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Order preserving SUPG stabilization for the Virtual Element
formulation of advection-diffusion problemsI

M. F. Benedetto, S. Berrone∗, A. Borio, S. Pieraccini, S. Scialò

Dipartimento di Scienze Matematiche, Politecnico di Torino
Corso Duca degli Abruzzi 24, Torino, 10129, Italy

Abstract

In the framework of the discretization of advection-diffusion problems by means of the
Virtual Element Method, we consider stabilization issues. Herein, stabilization is pursued
by adding a consistent SUPG-like term. For this approach we prove optimal rates of
convergence. Numerical results clearly show the stabilizing effect of the method up to
very large Péclet numbers and are in very good agreement with the expected rate of
convergence.

Keywords: Virtual Element Methods, Advection-diffusion problem, SUPG, stability,
convergence
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1. Introduction

Recently, a new discretization approach has been developed, named the Virtual El-
ement Method (VEM), that allows the use of general polygonal and polyhedral meshes
[1, 2].

The VEM has been applied in a wide number of contexts, such as plate bending
problems [3], elasticity problems [4, 5], Stokes problems [6] and the Steklov eigenvalue
problem [7]. A non-conforming formulation has been devised in [8]. Recently, the VEM
has been also used in the treatment of fluid dynamics models involving underground flow
simulations [9–11]: in that context, the application of the VEM was driven by the need
of circumventing mesh generation problems. In these applications, the primal problem
is solved to compute the Darcy velocity field, that can be used afterwards to simulate
the transport of a dispersed, passive pollutant in a geological basin. The flow regimes
in underground transport phenomena are usually transport-dominated, due to the very
low diffusivity of the pollutant into the bulk fluid, thus calling for a stabilization of the
VEM.

IThis research has been partially supported by the Italian Miur through PRIN research grant
2012HBLYE4 001 Metodologie innovative nella modellistica differenziale numerica and by INdAM-
GNCS. Mat́ıas Fernando Benedetto was supported by the European Commission through the Erasmus
Mundus Action 2-Strand1 ARCOIRIS programme, Politecnico di Torino.
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Many strategies have been devised to obtain a stable solution for standard Finite
Element discretizations, involving, for example, local projections [12] or suitably built
bubble functions [13, 14]. The Streamline Upwind Petrov-Galerkin (SUPG) stabilization
method [15–21] has also been widely studied in very general settings. A first approach
to the VEM-SUPG stabilization is discussed in [22], in a non-consistent formulation.

Another issue related to advection-diffusion problems is the derivation of robust a
posteriori error estimates. In such context, the term robustness refers to the property
of obtaining a relation between the error and the error estimator with constants which
are independent of the Péclet number [23–28]. An a posteriori analysis for the reaction-
convection-diffusion problem with the VEM is provided in [29], not addressing robustness
aspects and the SUPG-like stabilization issues.

The aim of this work is to devise a consistent SUPG formulation compatible with
the VEM. A key aspect of the VEM is that the basis functions of the discrete functional
space are not known explicitly, but only through their degrees of freedom. As a conse-
quence, computability of discrete operators requires special care and, in particular, the
consistent VEM-SUPG formulation devised in the present work requires the introduction
of a second-order term in the weak formulation of the problem, computed by resorting
to polynomial projections of the virtual element basis functions.

An a priori error estimate for the stabilized VEM discrete solution is also proven,
showing that the order of convergence is not affected by the stabilizing perturbation
added to the problem. Numerical tests proposed in the paper confirm the theoretical
results on triangular and polygonal meshes in both the convection-dominated regime
and the diffusion-dominated regime.

The paper is organised as follows. In Section 2 we state the model problem, define
some useful notations and make some standard hypothesis on the model parameters.
In Section 3 we introduce the spatial discretization and the Virtual Element functional
space based on it. In particular, the VEM-SUPG formulation of the problem is presented
in Subsection 3.1, equations (13), (19) and (20). In Section 4 the a priori error estimate
for the stabilized VEM discrete solution is derived, the main result being stated in The-
orem 2. Finally, in Section 5 we propose some numerical tests aimed at confirming the
theoretical results.

2. The model problem

Let Ω ⊂ R2 be a bounded open set and let us consider the following convection-
diffusion problem: {

−∇· (K∇u) + β · ∇u = f in Ω ,

u = 0 on ∂Ω ,
(1)

where K ∈ L∞ (Ω) is a positive function satisfying K(x) ≥ K0 ∀x ∈ Ω for a given K0 > 0,

and β ∈ [L∞ (Ω)]
2
, ∇· β ∈ L2 (Ω). We additionally assume ∇· β = 0.

The notation throughout the paper is as follows: (·, ·) and ‖·‖ denote the L2 (Ω) scalar
products and norms; (·, ·)ω and ‖·‖ω denote the L2 (ω) scalar products and norms, for
any ω ⊆ Ω; moreover, ‖·‖α and |·|α denote the Hα (Ω) norm and semi-norm; ‖·‖α,ω and
|·|α,ω denote the Hα (ω) norm and semi-norm; whereas ‖·‖Wq

p(ω) and |·|Wq
p(ω) denote the

Wq
p(ω) norm and semi-norm, where p is the Lebesgue regularity and q is the order of the

Sobolev space.
2



For future reference, we recall the classical weak formulation of the problem. Defining
B : H1

0 (Ω)×H1
0 (Ω)→ R and F : H1

0 (Ω)→ R such that

B (w, v) := (K∇w,∇v)+ (β · ∇w, v) ∀w, v ∈ H1
0 (Ω) ,

and
F (v) := (f, v) ∀v ∈ H1

0 (Ω) ,

the variational form of (1) is

B (u, v) = F (v) ∀v ∈ H1
0 (Ω) . (2)

We remark that, for the sake of improving readability, here we limit ourself to formulation
(2). More general boundary conditions can be considered as well. Furthermore, K can
be taken as a symmetric positive definite tensor, with minor changes in some definitions.

3. VEM discretization

Let Th be a set of open polygons partitioning Ω, h being the maximum diameter
of these elements. For VEM-based discretizations these polygons can have a different
number of edges from one to another and also nodes can be placed between edges forming
a flat angle, thus allowing for hanging-node-like configurations. As usually done for VEM
discretizations (see [2]), we ask that every polygon is star-shaped with respect to a ball
whose radius is greater or equal than γhE , being hE the element diameter and γ a global
constant. Finally, for each E ∈ Th, we set

KE := sup
x∈E

K(x) , K∨E := inf
x∈E

K(x) ,

βE := sup
x∈E
‖β(x)‖2R2 .

To define the Virtual Element space of order k > 0, for some k ∈ N, we denote by
Pk(Th) the space of possibly discontinuous functions which are polynomials of degree less
than or equal to k on each polygon and we introduce the piecewise polynomial oblique
projection Π∇k : H1 (E)→ Pk(Th) such that, ∀E ∈ Th,(

∇
(
v −Π∇k v

)
,∇p

)
E

= 0 ∀p ∈ Pk(E) ,

and
(
Π∇k,Ev, 1

)
∂E

= (v, 1)∂E .

The local Virtual space of order k is defined as follows: ∀E ∈ Th,

V Eh :=
{
vh ∈ H1 (E) : ∆vh ∈ Pk(E) , vh ∈ Pk(e) ∀e ⊂ ∂E,

(vh, p)E =
(
Π∇k,Evh, p

)
E
∀p ∈ Pk(E) \ Pk−2(E)

}
,

and, asking for global continuity we obtain the global space Vh ⊂ H1
0 (Ω):

Vh :=
{
vh ∈ C0(Ω) : vh ∈ V Eh ∀E ∈ Th

}
.

A function belonging to such space is uniquely identified by its polynomial expression on
each edge of the discretization and by its moments against polynomials of degree ≤ k−2
(see [1]). As in [1], we choose the following set of degrees of freedom (see also [30] for
more details):
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1. the values at the vertices of each polygon;

2. if k ≥ 2, for each edge e ⊂ ∂E, the values at k−1 internal points of e. For practical
purposes, we may choose these points to be the internal Gauss-Lobatto quadrature
nodes;

3. if k ≥ 2, for each vh ∈ Vh the moments (vh,mα)E , for each E ∈ Th and all the
monomials mα ∈Mk−2 (E), defined as

mα(x, y) :=
(x− xE)α1(y − yE)α2

hα1+α2

E

∀(x, y) ∈ E ,

with α = (α1, α2), |α| = α1 + α2 ≤ k − 2.

3.1. VEM-SUPG formulation

It is well known that discretizing the variational formulation (2) leads to instabilities
when the convective term (β · ∇w, v) is dominant with respect to the diffusive term
(K∇w,∇v). In such situations a stabilized form of the problem is required in order to
prevent spurious oscillations that can completely alter the numerical solution. In the
following we recast the classical Streamline Upwind Petrov Galerkin (SUPG) approach
[17] in the framework of the VEM, showing that the optimal order of convergence can
be preserved.

We define the bilinear form Bsupg : H2 (Ω) ∩H1
0 (Ω)×H1

0 (Ω)→ R such that

Bsupg (w, v) := a (w, v) + b (w, v) + d (w, v) , (3)

being

a (w, v) := (K∇w,∇v)+
∑
E∈Th

τE (β · ∇w, β · ∇v) , (4)

b (w, v) := (β · ∇w, v) , (5)

d (w, v) := −
∑
E∈Th

τE (∇· (K∇w), β · ∇v)E . (6)

The stability parameter τE is defined as usual, ∀E ∈ Th, by

τE :=
hE
2βE

min {PeE , 1} , (7)

where PeE is the mesh Péclet number of E, given by

PeE := mE
k

βEhE
2KE

, (8)

and

mE
k :=

{
1
3 if ∇· (K∇vh) = 0 ∀vh ∈ V Eh ,

2C̃Ek otherwhise,

having set C̃Ek to be the largest constant satisfying the following inverse inequality:

C̃Ek h
2
E ‖∇· (K∇vh)‖2E ≤ ‖K∇vh‖

2
E ∀vh ∈ V Eh . (9)
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Remark 1. We point out that if u ∈ H2 (Ω), we have that

Bsupg (u, v) = Fsupg (v) := (f, v)+
∑
E∈Th

τE (f, β · ∇v) ∀v ∈ H1
0 (Ω) . (10)

Remark 2. From the definition of τE we have the following two estimates, that will be
used in the following:

τE ≤
C̃Ek h

2
E

2KE
if ∇· (K∇vh) 6= 0 for some vh ∈ V Eh , (11)

τE ≤
hE
2βE

. (12)

The Finite Element discretization of the bilinear form (3) has been widely studied,
for example in [15, 17], in which optimal orders of convergence were proved. In order
to write a computable VEM discretization of problem (2), we define the discrete bilinear
form Bsupg,h : Vh × Vh → R such that

Bsupg,h (wh, vh) := ah (wh, vh) + bh (wh, vh) + dh (wh, vh) ∀wh, vh ∈ Vh , (13)

where

ah (wh, vh) :=
(
KΠ0

k−1∇wh,Π0
k−1∇vh

)
+
∑
E∈Th

τE
(
β ·Π0

k−1∇wh, β ·Π0
k−1∇vh

)
E

+
(
KE + τEβ

2
E

)
SE
((
I −Π∇k

)
wh,

(
I −Π∇k

)
vh
)
,

(14)

bh (wh, vh) :=
(
β ·Π0

k−1∇wh,Π0
k−1v

)
, (15)

dh (wh, vh) := −
∑
E∈Th

τE
(
∇·
(
KΠ0

k−1∇wh
)
, β ·Π0

k−1∇vh
)
, (16)

where Π0
r is the element-wise orthogonal L2 projection on the space of polynomials of

degree less than or equal to r, as used in [2]. The stabilization form SE : Vh × Vh → R
in (14) must statisfy the following property:

SE (vh, vh) ∼ ‖∇vh‖2E ∀vh ∈ ker Π∇k . (17)

A possible choice for SE is

SE (vh, wh) =

NE∑
i=1

χi(vh)χi(wh), (18)

where NE is the number of degrees of freedom on the element E and χi is the operator
that selects the i-th degree of freedom.

With the above definitions we can state a SUPG-stabilized discrete formulation of
(2) as: find uh ∈ Vh such that

Bsupg,h (uh, vh) = Fsupg,h (vh) ∀vh ∈ Vh , (19)
5



having defined the discrete right-hand-side as

Fsupg,h (vh) =
(
f,Π0

k−1vh
)

+
∑
E∈Th

τE
(
f, β ·Π0

k−1∇vh
)
E
. (20)

Finally, in order to provide an estimation of the constant C̃Ek for each polygon, we
can make use of classical theoretical results on triangles [31] thanks to the following
proposition.

Proposition 1. Given a regular polygon E ∈ Th, let Th,E be a triangulation of E com-
posed by triangular elements with an edge on the boundary of E and one vertex in the
centre of the ball with respect to which E is star-shaped. Let C̃Ek be the constant of
inequality (9). Then,

C̃Ek ≥ C̃k
(

mint∈Th,E
ht

hE

)2

,

where C̃k is such that, ∀vh ∈ V Eh ,

C̃kh
2
t ‖∇· (K∇vh)‖2t ≤ ‖K∇vh‖

2
t ∀t ∈ Th,E .

Proof. Summing up the inequalities on internal triangles we have

C̃k
∑

t∈Th,E

h2
t ‖∇· (K∇vh)‖2t ≤

∑
t∈Th,E

‖K∇vh‖2t ,

from which it follows

C̃k

(
min
t∈Th,E

h2
t

)
‖∇· (K∇vh)‖2E ≤ ‖K∇vh‖

2
E ,

and therefore

C̃k

(
mint∈Th,E

ht

hE

)2

h2
E ‖∇· (K∇vh)‖2E ≤ ‖K∇vh‖

2
E ,

which proves the thesis.

4. Error Analysis

Let h := maxE∈Th hE and define the following norm:

|||v||| :=

{∥∥∥√K∇v
∥∥∥2

+
∑
E∈Th

τE ‖β · ∇v‖2E

} 1
2

∀v ∈ H1
0 (Ω) .

In the following, we will use the symbol . for inequalities which are satisfied up to a
multiplicative constant independent of the meshsize and the problem data K and β, and
the symbol - for inequalities satisfied up to a multiplicative constant independent of the
meshsize only. All the constants may depend on the regularity of the VEM mesh.
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4.1. Discretization errors

The following Lemmas are devoted to estimate the error of approximation of the
bilinear forms defined by (4), (5) and (6) with the discrete ones defined by (14), (15)
and (16), respectively. The results are based on the following approximation results for
polynomial projections (see [2, Lemma 5.1]): ∀E ∈ Th,∥∥v −Π0

k−1v
∥∥
m,E

. hs−mE |v|s,E ∀v ∈ Hs (E) , m ≤ s ≤ k , (21)∥∥v −Π∇k v
∥∥
m,E

. hs−mE |v|s,E ∀v ∈ Hs (E) , m ≤ s ≤ k + 1, s ≥ 1 . (22)

Lemma 1. For any sufficiently regular function w and ∀vh ∈ Vh,

bh (w, vh) . max
E∈Th

βE√
K∨E

∥∥∥√K∇w
∥∥∥ ‖vh‖ . (23)

Moreover, if β ∈ [Ws
∞(Ω)]

2
for some s ∈ {0, . . . , k}, then

|b (w, vh)− bh (w, vh)| . max
E∈Th

‖β‖Ws
∞(E) h

s+1 ‖w‖s+1 ‖vh‖1 . (24)

Proof. Regarding (23), by the Cauchy-Schwarz inequality and the continuity of Π0
k−1

and Π0
k we have, ∀E ∈ Th,

(
β ·Π0

k−1∇w,Π0
k−1vh

)
E
≤ βE

∥∥Π0
k−1∇w

∥∥
E

∥∥Π0
k−1vh

∥∥
E
.

βE√
K∨E

∥∥∥√K∇w
∥∥∥
E
‖vh‖E ,

from which (23) readily follows.
Concerning (24), let E ∈ Th be fixed. By adding and subtracting

(
β ·Π0

k−1∇w, vh
)
E

in the left-hand side and using the triangle inequality,∣∣(β · ∇w, vh)E −
(
β ·Π0

k−1∇w,Π0
k−1vh

)
E

∣∣ =

=
∣∣(β · (∇w −Π0

k−1∇w
)
, vh
)
E

+
(
β ·Π0

k−1∇w, vh −Π0
k−1vh

)
E

∣∣ ≤
≤
∣∣(β · (∇w −Π0

k−1∇w
)
, vh
)
E

∣∣+
∣∣(β ·Π0

k−1∇w, vh −Π0
k−1vh

)
E

∣∣ .
We consider the two terms in the sum separately. The first one can be written as

(
β ·
(
∇w −Π0

k−1∇w
)
, vh
)
E

=

2∑
i=1

(
∂w

∂xi
−Π0

k−1

∂w

∂xi
, βivh

)
E

.

Estimating each term in the right-hand side we have, ∀i ∈ {1, 2},(
∂w

∂xi
−Π0

k−1

∂w

∂xi
, βivh

)
E

=

(
∂w

∂xi
−Π0

k−1

∂w

∂xi
, βivh −Π0

k−1(βivh)

)
E

≤

≤
∥∥∥∥ ∂w∂xi −Π0

k−1

∂w

∂xi

∥∥∥∥
E

∥∥βivh −Π0
k−1(βivh)

∥∥
E
. hsE |w|s+1,E · hE |βivh|1,E ≤

≤ hs+1
E ‖βi‖W1

∞(E) |w|s+1,E ‖vh‖1,E .

7



Concerning the second term, we have that

(
β ·Π0

k−1∇w, vh −Π0
k−1vh

)
E

=

2∑
i=1

(
βiΠ

0
k−1

∂w

∂xi
, vh −Π0

k−1vh

)
E

.

Thus, using the properties of projectors to add polynomials of degree less or equal than
k − 1, we have(

βiΠ
0
k−1

∂w

∂xi
, vh −Π0

k−1vh

)
E

=

=

(
βiΠ

0
k−1

∂w

∂xi
−Π0

k−1

(
βiΠ

0
k−1

∂w

∂xi

)
, vh −Π0

k−1vh

)
E

≤

≤
∥∥∥∥βiΠ0

k−1

∂w

∂xi
−Π0

k−1

(
βiΠ

0
k−1

∂w

∂xi

)∥∥∥∥
E

∥∥vh −Π0
k−1vh

∥∥
E
≤

≤ hE
∥∥∥∥βiΠ0

k−1

∂w

∂xi
−Π0

k−1

(
βiΠ

0
k−1

∂w

∂xi

)∥∥∥∥
E

‖∇vh‖E ,

and the proof ends using the best approximation property of the projection, the triangle
inequality and (21):∥∥∥∥βiΠ0

k−1

∂w

∂xi
−Π0

k−1

(
βiΠ

0
k−1

∂w

∂xi

)∥∥∥∥
E

≤

≤
∥∥∥∥βiΠ0

k−1

∂w

∂xi
−Π0

k−1

(
βi
∂w

∂xi

)∥∥∥∥
E

≤
∥∥∥∥βiΠ0

k−1

∂w

∂xi
− βi

∂w

∂xi

∥∥∥∥
E

+

∥∥∥∥βi ∂w∂xi −Π0
k−1

(
βi
∂w

∂xi

)∥∥∥∥
E

≤ hsEβE |w|s+1,E + hsE

∣∣∣∣βi ∂w∂xi
∣∣∣∣
s,E

≤

≤ hsE
(
βE |w|s+1,E + ‖βi‖Ws

∞(E) ‖w‖s+1,E

)
.

Lemma 2. For any sufficiently regular function w and ∀vh ∈ Vh,

dh (w, vh) . max
E∈Th

KE
K∨E

∥∥∥√K∇w
∥∥∥ ∥∥∥√K∇vh

∥∥∥ . (25)

Moreover, if K ∈Ws
∞(Ω) and β ∈

[
Ws+1
∞ (Ω)

]2
for some s ∈ {0, . . . , k}, then

|d (w, vh)− dh (w, vh)| . max
E∈Th

‖β‖Ws+1
∞ (E) ‖K‖Ws

∞(E) (KE + βE)

KEβE
√
K∨E

hs+1 ‖w‖s+1×

×
∥∥∥√K∇vh

∥∥∥ . (26)

Proof. To prove (25), we assume ∇· (K∇w) 6= 0, since otherwhise the inequality is
obviously true. We use (12), the Cauchy-Schwarz inequality, the continuity of Π0

k−1 and

8



(9): ∀E ∈ Th,

τE
(
∇·
(
KΠ0

k−1∇w
)
, β ·Π0

k−1∇vh
)
E
≤ βE

hE
2βE

∥∥∇· (KΠ0
k−1∇w

)∥∥
E
×

×
∥∥Π0

k−1∇vh
∥∥
E
.

1

2
√
C̃E

∥∥KΠ0
k−1∇w

∥∥
E
‖∇vh‖E .

KE

2
√
C̃E
×

×
∥∥Π0

k−1∇w
∥∥
E
‖∇vh‖E .

KE

2K∨E

√
C̃E

∥∥∥√K∇w
∥∥∥
E

∥∥∥√K∇vh
∥∥∥
E
.

Regarding (26), by applying the triangle inequality we have:∣∣∣∣∣ ∑
E∈Th

τE (∇· (K∇w), β · ∇vh)E − τE
(
∇·
(
KΠ0

k−1∇w
)
, β ·Π0

k−1∇vh
)
E

∣∣∣∣∣ ≤
≤
∑
E∈Th

τE
∣∣(∇· (K∇w − KΠ0

k−1∇w), β · ∇vh
)
E

∣∣
+ τE

∣∣(∇· (KΠ0
k−1∇w

)
, β ·

(
∇vh −Π0

k−1∇vh
))
E

∣∣ . (27)

To estimate the first term of the right-hand-side of (27), we suppose∇·(K∇w−KΠ0
k−1∇w) 6=

0, we use the Cauchy-Schwarz inequality, (11), (9) and (21):

τE
∣∣(∇· (K∇w − KΠ0

k−1∇w), β · ∇vh
)
E

∣∣ ≤ C̃Eh
2
EβE

2KE

∥∥∇· (K∇w − KΠ0
k−1∇w

)∥∥
E
×

× ‖∇vh‖E ≤
√
C̃EhEβE
2KE

∥∥K∇w − KΠ0
k−1∇w

∥∥
E
‖∇vh‖E ≤

≤
√
C̃EβE

2
√
K∨E

hE
∥∥∇w −Π0

k−1∇w
∥∥
E

∥∥∥√K∇vh
∥∥∥
E
.

√
C̃EβE

2
√
K∨E

hs+1
E |w|s+1,E

∥∥∥√K∇vh
∥∥∥
E
.

Concerning the second term of (27), we have

τE
(
∇·
(
KΠ0

k−1∇w
)
, β ·

(
∇vh −Π0

k−1∇vh
))
E

=

= τE

2∑
i=1

(
βi∇·

(
KΠ0

k−1∇w
)
,
∂vh
∂xi
−Π0

k−1

(
∂vh
∂xi

))
E

,

and we can bound each term of the sum by using the properties of the projection, the

9



Cauchy-Schwarz inequality and the triangle inequality:

τE

(
βi∇·

(
KΠ0

k−1∇w
)
,
∂vh
∂xi
−Π0

k−1

∂vh
∂xi

)
E

=

τE

(
∇·
(
βiKΠ0

k−1∇w
)
,
∂vh
∂xi
−Π0

k−1

∂vh
∂xi

)
E

+ τE

(
−∇βi ·

(
KΠ0

k−1∇w
)
,
∂vh
∂xi
−Π0

k−1

∂vh
∂xi

)
E

=

= τE

(
∇·
(
βiKΠ0

k−1∇w
)
−∇·

(
Π0
k−1

(
βiKΠ0

k−1∇w
))
,
∂vh
∂xi
−Π0

k−1

∂vh
∂xi

)
E

+ τE

(
Π0
k−1

(
∇βi ·

(
KΠ0

k−1∇w
))
−∇βi ·

(
KΠ0

k−1∇w
)
,
∂vh
∂xi
−Π0

k−1

∂vh
∂xi

)
E

.

.
τE√
K∨E

(∥∥∇· (βiKΠ0
k−1(∇w)−Π0

k−1

(
βiKΠ0

k−1∇w
))∥∥

E

+
∥∥Π0

k−1

(
∇βi ·

(
KΠ0

k−1∇w
))
−∇βi ·

(
KΠ0

k−1∇w
)∥∥
E

) ∥∥∥√K∇vh
∥∥∥
E
.

We consider the two terms inside the parentheses separately. To estimate the first one, we
first use the fact that Π0

k−1 is the best L2 (E) approximation in Pk−1(E), then inequalities
(11) and (9), and finally (21):

τE
∥∥∇· (βiKΠ0

k−1∇w −Π0
k−1

(
βiKΠ0

k−1∇w
))∥∥

E
≤

≤ C̃Eh
2
E

2KE

∥∥∇· (βiKΠ0
k−1∇w −Π0

k−1

(
βiKΠ0

k−1∇w
))∥∥

E
≤

≤
√
C̃EhE
2KE

∥∥βiKΠ0
k−1∇w −Π0

k−1

(
βiKΠ0

k−1∇w
)∥∥
E
≤

≤
√
C̃EhE
2KE

∥∥βiKΠ0
k−1∇w −Π0

k−1(βiK∇w)
∥∥
E
≤

≤
√
C̃EhE
2KE

(∥∥βiK (Π0
k−1∇w −∇w

)∥∥
E

+
∥∥βiK∇w −Π0

k−1(βiK∇w)
∥∥
E

)
.

.

√
C̃EhE
2KE

(
hsEβEKE |w|s+1,E + hsE |βiK∇w|s,E

)
.

.

√
C̃Eh

s+1
E

2KE

(
βEKE |w|s+1,E + ‖β‖Ws

∞(E) ‖K‖Ws
∞(E) ‖w‖s+1,E

)
.

To estimate the second term we use the fact that Π0
k−1 is the best approximation in

10



Pk−1(E), the triangle inequality, inequality (12) and the estimate (21):

τE
∥∥Π0

k−1

(
∇βi ·

(
KΠ0

k−1∇w
))
−∇βi ·

(
KΠ0

k−1∇w
)∥∥
E
≤

≤ τE
∥∥Π0

k−1(∇βi · K∇w)−∇βi · KΠ0
k−1∇w

∥∥
E
≤ hE

2βE
×

×
(∥∥Π0

k−1(∇βi · K∇w)−∇βi · K∇w
∥∥
E

+
∥∥∇βi · K (∇w −Π0

k−1∇w
)∥∥
E

)
.

.
hE
2βE

(
hsE |∇βi · K∇w|s,E + hsEKE ‖β‖W1

∞(E) |w|s+1,E

)
.

.
hs+1
E

2βE

(
‖K‖Ws

∞(E) ‖β‖Ws+1
∞ (E) ‖w‖s+1,E + KE ‖β‖W1

∞(E) |w|s+1,E

)
.

Lemma 3. For any sufficiently regular function w and ∀vh ∈ Vh,

ah (w, vh) . max
E∈Th

KE + τEβ
2
E

K∨E

∥∥∥√K∇w
∥∥∥ ∥∥∥√K∇vh

∥∥∥ . (28)

Moreover, if K ∈Ws
∞(Ω) and β ∈ [Ws

∞(Ω)] for some s ∈ {0, . . . , k}, then

|a (w, vh)− ah (w, vh)| .

max
E∈Th

‖K‖Ws
∞(E) +

‖β‖2Ws
∞(E)

βE√
K∨E

hs ‖w‖s+1×

×
∥∥∥√K∇vh

∥∥∥ . (29)

Proof. Let vh, w ∈ Vh. We first prove (28) considering E ∈ Th. Regarding the terms
involving the VEM stabilization, we first point out that, as a consequence of (17), we
have

SE
((
I −Π∇k

)
w,
(
I −Π∇k

)
vh
)
.
∥∥∇ (w −Π∇k w

)∥∥
E

∥∥∇ (vh −Π∇k vh
)∥∥
E
. (30)

Applying the Cauchy-Schwarz inequality, (30) and the continuity of projectors,

aEh (w, vh) =
(
KΠ0

k−1∇w,Π0
k−1∇vh

)
E

+ τE
(
β ·Π0

k−1∇w, β ·Π0
k−1∇vh

)
E

+
(
KE + τEβ

2
E

)
SE
((
I −Π∇k

)
w,
(
I −Π∇k

)
vh
)
.
(
KE + τEβ

2
E

)
×

×
(∥∥Π0

k−1∇w
∥∥
E

∥∥Π0
k−1∇vh

∥∥
E

+
∥∥(I −Π∇k

)
w
∥∥
E

∥∥(I −Π∇k
)
vh
∥∥
E

)
.

.
KE + τEβ

2
E

K∨E

∥∥∥√K∇w
∥∥∥
E

∥∥∥√K∇vh
∥∥∥
E
.

Concerning (29), by adding and subtracting
(
K∇w,Π0

k−1∇vh
)
E

=
(
Π0
k−1(K∇w) ,∇vh

)
E

and
(
ββᵀ∇w,Π0

k−1∇vh
)
E

=
(
Π0
k−1(ββᵀ∇w) ,∇vh

)
E

and exploiting the triangle inequal-
ity we have, ∀E ∈ Th,∣∣aE (w, vh)− aEh (w, vh)

∣∣ ≤ ∣∣(K∇w − KΠ0
k−1∇w,Π0

k−1∇vh
)
E

∣∣
+
∣∣(K∇w −Π0

k−1(K∇w) ,∇vh
)
E

∣∣+
(
KE + τEβ

2
E

)
×

×
∣∣SE ((I −Π∇k

)
w,
(
I −Π∇k

)
vh
)∣∣+ τE

∣∣(ββᵀ∇w − ββᵀΠ0
k−1∇w,Π0

k−1∇vh
)
E

∣∣
+ τE

∣∣(ββᵀ∇w −Π0
k−1(ββᵀ∇w) ,∇vh

)
E

∣∣ .
11



The first term is bounded as follows, exploiting the definition of projection, its continuity
and (21):

(
K
(
∇w −Π0

k−1∇w
)
,Π0

k−1∇vh
)
E
.
√

KE
∥∥∇w −Π0

k−1∇w
∥∥
E

∥∥∥√K∇vh
∥∥∥
E
.

.
√
KEh

s
E |w|s+1,E

∥∥∥√K∇vh
∥∥∥
E
.

The second term is bounded by the Cauchy-Schwarz inequality and (21):(
K∇w −Π0

k−1(K∇w) ,∇vh
)
E
≤
∥∥K∇w −Π0

k−1(K∇w)
∥∥
E
‖∇vh‖E .

. hsE |K∇w|s,E ≤ h
s
E

‖K‖Ws
∞(E)√

K∨E
‖w‖s+1,E

∥∥∥√K∇vh
∥∥∥ .

The third term is estimated using (12), the Cauchy-Schwarz inequality, the continuity of
Π0
k−1 and (21):

τE
(
ββᵀ

(
∇w −Π0

k−1∇w
)
,Π0

k−1∇vh
)
E
.
βE
2
hE
∥∥∇w −Π0

k−1∇w
∥∥
E
‖∇vh‖E .

.
βE

2
√
K∨E

hs+1
E |w|s+1,E

∥∥∥√K∇vh
∥∥∥
E
.
‖β‖2Ws

∞(E)

βE
√
K∨E

hs+1
E |w|s+1,E

∥∥∥√K∇vh
∥∥∥
E
.

The fourth term can be estimated similarly:

τE
(
ββᵀ∇w −Π0

k−1(ββᵀ∇w) ,∇vh
)
E
≤ τE

∥∥ββᵀ∇w −Π0
k−1(ββᵀ∇w)

∥∥
E
‖∇vh‖

. τE
hsE√
K∨E
|ββᵀ∇w|s,E

∥∥∥√K∇vh
∥∥∥
E
.
‖β‖2Ws

∞(E)

βE
√

K∨E
hs+1
E ‖w‖s+1,E

∥∥∥√K∇vh
∥∥∥ .

Finally, we consider the terms involving the VEM stabilization and, applying again (30),
we are left to estimate projection errors. Proceeding as above, exploiting the continuity
of Π∇k , (22) and the estimate on τE in (12) we obtain

KE
∥∥∇ (w −Π∇k w

)∥∥
E

∥∥∇ (vh −Π∇k vh
)∥∥
E
≤ KE√

K∨E
hsE |w|s+1,E

∥∥∥√K∇vh
∥∥∥
E
,

τEβ
2
E

∥∥∇ (w −Π∇k w
)∥∥
E

∥∥∇ (vh −Π∇k vh
)∥∥
E
≤ βE

2
√

K∨E
hs+1
E |w|s+1,E

∥∥∥√K∇vh
∥∥∥
E
.

4.2. Well-posedness of the discrete problem

In this subsection we prove, in Theorem 1, an inf-sup condition for the discrete bilinear
form defined by (13), which ensures the well-posedness of problem (19).

Lemma 4. There exist a constant α > 0 such that

ah (vh, vh) ≥ α |||vh|||2 ∀vh ∈ Vh . (31)
12



Proof. Let vh ∈ Vh and fix E ∈ Th. From the definition of ah in (14) we have

aEh (vh, vh) :=
∥∥∥√KΠ0

k−1∇vh
∥∥∥2

E
+ τE

∥∥β ·Π0
k−1∇vh

∥∥2

E

+
(
KE + τEβ

2
E

)
SE
((
I −Π∇k

)
vh,
(
I −Π∇k

)
vh
)
.

From (17) and the properties of the orthogonal projection, we have that there exists
c∗ > 0 such that, ∀E ∈ Th,

SE
((
I −Π∇k

)
vh,
(
I −Π∇k

)
vh
)
≥ c∗

∥∥∇ (vh −Π∇k vh
)∥∥2

E
≥ c∗

∥∥∇vh −Π0
k−1∇vh

∥∥2

E
,

and then(
KE + τEβ

2
E

)
SE
((
I −Π∇k

)
vh,
(
I −Π∇k

)
vh
)
≥

≥ c∗
(
KE + τEβ

2
E

) ∥∥∇vh −Π0
k−1∇vh

∥∥2

E
≥

≥ c∗
(∥∥∥√K

(
∇vh −Π0

k−1∇vh
)∥∥∥2

E
+ τE

∥∥β · (∇vh −Π0
k−1∇vh

)∥∥2

E

)
.

The thesis is thus proven choosing α = min {c∗, 1}:

aEh (vh, vh) ≥
∥∥∥√KΠ0

k−1∇vh
∥∥∥2

E
+
∑
E∈Th

τE
∥∥β ·Π0

k−1∇vh
∥∥2

E

+ c∗
(∥∥∥√K

(
∇vh −Π0

k−1∇vh
)∥∥∥2

E
+ τE

∥∥β · (∇vh −Π0
k−1∇vh

)∥∥2

E

)
≥

min {c∗, 1}
(∥∥∥√KΠ0

k−1∇vh
∥∥∥2

+
∥∥∥√K

(
∇vh −Π0

k−1∇vh
)∥∥∥2

+τE
∥∥β ·Π0

k−1∇vh
∥∥2

E
+ τE

∥∥β · (∇vh −Π0
k−1∇vh

)∥∥2

E

)
≥

≥ {c∗, 1}
(∥∥∥√K∇vh

∥∥∥2

+ τE ‖β · ∇vh‖2E

)
.

Lemma 5. Let q ∈ H1
0 (Ω). Then there exists q∗ ∈ Vh such that

ah (q∗, vh) = a (q, vh) ∀vh ∈ Vh .

Moreover,

|||q∗||| ≤ 1

α
|||q||| , (32)

‖q − q∗‖ - h |||q||| , (33)

being α the coercivity constant in (31).

Proof. The proof is formally the same as the one for [2, Lemma 5.6].
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Lemma 6. For any vh ∈ Vh,

Bsupg (vh, vh) ≥ 1

2
|||vh||| . (34)

Proof. Let vh ∈ Vh. Since we have homogeneous Dirichlet boundary conditions and
∇· β = 0, it holds

(β · ∇vh, vh) = −1

2

(
∇· β, v2

h

)
= 0 .

We have, using the definition of Bsupg, and the Cauchy-Schwarz and Young inequalities
and the estimate (9),

Bsupg (vh, vh) =
∥∥∥√K∇vh

∥∥∥2

+
∑
E∈Th

τE ‖β · ∇vh‖2E − τE
(
∇·
(√

K∇vh
)
, β · ∇vh

)
E
≥

≥
∥∥∥√K∇vh

∥∥∥2

+
∑
E∈Th

τE ‖β · ∇vh‖2E − τE
∥∥∥∇· (√K∇vh

)∥∥∥
E
‖β · ∇vh‖E ≥

∥∥∥√K∇vh
∥∥∥2

E

+
∑
E∈Th

1

2
τE ‖β · ∇vh‖2E −

1

2
τE ‖∇· (K∇vh)‖2E ≥

∥∥∥√K∇vh
∥∥∥2

−
∑
E∈Th

1

4

∥∥∥√K∇vh
∥∥∥2

E

+
1

2
τE ‖β · ∇vh‖2E ≥

3

4

∥∥∥√K∇vh
∥∥∥2

+
∑
E∈Th

1

2
τE ‖β · ∇vh‖2E ≥

1

2
|||vh|||2 .

Theorem 1. Suppose K ∈ L∞ (Ω) and β ∈
[
W1
∞(Ω)

]2
. Then, ∀vh ∈ Vh and for h

sufficiently small,

sup
wh∈Vh

Bsupg,h (vh, wh)

|||wh|||
% |||vh||| . (35)

Proof. Let vh ∈ Vh be fixed and let v∗h ∈ Vh be the function, whose existence is guaranteed
by Lemma 5, such that ah (v∗h, wh) = a (vh, wh), ∀wh ∈ Vh. By definitions (3) and (13),
since ah is symmetric, we have, by (34),

Bsupg,h (vh, v
∗
h) = ah (vh, v

∗
h) + bh (vh, v

∗
h) + dh (vh, v

∗
h) = a (vh, vh) + bh (vh, v

∗
h)

+ dh (vh, v
∗
h) = Bsupg (vh, vh) + r (vh, v

∗
h) ≥ 1

2
|||vh|||2 + r (vh, v

∗
h) ,

where

r (vh, v
∗
h) = bh (vh, v

∗
h)− b (vh, v

∗
h) + b (vh, v

∗
h − vh)

+ dh (vh, v
∗
h)− d (vh, v

∗
h) + d (vh, v

∗
h − vh) .

By Lemmas 1 and 2, the continuity of b and d, that can be proven as for (23) and (25),
and by (32) and (33), there exists a constant Cr > 0 depending on ‖K‖L∞(K), ‖β‖W1

∞(Ω)

and on the approximation constants in (21) and (22), such that

|r (vh, v
∗
h)| ≤ Crh

∥∥∥√K∇vh
∥∥∥ ∥∥∥√K∇v∗h

∥∥∥ ≤ Crh |||vh||| |||v∗h||| ≤ Crh |||vh|||2 . (36)
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Then, by (32) and (36) the following lower bound holds:

Bsupg,h (vh, vh) ≥ 1

2
|||vh|||2 + r (vh, v

∗
h) ≥

(α
2
− Crh

)
|||vh||| |||v∗h||| ,

which yields the thesis for

h <
α

2Cr
.

4.3. A priori error estimate

To derive an a priori estimate that shows optimality of the rate of convergence of
this SUPG approach, we will use the following estimate on the VEM interpolator (see
[2, Lemma 5.1]):

∀E ∈ Th, ∀ϕ ∈ Hs (E) , ‖ϕ− ϕI‖m,E . hs−mE |ϕ|s,E : ∀s,m ∈ N, m ≤ s ≤ k + 1, s ≥ 2 .
(37)

We are now ready to prove the following result.

Theorem 2. Suppose u ∈ Hs+1 (Ω), K ∈ Ws
∞(Ω), β ∈

[
Ws+1
∞ (Ω)

]2
for some s ∈

{1, . . . , k}. Then, for h sufficiently small,

|||u− uh||| - hs
(
‖u‖s+1 + ‖f‖s

)
. (38)

Proof. First, by the triangle inequality we have

|||u− uh|||2 ≤ |||u− uI |||2 + |||uh − uI |||2 ,

and, by (37),

|||u− uI |||2 =
∑
E∈Th

∥∥∥√K∇ (u− uI)
∥∥∥2

E
+ ‖β · ∇ (u− uI)‖2E ≤

≤
∑
E∈Th

(
KE + β2

E

)
‖∇ (u− uI)‖2E .

∑
E∈Th

(
KE + β2

E

)
h2s
E |u|

2
s+1,E .

We are left to estimate the norm of eh := uh − uI . Since eh ∈ Vh, by (35) there exists
wh ∈ Vh such that

Bsupg,h (eh, wh) % |||eh||| |||wh||| .

Using the exact and discrete problems (10) and (19),

|||eh||| |||wh||| - Bsupg,h (uh − uI , wh) = Fsupg,h (wh)−Bsupg,h (uI , wh) =

= Fsupg,h (wh)− Fsupg (wh) +Bsupg (u,wh)−Bsupg,h (uI , wh) = Fsupg,h (wh)

− Fsupg (wh) +Bsupg,h (u− uI , wh) +Bsupg (u,wh)−Bsupg,h (u,wh) . (39)

Note that for our choice of the degrees of freedom and stabilization (defined in (18)), it
makes sense to compute Bsupg,h (u,wh) as in (13)-(16), because u ∈ H2 (Ω) ⊂ C0(Ω) for
Ω ⊂ R2. If the solution u does not have the regularity for pointwise evaluation, definition
(18) for the VEM-stabilization function has to be properly modified.

15



The first difference in (39) can be written as:

Fsupg,h (wh)− Fsupg (wh) =
∑
E∈Th

(
f,
(
Π0
k−1 − I

)
wh + β ·

(
Π0
k−1 − I

)
∇wh

)
E
. (40)

The first term of the sum in (40) is bounded as follows:(
f,
(
Π0
k−1 − I

)
wh
)

=
((
I −Π0

k−1

)
f,
(
Π0
k−1 − I

)
wh
)
≤
∥∥f −Π0

k−1f
∥∥
E
×

×
∥∥wh −Π0

k−1wh
∥∥
E
. hs−1

E |f |s−1,E hE ‖∇wh‖ ≤

≤ hsE√
K∨E
|f |s−1,E

∥∥∥√K∇wh
∥∥∥
E
≤ hsE√

K∨E
|f |s−1,E |||wh|||E .

The second term of the sum in (40) can be treated as follows:

(
f, β ·

(
Π0
k−1 − I

)
∇wh

)
E

=

2∑
i=1

((
Π0
k−1 − I

)
(βif) ,

∂wh
∂xi

)
E

≤

≤
2∑
i=1

∥∥(I −Π0
k−1

)
(βif)

∥∥
E

∥∥∥∥∂wh∂xi

∥∥∥∥
E

.
hs√
K∨E

2∑
i=1

|βif |s,E
∥∥∥√K∇wh

∥∥∥
E
≤

≤
‖β‖Ws

∞(E)√
K∨E

hsE ‖f‖s,E |||wh|||E .

Going back to (39), we estimate the continuity of Bsupg,h, given by (23), (25) and (28),
and the estimate on the VEM interpolator in (37):

Bsupg,h (u− uI , wh) - ‖u− uI‖1 ‖wh‖1 . hs ‖u‖s+1 |||wh||| .

The estimate of the last difference in (39) is obtained by applying (24), (26) and (29):

|Bsupg (u,wh)−Bsupg,h (u,wh)| ≤ |a (u,wh)− ah (u,wh)|
+ |b (u,wh)− bh (u,wh)|+ |d (u,wh)− dh (u,wh)| - hs ‖u‖s+1 ‖wh‖1 .

5. Numerical Results

In this section we will consider two benchmark problems in the domain Ω = (0, 1)×
(0, 1) in order to numerically evaluate the rates of convergence of the discussed VEM-
SUPG stabilization both in the convection-dominated regime and the diffusion-dominated
regime. VEM orders from one to three are used.

5.1. Test 1

As a first test we consider problem (1) with constant K and β. In particular the
transport velocity field is

β(x, y) =
(

1
2 ,−

1
3

)
,
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and we perform two sets of simulations corresponding to two different values of K: in a
first set of simulations we use K = 10−3, whereas K = 10−9 is used for a second set of
simulations. The meshsize range is chosen in such a way that for all the values of the
VEM order k the mesh Péclet number is both greater and lower than one for K = 10−3,
whereas it is much greater than one for K = 10−9.

The exact solution for this problem is given by

u(x, y) =
65536

729
x3(1− x)y3(1− y) .

In Figures 1a–1f we show the convergence curves obtained with K = 10−3 (left) and
K = 10−9 (right). The error reported is based on the difference between the exact
solution and the projection of the discrete solution on the space of polynomials of degree
k, accordingly to the VEM order k varying from 1 to 3. The error is measured in the
L2 (Ω) and H1 (Ω)-norms and is plotted with respect to the number of degrees of freedom
(Ndof). For each mesh we also report the values of the minimum and maximum mesh
Péclet numbers. Note that the left y-axes scales refer to the mesh Péclet numbers,
whereas the right ones refer to the error measure. The very good agreement between the
numerical behaviour and the expected rates of convergence in (38) is evident.

5.2. Test 2

For the second test, non-constant coefficients are used and the flow regime is transport
dominated in all the simulations performed. We have set:

K(x, y) = 10−7

(
1 + x2 xy
xy 1 + y2

)
,

β(x, y) =
(

1
3 + 10y(x+ y2)4,− 1

2 − 5(x+ y2)4
)
,

and the exact solution in this case is:

u(x, y) = 600xy(1− x)(1− y)

(
x− 1

5

)(
y − 2

5

)(
y − 3

5

)
.

We now compare the solution obtained with the VEM-SUPG method described in the
present work on a family of polygonal Voronoi meshes generated by PolyMesher [32],
made up of polygons with four to eight edges (see Figure 2a), with the solution obtained
on standard triangular meshes. Figures 2c and 2d show a comparison between the un-
stabilized solution and the one obtained using the SUPG stabilization for second order
VEM, showing a very good agreement with the exact solution (Figure 2b) for a given
polygonal mesh. Convergence curves were obtained for VEM formulations of order from
1 to 3 and are reported in Figure 3. The error was obtained by comparing the exact
solution to the polynomial projections of the discrete solutions. On each plot we also
report the maximum and minimum mesh Péclet number for each considered meshsize.
Also in this case, the left y-axes refer to the mesh Péclet numbers, whereas the right ones
refer to the error measure. Note that for all orders and meshes, this problem is always
convection-dominant (minE∈Th PeE � 1 for all meshes). Again, the plots show a very
good agreement between the experimental orders of convergence and the ones provided
by Theorem 2, independently of the mesh used.
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Figure 1: Test 1. Convergence curves
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Figure 2: Test 2. Sample mesh, exact, unstabilized and stabilized solutions

6. Conclusions

In this paper we have considered the advection-diffusion problem with a VEM based
approach. The stabilization considered is a natural extension to the VEM of the classical
SUPG stabilization for the standard FEM. It is known from the VEM literature that
VEM discretizations require the introduction of a stabilization term to ensure coercivity
of the discrete operators. A VEM stabilization of the SUPG stabilization is therefore
needed. Under sufficient regularity assumptions of the data and of the exact solution,
we have shown that both the advective-SUPG stabilization and the corresponding VEM
stabilization for coercivity (stabilization of a stabilization) do not pollute the rates of
convergence of the VEM discretization.

Numerical results confirm the proven theoretical behaviour. Moreover, stable good
discrete solutions are obtained also for very large Péclet numbers in the order of 109

and mesh Péclet numbers in the order of 107. The numerical results also show a reliable
stabilizing effect for the proposed formulation of the SUPG stabilization without the
introduction of an excessive diffusive effect.
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