the model (transmission spectrum, current) will
be introduced.
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8.1 Theoretical Background on Transport

8.1.1 Quantum Transport

Differently from classical transport, the characteristics of quantum transport stem
from unique peculiarities such as coherence and quantization well described by quan-
tum physics. Quantum transport is consequenrtly resolved into several regimes
mainly depending on a lengthscale comparison. These classifications are crucial to
understand mesoscopic conductor transport properties. Besides Fermi wavelength,
other relevant characteristic lengths are defined for classified transport regimes: (1)
mean free path, lmfp, (2) thermal diffusion length, lT , and (3) phase coherence
length, lφ.

Mean Free Path lmfp Mean free path, as the name indicates, is an average
distance in which particles can move freely. The hindrance to free motion is due
to scattering by defects, impurities or grain boundaries. Elastic scattering does not
conserve momentum but energy, while inelastic scattering changes both momentum
and energy of incident particles. Thus, mean free paths due to elastic and inelastic
scattering should be differentiated although generally lmfp refers to the elastic mean
free path. In semiconductors lmfp is closely related to the mobility of carriers and
in metals it is much longer than λF . As lmfp becomes comparable to λF , systems
with such lmfp are called in the dirty limit.

Thermal Diffusion Length lT At non-zero temperatures, electron wavepackets
have energy width about kBT where kB is the Boltzmann’s constant and T is the
temperature. This energy uncertainty induces diffusion in time. lT is a characteristic
length of diffusion process due to thermal energy.

Phase Coherence Length lφ Within lφ, particles preserve their phase. Dy-
namical interactions including mutual Coulomb interactions among electrons and
electron-phonon interactions disturb phase coherence. Therefore, this length is
important to determine whether quantum interference effects from phase coherent
sources can be detectable or not in systems.

Regime Condition
Ballistic Lx,Ly,Lz < lmfp,lT ,lφ
Diffusive lmfp,lT << Lx,Ly,Lz
Dissipative lφ < Lx,Ly,Lz

Table 8.1. Classified quantum electron transport
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Comparisons of such scales define three distinct transport regimes in Table 8.1.
Varying the physical length of mesoscopic conductors we enter different regimes.
Condition states that both in dissipative and in diffusive regime, transport quantities
are dominated by scattering process similar to classical case. In detail, dissipative
conductors suffer from inelastic as well as elastic scattering losing previous informa-
tion of momentum and energy, whereas diffusive conductors have elastic scatterers,
preserving momentum but not energy. For the ballistic regime, on the other hand,
all dimensions of ballistic conductors are much smaller than all length scales, namely
electrons participating in conduction process do not encounter any kinds of scatter-
ing sources without modifying momentum and energy.

As an extension from classical argument between resistance and scattering, bal-
listic conductors are not resistive at all in principle. It is true and indeed confirmed
empirically with a special care to eliminate the contact resistance between electron
reservoirs and a ballistic conductor [89]. It implies that ballistic conductors in mea-
surements have non-zero resistance, but it comes not from scattering processes but
from electron modes selected at the interface of a reservoir and a conductor. There
needs to be an alternative way to express resistance beyond Ohm’s law. Landauer
captured the significance of the wave nature of charge carriers in mesoscopic con-
ductors, and he developed the theory to estimate resistance or conductance in terms
of transmission probabilities of propagating electron modes analogous to electro-
magnetic photon modes. He predicted a finite resistance of mesoscopic conductors
connected to electron reservoirs at both ends without introducing scattering [90].
His prediction which was back then at the heart of controversy against the classi-
cal perspective of resistance had driven intensive experimental efforts on ballistic
transport by designing appropriate device structures and geometries QPC in previ-
ous section closed the controversy with observation of conductance plateaus in the
ballistic regime [91, 92].

Previous perspectives to envision resistance properties are based on single and
independent particle picture. The final quantity of resistance is computed by multi-
plying the one electron value with the total number of electrons. This single-particle
picture works very well in conductivity of bulk systems and Landauer’s theory since
interactions between electrons and nucleus and electrons and electrons are negligi-
ble in high dimension by efficient screening. However, interactions affects electron
transport rather significantly in lower dimensions partly because of low electron
density and partly because of insufficient screening among particles. Therefore,
single-particle picture breaks down in lower dimensional conductors and it should
take into account of interactions. It is not a simple task to handle various forms
of interactions with many electrons, especially Coulomb interactions between elec-
trons are notoriously difficult to be solved in an analytical manner. Such conductors
where particle-interactions cannot be ignored are particularly called ’strongly cor-
related systems’.
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8.2 Mesoscopic electron transport

The preceding chapter discussed main features and differences between classical and
quantum trasnport. In a very general conceptual framework, transport processes are
related to the response of a system to external stimulation. For example, firing up a
part of a system generates a temperature gradient, inducing a net heat flow across
it. Closely connected to the thermal conduction, the movement of electrons due to a
non-zero electrical potential along a system yields electrical con- ductivity, one of the
material characteristics. Conductivity measurements by probing a current change
according to a bias voltage across a system, have provided valuable information to
identify the states of matter, metal or insulator. The next section pays a particular
attention to the electrical transport properties, discussing fundamentals and the
implications in mesoscopic conductors.

8.3 Linear Response Theory

Linear response theory (LRT) raises a practical question: how a system in equilib-
rium responds when its equilibrium state is disturbed. It formulates the response
function of a many-particle system which is stimulated by an external source. LRT
assumes that the external stimulation is weak enough that it can be treated as a per-
turbation, justifying the Taylor series expansion. Plus, the perturbation expansion
series are converging rapidly after the first linear term; thus, considering the first
non-trivial linear term would be sufficient to describe the response of systems. This
response function is a measurable quantity, therefore it is real-valued. In transport,
the response function is a macroscopic transport coefficient. Since it is shown that
the response function relates to the correlation functions in the system, LRT de-
scribes a nonequilibrium system in terms of fluctuations about its equilibrium state.
Therefore, understanding the dynamics of a system in equilibrium is essential to
predict nonequilibrium situations.
Suppose we have a system whose isolated Hamiltonian is denoted as H0. If a weak
time- dependent disturbing field A · F (t) is applied to the system at time t0 , the
perturbed Hamiltonian H at later time t becomes H = H0−A ·F (t) where A is the
internal quantity conjugate to the field F (t). LRT says that the average of A in the
nonequilibrium 〈A(t)〉 can be written as

〈A(t)〉 = 〈A(t)〉0 +

∫ t

−∞
dt′R(t,t′)F (t′) +O(F (t)2) (8.1)
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Figure 8.1. (a) An one-dimensional ballistic conductor in a two-terminal
configura- tion. (b) The energy dispersion of free electrons in a reservoir (left)

and a conductor (right).

where 〈...〉0 is the average over equilibrium ensembles. R(t,t′) is the linear response
function, which relates two times t′ and t. t′ is the time at which the external
field acts on the system and t is the time of measurement. Thus t > t0 , it is the
causality property. A simple example of the response function is the conductivity in
equilibrium, which in connection with Eq.8.1 is known as the Green-Kubo formula.
It states that the equilibrium conductivity σ of a one-dimensional system subjected
to a constant voltage V at time t = 0 is given in terms of the current density jx(t)
along the x-direction,

σ =
V

kBT

∫ ∞
0

dt 〈jx(0)jx(t)0〉 (8.2)

Conductance in mesoscopic conductors can be computed as the response function
described above. Note that the mathematical strategies are different depending on
which regime (either ballistic or diffusive) the actual transport occurs.

8.4 Ballistic Transport

Ballistic transport refers to the transport of electrons without encountering any
types of scattering sources. In other words, the system size is smaller than the
mean free path and the inelastic scattering length. Based on the point of view
that conductance arises from scattering, conductance is predicted to be infinite in
the ballistic regime; however, finite conductance has been measured in the ballistic
conductors. This observation boosted theoretical interests to understand the origin
of finite conductance.
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8.4.1 Landauer-Buttiker Formalism

Landauer brilliantly captured the wave nature of electrons in mesoscopoic conduc-
tors, and he interpreted the conductance as the transmission probabilities of prop-
agating modes analogous to electromagnetic fields in optical waveguides. Suppose
a simple one-dimensional (1D) ballistic conductor with two leads coupled to bulk
electron reservoirs, as illustrated in Fig. 8.1(a). Adiabatic transition from bulk reser-
voirs to the device and zero temperature are assumed. In case of free electrons, Fig.
8.1(b) presents the energy dispersion relations in bulk reservoirs (left) and the con-
ductor (right). The horizontal axis represents the longitudinal wavenumber k. Due
to the spatial confinement, the allowed modes in the conductor are discrete, while
the modes in the bulk are relatively dense. Therefore, not all modes below the Fermi
energy can propagate into the conductor due to energy and momentum conservation,
yielding that only certain modes can be matched in both regions. Mode reflection
at the interface of two dissimilar materials causes finite conductance even with a
ballistic conductor. Sometimes this finite resistance is called ’contact resistance’.
In the simplest case, one channel in the conductor exists. The current I across the
conductor with the applied bias voltage V is given as

∫ EF+eV
EF

eρ(E)vg(E)dE with
energy-dependent density of states ρ and group velocity vg. The density of states ρ
in 1D is given by 1/2π~vg(E). Note that in 1D, there is a magic cancellation of the
velocity component, yielding the product of ρ(E) and vg(E) is constant 1/h. Thus,
the current including spin degeneracy is

I =

∫ EF+eV

EF

e
2

h
dE =

2e2

h
V (8.3)

reducing the conductance G to G = I/V = 2e2/h ≡ GQ denoted as the spin- degen-
erate quantum unit of conductance. G Q is measured when the mode is completely
transmitting into the opposite reservoir. For a mode which is transmitting with
a probability T , the conductance G is G = GQT . Moreover, if there are more
than one channel involved in the transport process and each mode has an individual
transmission probability Ti, then the conductance G is obtained as a sum over all
modes

G = GQ

∑
i

Ti (8.4)

known as the ’Landauer formula’ [72, 73]. Then, Buttiker further extended the
Landauer’s formula into multi-lead and multi-mode systems even in presence of a
magnetic field. He established coherent scattering formalism. Conductance mea-
sured in two leads α and β is ,
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Figure 8.2. A two-port system represented by second quantized operators.

Gα→β = GQ

Nα∑
n=1

Nβ∑
m=1

|tβα,mn|2 (8.5)

with channel modes m,n.

8.4.2 Scattering matrix and Transfer Matrix

Second quantization representation is an elegant way to describe mesoscopic con-
ductors. This is powerful in many aspects: first, it deals straightforwardly with
indistinguishable many particles; second, it automatically satisfies exchange rules
of bosons or fermions. The previous 1D, one-channel conductor is regarded as a
two-port system drawn in Fig. 8.2(a). The operators âi annihilate particles in the
incoming channels into the scattering site, and the operators b̂i do in the outgoing
channels. The index i is either 1 or 2. How incoming and outgoing operators are
related is written in a compact matrix form. There are two different ways to con-
nect those operators: (1) scattering matrix S and (2) transfer matrix T . A certain
form is more efficient than the other, depending on the situation. The components
of these matrices are transmission and reflection coefficients between corresponding
modes.

Consider an example to view how to form the matrices with a two-port system
with one channel. First, the S-matrix gives an obvious connection of the incoming
channels versus the outgoing channels such that(

b̂1
b̂2

)
=

(
r11 t12
t21 r22

)(
â1
â2

)
≡ S

(
â1
â2

)
(8.6)
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Since S is unitary, SS† = S†S = 1, two conditions among components should be
met:

SS† =

(
r11 t12
t21 r22

)(
r∗11 t∗21
t∗12 r∗22 =

)
=

(
1 0
0 1

)
(8.7)

, reading that

|r11|2 + |t12|2 = |r22|2 + |t21|2 = 1 (8.8)

r11t
∗
21 + t12r

∗
22 = r∗11t21 + t∗12r22 = 0 (8.9)

Second, a T-matrix describes how the left operators propagate to the right side:(
b̂2
â2

)
=

(
T11 T12
T21 T22

)(
â1
b̂1

)
≡ T

(
â1
b̂1

)
(8.10)

The benefit of the T-matrix representation is to readily compute the overall T-matrix
Tall as a particle propagates several T-matrices until it reaches the final location.
Explicitly, it means(

b̂N
âN

)
= T (N)T (N−1) · · ·T (1)

(
â1
b̂1

)
≡ Tall

(
â1
b̂1

)
(8.11)

Thus, Tall expresses Tall = T (N)T (N−1) · · ·T (1). The components of T are rewritten
in terms of rij and tij,

T11 = t21 −
r11r22
t12

(8.12)

T12 =
r22
t12

(8.13)

T21 = −r11
t12

(8.14)

T22 =
1

t12
(8.15)

8.5 Conclusions

In this Chapter we briefly reviewed the theoretical framework of Transfer Matrix
Formalism and Landauer formulas for current. As already mentioned, their validity
extends to the coherent regime of transport of nanostructures whose dimensions are
smaller than the so-called coherence length. Specifically, they both rely on the as-
sumption of absence of inelastic scattering meaning that electrons are free to move
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from one electrode to the other of the device without experiencing inelastic scatter-
ing, like phonon-electron scattering.
The Transfer Matrix Formalism and the Landauer formula represent the main ingre-
dients of the numerical model for Porous Silicon Nanowires which will be presented
and discussed in the next chapters. As it will become clear, they will be exploited
to derive a methodology to describe a simplified scheme of Porous Silicon Nanowires
and to compute their main electrical quantities.

82



Chapter 9

A New Model for PSNWs

9.1 Introduction

The overview of the last chapter on ballistic transport and on the main theoretical
tools adopted to describe the transport properties of semiconducting nanostruc-
tures represents the starting point of a new model for Porous Silicon Nanowires.
This model will be discussed in this Chapter.
As it will be clarified soon, a Porous Silicon Nanowire is here modelled with a
sequence of Silicon Nanocrystals and Nanowires inmersed in a dielectric matrix.
Hence, profound differences exist between this simple scheme of PSNW and the
numerical model we presented some chapters ago. In particular, the nature of a
sequence of nanocrystals and nanodots intrisically requires a quantum treatment
of the problem while the drift-diffusive transport was supposed in the other mod-
elling methodology. Not secondarily, non diffusive transport in absence of inelastic
scattering strongly modifies the overall electrical behaviour of these devices.

The model we are going to present is easily scalable to arbitrarily long struc-
tures (with lengths smaller than the coherence length) and allowed us to conduct
a systematic study of electron transport properties of 1D porous silicon nanowires
[177, 176, 149]. Nanocrystals and wires dimensions in the structures are here con-
sidered randomly chosen variables. Thus, transmission spectrum, conductance and
current are evaluated and statistically averaged over a large number of structure
configurations. As a result, a deeper understanding of transport in realistic ran-
dom sequences of crystals and wires is obtained via a quantitative description of the
phenomena involved. The impact of the geometrical properties of the device is also
extensively discussed.

The chapter is organised as follows: in section 9.2 the model of PSNW is de-
scribed while in sect. 9.3 we briefly digress upon existing models. The theoretical
quantities used for its analysis are then presented in Sect. 9.4. A fundamental role
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in the envisioned procedure is played by the transmission spectrum of dots and wires
whose discussion takes sect. 9.4. The self-consistent technique adopted to model
self-charge interaction is discussed in sect. In the next Chapter we will present
the results of the model validation for small structures along with the results of a
systematic analysis of transport in 1D random arrays of dots and wires.

9.2 The System

In this section we give a detailed description of the 3D system which will be anal-
ysed and studied in the following. We will consider a structure constituted by a
succession of silicon nanocrystals, with dimensions smaller than 5 nm, and longer
sections of silicon nanowires. The structure is schematically depicted in fig.9.1.
Specifically, a random spatial distribution of silicon nanocrystals, behaving as Quan-
tum Dots (QD’s or 0-D systems), is connected through longer sections of wires (1-D
systems) thus creating a disordered electrostatic potential. The corresponding po-
tential profile results in a sequence of wells and barriers: the former, corresponding
to the silicon blocks, the latter to the separation gaps filled with insulator (air in
our case). An example of potential distribution is shown in fig 9.2.
In our model Silicon nanocrystals are taken to be of parallelepiped shape with lin-
ear dimensions smaller than 5nm guaranteeing a quantum confinement in all spatial
directions. On the contrary, longer pieces of silicon nanowires are chosen with a lon-
gitudinal dimension larger than 8nm in the direction parallel to transport. Moreover,
distances among the different blocks belong to the range of some nanometers (less
than 4nm and larger than 1nm) in order to ensure a weak coupling between two
adjacent blocks.
The first and last blocks of the succession are coupled to two electrode contacts
working as ideal carrier reservoirs. As it will be proved, the coupling effect with
the contacts is of pivotal importance for the conduction properties of the whole
disordered system.

9.3 Digression

The model for PSNW which we have just presented can be viewed as a specific real-
ization of a more general paradygm of semiconducting nanostructures in which the
embedding of low-dimensional structures in an insulating matrix is realized. These
devices have already been fabricated and showed interesting properties (Coulomb
blockade, Kondo effect [140]). In particular, experimental procedures have been as-
sessed which are capable of producing structures composed of coupled quantum dots
where the dot interaction determines the overall transport properties [141, 142, 143].
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This led, among all, to the demonstration of the concept of multi-dot memory using
semiconductor nanocrystals embedded in an insulator matrix as floating-gate [144]
and of the single-electron transistor [145].

From a theoretical viewpoint, research has mostly focused on single QDs dis-
covering many novel transport phenomena, such as the staircaselike current-voltage
(I-V) characteristic [150], Coulomb blockade oscillation [151], negative differential
capacitance [152] and the Kondo effect [153]. Electron transport through several
QDs has been the object only of recent investigation and models have been pro-
posed using NEGF technique [154, 155] and taking into account the potential due
to the self-interaction. Only small systems can, however, be analysed with this
approach, suffering for a lack of scalability.

9.4 The Model

We present here the model adopted to analyse the structure described above. The
theoretical framework for the present discussion is the transfer matrix formalism,
largely applied in the study of electron transport in mesoscopic systems in presence of
coherent transport [135]. Together with the standard Landauer theory, this approach
allows to calculate the current flowing in the system via the simple formula

I(V ) =
e

~

∫ +∞

−∞

dε

2π
T (n)(ε,V )(fL(ε− µL)− fR(ε− µR)) (9.1)

where fL/R(ε) = [exp((ε−µL/R)/T )+1]−1 is the Fermi-Dirac function of the left/right
electrode, µL/R = ±eV/2 are the corresponding electronic chemical potentials under
a symmetrical drop of the applied voltage V and T is the temperature in energy
units.
The quantity T (n)(ε,V ) corresponds to the transmission coefficient of the structure
obtained as a result of the application of transfer matrix tool. The remainder of the
section describes the procedure we adopted to compute it.

We divide the original system in n components called ”blocks” (see fig.9.3), where
each block can be a silicon nanocrystal (QD) or a silicon nanowire (1D wire) with
given geometrical parameters. The generic k-th block is described by the transfer
matrix

Mk =

[
αk βk
β∗k α∗k

]
(9.2)

with the condition |αk|2− |βk|2 = 1, in order to satisfy the properties of flux conser-
vation and time-reversal invariance.
Exploiting the polar representation of transfer matrices [160], the matrix can be
expressed in the form
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Figure 9.1. General structure of system investigated in the present work. A se-
quence of silicon nanocrystals (in blue) and silicon nanowires (in orange) is de-
picted. For simplicity a parallelepiped shape of the blocks is considered. The

structure is then contacted with two ideal carrier reservoirs, in red in figure.

Mk =

[
αk βk
β∗k α∗k

]
=

[
eiφk 0
0 e−iφk

]
·
[ √

1 + λk
√
λk√

λk
√

1 + λk

]
·
[
eiψk 0

0 e−iψk

] (9.3)

Here φk and ψk are phases and λk is the ”radial parameter” of the given represen-
tation. The formers express the coherence contribution to the transfer matrix and
their behaviour depends in a complicated way on the geometrical parameters of the
block [159]. On the contrary, a simple relation links the radial parameter λk to the
physically relevant transmission coefficient Tk of the k-th block, yielding

Tk =
1

1 + λk
(9.4)

This equation plays a fundamental role in our model since it allows to construct
the transfer matrix of each block of the chain from the transmission coefficient of
the same block. In the following section we will describe the expressions for the
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Figure 9.2. Example of simplified potential in the structure. Quantum wells and
barriers correspond to quantum dots and insulating layers respectively.

Figure 9.3. Larger picture of the main parameters entering the model: the side
of the blocks and the relative distances.

transmission coefficient of a Quantum Dot and a Quantum wire.

The transfer matrix of the chain of n blocks is eventually given by the product

87



9 – A New Model for PSNWs

M (n) = Mn · · ·Mk · · ·M2M1

=

[
α(n) β(n)

β(n)∗ α(n)∗

]
(9.5)

from which the transmission coefficient of the chain of the n blocks is derived via

T (n) =
1

α(n)
(9.6)

It is now necessary to discuss the dependence on the energy of the various pa-
rameters introduced above. The elements of the transfer matrices and, in particular,
the radial and phase parameters, show, indeed, a strong dependence on the energy.
However, while it can be reasonable to assume a particular behaviour of the trans-
mission coefficient (and hence of λ) of the blocks with energy (see the following
section), the task is instead of formidable complexity for φk and ψk, given the huge
number of geometrical parameters entering the system. Consequently, we will limit
ourselves to discuss the results of transmission properties upon properly averaging
over the phase parameter values.

9.5 Transmission coefficient

The model described in the preceding section relies on the knowledge of the radial
parameter appearing in the transfer matrix for each block. The radial parameter
λ(ε) of each block can be easily deduced from the transmission coefficient T (ε)
(see eq.(9.4)). We now describe the particular shape of the transmission coefficient
adopted for a nanocrystal and a nanowire.

9.5.1 Nanocrystal

In a silicon nanocrystal, quantum confinement effect along all spatial directions
ultimately determines the formation of discrete energy levels in the density of states
of the system. In the case of an isolated cubic nanocrystal with side L, the laws of
quantum mechanics dictate that the allowed energies of a particle are

Enx,ny ,nz = E0 +
~2π2

2m∗L2
(n2

x + n2
y + n2

z) ∝
~2

m∗L2
(9.7)

where m∗ is the effective mass of the particle, E0 is the reference energy with re-
spect to the Fermi level at equilibrium (EF = 0), ~ = h/(2π) is the reduced Planck’s
constant and nx,y,z = 1,2,3,... are quantum numbers.
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Figure 9.4. Example of Transmission Spectrum of Nanocrystal.

When, however, the dot is coupled to electrodes or neighbouring systems, interac-
tions are known to provoke a broadening of the above energy levels. The energy
width of the dot levels due to the electron transfer coupling to the left and right
systems is given by ΓK , K = L,R. In terms of the Hamiltonian of the system, these
widths equal ΓK = 2π

∑
k∈K |VkK |2δ(E − εk), where Vik are the coupling matrix

elements [135].
Following a common tradition, the transmission coefficient of a coupled dot can then
be expressed through the simple approximated formula

Tdot(ε) =
∑
N

ΓL
NΓ

R
N

(ε− εN)2 + (ΓN/2)2
(9.8)

where N = {nx,ny,nz} is a composite index and ΓN = ΓL
N +ΓR

N . It is noteworthy to
highlight that the Γ ’s of each block depend on its distance from the adjacent blocks,
on the density of charges in them, the dimensions of the latter and on the applied
voltage V . Given the complicated nature of these parameters, in the following
analysis we will neglect, for simplicity, the explicit dependence of Γ ’s on V and we
will treat the interaction effects in the structure due to the potential drop through
the self-consistent field procedure described in the next section. An example of
transmission spectrum for a nanocrystal is shown in fig. 9.4.

89



9 – A New Model for PSNWs

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10  12

T
(E

) 
W

ir
e

 

Energy [eV]

Figure 9.5. Example of Transmission Spectrum of Nanowire (without accounting
for spin).

9.5.2 Nanowire

In a silicon nanowire, or sufficiently long sections of it, quantum confinement is al-
most restricted to the transverse direction while in the longitudinal axis (the direc-
tion of transport) electrons are taken to behave like free particles. As a consequence,
a continuum of energy levels is available to be occupied by particles. Assuming only
one band in the wire and under the effective mass approximation, the transmission
coefficient Tnw(ε) is simply given by

Tnw(ε) = 2 ·
∑
N

θ(ε− E0,N) (9.9)

where N = {ny,nz} is the composite index of transverse quantum numbers, θ(ε) is
the Heaviside function and E0,N is the bottom energy value of each band depending
on the transverse dimensions of the wire according to the formula

E0,N = E0 +
~2π2

2m∗L2
(n2

y + n2
z) ∝

~2

m∗L2
(9.10)

To derive expression (9.9), coupling among different bands has been ignored and no
elastic nor inelastic scattering impurities are considered. The factor of 2 accounts
for the electron spin.
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9.6 Self-consistent field

The model adopted in this study has a pivotal quantity in the transmission coefficient
of the structure T (n)(ε) as computed via eq. (9.6). As already mentioned, besides its
dependence on the geometrical parameters of the blocks, the transmission coefficient
also depends on the applied voltage V . In particular, the application of voltage
between the contacts of the system determines a shift of their chemical potentials
and a consequent modification of the amount of carriers allowed to enter the system
contributing to current. The average charge density consequently varies together
with the repulsive electrostatic interaction exerted on new coming electrons. The
ultimate effect of this self-interaction can be subsumed in a shift of the peaks in the
density of states of each block and thus in the corresponding transmission coefficient.
We take into account this phenomenon by rigidly shifting the energy levels of peaks
or steps (for QDs and QW’s respectively) by a self-consistent energy potential Ui, ∀i

Ui(V ) = U0(Ni(V )−N0) (9.11)

where U0 is the charging energy shift due to a single electron in the structure, N0 is
the charge density in the structure at equilibrium V = 0 while Ni(V ) is the charge
density in the i−block at voltage V . The latter is given by

Ni(V ) =

∫ +∞

−∞

dε

2π
T

(n)
i (ε− U(V ))×

× [Γi,LfL(ε− µL) + Γi,RfR(ε− µR)]

(9.12)

The value of Ui(V ) is then computed from the self-consistent solution of equations
(9.11) and (9.12).

91



Chapter 10

Model Validation and Results

10.1 Validation

The model discussed in the previous chapter represents an attempt to describe elec-
tron transport in a random sequence of silicon nanocrystals and nanowires. Within
it, the interactions among charges in the different blocks and the effect of the ap-
plied voltage are considered through the self-consistent field procedure of section
9.6. To estimate the correctness of this model we shall compare the results to a
quantum calculation based on non-equilibrium Green function technique (NEGF).
NEGF approach represents the most used technique for treating ballistic transport
problems in nanodevices, efficiently coupling Schrodinger and Poisson equations.
In particular, we will exploit the QUANTUM tool implemented in the physics-based
simulator TCAD Atlas [127].
In the software, the single-particle Schrodinger equation with an effective Hamilto-
nian is solved along the structure under the Effective Mass Approximation (EMA).
Values of the effective masses adopted are those of bulk silicon (longitudinal mass of
0.190m0 in unprimed subbands, 0.916m0 in primed subbands). The effective poten-
tial profile adopted in the Schrodinger problem is, instead, given by a superposition
of the wells and barriers due to the material interfaces and of the electrostatic Pois-
son potential caused by the charge density in the structure.
Current is then calculated in the Landauer-Buttiker formalism starting from the
Green’s function and the corresponding transmission spectrum.
Before proceeding with the comparison, some considerations on the validity of the
results from the mentioned NEGF method are in order. The effective single-particle
potential here adopted represents a mean-field treatment of interactions among car-
riers in nanodevices. In fact, this numerical method is known to poorly describe
quantum correlation effects in the system and presents disadvantages analogous to
those of the largely investigated Density Functional Theory (DFT) [136].
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Similarly, our model, endowed with the self-consistent field method, is not able to
provide a sufficiently accurate description of quantum correlations in the system.
Notwithstanding, our interest in this work is mainly devoted to long sequences of
quantum dots and nanowires, whose geometrical parameters can not be exactly con-
trolled experimentally. Hence, we adopt here a statistical treatment of the problem.
Averaging over all the variable parameters in the structure, it is actually expected
that quantum correlations should disappear, consequently assessing the validity of
the results coming from the current analysis.

10.2 Results and Discussion

In this section we compare the results from our method with the quantum simula-
tions from TCAD. Our attention is limited to sequences of a few quantum nanocrys-
tals and nanowires, the only structures which can be analysed and simulated with
the mentioned tool. For longer structures, consisting of more than 4 nanocrystals
and 2 nanowires, it is not possible to obtain valuable results from the simulator
given the increasing complexity of the structure and the computational limits of the
tool.
Hence, we prove the validity of the model showing that excellent accuracy can be
reached with a proper choice of the numerical parameters in the model. These sets
of parameters will be then exploited in the following to derive information on trans-
port in longer structures for which no validating technique is available.
The structures for which we present results are made of one single nanocrystal, two
nanocrystals, and two nanocrystals separated by a long section of silicon nanowire.
Besides demonstrating the accuracy of the model, the analysis of these simple cases
will offer the chance to discuss the effects of geometrical parameters on electron
transport in these systems.

10.2.1 Single Nanocrystal

Fig.10.1 shows the current flowing in a single silicon cubic nanocrystal with varying
applied voltage. Different curves correspond to different dimensions of the quantum
dot (sides in the range [2,5]nm are considered) while the distance of the dot from
the left and right contacts is kept at 1.5nm. This distance is sufficiently high to
guarantee weak coupling between the dot and the contacts, or equivalently stated
ΓL/R/∆E � 1, where ∆E is the energy difference between the lowest consecutive
energy levels of the dot. The latter condition implies a discrete nature of the trans-
mission spectrum of the dot, where no overlapping occurs among different energy
levels due to coupling.
In the figure, the data extracted from TCAD (points) and our model (solid lines)

93



10 – Model Validation and Results

 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
u

rr
e

n
t 

(µ
A

)

Voltage (V)

side=2nm
2.5nm

3nm
4nm

Figure 10.1. Current-Voltage characteristics of cubic silicon nanocrystals for dif-
ferent sizes. Contacts are ideal carrier reservoirs distancing 1.5nm from the dot.
Points - TCAD Atlas simulation; solid lines - our Model. Model parameters used:

U0 = 0.01eV , ΓL/R ∈ [10−4,10−3]eV .

are compared revealing excellent agreement. The parameters adopted in the model
to get the results are: U0 = 0.01eV , ΓL/R ∈ [10−4,10−3]eV .
From the I-V curves, it is immediate to note that increasing the size of the nanocrys-
tal results in an increase of the flowing current. The reason of this behaviour can be
two-fold. On one side, an increase of the side of the nanocrystal is responsible for a
weaker confinement inside the dot; consequently a narrower distribution of energy
levels in the energy range relevant for conduction at a specific value of applied volt-
age is found. This effect is simply described in eq. (9.7). The transmission spectrum
eventually contains more peaks which correspond to more energy states available in
the system. Therefore, an increase of current is found.

On the other side, increasing the size of the dot, the surface interaction between
the dot and the contacts is increased, the Γ ’s consequently increase determining
higher current in the dot (eq. 9.1). In our case, the analysis of the transmission
spectrum of the dots of fig.10.1 reveals that in the conduction energy range consid-
ered, the contact coupling effect is the main cause of the current increase.
At this point another consideration is worthy to be made. The current in the dots
tends to plateau at a given value of applied voltage, whose value is lower for larger
dots. The meaning of this resides in the fact that a fixed number of energy levels
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entering the bias window contribute to current. Once they have been occupied,
current does not increase further. However, an infinity of energy levels is available
in quantum dots at higher energies, which will eventually enter the energy range
of conduction for higher applied voltages. As a consequence, an increase of current
is expected increasing the bias voltage, consistently with the stronger electrostatic
interaction.

10.2.2 Sequence of two Nanocrystals

We present now the values of current for two adjacent silicon nanocrystals having
different size. In particular, fig.10.2 shows the current characteristics of the series
of two nanocrystals, the first of which has a fixed side of 2nm while the other’s
dimension is varied. The distance among the dots and the ideal contacts is 1.5nm
while the inter-dot distance is 1nm. Solid lines correspond to the model data while
points represent data from TCAD simulations: good agreement among them is
evident.
The maximum current in the figure is obtained for equally sized nanocrystals; on the
contrary, a gradual decrease occurs when a mismatch in the dimensions is present.
A difference of fractions of nanometer in the side of the nanocrystals is actually
responsible for a modification in the density of states and in the corresponding
transmission spectrum. According to eq.(9.7), the energy levels of different dots
generally do not coincide; consequently coherent electrons occupying a certain level
in one dot fall outside the allowed energy levels of the other. This amounts to saying
that they are most probably reflected back to the first dot (the resulting transmission
coefficient is relatively small) and their contribution to current is largely reduced.
This phenomenon represents, indeed, a strong limiting factor for current in such
structures. A counteracting role is played, however, by the broadening of the energy
levels in the density of states (and in the transmission spectrum) due to contact and
inter-dot interaction. This permits a partial overlapping of the energy levels and a
greater flow of electrons in the structure. Nonetheless, current strongly reduces when
a mismatch in the dimensions of the dots is present. In fig.10.3 the transmission
spectra at equilibrium for whole structures of fig.10.2 are depicted. The transmission
spectra are characterized by peaks in the energy intervals of the energy levels of the
individual dots. The amplitude of the peaks, however, decreases when increasing
the side mismatch of the dots since energy levels overlapping is gradually reduced.

10.2.3 Nanocrystal + Nanowire + Nanocrystal

The presence of geometrical mismatch between dots in a sequence has been proved
to be of pivotal importance for conduction in the heterogeneous systems considered
in our work. In particular, in the last section, we have shown how the missing
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Figure 10.2. Current-Voltage curves of sequences of two nanocrystals for varying
dimensions. First dot side 2nm, Second dot side: 2nm,2.5nm,3nm,4nm. Contacts
are ideal carrier reservoirs distancing 1.5nm from the dot. Interdot-distance 1nm.
Points - TCAD Atlas simulation; solid lines - our Model. Model parameters used:

U0 = 0.01eV , ΓL/R ∈ [10−4,10−3]eV .

alignment among energy levels in the various blocks determines a lowering in the
overall transmission coefficient dramatically reducing the probability of electrons to
cross the structure. We now consider a simple structure in which also a section
of silicon nanowire plays a role: we focus our attention to a sequence of dots with
different size connected through a nanowire (see fig. 10.4).

In fig.10.5 the I-V characteristics of some systems are shown. The sides of the
dots are kept fixed and equal 2nm and 3nm respectively. The side of the wire sec-
tion is instead varied between 2nm and 6nm. The distance between the dots and
the ideal contacts is 1nm while the dot-wire separation gaps are 1.5nm long. In the
plot, points correspond to results from TCAD, lines represent data from our model
where U0 = 0.01eV while the coupling parameters Γ ’s are chosen of the order of
10−3eV . The agreement of the values is easily assessed.
From the figure, generally higher values of current are found for increasing wire sec-
tion. Moreover, the applied voltage in correspondence of which an almost constant
value of current is obtained reduces with the side of the wire. This behaviour can
be understood in terms of the transmission coefficient. From formula (9.10), the
energies for which a step increase in the transmission spectrum occurs vary pro-
portionally with 1/L2, and thus they get smaller for larger sections. Differently

96



10 – Model Validation and Results

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0  2  4  6  8  10  12

T
ra

n
m

is
s
io

n
 C

o
e

ff
ic

ie
n

t

Energy (eV)

sides 2nm-2nm (%10)
2nm-2.5nm

2nm-3nm
2nm-4nm

 0

 0.005

 0.01

 0.015

 0.02

 8  8.5  9  9.5  10 10.5 11

Figure 10.3. Transmission spectrum of the structures of fig.10.2 for V = 0: First
dot side 2nm, Second dot side: 2nm,2.5nm,3nm,4nm. Contacts are ideal car-
rier reservoirs distancing 1.5nm from the dot. Interdot-distance 1nm. The data
are results from our Model. Model parameters used: U0 = 0.01eV , ΓL/R ∈
[10−4,10−3]eV . The green curve is shown after a division by a factor of ten for

plotting ease.

Figure 10.4. Scheme of a structure of SiNanocrystal + NW + Nanocrystal

stated, the wire transmission spectrum assumes non-zero values for smaller energy
values. As a consequence, electrons entering the wire (from the first dot) with a
certain energy can cross the wire without being reflected back; current naturally
increases. This effect adds to the increase of current due to the intensified interac-
tion, accounted by the coupling factors Γ ’s, between the dots and the wire. The
transmission spectra of the four systems are depicted in fig. where it is evident that,
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Figure 10.5. Current-Voltage characteristics of structures with two dots connected
through a nanowire. First dot side 2nm, Second dot side: 3nm, Transverse side of
the wire:2nm,3nm,4nm,5nm,6nm. Contacts are ideal carrier reservoirs distancing
1nm from the dot. Interdot-distance 1.5nm. The data are results from our Model.
Model parameters: U0 = 0.01eV , ΓL/R ∈ [10−4,10−3]eV . The green curve is shown

after a division by a factor of ten for plotting ease.

for increasing wire section, the resulting transmission coefficient in the structure
contains peaks at lower energy values.

10.3 Further Analysis

In this section we propose a systematic analysis of electron transport in arbitrarily
long sequences of quantum dots and wires. The results will be discussed in terms of
transmission spectrum, conductance and current averaged over a considerable num-
ber of different geometrical configurations of the structure. In particular, exploiting
the useful numerical parameters derived in the simulation process described above,
we will show the effect on transport properties due to: A) the porosity, here defined
as the ratio of the number of quantum dots (0D) over the total number of blocks
in the structure; B) the overall number of blocks constituting the sequence; C) the
geometrical parameters of the individual blocks, specifically the average side of the
quantum dots and the coupling parameters among them.
All the relevant quantities have been derived through an averaging procedure over
many structure configurations in which the position of the dots (and thus of the
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wires), their side and coupling parameters have been randomly chosen according to
uniform and gaussian probability distributions, respectively.
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Figure 10.6. Average Current-Voltage characteristics of structures composed of
5 blocks. Different curves are shown in logarithmic scale for different values of
porosity (number of dots/ total number of blocks). Average is performed over
more than 100 configurations with dot and wire mean side 3nm and mean coupling

parameters Γ = 10−4eV . U0 = 0.01eV

10.3.1 Porosity

Given the intrinsic geometrical and electrical differences among quantum dots and
one-dimensional wires, the average transport properties of a long sequence of 0D and
1D blocks is expected to largely depend on the relative number of 0D structures with
respect to the number of 1D components. In particular, the generally smaller density
of state of quantum dots represents one major cause of reduction in conductance
and current in the structure. This substantiates our definition of a parameter called
porosity defined as the ratio between the number of quantum dots and quantum
wires in the sequence.

Porosity =
] nanocrystals

] totalblocks
(10.1)

The choice of the name stems from the irregular morphology of porous silicon
nanowires where crystalline islands (called pores) are embedded in an amorphous
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silicon-oxide network lacking of lattice regularity. We will adopt porosity as a fun-
damental property of the overall block sequence.
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Figure 10.7. Average current wrt porosity at V=10V of structures composed of
5 blocks. Different curves are shown in logarithmic scale for different values of
porosity (number of dots/ total number of blocks). Averaging is performed over
more than 100 configurations with dot and wire mean side 3nm and mean coupling

parameters Γ = 10−4eV . U0 = 0.01eV .

In fig. 10.6 the average current-voltage characteristics are shown for different
structures composed of five blocks for different values of porosity, that is of number
of dots. The averaging has been performed over a large sample of possible configura-
tions (more than 100) with wire and dot mean side of 3nm and coupling parameters
Γ ’s in the range [10−4,10−3]eV . The behaviour of current with voltage is similar to
the one obtained in the previous sections for single nanocrystals, highlighting the
determining role played by the dots in the transport process. Moreover, the loga-
rithmic scale of the picture reveals that increasing the porosity of the sequence, a
reduction of current of some orders of magnitude is obtained. A better view of this
effect is given in fig. 10.7 in which the average current at V=10V is plotted against
porosity. An almost exponential reduction of current is found (the current scale is
logarithmic).
We expect that increasing the number of dots in sequences with a fixed number of
blocks determines a large reduction of the density of states available for conduction
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(continuous density bands are substituted by peaks) and a consequently lower cur-
rent should flow. This is effectively confirmed by the smaller transmission spectrum
of the device of fig. 10.8 where the average transmission at V=10V is shown in an
energy window relevant for conduction. The evident effect of an increase of porosity
is a decrease of transmission in the structure.
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Figure 10.8. Average transmission spectrum (in logarithmic scale) at V=10V of
structures composed of 5 blocks. Different curves are shown for different values of
porosity (number of dots/ total number of blocks). Averaging is performed over
more than 100 configurations with dot and wire mean side 3nm and mean coupling

parameters Γ = 10−4eV . U0 = 0.01eV .

10.3.2 Number of Blocks

We now discuss the effects of the number of blocks in a structure. Fig. 10.9 shows
the average current-voltage characteristics of structures with different number of
components and fixed porosity of 0.5. The mean wire/dot side is 3nm and the mean
coupling parameter Γ = 1e − 4eV . As it can be seen, increasing the number of
components, a smaller current flow is obtained. This is a direct consequence of the
larger number of dots (at constant porosity), whose small density of states drastically
hinders electron flow. When, on the contrary, quantum wires are inserted into the
structure and the porosity is varied, a weaker decrease of current is found thanks
to the wider energy support of their density of states. Differently from the dots’
case, the 1D DOS provides more viable energy channels allowing a larger number
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Figure 10.9. Average current - voltage characteristics (in logarithmic scale) of
structures with different number of blocks. Porosity is kept fixed at 0.5. Averaging
is performed over more than 100 configurations with dot and wire mean side 3nm

and mean coupling parameters Γ = 10−4eV . U0 = 0.01eV .

of electrons to cross the structure. This can be seen from figure 10.10 showing the
average current at V=10V for different number of blocks and porosity. When dots
are added to the structure, with a consequent increase of the number of blocks and
porosity, a considerable decrease of current is found. On the contrary, if wires are
inserted into the sequence, thus increasing the number of blocks and reducing the
porosity of the structure, a smaller modification of current is devised.

10.3.3 Geometrical Parameters

This last section is devoted to the impact of the geometrical parameters of the
1D-0D sequence on the transport properties. In particular, the mean side of the
cross-section of the quantum crystals and quantum wires is varied, thus obtaining
different strengths of potential confinement inside the blocks. Analogously, we anal-
yse the effect of changing the mean coupling parameters among the blocks, physically
corresponding to modifying their relative inter-distances.

102



10 – Model Validation and Results

-20

-15

-10

-5

0

 2  3  4  5  6  7  8

A
v
e

ra
g

e
 C

u
rr

e
n

t 
(A

) 
in

 L
o

g
-s

c
a

le
 

Number of blocks

Porosity 0.3
0.5
0.7

Figure 10.10. Average current with errorbars (in logarithmic scale) at V=10V of
structures with varying number of blocks. Different curves are shown for different
values of porosity (number of dots/ total number of blocks). Averaging is per-
formed over more than 100 configurations with dot and wire mean side 3nm and

mean coupling parameters Γ = 10−4eV . U0 = 0.01eV .

Block Side

A modification of the cross-section dimension of a quantum dot or a quantum wire
leads to a widening or shrinking of the potential confinement inside the block with
a consequent change in the position of the energy levels/bands in its transmission
coefficient (formulas 9.7 and 9.10). A similar effect is expected to occur in longer
structures composed of several dots and wires when modifying the blocks’ dimen-
sions. Fig.10.11 shows the average transmission spectrum (averaged over more than
100 structure configurations) for different values of the side of dots and wires. Each
structure is made of six blocks, whose sides are randomly chosen according to a
gaussian distribution with different mean value (the standard deviation has been
chosen to be 1nm). Our expectations are confirmed by the gradual shift towards
higher energies of the transmission spectra for smaller values of the side. Moreover,
for sufficiently high energies the differences among the different transmission spectra
of fig.10.11 drastically reduce (the plot is in log-scale), due to the general increase
of the density of states of the blocks with energy.
The modification of the transmission spectrum stemming from a variation in the
dimensions of the blocks engenders perceivable effects also on the conductance of
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the whole structure. In fig.10.12 the average conductance of the same structures of
fig.10.11 is depicted. Smaller sides determine a lower conductance due to a smaller
density of states in the low-energy spectrum. On the contrary, increasing the dimen-
sions, the conductance is seen to dramatically increase. Besides, the positions of the
maximum of conductance of fig.10.12 shift to lower energies for larger sides, thus
assessing the strong influence exerted on the transport properties in a long sequence
by the dimensions of its individual components.
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Figure 10.11. Average transmission spectra (in logarithmic scale) of structures
with varying mean block side. Averaging is performed over more than 100 config-

urations with mean coupling parameters Γ = 10−4eV . U0 = 0.01eV .

Coupling Parameters

The distance among the blocks plays a fundamental role in the transport properties
of the structure. In the model adopted in this work, this parameter is taken into
account through the values of Γ ’s entering in the transmission spectrum and current
relations (expressions 9.8 and 9.9 above). In particular, making two dots closer to
each other determines a larger probability for an electron to cross the structure in a
finite time and consequently determines a wider uncertainty in the energy levels of
the system (cit. Datta). The widening of the energy peaks is ultimately responsible
for a greater overlap among energy levels of adjacent blocks and a larger density
of states for the overall system is found. The conductance of the system grows
as well as Fig. 10.13 confirms. In it the average conductance (over a sample of
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Figure 10.12. Average differential conductance of structures of structures with
varying mean block side. Averaging is performed over more than 100 configurations

with mean coupling parameters Γ = 10−4eV . U0 = 0.01eV .

more than 100 structures) is shown. The individual sequences count six blocks
with mean side of 3nm while their right and left coupling parameters are chosen
randomly from a gaussian probability distribution with standard deviation 10−4eV
and variable mean value in the range [10−4,10−3]eV . This interval of parameters
Γ corresponds to inter-block distances in the interval [1,4]nm as the results of the
simulation process of section 10.2 showed. Moreover, all the curves show a maximum
in the same energy range, due to the presence of numerous peaks in that portion of
energy spectrum, having the structures the same average side dimension.

10.4 Conclusion

Recent advances in fabrication processes have allowed the embedding of low-dimensional
structures (quantum dots and wires) in the same device giving birth to new device
families structures with interesting electrical properties. However, the control on
the accuracy of the geometrical parameters of their components is usually poor,
thus making it difficult to fully understand the underlying mechanism of transport.
Hence, in the last chapters we presented a model to study electron transport prop-
erties in 1D random structures composed by a sequence of quantum dots and wires.
Based on the transfer matrix formalism, it fully accounts for the coherent nature of
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transport and proves to be scalable with the dimensions of the device. Its validity
has been demonstrated through a comparison procedure with the results of a NEGF
tool in a quantum simulator obtaining excellent agreement.
We then exploited the envisioned technique to systematically analyse the electron
transport properties of porous silicon nanowires, described as successions of silicon
nanocystals (dots) and nanowires with random geometrical parameters. A statis-
tical study has been performed by varying general features of the structure: the
number of constituting blocks, the porosity of the structure, the mean side of the
blocks and the coupling parameters among them.
In particular, we demonstrated how increasing the number of quantum dots in a
fixed-length device, hence for larger porosity, the transmission spectrum and conse-
quently the current reduce exponentially due to the reduced density of states avail-
able in the silicon nanocrystals. A similar exponential decay in current has been
obtained for larger structures: the level of porosity determines here the decay rate
with the number of blocks. Finally, we proved how a modification in the mean side
of the components block causes a change in the transmission spectrum and conduc-
tance. As expected, an increase in the average dimensions of the blocks, lowers the
bottom band in the transmission coefficient consequently engendering an increase in
conductance. Increases of a few order of magnitude are found for sides 1nm wider.
Also, the coupling parameters have been demonstrated to play a pivotal role in the

106



10 – Model Validation and Results

structure here investigated. Increasing the coupling strength, which corresponds to
smaller distances among the blocks, facilitates conduction with increases of some
orders of magnitude in the overall conductance.
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Chapter 11

Ab-initio simulations

11.1 Introduction

This chapter marks the beginning of the last part of this thesis work devoted to
the study of the effects on silicon nanowires conduction due to the interaction with
a surface material. In the preceding pages we highlighted the relevance of silicon
nanowires in sensing applications. In particular, Porous Silicon Nanowires, thanks
to their high surface- to-volume ratio, were investigated deeply from a technological
viewpoint and the subsequent modelling problem was tackled. However, there is still
a fundamental problem to be analysed in order to fully understand the working prin-
ciples of SINWs as sensors: how the adsorption of molecules modifies the electron
transport properties and how these changes can be exploited for chemical species
detection. This problem is indeed not new. Several studies have been conducted to
analyse structural and electronic properties of SiNWs theoretically or from ab-initio
calculations [62, 179]. Their goal was, on one side, to determine the band struc-
ture of pristine nanowires; from this, the band-gap has been numerically derived for
different diameters and growing directions [180]. On the other side, studies can be
found in literature analysing the effects of random dopants and impurities bonded
on the wire surface. The corresponding transmission and conductance are computed
[182, 183]. Results showed an increase of the energy-gap for smaller diameters due to
quantum effects. In addition, they highlighted the possibility of tuning the bandgap
attaching gas molecules, like Hydrogen, OH and NH2 groups, on the surface of the
silicon wire [182, 181, 180].
These results are the outcome of the study of wires with a cross section counting
a very limited number of atomic layers and, consequently, with diameters smaller
than 2 nm. In this range of geometrical dimensions, ab-initio simulations represent
the most accurate tools to get information from first principles physics. However,
such atomistic approaches become soon unaffordable for larger dimensions, when
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the number of atoms in the system exceeds a few hundred units. The limitations
of their applicability simply reside in the huge computational cost in terms of time
and memory employed [180].
As a consequence, the employment of semiconducting nanowires in electronics and
sensing applications with diameters larger than 2 nm poses the study of electron
transport in these devices under the attention of both theoreticians and engineers.
Although it is expected that quantum confinement effects and interaction with sur-
face materials affect conduction in larger structures as well, in the authors knowl-
edge no systematic study has been presented yet in the literature. Information on
the properties of transmission and conductivity in silicon nanowires with diameters
larger than a few nanometers would invaluably help understanding the theoretical
foundations of their transport properties. In addition, the analysis of the effects
of many impurities interacting on the surface of the wires would allow an eventual
assessment of their performance in real gas sensing applications orienting the sub-
sequent design flow.
In this chapter we will present the main results of the analysis of the electronic
structure of silicon surface conducted via Siesta DFT package at Insitut de Ciència
de Materials de Barcelona (ICMAB-CSIC) to get an insight on the unmissable fea-
tures of the adsorption properties of silicon nanowires. The systems we analysed
through ab-initio approach are definetely small (they have less than 150 atoms) but
were sufficient to derive some general and fruitful information to be exported on
simulations of much larger size.
The next chapter will complete the analysis started here: the useful information
uncovered will be practically exploited in a thorough analysis of the currently used
silicon nanowires’ conduction in presence of a surface interacting layer.

11.2 Methods

We perform first-principles electronic structure calculation within density-functional
theory (DFT), as implemented in the Siesta package [194]. An overview of DFT
method is presented in the appendix. We use norm-conserving pseudopotentials for
the core electrons and an optimized single-ζ basis set plus polarization functions
[195] for the valence electrons. The exchange-correlation energy is calculated within
the spin polarized generalized gradient approximation (GGA) in the parametrization
of Perdew-Burke-Ernzerhof [196].
We model the SiNW/meso-PSi surfaces with a Si(111) 3 × 3 surface. We use a 4
× 4 supercell of the surface unit cell in slab geometry, sampling the Brillouin zone
with a grid of 4 × 4 of k-points within the Monkhorst-Pack algorithm [197].
The bottom dangling bonds are passivated with hydrogen atoms. All the structures
discussed have been relaxed until the all the forces on the atoms were lower than

110



11 – Ab-initio simulations

0.04 eV/Å.
The surface unit cell is made of more than 100 atoms, the right number of atoms
depending on the proper passivation (if present) of the upper dangling bonds. We
performed calculations on

• Surface passivated with Hydrogen

• Pristine surface, with upper silicon atoms not passivated

• Upper surface Hydrogen-passivated with a dangling bond saturated with a
SO2 molecule

• Upper surface Hydrogen-passivated with a dangling bond saturated with a
NO2 molecule

For the cases mentioned, we relaxed the structures, calculated the electronic
structure and, eventually the projected density of states. The results will be pre-
sented in the next section together with a discussion on the different data found.

11.3 Results

11.3.1 Hydrogen-passivated Surface

We start presenting the results of a Pristine Silicon surface whose surface dangling
bonds have been filled with Hydrogen-atoms. The importance of passivated surfaces
and consequently passivated nanowires resides in the fact that they are more pre-
dictable because they are always semiconducting. On the contrary non-passivated
nanowires have been shown to chaage dramatically their properties depending on
the dimensions of the wire, their orientation, ... For this reason, passivated NWs
are expected to play an important role in the next generation of electronic devices.
Yet, the surface has a relevant role that merits some considerations.
Fig. 11.1 shows the unit cell of passivated surface we simulated through Siesta DFT
package. As it can be seen, all the silicon atoms lying at the bottom and upper sur-
face form bonds with Hydrogen atoms. The band-diagram of this structure is plotted
in fig. 11.2. Conduction and valence bands are separated by a direct energy-gap of
the order of 1eV and hence a semiconducting behaviour is expected. The calculated
energy per atom in the system is −94.28eV/atom. This value which represents our
reference value for the following situations analysed.
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Figure 11.1. Unit cell of the H-passivated silicon surface. Yellow - Silicon atoms,
White - Hydrogen atoms

Figure 11.2. Band-diagram of the H-passivated silicon surface. Direct band-gap
of 1eV is found. The blue dotted line represents the Fermi Energy.
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11.3.2 Non-passivated surface

Nanowires with non-passivated surface turned out to have a limited relevance, at
least to date, because experimentally grown SiNWs are always passivated. However,
the study of bare unpassivated wires is still interesting for two reasons: a) it leads
to the conclusion that passivation is essential to obtain nanowires with predictable
and easy to control electrical properties and b) it sheds a light on some atomic-scale
mechanisms of fundamental interest. The atomic relaxation of the surface led to
a value of total energy per atom of -93.89eV , a value smaller compared with the
H-passivated case, thus revealing a less stable configuration of the wire in absence
of passivating Hydrogen.
The band-diagram of this structure is depicted in fig. 11.3 conduction and valence
bands can be easily identified with a direct band-gap of about 1eV . Moreover, two
energy levels are present in the band-gap (the blue dotted line corresponds to the
Fermi Energy). The lowest of them lies below EF and it is actually populated at
the thermodynamical equilibrium. On the contrary, the other one has an energy
higher than EF and is not populated. Another important remark is in order at this
point. The calculations we performed take into account the spin-polarization of the
electrons in the system. The effects of this can be actually perceived especially in
systems with an odd number of electrons. This is the case we are facing. What
is found is that the lowest energy level in the band-gap belongs to the density of
states of spin-up electrons, the highest belongs to the density of spin-down electrons.
More importantly, the arise of spurious energy levels in the band-gap reveals the high
chemical reactivity of the non-passivated silicon surface.

11.3.3 H-passivated surface with SO2 molecules

Fig. 11.4 represents a portion of surface where a substitution of a Hydrogen has
been performed with a SO2 molecule. The corresponding band-diagram is depicted
in fig. 11.5 the band-diagram is almost identical to the H-passivated case made
exception for two new discrete energy levels falling in the energy-gap. In a very
analogous way with respect to the non-passivated wire, the odd number of electrons
in the structure leads to a spin-splitting of these spurious energy levels, one of which
is occupied in the ground-state configuration of the system, the other is empty.
To better understand the properties of the newly arisen energy levels, we calculate
the so-called Projected density of states (PDOS), given by the projection of the
DOS onto the localised orbitals of the interesting chemical species. In our case we
computed the PDOS on S and O atoms to uncover the spatial distribution of the
corresponding energy states. From fig. 11.6 it can be evinced that the energy levels
in the band-gap are strongly localised on the SO2 molecule and consequently do
not contribute to current. Another equivalent manner to see the same is to look
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Figure 11.3. Band-diagram of the non-passivated silicon surface. Direct band-gap
of 1eV is found with two discrete energy levels in the band-gap. The blue dotted

line represents the Fermi Energy.

directly at the eigenfunctions in their spatial representations and see where there is
the highest probability of finding the electron. The lowest wavefunction (the other
is very similar) is shown in fig.11.7 the image confirms the preceding discussion on
the localisation of the spurious energy states on the SO2 molecule.
Before going over and consider the case of NO2 molecules, it is important now to
remark that the localised nature of the eigenstates inside the band-gap is actually
responsible of the formation of a non-zero charge density along the surface of the
wire. Its value strongly depends on the type of molecule interacting with surface
silicon. The presence of some charge on the SiNWs is of pivotal importance for the
following of this thesis work: it actually represents a linking bridge between ab- ini-
tio calculations (affordable for very small structures) and macroscopic simulations
(which are not capable of studying the atomistic character of surface atoms interac-
tions). We will indeed exploit this information to carry more extensive analysis in
the next chapter.
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Figure 11.4. Unit cell of the H-passivated silicon surface with SO 2 molecule.
Yellow - Silicon atoms, White - Hydrogen atoms, Red - Oxygen, Green - Sulphur.

Figure 11.5. Band-diagram of the passivated silicon surface with SO 2 molecule.
Direct band-gap of 1eV is found with two discrete energy levels in the band-gap.

The blue dotted line represents the Fermi Energy.

11.3.4 H-passivated surface with NO2 molecules

From the previous section we understood that the interaction of silicon surface
atoms with other molecules can lead to a modification of the band-diagram trough
the formation of new localised energy levels. Their position in the energy spectrum
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Figure 11.6. PDOS on S and O atoms in the passivated silicon surface with SO2

molecule. The peaks in the band-gap correspond to the discrete energy levels
discussed in the text and reveal the localised nature of the corresponding states.

Figure 11.7. Spatial distribution of the wavefunction corresponding to the lowest
energy level in the band-gap. In blue the isosurface of the wavefunction modulus.
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is a peculiar feature of the molecules considered, as we would like to convey in this
section.
The case of silicon surface interacting with NO2 molecules is now treated. Our
interest is again focused on the band-diagram of the structure which is shown in
fig. 11.8. What can be immediately noticed is the absence of the energy levels
which were engendered in the previous case. In our current situation it seems that
the interaction of silicon surface with NO2 molecules leaves almost unaltered the
electronic structure of the system. However, a more careful analysis reveals that
there are strong modifications in the band diagram even in this case. Fig. 11.9
shows the partial density of states over Nytrogen and Oxygen atoms as a function
of energy. In a strict analogy with the SO2 case, the presence of NO2 enegenders
new energy states whose energy falls in the valence and conduction band. Moreover,
they are still localised on the molecule (peaks in the PDOS).

Figure 11.8. Band-diagram of the passivated silicon surface with NO2 molecule.
Direct band-gap of 1eV is found but no discrete energy levels in the band-gap. The

blue dotted line represents the Fermi Energy.

11.4 Conclusions

In this chapter we presented the main results of ab-initio calculations we performed
on silicon surfaces when some interaction is inserted. In particular, we showed
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Figure 11.9. PDOS on N and O atoms in the passivated silicon surface with NO2

molecule. The peaks in the band-gap correspond to the discrete energy levels
discussed in the text and reveal the localised nature of the corresponding states.

how interaction with some surface molecule can cause strong modifications in the
electronic structure of a wire: new discrete energy levels arise which can fall in
the energy-gap, as in the SO2 case, or not. Their energies varie with the type of
molecules and this represents a distinctive sign of a the adsorption of a specific
chemical compound.
Moreover, these new energy states are localised on the molecules, as the calculations
of PDOS revealed. As a consequence, the population of these states by electrons
brings a non-zero charge density on the surface which modifies transport in the wire.
This information will be largely exploited in the following chapter in order to analyse
the transport in silicon wires with dimensions too large to be simulated via DFT
package tools.
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Chapter 12

Analysis of Surface Interaction

As already mentioned in the previous chapter, the employment of semiconducting
nanowires in electronics and sensing applications with diameters larger than 2 nm
poses the study of electron transport in these devices under the attention of both
theoreticians and engineers. Information on the properties of transmission and con-
ductivity in silicon nanowires with diameters larger than a few nanometers would
invaluably help understanding the theoretical foundations of their transport prop-
erties. In addition, the analysis of the effects of many impurities interacting on the
surface of the wires would allow an eventual assessment of their performance in real
gas sensing applications orienting the subsequent design flow.
Starting from the main results of the ab-initio analysis conducted on silicon surface,
we try to systematically analyse the conduction properties ow larger wires for which
an atomistic approach is not feasible. In particular, in this chapter we propose 1) a
thorough analysis of the electronic properties of a silicon nanowire interacting with
a surface material with different electrical and geometrical properties. The study
has been performed focusing on the impact on transmission spectrum and current.
2) We demonstrate that the properties of the surface material (permittivity, thick-
ness) affect electron transport in the wire changing the confining potential in the
channel and the corresponding transmission spectrum. Maximum relative changes
in current of 20% and 50% are found for permittivity and thickness respectively. 3)
The impact of a surface charge concentration and of a varying density of surface
material on the current is examined and discussed. Specifically, we present results
confirming relevant modifications of the order of 50% in the resulting current when
varying the percentage of channel covering. We conclude analysing 4) the effect
on electron transport due to the multiple interaction of silicon nanowires with two
different surface materials. We eventually show interesting interdependence effects
arising in the transmission spectrum which highlight new peculiar phenomena in
silicon nanowires for sensing applications.
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Figure 12.1. a) Scheme of the investigated Silicon Nanowire partially covered with
some surface material; b) Cross section of the SiNW.

12.1 Methods

The device we adopted for our systematic analysis of transport properties is a silicon
nanowire aligned along [100] direction and characterized by a square cross-section
(side = 3nm) with a 15nm length. Fig. 1-a shows schematically the whole struc-
ture, while fig.1-b depicts its transverse section. The channel is contacted with two
highly doped contacts mimicking ideal carriers reservoirs. In the following sections,
the surface of the wire will be fully or partially covered with a layer of a certain
material, differing from silicon in its value of dielectric constant. Depending on
the permittivity and on the layer thickness (ranging from 1Å to 5Å), the impact
of quantum confinement is modified, allowing to treat a generic interface material.
Moreover, we introduce a surface charge density between the silicon channel and
the external layer to model the net charge densities which could arise from chemical
bonds with molecules.
Calculations of transmission spectrum, density of states and current are performed
via a self-consistent solution of the coupled Schrodinger and Poisson equations [127].
Specifically, Schrodinger equation with an effective Hamiltonian is solved under the
assumption of Effective Mass Approximation (EMA). Stated in another way, we
assume that the dimensions of the wires are suffciently long for the EMA to hold.
Hence, values of the effective masses adopted are those of bulk silicon (longitudinal
mass of 0.190m0 in unprimed subbands, 0.916m0 in primed subbands).
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Calculations of current are instead performed in the Landauer-Buttiker formalism
starting from the transmission spectrum previously computed.

12.2 Results

We present now the results of the systematic analysis we performed on the device
described above. Parametric study of transmission spectrum and current has been
conducted in terms of four parameters: a) charge density at the interface between
the channel and the surface layer, b) thickness of the surface layer, c) permittivity
of the surface material and d) percentage of the channel covered by the surface
material. We conclude describing e) the impact on conduction transport due to the
interaction of silicon nanowires with different surface materials.

Interface charge density

The interaction between the silicon channel and the external layer manifests itself
microscopically through the formation of molecular bonds among the silicon atoms
on the surface and the adjacent compounds attached to the wire. Depending on the
molecular species involved, these bonds determine a redistribution of charge in the
structure and a generally non-negligible amount of charge is found on the surface of
the silicon wire. The inset of fig. 12.2 shows the electron density, derived via ab-initio
calculations [185], along the surface layer of Hydrogen atoms in a passivated silicon
nanowire. A charge density of 3 electron charges per Å2 is present in proximity of
the Hydrogen atoms (red regions).
The presence of a surface charge density between the channel and external layer
alters the confining potential as well. A positive charge density effectively lowers
the potential barrier, while a negative one restricts it, thanks to the attractive
and repulsive electrostatic forces on the electrons respectively. The effect of charge
density can be modelled through an effective modification of the side W:

Weff = W + αρ · ρ (12.1)

where is αρ a positive parameter introduced to model the effect while is the surface
charge density. Depending on the sign of ρ, an effective increase or decrease of the
side is obtained. Assuming then a simple quantum-well behaviour for the confining
potential in a transverse section of the wire, the lowest conduction band energy
scales as

EC ∝=
1

W 2
eff

=
1

(W + αρ · ρ)2
(12.2)

From eq.(2) it emerges how a positive charge density determines a lowering of the
conduction band while a negative one causes its raising in energy. Consequently, an
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Figure 12.2. Current-voltage curves of a silicon nanowire (side 3nm) for different
values of charge density on the surface between the channel and the external layer.
In the inset the electron density along the external layer of Hydrogen atoms of a
passivated silicon nanowire is shown; red regions denote higher density. Data are

extracted using the atomistic simulator VNL ATK [185].

increase and a decrease of current is expected in the two cases, respectively. The
confirmation is shown in Fig.2 where the current-voltage characteristic of a silicon
nanowire (side 3nm) is depicted.
The confining effect exerted by the surface charge density, moreover, strongly de-
pends on the transverse dimension of the silicon nanowire. For large values of side,
the relative change in the confining potential is expected to be smaller with a con-
sequent smaller sensitivity of the current with the charge density.
In this respect, Fig. 12.3 depicts the current-voltage characteristics for a silicon
nanowire with a side of 6nm in the same charge density conditions of fig.12.2. A lower
relative change in current with density is found with respect to the smallest nanowire.
Values of relative change in current are 43% and 14.2% with ρ = 1011C/cm2,
V = 0.5V for sides of 3nm and 6nm, respectively.

Thickness of the surface layer

When a chemical specie interacts with the surface atoms of a silicon nanowire or a
layer of a certain material is deposited on its surface, the conduction properties of
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Figure 12.3. Current-voltage characteristics of a silicon nanowire for different
surface charge density. Nanowire side 6nm.

the wire are expected to modify. Geometrical parameters of the surface layer are
found to play a determinant role in this respect. In particular, the thickness of the
material surface can be easily identified as one of them.
Fig.12.4 shows the current of the simulated Silicon Nanowire (length 15nm, side
3nm) for different values of thickness of the surface material (εr = 4). For increasing
thickness, a higher current is detected revealing a higher conductivity of the wire.
The explanation resides into the weaker confinement effect exerted by a sufficiently
thick layer; this effectively widens the quantum well profile in the transverse direction
with a consequent lowering of the conduction energy band in the channel. The
corresponding transmission spectrum confirms the phenomenon. In Fig.12.5 the
transmission spectrum of the wire is displayed for different values of thickness of
the layer material (εr = 4). As expected, a reduction of the minimum energy of the
conduction band is found.

Permittivity of the surface material

In this section we analyse the effects of the permittivity of the surface material on
the conduction properties of a silicon nanowire. Simulations have been performed on
a nanowire with squared section of side W = 3nm and length 15nm. A surface layer
of varying permittivity (εr ranging from 3 to 15) and thickness 3Å is juxtaposed on
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Figure 12.4. Current-voltage characteristics of a silicon nanowire for varying
surface layer thickness, εr = 4

Figure 12.5. Transmission spectrum of a silicon nanowire for varying surface layer
thickness, εr = 4
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Figure 12.6. Transmission spectra of a silicon nanowire for different permittivities
of the surface material (oxide thickness=3Å)

the lateral faces of the wire, whose transmission spectrum at equilibrium is depicted
in fig. 12.6.
As it can be easily noticed, an increase in the permittivity of the surface layer pro-
vokes a reduction of the energy gap between conduction and valence bands revealing
a different capability of the surface material in confining electrons in the channel.

A higher permittivity is, indeed, responsible for a slower variation of potential
along a transverse section from its value in vacuum and the lower value in the silicon
channel. The spatial region involved in this change of potential is then increased
resulting in a wider confining potential. This reasoning is better clarified when
looking at the transverse confinement potential along a cross section of the wire for
three different values of permittivity (fig.12.7). A symmetry axis normal to the side
of the square section has been chosen. Here the almost quantum-well potential is
effectively widened by an increase of the permittivity of the surface layer.
In analogy with the previous sections, an analytical expression for the change in
the energy difference between conduction and valence bands can be easily derived
exploiting fundamental relations of quantum mechanics. Assuming a 2D quantum-
well potential in the transverse section of the wire and an effective side of the wire
given by

Weff = W + αεεr · t (12.3)

125



12 – Analysis of Surface Interaction

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

P
o

te
n

ti
a

l 
(e

V
)

tranverse coordinate (nm)

layer layerSilicon

Channel length L=15nm, layer thickness 0.5nm

εr=3

εr=7

εr=11
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(αε is a parameter introduced to model the effect of permittivity on the widening
potential, t is the layer thickness), the conduction-valence energy gap calculated
with respect to the silicon bulk value (Eg,0 = 1.11eV ) is then found to scale as

Eg − Eg,0 ∝
1

W 2
eff

=
1

(W + αεεrt)2
(12.4)

The correctness of this behaviour is confirmed by the plot of fig.12.8 where the
quantity Eg − Eg,0 is shown as a function of the side W for different values of εr.
The lines are the fitting curves of eq. 12.4, points represent the simulation output.
In fig. 12.9 the current-voltage characteristics are shown for different values of
permittivity. In agreement with the preceding discussion, larger current can flow in
the channel when increasing the permittivity due to the mentioned reduction of the
energy interval between conduction and valence bands.

126



12 – Analysis of Surface Interaction

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 2.5  3  3.5  4  4.5  5  5.5  6

E
g
-E

g
,0

 (
e

V
)

Side (nm)

Channel length L=15nm, layer thickness 0.5nm

Points - TCAD , Lines - fitting curves (eq. 2)

εr=3

εr=7

εr=11

εr=15

Figure 12.8. Energy difference between the conduction and valence bands vs.
nanowire side is shown for different values of permittivity εr. Energies are shifted

of the bulk silicon energy gap Eg,0 = 1.11eV .

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5

C
u

rr
e

n
t 

(µ
A

)

Voltage (V)

L=15nm side=3nm, material thickness=0.3nm

εr=3
εr=7

εr=11
εr=15

 0

 0.05

 0.1

 0.15

 0.2

 0  0.02  0.04  0.06  0.08  0.1

Figure 12.9. Current-voltage characteristics of a silicon nanowire for different
values of surface material permittivity (oxide thickness=3Å).
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Figure 12.10. Transmission spectrum of a silicon nanowire varying the surface
coverage (density). Surface material permittivity εr = 4.

Percentage of channel covering

The envisioned employment of silicon nanowires in gas sensing applications is based
on the already mentioned modifications in the conduction transport properties in-
duced by the interaction of the silicon channel atoms with molecules which chem-
ically attach to the surface of the wire. The amount of molecules interacting with
silicon atoms should naturally depend on their abundance in the surrounding space,
consequently altering the nanowire transport in a larger or smaller extent. It is
worthwhile, then, studying the effects of surface interaction when the wire is only
partially covered with an external material.

In this section we report the results of the simulation of a silicon nanowire (side
3nm, length 15nm) for varying concentrations of material interacting on the surface.
The device under consideration is schematically depicted in fig. 12.1-c, where the
percentage of the surface layer is varied modifying the width of the surface coloured
stripes.
The transmission spectrum at equilibrium (0V) of the nanowire is shown in fig.12.10
for different values of surface coverage. The extreme cases of completely covered
channel (C = 1 in the figure) and channel with no surface material (C = 0) present
a regular profile denoting the existence of conductive bands available. Their step-
like behaviour is the fingerprint of transport conduction in a perfect wire with a

128



12 – Analysis of Surface Interaction

0 5.8e95.6e8

x

y

Silicon Channel

Surface material

Contact Contact

Figure 12.11. Squared modulus of the eigenfunction |ΨE(x,y)| [cm−3] correspond-
ing to the new energy level E = 0.12eV arisen in the transmission spectrum of a
silicon nanowire interacting with a surface material (thickness 5Å, εr = 4, channel
covering 30%); the function is shown on a section of the device (side 3nm, length

15nm).

translational invariance along the transport direction and strongly confining poten-
tial in the transverse section. The values of energy corresponding to jumps in the
transmission are the eingenvalues of the hamiltonian in the transverse plane.
In both cases, the energy difference between the conduction and valence bands (the
Fermi level corresponds to 0eV) is the energy-gap, which is higher for the covered
channel, revealing a weakening of the confinement effect as consequence of the in-
terface layer.
When increasing the surface density starting from the pristine wire, the transmission
spectrum modifies with the formation of peaks corresponding to new energy levels
below the minimum conduction-band energy. These new states are not related to
existing 1D band states but derive from the channel interaction with the surface
material. They effectively contribute to current in the wire as it can be inferred by
looking at the spatial distribution of the energy eigenfunction corresponding to the
newly arisen energy level (see fig.12.11). The wavefunction is spread in the channel
signifying a not small probability of transmission from one contact to the other of
the system.
The amplitude of the peaks in the spectrum changes with continuity in order to
recover the extremal spectra of C = 0 and C = 1 surface coverages. Hence, the
peak amplitude and width reveal a dependence on the percentage of surface cover-
ing. The position in the energy spectrum of the new levels, instead, is almost fixed
by the extreme configurations of zero and maximum surface coverage.
The variations in the peak amplitude and width with respect to surface coverage,
then, represent key factors in the use of silicon nanowire as gas sensors, since they
largely determine the sensitivity of the sensor for varying concentration of the chemi-
cal species to be detected. More precisely, the larger the surface coverage, the higher
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Figure 12.12. Current-Voltage characteristics for a Si-NW wit side 3nm for dif-
ferent values of surface covering C.

and wider the peak. Current and, more frequently, differential conductance are con-
sequently modified. Current-voltage characteristics of the device for different values
of channel covering are shown in fig.12.12. A monotonic increase of current is de-
tected with the percentage of channel covering due to the availability of wider and
more conductive channels in the wire at lower values of energies.

Multiple Layer Interaction

This section is devoted to the discussion of simulation results obtained when simu-
lating a silicon nanowire whose surface is partially covered by two different kinds of
layer materials. This particular configuration reproduces the situation of silicon-
based sensors whose surface chemically interacts with different chemical species
which unavoidably attach the sensor surface [180, 181]. Silicon atoms are, indeed,
prone to build bonds with several molecules which determine a modification of the
transport properties of the sensor [182].

Hence, a problem of multiple interaction with different chemical species arises
and a careful analysis is required on how transport in the silicon nanowire is affected.
In this work we simulated the behaviour of a silicon nanowire (section side 3nm,
length=15nm) whose surface is partially covered with two different layer materials.
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Figure 12.13. Structure of Si-NW whose surface is partially covered by two dif-
ferent material layers. In our analysis, they are 5Å thick and differ only for their

value of permittivity: εr,1 6= ,εr,2.

The structure is schematically depicted in fig.12.13. As in the previous section, sur-
face coverages of the two materials is changed by varying the widths of the coloured
stripes. The external materials adopted here only differ in their value of permittivity
with thickness 5Å. This choice is motivated by the preceding discussion from which
it could be inferred that any modification of the surface layer properties (permittiv-
ity, charge density, thickness) could be reduced to an effective modification of the
section dimensions of the wire. In particular, the surface materials have εr,1 = 8
and εr,2 = 4 respectively. The choice εr,1 > εr,2 is by no means a loss of generality
and still allows to uncover the effects that the disparity between the layers could
engender. In accordance with the previous analysis, this inequality determines a
modification of the effective side of the nanowire such that Weff,1 > Weff,2, where
Weff,i,i = 1,2 are the effective sides.
Fig. 12.14 and 12.15 show the resulting transmission spectra for two different cases,
respectively: a) the surface coverage of material 1 (C1) is kept fixed while the cov-
erage of material 2 (C2) is varied; and b) C2 is fixed while C1 is varied. We will
analyse them separately.

C1 fixed, C2 variable Fig. 12.14 shows the transmission spectrum for C1 = 0.3
(percentage of surface covering 30%). In analogy with the preceding section, the in-
teraction with surface materials determines the formation of spurious energy levels
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in addition to the perfect-wire step-like transmission. In particular, for low values
of C2 two independent peaks are evident whose mean energy value is highlighted
by the red vertical lines. The lowest peak is generated by the wire interaction with
material 1 whose larger Weff,2 tends to lower the conduction energy levels. A con-
firmation of this comes from the relatively small variation of the peak amplitude
with increasing C2.
On the contrary, Material 2 (with smaller Weff2) is mainly responsible for the sec-
ond peak, whose amplitude reveals a stronger dependence with the value of C2.
Increasing C2, the amplitude grows consequently. In the limit case C2 = 0.6, this
second peak has eventually widened resulting in a step-like transmission spectrum
with lower bottom energy.

C1 variable, C2 fixed When C1 is changed (C2 = 0.3), it is still possible to identify
the presence of two peaks in the transmission spectrum (vertical lines in fig.12.15).
In particular, the lower energy peak is now growing in amplitude after an increase of
C1, which is the consequence of a widening portion of the silicon wire characterised
by a non negligible low-energy density of states. Nevertheless, the amplitude of the
second peak increases in amplitude with C1 as well: this reveals the greater sensitiv-
ity of the interaction SiNW-Material2 with respect to the concentration of Material
1 when compared to the previous case. The increase of C1, indeed, opens conductive
channels in the silicon wire favouring electron transport at lower energies. The sec-
ond peak in the transmission spectrum is consequently strengthened by this effect
and contributes more effectively to conduction. The limiting case with C1 = 0.6
is, once again, characterized by a step-like transmission spectrum where the sec-
ond peak, and thus the influence of the presence of Material 2, has been overtaken
by the effects of Material 1, with larger effective side and higher coverage percentage.

The effects of multiple layer interaction in the transmission spectrum of SiNWs
have naturally an impact on the current-voltage characteristics of the devices. Fig.12.16
shows the I-V curves of a silicon nanowire (side 3nm, length 15nm) when C2 is fixed
and equal to 0.6 while C1 is varied from C = 0 (only Material 2 is deposited on the
wire surface) and C = 0.4. The amount of surface covered by Material 2 (εr,2 = 4)
determines a relevant variation of the conductivity of the wire, which increases pro-
portionally with the fraction of surface covered by Material 1 (εr,1 = 8). This effect
stems from the discussed formation of peaks in the transmission spectrum and their
gradual amplitude enhancement. The causes of the latter reside in 1) the increase
of C1 and 2) the accentuated effect of one peak on the other with a consequently
greater sensitivity of the nanowire to surface interaction with Material 1.
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Figure 12.14. Transmission spectrum of a SiNW (length 15nm, side 3nm) inter-
acting with two surface material layers (thickness 5Å) with permittivity εr,1 = 8
and εr,2 = 4 respectively. In the figure, the percentage of channel covered by

Material 1 is fixed, C1 = 0.3, C2 is variable.

12.3 Conclusions

In this chapter, we analysed the effects of a surface material layer on the transport
properties of a silicon nanowire. Through a systematic simulative study the impact
of the external layer properties (thickness, permittivity and the presence of a charge
density at the interface) has been discussed in terms of confining potential inside
the channel and current. A thicker surface layer affects the conduction increasing
the current; the reasons have been found in a widening of the quantum confining
potential and the corresponding lowering of conduction bands energies. A similar
widening of the potential confining profile origins when increasing the layer per-
mittivity. Hence, a higher current is obtained. Also the effects of a surface charge
density have been found to stem from a modification of the transverse confine-
ment strength in the channel. In particular, a charge density weakens the electron
confinement if positive, it reinforces it if negative. Higher and lower currents are
consequently found in the two cases, respectively.
In the second part of the chapter we presented the analysis of the impact of the
amount of surface coverage on nanowires conduction as well as a discussion on how
the interaction with two external materials modifies electron transport in these de-
vices. In particular, a variation in the surface coverage has been found to determine
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Figure 12.15. Transmission spectrum of a SiNW (length 15nm, side 3nm) inter-
acting with two surface material layers (thickness 5Å) with permittivity εr,1 = 8
and εr,2 = 4 respectively. The percentage of channel covered by Material 1 is a

parameter while C2 = 0.3 is kept fixed.

the formation of new energy conduction channels in the transmission spectrum,
whose amplitude and width increase proportionally with the surface covering. Lay-
ing below the conduction bands, they are consequently responsible for a higher
current with respect to the pristine wire.
In the case of multiple interaction layers, spurious low-energy peaks can be still
devised which generally determine an increase of conductivity. Their energy and
amplitude have been found to depend strongly on the properties of the materials.
Interestingly, particular surface material properties have been shown to engender an
interdependence relationship among the peaks, and consequently in the current.
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Figure 12.16. Current-Voltage characteristics of a SiNW (length 15nm, side 3nm)
interacting with two surface material layers (thickness 5Å) with permittivity εr,1 =
8 and εr,2 = 4 respectively. The percentage of channel covered by Material 1 is a

parameter while C2 = 0.6 is kept fixed.
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Chapter 13

Conclusions

In this thesis work we presented the main results of our research activity on mod-
elling and simulation of Silicon-Based devices. Two main topics were covered in
major details: silicon nanowires used for computational logic and for bio-chemical
sensing.
In particular, we devised a compact numerical model for Multiple-Independent Gate
Transistors which has been proved to be computationally efficient and accurate. Nu-
merical validation with physics-based software was performed.
In the field of bio-chemical sensing, our research activity has been focused on Porous
Silicon, a very particular material characterised by a complex microscopic morphol-
ogy made of crystalline regions inmersed in a amorphous network. Thanks to its
large surface-to-volume ratio and chemical reactivity at room temperature it is suit-
able for sensing. In the last three years we developed two numerical models for
PS nanowires with different validity regimes both including a careful description of
quantum effects (quantum potential confinement and coherent transport).
The last part of the work was devoted to the study of the effects of surface interac-
tion on the conduction properties of silicon nanowires. Starting from an atomistic
approach based on Density Functional Theory, we analysed systems of nanowires
with diameters larger than 2 nm when molecules and dielectric materials are de-
posited on the surface. Interesting phenomena have been found which shed new
light on silicon nanowires for bio-chemical sensing.

136



Appendix A

Density Functional Theory

A.1 A brief DFT survey

The first theoretical foundation of Density Functional Theory (DFT) was introduced
in 1964 by Hohenberg and Kohn in a famous paper [65] that was worth the Nobel
Prize for Chemistry to Kohn in 1998. They dmeonstrated that all the electronic
properties of the system in its non-degenrate ground-state (GS) configuration can
be completely described by its electron density n(r); moreover, the total energy and
the potentials can be described as functionals of n(r) only.
One year later, in 1965, moving from the HK theorem, Kohn and Sham provided a
self−consistent scheme in order to map the interacting many-body problem into a
set of non-interacting single particle equation reformulating the mean-field method
into a variational principle. The milestones of DFT can therefore be considered the
Hohenberg-Kohn theorem and the Kohn-Sham equations.

A.1.1 The Hohenberg-Kohn theorem

The Hohenberg-Kohn (HK) theorem succeeded to demonstrate that the properties
linked to the electronic structure of a system in its fundamental non-degenerate
groound-state are completely and univocally described by its electronic ground-
state. The theorem asserts that:
”The ground-state density n(r) of a bound system of interacting electrons in some
external potential v(r) determines this potential uniquely” where ”uniquely” means
”up to an additive constant” (defined in the Hohenberg-Kohn paper) and in the case
of degenerate ground-state, the lemma refers to any ground-state density n(r). Tak-
ing into account a N-electron system interacting in presence of an external potential
Vext, the Hamiltonian results

Ĥ = T̂ + ˆVext + Ŵ (A.1)
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a sum of kinetic term

T̂ = −1

2

N∑
i

∇2
i (A.2)

an electron-electron interaction Coulomb potential term

Ŵ =
1

2

∑
i 6=j

vij(|ri − rj|) (A.3)

and a term representing the interaction with the external potential Vext(r)

V̂ext =
N∑
i

vext(ri) (A.4)

the ground-state many-body wavefunction can be defined as ϕ(r1 · · · rN) and the
ground-state electronic density is

n(r1) = N

∫
ϕ∗(r1 · · · rN)ϕ(r1 · · · rN)dr2 · · · drN (A.5)

The HK theorem asserts that ϕ and Vext are univocally determined by the elec-
tronic density n(r) only and they are called unique functional of the electronic charge
density. From the eigenvalues equation

Ĥ |ϕ(r)〉 = EGS |ϕ(r)〉 (A.6)

(T̂ + V̂ + Ŵ ) |ϕ(r)〉 = EGS |ϕ(r)〉 (A.7)

although T and W are univocally specified through the HK theorem, on the other
hand, the potential v, supposed in the original paper [65] to be local, bounded and
spin-independent, can be considered to be an element of the V ensemble containing
all the external potentials generating a ground-state for the system. Each v can
be related to a ground-state wavefunction ϕGS to which a unique electronic charge
density nGS(r) corresponds:

nGS(r) = 〈ϕGS| n̂(r) |ϕGS〉 (A.8)

All the densities that satisfy this relation belong to the ensemble N and are called
v−representable bacuase they are ground-state electronic densities of the hamilto-
nian Ĥ obtained from different vext =

∫
v(r)n(r)dr ∈ V. It is possible to construct

a map between a set of external potential v(r) and the corresponding ground-state
densities n(r)

G : v(r)→ |ϕ(r)〉 (A.9)
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and since the HK theorem shows that G is surjective and injective, thus biunivocal
and invertible:

G−1 : n(r)→ v(r) + c (A.10)

the ground-state density could be considered the basic variable in the electronic
problem. The application G is surjective for construction but to prove that it is also
injective one can show that two different systems subjected to two external potentials
differing only for a constant, v(r 6= v′(r) + c, they cannot have the same electronic
density for the ground-state, n(r = n′(r) leads to an absurdum. This implies that
the ground-state expectation value for any physical observable is a unique functional
of the ground-state electron density n(r):

〈ϕ[n]| Ô |ϕ[n]〉 = O[n] (A.11)

In particular, according to these findings, we can define the total energy of the N-
electron system as the expectation value calculated on the ground state wavefunction
|ϕ〉:

E[n(r)] = 〈ϕ[n]| Ĥ |ϕ[n]〉 (A.12)

and defining the universal functional FHK [n]:

FHK [n] = 〈ϕ[n]| (T̂ + Ŵ ) |ϕ[n]〉 (A.13)

the total energy becomes

Ev[n(r)] =

∫
v(r)n(r)dr + FHK [n] (A.14)

It is worth pointing out that FHK [n] is a universal functional because it does not
depedn on the external potential and it is the same density functional for atoms,
moelcules and solids since in all cases Ŵ is the Coulomb repulsion between the
electrons and T̂ , the kinetic energy.
The second part of the HK theorem establishes that through a reformulation of the
Rayleigh-Ritz variational principle in terms of the electron density n(r) it is possible
to minimize the Ev[n] functional in the class of regular functions n(r) satisfying
the condition

∫
n(r)dr = N for the exact ground-state density. The minimization

process leads to

E = min
ñ(r)

Ev[ñ] = min
ñ(r)

{∫
v(r)ñ(r)dr + F [ñ]

}
(A.15)

where ñr refers to all functions of the v−representable class mentioned before. The
minimum is attained when ñr coincides with the n(r) ground-state density for a non-
degenerate case; for a degenerate case, instead, ñ(r) is only one of the ground-state
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densities. the constraint on the number of particles (that ensures the conservation)
is resumed with

δE[n(r)]

δn(r)
= µ (A.16)

where µ represents the chemical potential of the system.

The formdable problem of finding the minimum of
〈
Ψ̃
∣∣∣H ∣∣∣Ψ̃〉 with respect tot he

3N-dimensional trial function Ψ̃ has been transformed into the seemingly trivial
problem of finding the minimum of Ev[ñ] with respect tot he 3-dimensional trial

function ˜n(r). However the main difficulty in the determination of the ground-state
density is the form of the functional eq. A.13 fixed the external potential vext(r) the
lack of a proper analytical definition of the FHK [n] functional leads strainght to the
use of approximations of ev[ñ(r)] for the calculation of Etot and n(r).

A.1.2 The Kohn-Sham equations

A particularly important strategy to solve the problem of the practical DFT imple-
mentations was introduced by Kohn and Sham [66]. They considered an auxiliary
system of N non-interacting electrons subjected to an effective potential vKSeff (r) and
described by the Hamiltonian

ĤKS = T̂KS + v̂KSeff (A.17)

by moving from the initial Hartree formulation of the Schrodinger equation for
non-interacting electrons in the external potential veff and from the HK minimal
principle. According to the theorem of Hohenberg and Kohn, for a non-interacting
N-particle system, the energy id a functional of the density:

Es[n] = Ts[n] +

∫
vs(r) ˜n(r)dr (A.18)

The central assertion used in establishing the Kohn-Sham scheme is the following:
”for any interacting system, there exists a local single particle potential vks(r) such
that the exact ground-state density n(r) of the interacting systems is equal to the
ground-state density of the auxiliary system ñ(r), i.e. n(r) = ñ(r)”.

Minimizing the energy functional for the Kohn-Sham system of N-independent
particles, with the constraint on the number of electrons and considering that the
density ñr must be constructed for an independent-particle system (one-single Slater
determinant), we obtain a set of equations:[

− ~2

2m
∇2 + vs(r)

]
ϕi(r) = εiϕi(r) (A.19)

140



A – Density Functional Theory

The density has a unique representation in terms of the lowest N single-particle
orbitals

n(r) = ñ(r) =
N∑
i=1

|ϕi(r)|2 (A.20)

where the constraint on the density becomes equivalent to the orthonormality of the
wavefunctions: ∫

drϕ∗j(r)ϕi(r) = δij (A.21)

Once the existence of a potential vs(r) generating a given interacting density n(r) is
assumed, the uniqueness of vs(r) follows from the Hohenberg-Kohn theorem. Thus
the single-particle orbitals are unique functionals of the density: n(r), φi(r) =
φi([n(r)[) and the non interacting kinetic energy Ts[n(r)] is a unique functional
of n(r) as well.

Starting from the interacting system subject to an external potential v(r) we can
rewrite the total energy functional of eq. A.14 splitting FHK [n] as

FHK [n] =
1

2

∫ ∫
drdr′

n(r)n(r′)

|r− r′|
+ Ts[n] + Exc[n] (A.22)

and obtaining in this way

Ev[n] = Ts[n] +

∫
drv(r)n(r) +

1

2

∫ ∫
drdr′

n(r)n(r′)

|r− r′|
+ Exc[n] (A.23)

where we have inserted three terms in FHK [n] such as:

• the Hartree energy term 1
2

∫ ∫
drdr′ n(r)n(r

′)
|r−r′| describing interaction among elec-

trons

• the kinetic energy Ts of the non-interacting system

• the term Exc[n] called exchange-correlation energy and unfortunately still un-
known, defined as

Exc[n] = FHK [n]− 1

2

∫ ∫
drdr′

n(r)n(r′)

|r− r′|
− Ts[n] (A.24)

but from eq. A.13 we can see that Exc consists of a potential and a kinetic
part

Exc[n] =

(
W [n]− 1

2

∫ ∫
drdr′

n(r)n(r′)

|r− r′|

)
+ (T [n]Ts[n]) (A.25)
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The Hohenberg and Kohn variational principle ensures that Ev[n] is stationary
for small variations of δn(r)around the minimum density n(r):

δEv[n] = E[n+ δn]− E[n] = 0 (A.26)∫
δñ(r)

{
v(r) +

δTs[ñ]

δñ(r)
+

1

2

∫
dr′

ñ(r)

|r− r′|
+
δExc[ñ]

δñ(r)
− µ

}
ñ=n

dr = 0 (A.27)

After applying the Euler-Lagrange equations and introducing an exhange-correlation
potential vxc defined as

vxc(r) =
δExc[n]

δn(r)
(A.28)

and an effective potential

vKSeff (r) = v(r) +
1

2

∫
n(r)

|r− r′|
dr′ + vxc(r) (A.29)

one finally gets the so-called self-consistent Kohn-Sham (KS) equations :{
−1

2
∇2 + vKSeff (r)− εKSi

}
ϕKSi = 0 (A.30)

where the εKSi and ϕKSi are the Kohn-Sham eigenvalues and eigenvectors respectively.
It can be observed that since

N∑
i

εi =
∑
i

〈ϕi| −
1

2
∇2 + veff (r) |ϕi〉 = Ts[n(r)] +

∫
veffn(r) =

Ts +

∫
v(r)n(r)dr +

1

2

∫
n(r)n(r′)

|r− r′|
drdr′ +

∫
vxcn(r)dr

and

Ev[n] = Ts +

∫
v(r)n(r) +

1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n] (A.31)

then the total energy of the interacting sysem can be expressed as

Etot = Ts[n] +

∫
vext(r)n(r)dr +

1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n] =

N∑
i

εi −
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n]−

∫
vxc(r)n(r)dr

If one neglects the Exc and the vxc terms altogether, the KS equations reduce to the
self-consistent Hartree equations. The same must holds also for the non-interacting
systems and we can write

0 = δEs[n] = Es[n+ δn]− Es[n] = δTs +

∫
drδn(r)vKS(r) (A.32)
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This leads to the final expression as seen above

vKSeff = vext(r) +

∫
dr′

n(r′)

|r− r′|
+ vxc(r) (A.33)

The Kohn-Sham formalism relies on the link between an actual N electrons system
and a fictitious non-interacting counterpart through the potential vxc(r). Hence,
vxc(r) contains essential information about many-body correlations which Many-
Body Perturbation Theory describes [68,69] in terms on non local dynamical terms.
It may be realized that the mapping between ground-state densities and Kohn-Sham
potentials vKS[n](r) depends on n(r) in a very peculiar and sensitive way. In fact
the actual functional relation between n(r) and vxc(r) is highly non-analytical: small
or even infinitesimal changes in the density may induce substantial variations in the
xc potential. It is highly non local, i.e. changes in the density at a given point r
may induce substantial variations of the xc potential at a point r′.

The KS equation ca be regarded as the exact formalization of the Hartree scheme:
with the exact Exc and vxc all the many-bod effects are completely taken into account
by principle, and the main effort of DFT lies in the practical usefulness of ground-
state when the good approximation for the xc functional is found. Hence it is
necessary to find a good approximation for the exchange-correlation energy Exc.
Once a good approximation for Exc is obtained, the Kohn-Sham equations must be
solved self-consistently and then it is possible to get the ground-state density of the
interacting system and its total energy.

A.1.3 The Form of Exc

Since there is no exact analytical expression for the Exc functional, the total energy
calculation require some approximations for it. In the next section we will focus
the attention on three of these approximations: the Local Density Approximation
(LDA), the Local Spin Density Approximation and the Generalized Gradient Ap-
proximation.

The Local Density Approximation According to this approximation, the xc
functional is defined as a local function of the density of a homogeneous electron
gas:

Exc =

∫
drεhomxc (n(r)) (A.34)

where εxc is the exchange-correlation energy per electron of the homogeneous and
uniform electron gas. Taking into account an interacting homogeneous electron
gas, we can say that the exchange-correlation energy per electron is in this case a
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function of the density and not a functional since the density is constant for this kind
of system: thus εxc[n(r)]← εxc(n(r) and multiplying for the number of electrons we
get Exc[n] = Nε(n(r)). In the local Density Approxiamtion, the inhomogeneous
electron gas is handled in the same way: the exchange-correlation energy is the sum
of the contribution of each portion of the non-uniform gas as it was local uniform.
Thus the exchange-correlation potential becomes

vLDAxc (r) =
∂Exc[n]

∂n(r)
=
∂
∫
εxc(nr)dr

∂n(r)
= εxc(nr) + n(r)

(
∂εxc
∂n

)
n(r)

= µxc(n(r))

(A.35)
where µxc(n(r)) is the exchange-correlation contribution to the chemical potential
for a uniform system. The approximation is said to be local because εxc(r) depends
from the local value of the density n(r) in the r position only. The LDA works
well for systems with a slowly varying density and has proven very successful for
calculation of ground-state properties. The lattice constants are predicted within
≈ %, while the cohesive enrrgy is quite generally overestimated, as a result usually
attibuted to the predicted under bindings atoms within LDA. On the other hand
the LDA fails in th estimation of the fundamental energy gap of semiconductors and
insulators.

Spin Density Approximation One improvement with respect to the LDA can
be achieved with the implementation of polarization in spin, in the so-called Local
Spin Density Approximation (LSDA), in particular for systems that are subjected
to an external magnetic field or are polarized or where the relativistic effects are
important. The main motivation is due to the fact that the exchange-correlation
hole is very different for the electrons with parallel and anti-parallel spins, and that
LSD probably gives a better and correct description of the spherically averaged
exchange-correlation hole. In this approximation, the density is now spin-polarized
with two contributions: n↑(r) and n↓(r). Considering an N-electrons Hamiltonian

coupled with the magnetic field ~B(r) and the spin ŝ

Ĥ = T̂ + V̂ee +
∑
i

v(ri)− 2µ
∑
i

~B(ri)ŝ (A.36)

the density can be defined now as

nσ(r) =
∑
σ

fασ|φασ(r)|2 (A.37)

with fασ occupation number between 0 and 1 and the energy like functionals of the
spin polarized densities n↑(r) and n↓(r) as:

Ẽ = T [n↑,n↓] +U [n] +Exc[n
↑,n↓] +

∫
drv(r)n(r)− 2µ

∫
dr ~B(r)

∑
σ

σnσ(r) (A.38)
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and minimizing the above functional with respect to the density nσ(r) through the
application of a generalized Hohenberg-Kohn varational principle it is possible to
obtain a set of Kohn-Sham like equations for the spin polarization{

−1

2
∇2 + vσeff (r)

}
φασ = εσi φασ (A.39)

with an effective potential

Veff (r) = vext(r) +
1

2

∫
n(r′)

|r− r′|
dr′ + V σ

xc(r) (A.40)

where the exchange-correlation potential is

V σ
xc

([
n↑,n↓

]
; r
)

=
δ

δnσ(r)
Exc

[
n↑,n↓

]
(A.41)

and the direct Coulomb potential is

u([n]; r) =
δ

δn(r)
U [n] =

∫
dr′

n(r′)

|r− r′|
(A.42)

Spin density functional calculation would yield exact results if the exact Exc were
knwon and used; in the local spin density approxiamtion one recovers

ELSD
xc

[
n↑,n↓

]
=

∫
drn(r)εxc(n

↑(r),n↓(r)) (A.43)

Gradient Expansion and GGA A natural way to go beyon the LDA is to extend
the exchange-correlation functional with terms containing the gradient of the density.
Through the inclusions of these gradients, variations and changes in the density can
be estimated and measured leading to a possible improvement of the results. The
Gradient Expansion offers systematic corrections to LSD electron densities that vary
slowly over space and might appear to be a natural step beyond LSD. In the original
papers of Hohenberg-Kohn and Kohn-Sham is [65,66] is already presented a gradient
expansion based on the polarizability of the homogeneous electron gas. For densities
n(r) varying slowly over space and having weak variations so that n(r) = n0+∆n(r),
it is possible to expand the density around the point r taken to be the origin:

n(r) = n+∇in(r)ri +
1

2

∑
∇ijn(r)rirj + · · · (A.44)

substituting this expansion in the expression of Exc it leads after some mathematical
manipulation to the gradient expansion

Exc = ELDA
xc +

∫
G2(n)(∇n)2dr +

∫
[G4(n)(∇2n)2 + · · · ]dr + · · · (A.45)
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where G2(n) is the universal functional appearing in the Kohn-Sham equations de-
fined as G[n] = Exc[n] + Ts[n]. The terms of the series above can be resumed as

E(0)
xc =

∫
ε (n(r))n(r)dr (LDA) (A.46)

E(1)
xc =

∫
f 1 (n(r),|∇n(r)|)n(r)dr (GGA) (A.47)

E(2)
xc =

∫
f 2 (n(r),|∇n(r)|)∇2n(r)dr (A.48)

Here the E
(0)
xc corresponds to the LDA level and requires the independently single-

variable calculated function n(r), while E
(1)
xc is the so-called Generalized Gradient

Approximation (GGA which requires the independently calculated function of two
variables, n(r) and |∇n(r)|.
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