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Summary

The main contribution of this thesis is the introduction of new techniques which
allow to perform signal processing operations on signals represented by means of
compressed sensing. Exploiting autoregressive modeling of the original signal, we
obtain a compact yet representative description of the signal which can be estimated
directly in the compressed domain. This is the key concept on which the applications
we introduce rely on.

In fact, thanks to proposed the framework it is possible to gain information
about the original signal given compressed sensing measurements. This is done by
means of autoregressive modeling which can be used to describe a signal through
a small number of parameters. We develop a method to estimate these parameters
given the compressed measurements by using an ad-hoc sensing matrix design and
two different coupled estimators that can be used in different scenarios. This en-
ables centralized and distributed estimation of the covariance matrix of a process
given the compressed sensing measurements in a efficient way at low communica-
tion cost. Next, we use the characterization of the original signal done by means
of few autoregressive parameters to improve compressive imaging. In particular, we
use these parameters as a proxy to estimate the complexity of a block of a given
image. This allows us to introduce a novel compressive imaging system in which
the number of allocated measurements is adapted for each block depending on its
complexity, i.e., spatial smoothness. The result is that a careful allocation of the
measurements, improves the recovery process by reaching higher recovery quality
at the same compression ratio in comparison to state-of-the-art compressive image
recovery techniques. Interestingly, the parameters we are able to estimate directly
in the compressed domain not only can improve the recovery but can also be used as
feature vectors for classification. In fact, we also propose to use these parameters as
more general feature vectors which allow to perform classification in the compressed
domain. Remarkably, this method reaches high classification performance which
is comparable with that obtained in the original domain, but with a lower cost in
terms of dataset storage.

In the second part of this work, we focus on sparse representations. In fact,
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a better sparsifying dictionary can improve the Compressed Sensing recovery per-
formance. At first, we focus on the original domain and hence no dimensionality
reduction by means of Compressed Sensing is considered. In particular, we de-
velop a Bayesian technique which, in a fully automated fashion, performs dictionary
learning. More in detail, using the uncertainties coming from atoms selection in the
sparse representation step, this technique outperforms state-of-the-art dictionary
learning techniques. Then, we also address image denoising and inpainting tasks
using the aforementioned technique with excellent results. Next, we move to the
compressed domain where a better dictionary is expected to provide improved re-
covery. We show how the Bayesian dictionary learning model can be adapted to the
compressive case and the necessary assumptions that must be made when consid-
ering random projections. Lastly, numerical experiments confirm the superiority of
this technique when compared to other compressive dictionary learning techniques.
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Chapter 1

Introduction

Compressed Sensing (CS) [9] [10] is a well-established paradigm in which signal
acquisition and compression become a single operation. Being able to sample a
signal well below the Nyquist rate has made CS a popular approach over the last
few years. The key concept which CS relies on, is that the acquired signal must be
sparse in some domain. This assumption allows to provide theoretical guarantees
under which the signal can be exactly recovered with overwhelming probability.
Nevertheless, there are still some aspects of the CS which can be investigated and
that can be improved. The aspects we address in this thesis are two. The first one is
related to the fact most of the CS literature addresses the scenario where first a signal
is acquired using CS, and then the signal is recovered using a nonlinear algorithm.
However, since the CS measurements still contain much of the information of the
original signal it would be of great interest to be able to extract some parameters
directly in the compressed domain. These parameters can then be used directly for
specific applications or used in the recovery process to improve its performance.

The second problem we address in this work is the dictionary learning problem.
This problem aims to find the best dictionary which is able to sparsify a given
set of signals denoted as training signals. This problem has great importance and
covers a lot of applications in the signal processing field. As an example, image
processing tasks such as inpainting and denoising among others, are efficiently solved
by means of this technique. Images are an extremely good example of a case where
the dictionary learning problem is perfectly suited. This is due to the fact that
images tends to be compressible rather than sparse in standard basis such as wavelet
or DCT. Hence, state-of-the-art techniques which use the sparsity as the main tool
to perform image processing tasks take great advantage by using an improved sparse
representation. Moreover, the dictionary learning problem can also be applied to
CS measurements. In this case the main advantage of the technique is that by using
a better dictionary specifically suited for the data considered, the recovery process
which seeks for the sparsest solution is improved.
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1 – Introduction

In the next sections we describe more in detail these two problems.

1.1 Compressive signal processing
As previously discussed, CS shifts the computational cost to the recovery stage.
While in most cases this is an appreciated feature since it allows to shift the com-
putational burden out of the acquisition process, in other cases the recovery process
may still be too computational complex or not needed. In these scenarios, one wishes
to infer some information about the signal that has been acquired, e.g. estimate one
or more parameters that describe the signal in order to perform some detection or
classification task. In CS, because of the complexity of the signal recovery process, it
is inconvenient to first recover the signal and then estimate its parameters. Rather,
it is much more desirable to perform estimation directly on the compressed mea-
surements. Moreover, if the signal is not exactly sparse, the error introduced by the
recovery process may be propagated through signal processing tasks and decrease
the overall performance. Hence, the idea behind compressive signal processing is
that of using the compressed measurements as a direct source of information by-
passing the recovery process keeping in mind that most of the information of the
original signal is still preserved during the CS process.

In their seminal work on compressive signal processing [11], the authors laid
the foundations of the three main building blocks of signal processing. More in
detail inference, estimation and filtering operations were derived in the compressed
domain. Even though operations in the compressed domain lead to suboptimal
results, they showed that a with a fairly small number of random projections is
possible to achieve very good accuracy.

In fact, a lot of applications can take advantage by the compressive signal pro-
cessing technique. Applications in which the signal is compressively acquired (by
means of e.g., CS-ADC such as [12]) and only some information about the signal
is needed are those in which this paradigm lead to the biggest advantages. As an
example let us consider the frequency estimation in wideband signals. This kind
of signals are efficiently tackled with the CS acquisition scheme since it allows sub-
Nyquist sampling avoiding the need of expensive high frequency ADC components.
At this point, standard CS schemes would imply the signal recovery first and the fre-
quency estimation later. In this case it is fair to assume the signal to be sparse in the
frequency domain, however if the sparsifying basis (e.g., DFT basis) does not con-
tains the exact frequencies of the sinusoidal components of the signal, the recovered
signal will be compressible but not exactly sparse. Hence, estimating the frequency
on such a signal is likely to lead to estimation errors. Moreover, this procedure has
higher computational costs requiring both the recovery and the estimation processes.
In this case being able to directly infer the frequency in the compressed domain can
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1 – Introduction

reduce the overall computational cost and improve the estimate accuracy.
Besides analyzing the signal itself, knowledge of such signal parameters may also

be useful during the reconstruction stage. For example, in many CS applications,
no knowledge about the nature of the compressed signal is available, except for the
assumption that it is sparse in some domain. However, natural signals are typically
not exactly sparse, but rather approximately sparse or “compressible”. In many
cases, such compressibility implies that the signal spectrum is decreasing [13]. This
kind of information on the signal structure has indeed been used to improve the CS
reconstruction [14].

To briefly summarize, performing operations in the compressed domain not only
allows to directly extract useful information from the randomly projected signal,
but in the cases in which is needed, it can also improve the recovery by providing
additional information to the process. Following this idea, the main contribution of
this thesis is a new approach which allows to model the original signal with few pa-
rameters that can be efficiently estimated in the compressed domain. In particular,
the main achievements obtained in this field can be summarized as follows:

• Compressive covariance estimation Compressive estimation of the covariance
matrix by means of few parameters allows in distributed and centralized set-
tings to perfom signal processing operations in the compressed domain effi-
ciently and at low communication cost.

• Adaptive compressive imaging Estimating the complexity of an image given
the compressed measurements allows to adaptively sense an image allocating
the correct number of measurements thus reaching higher recovery quality at
the same compression ratio.

• Compressive classification Extracting features vectors for classification directly
in the compressed domain allows to obtain excellent classification performance
whilst keeping storage costs low.

1.2 Dictionary learning
Let us consider the role of the dictionaries for sparse representations before discussing
the problem related to learning the best dictionaries given a set of training signals:
the dictionary learning problem.

Representing a signal requires the selection of a dictionary, i.e., a set of “atoms” or
vectors in the signal space, a linear combination of which represents the given signal
(alternative representations based on the use of manifolds [15, 16] are also relevant
but will not be discussed here). The obvious and simplest choice of a dictionary is a
basis, the smallest possible dictionary with the capability of representing the whole

3



1 – Introduction

signal space. Simple as they are, the scarce expressiveness of such dictionaries led
to the ongoing development of overcomplete dictionaries [17].

The transition to overcomplete dictionaries was gradual. Analytical complete
dictionaries were introduced first, which made use of different transforms such as
DCT, Wavelet or Gabor. The limitations of such transforms were soon brought to
light. Indeed, the work in [18] pointed out the deficiencies of the popular orthogo-
nal wavelet transforms, namely its sensitivity to translation, dilation and rotation,
resulting in the development of the Steerable Wavelet Transform. Early approaches
towards overcomplete dictionaries tried to preserve the favorable orthogonality prop-
erties of bases but soon proved to be insufficient.

Parallel work suggested the use of collections of data to better describe signals,
rather than the use of mathematical synthetic functions. The works in [19] and [20]
were very influential towards the recent advances in dictionary learning and sparse
signal representation. These advances eventually led to the development of the
K-SVD technique [2] which, employing a greedy iterative approach by alternating
between the sparse coding and dictionary update steps, achieves state-of-the-art
performance. However, the main drawback of this technique is that it typically
requires the knowledge of the sparsity of the training signals and the variance of the
noise which corrupts the data.

In this work we propose a novel Bayesian dictionary learning technique which
not only aims to solve the problems related to K-SVD but also achieves better
performance. The main idea is that of approaching the problem from a Bayesian
point of view. This allows us to take into account all the uncertainties, which are
due to the selection of the atoms in the dictionary, and hence to improve the overall
process. Moreover, by correctly modeling all the considered parameters, they do not
need to be known in advance since all the quantities including sparsity and noise
variance are automatically estimated. Numerical experiments confirm the excellent
performance achieved by this technique in both the original and the compressed
domains.

Lastly, it is worth noting that since the dictionary learning technique is more
general approach, it has been successfully employed to solve different signal process-
ing tasks. In particular, the dictionary learning problem has been widely applied in
image processing and machine learning. Applications include image denoising and
deblurring [21,22], image super-resolution [23], image restoration [24], classification
and clustering [25], and face recognition [26] among many others.

To summarize, the main contributions in this field which we propose in this work
are the following:

• Bayesian dictionary learning Fully automatic Bayesian dictionary learning in
the original domain allows to obtain better dictionaries which can improve the
performance of image processing tasks such as inpainting and denoising.
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• Compressive Bayesian dictionary learning Being able to learn a dictionary
given the compressed measurements has a lot of advantages over standard
CS recovery techniques. In fact, better dictionaries lead to improved recovery
when the sparsifying bases are not known or when they are not able to correctly
sparsify a signal.

1.3 Thesis organization
The remainder of this work is organized as follows.

In Chapter 2 we introduce the Compressed Sensing framework. In particular we
focus on the theoretical assumptions behind the problem and we give a brief overview
of the recovery algorithms. Chapter 3 introduces the compressed autoregressive
estimation framework. We start by introducing the autoregressive modeling which
is at the core of the framework we are proposing. Additionally, we also provide some
notation which will be of paramount importance in the following chapters. Next,
we derive a design that includes a sensing matrix with a specific structure which
operates in conjunction with the estimators. The compressive estimators are two: a
more general AR(p) estimator and a specific Bayesian AR(1) estimator which shows
improved performance in critical situations, i.e., for highly compressed signals. We
also show two applications which directly arise from the frameworks and which are
used as a test for the estimation accuracy of the compressed estimators.

Chapter 4 describes a novel adaptive compressive imaging system. To the best
of our knowledge, this is the first adaptive scheme for CS image recovery which
completely operates in the compressed domain. Remarkably, adapting the mea-
surements for each block of which the image is composed based on the estimated
complexity through the AR estimation framework, allow us to reach up to 6dB
PSNR gains with respect to standard CS techniques.

Chapters 5 and 6 describe two compressive signal processing operations enabled
by the proposed AR framework. In particular, in Chapter 5 we focus on the com-
pressive covariance estimation problem which recently attracted a lot of attention
within the CS community. Then, in Chapter 6 we show how we can use the compres-
sively estimated AR parameters to perform efficient classification in the compressed
domain.

We then move to the distributed setting in Chapter 7. In fact, we consider the
distributed estimation of the covariance matrix of a colored noise process affecting
CS measurements. In particular, we show that the proposed method outperforms
distributed covariance estimation techniques in terms of both reduced communica-
tion cost and increased accuracy. Lastly, we also show the good performance of such
method inside a compressive signal processing task, namely a compressive detection
task.
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In Chapter 8, we shift the focus on improved sparse representations. In particu-
lar, we propose a new Bayesian dictionary learning algorithm which is able to learn
the best sparsifying dictionary given a set of signals. The approach we introduce,
exploiting a hierarchical Bayesian modeling is able to estimate all the parameters of
the model within the learning process. Since this approach achieves excellent per-
formance finding good dictionaries and hence improving the sparse representation,
we include this technique within the CS sensing process by adjusting the necessary
parts in Chapter 9. The result is that it is possible to obtain good recovery results
for signal compressed by means of CS which are not sparse in standard basis.

Lastly, in Chapter 10 we draw some conclusions and discuss possible future work.
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toregressive models,submitted at IEEE Transactions on Image Processing
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Chapter 2

Compressed Sensing

In this chapter we briefly introduce the theory underlying CS: a now well-established
approach for signal acquisition that makes it possible to collapse sampling and com-
pression in a single operation.

2.1 Introduction
Historically, in signal acquisition, to guarantee no signal distortion, the number of
samples has always been limited by the bandwidth of the signal (according to the
Nyquist-Shannon sampling theorem). This means that the minimum sampling rate
must be at least twice the maximum frequency found in the signal itself, leading to a
big number of samples. Compression and in particular transform coding frameworks
emerged to address this problem. Given a signal x ∈ RN it can be expressed in
terms of N orthonormal vectors Ψi ∈ RN that form the orthonormal basis Ψ =[
Ψ1 Ψ2 . . . ΨN

]
. So x can be written as

x =
N∑
i=1

siΨi x = Ψs s ∈ RN

where s is the signal representation in the Ψ domain.
Most of the signals of interest, like audio and images, are approximately sparse or

compressible. This means that there exists a basis Ψ in which the signal can be well
represented with only k � n non-zero coefficients si, differently from truly sparse
signals where the k non-zero coefficients lead to an exact representation. This has
largely been exploited in lossy transform coding where large signals are represented
in an efficient way by only coding largest coefficients and their position. Examples
of transform coding techniques are JPEG [27], JPEG2000 [28] and MP3 [29] stan-
dards.
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2 – Compressed Sensing

Drawbacks of this method arise from the need of sampling the whole signal inde-
pendently from its sparsity, when one may only need to extract some features from
it.

As introduced in [9] and [10] CS framework emerged in analogy with the clas-
sical paradigm that relies on sampling the whole signal at first, accordingly to the
Nyquist-Shannon sampling theorem, and then processing it. The key concept of
CS is again signal sparsity, but instead of sampling the whole signal and then com-
pressing it, the signal is directly downsampled according to its sparsity and then its
reconstruction is guaranteed thanks to some properties that will be more in-detail
explained in the following sections.

In the sensing problem we want to acquire a linear and non-adaptive reduced set
of the samples of the original signal x ∈ RN but still keeping most of the information
which is contained in it. In order to have an operator which can be efficiently applied
to the signal, it has to be linear and it does not have to depend on the signal itself,
namely it must be non-adaptive.

We denote as Φ ∈ RM,N the sensing matrix and Ψ ∈ RN,N the matrix containing
the basis in which the signal is known to be sparse: the so-called sparsifying basis
or dictionary. We denote as N the the dimension of the signal and M < N is the re-
duced dimension of the signal in the measurement domain (where the downsampling
occurs). So we can write

y = Φx = ΦΨs = Θs

where y is the measurements vector.
To guarantee signal recovery given y, two important properties that are used

to analyze the behavior of CS recovery techniques will be examined: RIP and co-
herence. Without loss of generality, from now on where no differently specified, the
sparsifying basis Ψ will be an unitary matrix. This will allow us to consider x sparse
in the original domain.

2.2 RIP
Let us start by imposing some conditions based on the results we want to obtain.
To recover the signal, Φ must preserve most of the information contained in the
signal when dimensionality is reduced from N to M . Thus if a signal is k-sparse,
namely it belongs to the set of k-sparse signals Σk, the mapping must not bring any
significant distortions, i.e. if a signal does not belong to the nullspace of Ψ, the
signal projected by Φ on RM still must not belong to the nullspace of Ψ.
More formally this can be written as:

Φx1 /= Φx2 if x1 /= x2 ∀x1,x2 ∈ ΣK
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2 – Compressed Sensing

where
ΣK = {x : ||x||0 ≤ k}.

The restricted isometry property (RIP for short) is here introduced as a useful
tool to determine if the sensing matrix is going to introduce any distortion in terms
of `2 distance. This property, that is a more tractable and stable derivation of an-
other useful property called null space property NSP, has been firstly described by
Candès and Tao in [30].

Definition 2.1. The matrix Φ satisfies the RIP of order k, if there exist an isometry
constant δK ≥ 0 and an integer value k such that

(1− δk)||x||22 ≤ ||Φx||22 ≤ (1 + δk)||x||2l2

holds for any x ∈ Σk.

If we consider a sensing matrix Φ which satisfies the RIP of order 2k and an
isometry constant δ2k � 1, we can see that distances between k-sparse signals are
approximately preserved:

(1− δ2K)||x1 − x2||22 ≤ ||Φx1 −Φx2||22 ≤ (1 + δ2K)||x1 − x2||22

A generic mapping satisfying this condition is also called bi-Lipschitz mapping.
The construction of such matrices is challenging due the computational complex-

ity required by the combinatorial computation required to verify all
(
n
k

)
matrices

which satisfy the RIP property for the considered order.
It is also possible to construct these matrices in deterministic way [31] [32] but

it is inefficient since these techniques require a value of M too large compared to
the given N , e.g., in [32] the required M is O(k2 logN).

2.3 Coherence
To avoid the previous method complexity in favor of some more computationally
preferable approach, a property called coherence can be exploited. It takes into
account both the sparsifying basis and the sensing matrix in order to assess some
bounds on recovery performance.

Given the sensing basis Φ and the sparsifying basis Ψ, coherence is defined as

µ(Ψ,Φ) =
√
N max

1≤k,j≤N
|〈Φk,Ψj〉| (2.1)

where µ ∈
[
1,
√
N
]
.
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2 – Compressed Sensing

The more the elements of the two bases Φ and Ψ are correlated, the larger
coherence µ. If coherence is large it means that vectors Φj cannot sparsely represents
vectors of Ψj and vice versa [10] [9]. In other words low coherence means that the
columns of the two matrices are mutually orthogonal. An example of pair of basis
for which incoherence is maximal (µ = 1) are delta spikes as Φj(t) = δ(t − k) and
Fourier sinusoides as Ψj(t) = 1√

n
ei2πj

t
n [33]. As an example, in [34] the authors show

a set of matrices A ∈ CM×M2 for which the coherence is small µ =
√
N/
√
M and

RIP constant is δ2k = C k√
M

.
The goal is to obtain very low coherence bases since, as will become more evident

in Section 2.5, this property can be efficiently used to lower the required number of
measurements.

2.4 Random matrices
Among all the possible methods to construct sensing matrices which can be used in
CS, random ones play a very important role. In fact, whilst deterministic sensing
matrix construction is computationally expensive, it has been proved that random
matrices not only are easier to construct, but they also show statistical guarantees
in terms of RIP and coherence.

In fact, the turning point of CS is that if Φ elements are chosen to be independent
and identically distributed (i.i.d) random variables with zero mean and variance 1

M
,

with high probability the coherence of Φ with any sparsifying basis Ψ is low [9].
Furthermore, if this kind of matrices are distributed according to Gaussian,

Bernoulli or any other sub Gaussian distribution, then they will satisfy the RIP
property with high probability [11].

2.4.1 RIP in random matrices
Starting from the RIP it is interesting to analyze it is correlation with M : the
reduced number of acquired samples. The starting point as in [35] is the so-called
concentration inequality:

P
(∣∣∣||Ax||22 − ||x||22

∣∣∣ ≥ δ||x||22
)
≤ 2e−c0δ2M , 0 < δ < 1 (2.2)

where c0 is some positive constant and the probability it is taken over all M × N
matrices A.
In other words, it expresses the probability that the random variable ||Ax||22 is
strongly concentrated around its mean value ||x||22.
This inequality is satisfied [36] by two classes of random matrices: the Gaussian and
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Bernoulli distributed ones. Then, using the concentration inequality it is possible to
show [35] that an estimate of the RIP constants is given by the following theorem.

Theorem 2.1. Assume A ∈ RM×N to be a random matrix satisfying the concentra-
tion property (2.2). Then there exists a constant C depending only on c0 such that
the restricted isometry constant of A satisfies δk ≤ δ with probability exceeding 1− ε
provided

M ≥ Cδ−2
(
k log (N/M) + log ε−1

)
.

At this point if we combine these results about the RIP constants estimates
with the recovery due to `1-minimization (discussed in detail in further sections) it
is possible to prove [37] that any k-sparse signal can be stably recovered using a
random matrix that satisfies (2.2) with high probability by choosing

M ≥ Ck log (N/k) (2.3)

It is a very strong yet surprising statement since it means that given a suitable
M � N , if the sensing matrix has randomly distributed entries (Gaussian or
Bernoulli), then with high probability the signal can be exactly recovered from
its measurements.

2.4.2 Coherence in random matrices
A similar result that bounds from below the number of measurements M required to
achieve exact recover, can be obtained by exploiting the coherence property. Let us
start with a simple model. Let us denote as Ω the random uniformly-sampled subset
of dimension M of the original signal x, as T the signal support, as z(t) ∀ t ∈ T the
sign sequence valued ±1 with probability 0.5 and as µ the coherence (2.1). Then,
as stated in [38] we have

Theorem 2.2. Let U = RΦΨ be an orthogonal matrix with |Uk,j| ≤ µ(U). Fix a
subset T of the original domain. Choose a subset Ω of the measurements domain of
size |Ω| = M , and sign sequence z on T uniformly at random. Suppose that

M ≥ C0|T |µ2(U) log (N/δ)

and also M ≥ C ′0 log (N/δ)2 for some fixed numerical constants C0 and C ′0. Then
with probability exceeding 1−δ, every signal x in the support of T with signs matching
z can be recovered from y = Φx by solving an `1-minimization problem.

As for the RIP, if M is chosen according to the bound above, then we have exact
signal recovery with overwhelming probability.

By analyzing the bound, it is straightforward to see how the coherence µ directly
influences the number of needed M ; in fact the bigger the coherence between basis
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the larger the required number of measurements and vice versa. It is not surprising
then, that the interest is focused in low coherence basis due to the fact that if we
are in the best possible scenario, namely µ = 1 (largely uncorrelated basis), then we
can reach exact signal recovery with the smallest possible number of measurements
M which is proportional to the logarithm of N .

2.4.3 Universality in random matrices
Another advantage given by random matrix construction is that using such approach
it is not necessary to know in advance (at the encoding stage) the sparsifying basis
Ψ. In fact, we can write the measurements as

y = ΦΨs

but if we know that Φ entries are chosen according to a Gaussian distribution and
Ψ is the orthonormal basis in which the signal is sparse, it follows that Θ = ΦΨ
is also distributed according to a Gaussian distribution. Without knowing which
is the basis Ψ, for sufficiently high M as seen above, the RIP property can be
satisfied. This property is often called universality since the sparsifying basis does
not need to be known at the encoding stage since any orthonormal basis multiplied
by a Gaussian sensing basis results in a Gaussian distributed basis Θ. Moreover,
interesting results come from [35] where the authors show that very similar results
can also be obtained for the case of sub-Gaussian distributions.

2.5 Recovery
The recovery problem is about recovering a sparse signal, without knowing the
exact position of non-zero coefficients, given only a small set of randomly-projected
measurements.

2.5.1 Recovery in noiseless environment
As introduced in the previous section, the standard recovery algorithm used in CS
is the `1-minimization. To understand why this kind of minimization is used, let us
start by analyzing the two main characteristics we know about the signal:

• Sparsity For a certain integer k we know that ||x||0 ≤ k

• Linear system of equations It links the known measurements vector y and the
unknown signal x through y = Φx

12
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It is straightforward to see that the linear system is ill-posed, in fact there are less
equations than unknowns since by assumption M < N , thus there are infinitely
many x that can satisfy the system y = Φx.
Here is where the role of the sparsity in x comes in: among all the possible solutions
we want to pick the sparsest one. This problem can be written as

minimize
x̃∈RN

||x̃||0

subject to y = Φx̃.

It can be shown [39] that by using as few as M = k + 1 measurements by solving
this `0-optimization problem, it is possible to exactly recover any k-sparse signal
with high probability.

Unfortunately this technique is extramely costly from a computational point of
view since it is an NP-hard combinatorial minimization problem which is intractable
[40].

To overcome this, a natural solution may be trying to solve the problem as
a standard least squares one. Unfortunately, if this problem is solved as a least
squares (LS) problem thus minimizing the `2-norm, then we have no exact recovery.
This is because by solving the LS problem, the solution is the vector which satisfies
the system of linear equations with the minimal energy which however does not
necessarily implies that the signal must be sparse.

Let us now briefly discuss the category of recovery algorithms which have been
proposed in CS literature. They can be grouped in three main categories:

• combinatorial ones [41]

• greedy algorithms [42]

• convex problems e.g., `1-minimization also known as basis pursuit

Combinatorial algorithms arise from combinatorial group testing problems where
the goal is to design and minimize tests in order to obtain all the k non-zero co-
efficients from a larger vector x. The advantage of these algorithms is the low
requirement in terms of computational power required; the drawback is the higher
number and the required structure for the acquired measurements.
Moreover some works [43] also shown that they can be seen as special cases of l1-
minimization, i.e., in [44] the authors show how combinatorial algorithms can be
seen as recursive l1-minimization problems using binary projection matrices.

A different approach is used in greedy algorithms: the approach on which greedy
algorithms rely on is the iterative approximations of the signals coefficients and
support, until convergence is reached. Two of the most simplest examples of these
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iterative approaches are the orthogonal matching pursuit (OMP) [45] and the itera-
tive thresholding algorithm. Both of them can almost reach the same guarantees on
signal recovery as the l1-minimization but using stronger constraints (e.g. smaller
RIP constants).

The latter category, the one of `1 minimization problems is the one which has
attracted most of the attention of the CS community. This is due to the large
quantity of theoretical results which have been obtained in terms of recovery quality
and measurements bounds, to the fact that is a convex problem and last but not
least to the good performance this method can achieve. The basis pursuit problem
can be written as

minimize
x̃∈RN

||x̃||1

subject to y = Φx̃
(2.4)

or equivalently,

minimize
x̃∈RN

||x̃||1

subject to x ∈ B(y)
(2.5)

with B(y) =
{
x : Φx = y

}
. Solving the basis pursuit problem is equivalent to

find the smallest `1-norm ball that intersects the hyperplane generated by the linear
equations system. The intersection point corresponds to the recovered x.

To better understand how `1-minimization can effectively lead to an exact re-
covery, let us analyze Figure 2.1 which represents a (two dimensional) geometrical
comparison between `1-norm and `2-norm minimization. As we can see, the `1-norm
it is more likely to exactly recover the original signal because the `1-norm ball is
a polytope instead of a sphere as the `2-norm. This means that the solution is
unique only when the intersection happens at norm ball vertexes which correspond
to sparser signals given that along the axis most of the components of the vector
are zero.
Solving the `1-minimization can lead to excellent results, but we still need to be
evaluate the accuracy of the signal recovery in terms of the recovery error. In a
noiseless environment the result is strong: as stated in the following theorem is it
possible to obtain exact signal recovery.

Theorem 2.3. (Theorem 1.1 of [46]). Suppose that Φ satisfies the RIP of order
2k with σ2k <

√
2 − 1 and we obtain measurements of the form y = Φx. Then
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Figure 2.1: Comparison between two kind of lp-norm minimization in order to exploit
sparse signal recovery. (a) corresponds to the l1-norm minization (b) corresponds to l2-
norm minization

B(y) =
{
z : Φz = y

}
, the solution x̂ to (2.5) obeys 1

||x̂− x||2 ≤ C0
σk(x)1√

k
.

In fact, with a fairly small number of measurements O(k log N
k

) (2.3) which are
enough to to guarantee the RIP property to be satisfied for the considered sensing
matrix, k-sparse signals are exactly recovered. It is worth noting that the most
important word in the above statement is “exactly”, in fact it is a quite strong
result the fact that a sparse signal can be recovered without any information loss
given just a small number of randomly acquired samples.

2.5.2 Recovery in noisy environment
Heretofore we tackled the signal recovery given the compressed measurements in a
noise-free environment, unfortunately this is not the standard case. In fact, depend-
ing on the setting, signal is often corrupted by noise which may arise from different

1σk(x)1 quantifies the compressibility of x calculated by approximating it with a k-sparse signal.
If x ∈ Σk then this quantity is equal to zero.
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2 – Compressed Sensing

sources such as electronic components or happens to be the result of operations like
quantization.

In this section we analyze the signal recovery from noise corrupted measurements.
In particular, in order to make the problem easily characterizable, the noise we take
into account is additive white gaussian noise (AWGN) with zero mean and finite
variance.

The `1 minimization problem needs to be adapted to this setting. In fact, the
equality sign in (2.4) can not be satisfied in presence of additive noise. It is rather
preferable to employ an `2 norm in order to guarantee the equality in the least
squares sense.

The problem of recovering x from its compressed measurements y = Φx becomes
the one of recovering x given the noisy y = Φx + Φn where n is AWGN.

The convex optimization problem in (2.4) slightly changes since we have to keep
into account some error bounds ε due to noise presence and becomes the so-called
LASSO problem that is

minimize
x̃∈RN

||x̃||1

subject to ||Φx̃− y||2 ≤ ε

This is the standard recovery problem used in CS literature for recovering noise-
corrupted signals.
Let us now analyze the performance of the LASSO problem in analogy to what we
have done with the basis pursuit problem. Starting from the bounded noise theo-
rem (1.2) in [46] and using the concentration property from Gaussian distribution,
assuming then ε = 1, we can introduce two corollaries.

Corollary 2.1. (Corollary 1.1 of [47]) Suppose that Φ satisfies the RIP of order
2k with δ2k <

√
2 − 1. Furthermore, suppose that x ∈ ΣK and that we obtain

measurements of the form y = Φ(x + n) where the entries of n are i.i.d. N (0, σ2).
Then when B(y) =

{
z : ||Φx − y||2 ≤ 2

√
Mσ

}
, the solution x̂ to equation (2.5)

obeys to

||x̂− x||2 ≤ 8
√

1 + σ2k

1− (1 +
√

2)σ2k

√
Mσ

with probability at least 1− exp (−C0M) .

Losing a bit of the generality of corollary (2.1) and assuming Φ to be column
normalized, we obtain the following corollary:

Corollary 2.2. (Corollary 1.2 of [47]) Suppose that Φ has unit norm columns and
satisfies the RIP of order 2k with δ2k <

√
2− 1. Furthermore, suppose that x ∈ ΣK

and that we obtain measurements of the form y = Φ(x + n) where the entries of
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n are i.i.d. N (0, σ2). Then when B(y) =
{
z : ||Φ>(Φz − y)||∞ ≤ 2

√
logNσ

}
, the

solution x̂ to equation (2.4) obeys

||x̂− x||2 ≤ 4
√

2
√

1 + σ2k

1− (1 +
√

2)σ2k

√
K logNσ

with probability at least 1− 1
N

.

Next, given that the RIP property and the coherence can be put in relation,
starting from the above results one can check then how coherence value can influence
the recovery performances. However, the results obtained in this way are usually
not as significant as the ones obtained by directly exploiting coherence property by
itself [48] [49].

The following theorem showed in [49] is a consequence of coherence influence in
signal recovery

Theorem 2.4. Suppose that Φ has coherence µ and that x ∈ Σk with k <
(
1/µ +

1
)
/4. Furthermore, suppose that we obtain measurements of the form y = Φ(x+n).

Then when B(y) =
{
z : ||Az − y||2 ≤ ε

}
, the solution x̂ to (2.4) obeys

||x− x̂||2 ≤
||n||2 + ε√

1− µ(4k − 1)

As we can see this error bound is general, meaning that it also works when there
is no additive noise, e.g., ε = 0 and ||n||2 = 0, and it is the result of a worst-case
analysis.
To have more significant results let us start by an alternative yet equivalent formu-
lation for the recovery problem, in which the parameter λ is introduced. It can be
used, by adjusting it value, promote sparsity in reconstructed signal. The result is
a quadratic program that can be solved by means of convex optimization, and it is:

minimize
x̂∈RN

1
2 ||Φx̂− y||22 + λ||x̂||1 (2.6)

Thus, using this formulation as starting point, as proved in [50] we have

Theorem 2.5. Suppose that Φ has coherence µ and that x ∈ Σk with k < 1/(3µ).
Furthermore, suppose that we obtain measurements of the form y = Φ(x +n) where
the entries of n are i.i.d N (0, σ2). Set

λ =
√

8σ2(1 + α) log (N − k)
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for some fairly small value α > 0. Then with probability exceeding(
1− 1

(N − k)α
)(

1− exp (−k/7)
)

the solution x̂ to (2.6) is unique, supp(x̂) ⊂ supp(x), and

||x̂− x||22 ≤
(√

3 + 3
√

2(1 + α) log (N − k)
)2
kσ2

In this last theorem we can see that the probability exponentially tends to 1
since both multiplicative terms tends to 1 as the problem size increases. This means
that for large N and N − k, with high probability, the recovery error ||x̂ − x||22 is,
up to a multiplicative constant, proportional to kσ2 log (N − k).

Heretofore we described the basic assumptions, properties and recovery tech-
niques owed to CS. Leveraging this, in the following Chapters we will introduce few
novel methods to tackle CS problems.
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Chapter 3

Compressive estimation of AR
parameters

We leverage the concepts of AR modeling for compressive signal processing we pre-
viously discussed to introduce, in this chapter, techniques which can be used to
estimate these parameters in the compressed domain. Among the different classes
of the AR coefficients estimators available in literature, we start by focusing on the
LS estimator. This choice, along with an ad-hoc sensing matrix design, allow us to
explicitly estimate the regression coefficients.

3.1 Autoregressive modeling
As previously discussed, if we assume that the signal to be sensed can be approxi-
mated by a certain class of parametric signals, then estimating its parameters has
important implications in terms of inferring signal characteristics, and using these
to improve signal recovery. Hence, we seek a model that allows us to describe a sig-
nal by means of few parameters that can be efficiently estimated in the compressed
domain and that are compact enough to be transmitted at low communication cost.
We propose to employ autoregressive (AR) modeling to address this task. The rea-
son is twofold: first, it is a general model able to describe signals’ characteristics
and second, it gives an extremely compact representation.

More in detail, an AR process of order p is a parametric model able to describe
the time-varying nature of a process in which the output values linearly depend on
their previous values. The strength of such model is the ability to describe a signal
by means of few parameters. In fact, this modeling approach has been used in a va-
riety of applications including, among others, linear predictive coding of speech [51],
spectral estimation and biomedical signal processing [52]. It has also been success-
fully applied to model natural signals such as audio and images [53] [54]. Hence,
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being able to extract this information given the compressed measurements opens
the door to many interesting applications such as covariance estimation, adaptive
CS and compressive classification.

Let us start with a more formal description of the model which will be used
through the rest of the thesis. An AR process of order p is described by:

xt =
p∑
i=1

xt−iai + εt, (3.1)

where ε is called driving process and a is the vector of the regression coefficients. In
other words, it can be seen as a filtering operation over a process ε with an all-pole
filter with coefficients given by a = [a1 . . . ai . . . ap]>. Given an AR(p) process
x ∈ RN , we define x+ as a subset of x composed by its samples with index from
(p+1) to N . Let us also define the matrix X ∈ R(N−p)×p constructed in the following
way

X =


xp xp−1 . . . x1

xp+1 xp . . . x2
... . . . . . .

...
xN−1 xN−2 . . . xN−p

 , (3.2)

which allows us to rewrite (3.1) as

x+ = Xa. (3.3)

A concept of great importance is the stationarity of the process; a process is said
to be wide sense stationary (WSS) if the first and second moments of the process do
not vary with respect to time. This ensures the process to be stable as the regression
evolves during time. Given the AR process, it is WSS if all the poles of the following
lie inside the unitary circle

A(z) = 1 + z−1a1 + · · ·+ z−pap.

In the particular case of p = 1, it turns out that the stationarity of the process can
be ensured by imposing |a1| < 1.

Another interesting feature of the AR modeling is that the parameters can be
used to estimate the spectrum of a signal leading to the well-known parametric
spectral estimation. In fact, it is known [55] that the Power Spectral Density (PSD)
estimate of a signal Ry is related to the coefficients of the regression according to

Ry =
∣∣∣∣∣ 1
A(ω)

∣∣∣∣∣
2

,
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where A(ω) = 1 + a1e
−iω + · · · + ape−ipω. This gives us a hint of the usefulness of

this modeling approach which, if the AR parameters are compressively estimated,
allows us to perform parametric compressive spectral estimation.

Heretofore we described a model which can be used to characterize a signal and
estimated its main characteristic, along with its properties. The next step, which
we discuss in the following Chapter is how to estimate these parameters directly in
the compressed domain. In particular, we introduce two different compressive AR
estimators thanks which we develop key applications that employ the proposed com-
pressive AR estimation framework to solve important practical estimation problems
described in Chapters 4,5 and 6. In the next Section we start our discussion on the
compressive estimation of the autoregressive parameters.

3.2 Compressed LS estimator
Let us start by reviewing the LS estimator in the uncompressed domain. Starting
from the matrix vector representation of the AR process regression given by

x+ = Xa, (3.4)

it is straightforward to write the LS estimator of a as the solution to the following
minimization problem

arg min
â
‖x+ −Xâ‖2

2 (3.5)

or, more concisely, as â = X†x+ where “†” denotes the pseudo-inverse.
In order to have an analogous LS estimator for the compressed domain we need

to employ a sensing matrix able to preserve the structure of the regression. As we
can see from (3.2), the LS estimator for a process of order p, needs p + 1 shifted
versions of the input signal. Hence, the idea is to build a sensing matrix from which,
given the output measurements, it is possible to extract the compressed p+1 shifted
versions of x. This means that the sensing matrix should be made of p+1 sub-blocks
Φ′ where each of them senses a shifted version of the unknown signal x.

Then, if we use (3.4), multiplying both sides by the sensing block Φ′ we obtain

y+ = Ya, (3.6)

where y+ = Φ′x+ and Y = Φ′X. Hence, if the sensing matrix is made up of shifted
sensing blocks it is possible to extract the quantities y+ and Y directly from the
measurement vector y.

More formally, let us assume that the main building block Φ′ ∈ Rµ×(N−p) with
µ = M/ (p+ 1), has entries distributed according to φ′ij ∼ N (0, 1

M
). Then, the
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Figure 3.1: Circulant blocks structure of Φ.

proposed sensing matrix Φ ∈ RM×N is made of p + 1 circulant blocks of Φ′ as
depicted in Fig. 3.1.

In order to obtain the measurements of shifted versions of the original signal
(which are needed to obtain y+ and Y), we exploit the structure of the sensing
matrix in Fig. 3.1. As can be seen, each sub-block acquires a shifted version of the
input signal through the sub-sensing matrix Φ′. Hence we can write y1+µ(k−1)→kµ =
Φ′xk→(N−p+k−1), which means that the vector y is made of p+ 1 blocks of length µ
which are the measurements corresponding to different shifts of x.

In particular, using (3.6) we define the compressed LS estimator for AR(p) co-
efficients, as:

arg min
â
‖y+ −Yâ‖, (3.7)

where the chosen M must be an integer multiple of p+ 1.
It is worth noting that the proposed estimator, working directly in the reduced

space of the measurements domain, is computationally less demanding with respect
to the corresponding LS estimator (3.5) in the uncompressed domain. The complex-
ity is due to the computation of the pseudo-inverse of X (Y) in the uncompressed
(compressed) domain. When considering the uncompressed case, it strictly depends
on the value of p and the length of signal N according to O(p2(N − p)), where the
most influential term is N because the order of the process is typically small. On
the other hand, in the compressed domain the required computational power for the
proposed estimator drastically reduces to O(p2µ) with µ� (N − p).

Sensing matrix validation
We now numerically validate the proposed sensing matrix comparing its recovery
performance to that of the most used ones in literature for which theoretical results
on the recovery performance exists [56] [57]. In particular, we fix a sparsity level
s = 100 and randomly pick the support of the non-zero components. Then we
compare the recovery performance of different sensing matrices matrices by running
1000 different Monte Carlo runs over different M values by compressing sparse
signals and then recovering them using LASSO. The recovery error is defined as
‖x − x̂‖2/‖x‖2 where x̂ is the recovered signal. The results (Fig. 3.2) show that
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recovery error of the proposed matrix is slightly higher than the Gaussian sensing
matrix and lower than that of the Bernoulli one. The recovery performance of the
proposed matrix is hence comparable to that of a circulant matrix, which is a very
popular choice, and has a negligible performance loss with respect to a Gaussian
matrix. Similar results can be found for other values of M , N , s and p and are
omitted for brevity.
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Figure 3.2: Comparison of recovery ability of different sensing matrices using a signal of
length N = 1000, sparsity s = 100 and p = 9.

3.3 Compressive Bayesian AR(1) estimation
As previously discussed, the coefficients of an AR process can be estimated in an
efficient way in the compressed domain and can be used to perform compressive
covariance estimation. Among other things, they can be used to estimate the com-
pressibility of a signal.

While the compressive AR(p) estimator we introduced in the previous section
achieves excellent performance and it is more general since can be applied to autore-
gressive processes of any order p, it can be further improved and made more robust
by employing Bayesian techniques. In fact, if we consider autoregressive processes of
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the first order p = 1, it is possible to explicitly obtain a compressive Bayesian esti-
mator as described below. It is also worth noting that when higher orders p > 1 are
considered, the stationarity constrains we impose on the autoregressive coefficient
can not be exploited due to its recursive dependency with the reflection coefficients.
Thus, it is not possible to obtain an explicit compressive Bayesian AR(p) estima-
tor without employing computationally expensive algorithms such as Markov chain
Monte Carlo like techniques. Hence, in the following we focus on the particular
case when the order reduces p = 1: the AR coefficient turns out to be the cor-
relation coefficient among the samples of the signal. This information is closely
related to the complexity of a signal and its inference can improve the knowledge
of the uncompressed signal. In the following we introduce a novel Bayesian estima-
tor for compressed AR(1) processes which leads to better performance for highly
compressed signals.

3.3.1 Modeling
In order to improve the readability, let us denote with ρ the AR(1) coefficient.
According to the CS scheme we previously introduced, the acquired measurements
lead to the following observation model

Φ′x+ = Φ′(x−ρ+ ε)
y+ = y−ρ+ ζ,

where x− = x1→(N−p).
The set of parameters Θ = {ρ, σ2

ε} we wish to estimate includes the AR(1)
coefficient and the variance of the Gaussian process of the AR model. Noting that
ζ follows a Gaussian distribution, we can write the probability of the observation
model as:

p(y+|y−,Θ) = N (y+|y−ρ,Φσ2
εIΦᵀ).

Let us discuss the choice of the prior distributions for the set of parameters Θ. When
choosing the probability distribution for ρ it is worth noting that, in order to ensure
stability, the necessary condition for the stationarity of the process [58] requires
the values of ρ to be bounded in the interval (−1,1). Among the class of bounded
probability distributions we choose the Beta distribution since it allows us to shape
the signal distribution in a flexible way, which includes the non informative uniform
distribution as a special case. The Beta distribution is a bounded distribution
defined on the interval [0,1]. Hence, in order to bound the Beta distribution in the
interval of interest [−1,1], the probability of ρ can be defined as:

p(ρ) = Beta(0.5 + 0.5ρ|ρα, ρβ),
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where ρα, ρβ are hyperparameters controlling the shape of the distribution. Since
we expect σ2

ε to be positive valued, we put on this parameter an inverse gamma
distribution which is commonly used for variance modeling and, being conjugate
prior with the Gaussian distribution, allows easier calculations. The probability of
σ2

ε is hence defined as:
p(σ2

ε) = IG
(
σ2

ε

∣∣∣a, b) ,
where a and b are two hyperparameters. According to the Bayesian modeling em-
ployed we have four hyperparamters Θh = {ρα, ρβ, a, b} which, since no assumptions
can be made, are manually set. This choice allows more flexibility, e.g., given that
ρα, ρβ control the distribution on ρ, in image processing problems we may want to
peak the distribution around 1 since an image patch has higher probability to be a
smooth region than a high frequency one. Moreover, when ρα = ρβ = 1 this will
result in a flat (uninformative) prior on ρ.

3.3.2 Inference
In order to obtain better results by taking into account the uncertainties of the
estimates, we employ Bayesian inference. The goal is to obtain the probability
distributions of the parameters in Θ instead of point-wise estimates like maximum
likelihood or maximum-a-posteriori.

If we consider the log joint distribution log p(y+, y−,Θ), the presence of the
Beta distribution which is not conjugate prior to the Gaussian distribution does not
allow a direct Bayesian inference. For this reason we employ the variational Bayesian
framework [59]. This approach, in particular using the Mean-Field approximation
[59], seeks a set of disjoint set of distributions that approximate the full posterior
which minimizes the Kullback-Leiber (KL) divergence. In particular we have:

p(Θ|y−,y+) ' q(Θ) = q(ρ)q(σ2
ε).

The best function q(•) in terms of KL-divergence is obtained as the expectation
q(•) = 〈p(Θ)〉Θ\•. Thus, given the log-joint distribution, we can write:

log q(ρ) = 〈log p(y+,y−,Θ)〉Θ\ρ =

= c0 −
1

2σ2
ε

(y+ − y−ρ)ᵀ(ΦΦᵀ)−1(y+ − y−ρ)+

+ (ρα − 1) log(1 + ρ)︸ ︷︷ ︸
e

+ (ρβ − 1) log(1− ρ)︸ ︷︷ ︸
g

,

where c0 is a constant term in ρ. Since this distribution does not allow an easy
form, we propose to use an approximation for the terms e and g which is very strict
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around 0. In particular we have:

e = (ρα − 1) log(1 + ρ) ≤ (ρα − 1)ρ

g = (ρβ − 1) log(1− ρ) ≤ (ρβ − 1)(−ρ− ρ2

2 ).

Using such approximations, the probability distribution of ρ becomes:

q(ρ) ∼ N
(
ρ
∣∣∣∣−m2n, 1

2n

)
(3.8)

having defined

m = −1
2(ρβ − 1)− 1

2σ2
ε

y−ᵀ(ΦΦᵀ)−1y−

n = (ρα − 1)− (ρβ − 1) + 1
σ2

ε

y−ᵀ(ΦΦᵀ)−1y+.
(3.9)

The same process applies for the parameter σ2
ε . It can be shown that it is

distributed as an inverse gamma defined by:

q(σ2
ε) ∼ IG

(
σ2

ε

∣∣∣ã, b̃)
where

ã = a+ M

2
b̃ = b+ 1

2
(
y+ − y−ρ

)ᵀ(
ΦΦᵀ

)−1(
y+ − y−ρ

)
.

Then, as can be seen from (3.9), in order to compute q(ρ) we only need the expec-
tation of the inverse of σ2

ε which can be computed as:〈
1
σ2

ε

〉
= ã

b̃
. (3.10)

To conclude, the whole inference process of the AR(1) parameters is summarized
in Algorithm 1. It is worth noting that in order to define a criterion for evaluating the
convergence, a good metric is the difference in the likelihood p (y+|Θ,y−) between
two subsequent iterations.

3.3.3 Comparison
This algorithm, despite being specific for the AR(1) model, is able to improve the
estimation performance when high compression ratios are employed. To better show
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Algorithm 1 Bayesian AR(1) parameter estimation algorithm
INPUT: y+,y−, ρα, ρβ, a, b
INITIALIZE: ρ̂ = 1, ˆ(1/σ2

ε) = 1
1: while not reached convergence do
2: Compute ρ̂ = 〈q(ρ)〉 according to (3.8) and (3.9)
3: Compute ρ̂2 = Var(q(ρ)) according to (3.8) and (3.9)
4: Compute 1̂

σ2
ε

=
〈

1
q(σ2

ε )

〉
according to (3.10)

5: end while
OUTPUT: ρ̂, σ̂2

ε = 〈q(σ2
ε)〉
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this, in Figure 3.3 we can see a comparison of the two algorithms. For the exper-
iment, a stationary AR(1) process was generated with ρ ∈ (−1,1) and the signals
were compressed using the sensing matrix design introduced in this chapter. For
both algorithms we computed the NMSE defined as NMSE =

(
ρ̂−ρtrue
ρtrue

)2
. The re-

sults were averaged over 1000 experiments. It is worth noting that, according to the
described setup, the convergence was usually reached in no more than 5 iterations.
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Figure 3.3: NMSE comparison of LS method in (3.7) and the Bayesian method described
in Algorithm 1. In this experiment ρ = 0.8, N = 100. Only high compression ratios are
shown since the two methods tends to converge as M/N approaches 1.

We can see that, for extremely compressed signals whose compression ratio M/N
ranges between 0.01 and 0.3 the Bayesian AR(1) specific algorithm achieves signif-
icantly lower estimation errors. We rely on this important feature to design an
adaptive compressive imaging scheme that is explained more in detail in the next
section.

3.4 Experimental results
In this section we evaluate the performance of the proposed technique with few
example applications. In particular we focus on the compressive LS AR(p) estimator,
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since an application suited for the Bayesian AR(1) estimator is described in detail
in the following Chapter.

3.4.1 Sparsely-driven AR recovery
Here we consider a process obtained by filtering a sparse driving process. This model
is of interest in speech processing, since the speech signal can be modeled as an AR
process where the residual (driving process of the model) is sparse as in Multi-Pulse
excitation coding [51].

To tackle this problem we need to introduce a basis able to represent our process
sparsely. Since, by assumption, the driving noise of AR(p) process is sparse, our
sparsifying basis will be that filtering matrix which reverses the AR(p) filtering
effect.

Given the AR(p) process x and the sparse driving process u, we can write u =
Ax, where A is the matrix performing the inverse filtering operation on x, i.e, the
lower-triangular Toeplitz matrix created from the length-N vector [1 a> 0 . . . 0].
Then, the basis we are looking for is H , A−1.

When considering the compressed measurements we can equivalently write y =
Φx = ΦHu, which leads to the following LASSO problem for the AR(p) recovery:

arg min
u
‖y−ΦH̃u‖2 + λ‖u‖1, (3.11)

where H̃ is the sparsifying basis constructed from the estimate of a in the CS domain.
It is worth noting that using the proposed estimator along with the LASSO in (3.11)
to improve the signal recovery only requires the CS measurements and hence no side
informations or training data must be known.

Hence, in order to validate the technique we generate a sparse synthetic signal
and use LASSO in (3.11) to recover the signal (Fig. 3.4). The error metric we use for
this experiment is the same as for the sensing matrices comparison. The results are
averaged over 100 different trials. In particular, we compare the proposed method
with the recovery using the Discrete Fourier Transform (DFT) sparsifying basis,
and the one proposed in [3]. It is important to highlight that, while both the
proposed and the DFT-based recovery do not require any additional information
apart for the CS measurements, the recovery in [3] requires the a priori knowledge
of the AR coefficients of the process. The DFT-based recovery shows a very large
error, showing that the DFT basis is not good for sparsifying this class of signals.
Conversely, the other two methods show lower error, which decreases as M increases.
Moreover, the errors converge as M → N because the two methods use the same
sparsifying basis, but constructed with different AR coefficients estimates (from CS
measurements and from original signal). Finally, in Fig. 3.5 we show the recovery
of a natural signal: a vocalized tract of a speech signal. For this experiment, in
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Figure 3.4: Relative recovery error comparison of a synthetic sparse signal with N = 1000,
and sparsity s = 100. We compare the recovery proposed by Giacobello et al. in [3], a CS
recovery assuming the sparsity to be in the frequency domain and the proposed method
with regression coefficients estimated from the measurements.

order to run a fair comparison, we compare the techniques which require only the
CS measurements: the DFT-based recovery and the proposed technique. As we can
see, with a small number of measurements, the signal recovered using the proposed
method approximates the original one very well. In contrast, the recovery assuming
DFT-based sparsity is not able to approximate the original signal accurately. In
fact, the MSE of the proposed recovery (shown in Fig. 3.5) is −30.46 dB conversely
to the DFT-based which is −23.4 dB.

3.4.2 Compressive spectral estimation
Here we show an example of spectral estimation performed in the compressed domain
using the proposed LS estimator. Since, as shown in Section 3.1, there is a direct
relationship between the AR coefficients and the PSD of the signal, the accuracy of
the estimated parameters can also be seen from the PSD perspective. In Fig. 3.6(b)
we show the comparison between the spectrum of a signal made of three sinusoidal
components estimated using the FFT for the original signal and the compressive
spectral estimation for CS measurements. As can be seen, the spectrum generated
with the estimated AR coefficients accurately approximates the spectrum spikes of
the original signal.
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Figure 3.5: Recovery comparison of a vocalized tract of speech signal of length N =
600 with M = 200 and p = 10. We compare the original signal with the recovered
versions made by using the DFT as a sparsifying basis, and the LASSO with the estimated
regression coefficients.
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Figure 3.6: Performance evaluation of the proposed estimator. In (a) we show the perfor-
mance loss deriving from using compressed measurements instead of uncompressed data, in
(b) we show an example of compressive spectral estimation via estimated AR coefficients.
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Chapter 4

Adaptive compressive imaging

4.1 Introduction

In this Chapter we propose a novel algorithm for adaptive compressive imaging
based on Bayesian AR(1) inference. Ideally we want to use more measurements
for the regions of the image which are more complex and less measurements for
spatially smooth regions since we expect spatially smooth regions to be sparser
than the complex counterparts. Additionally, since by CS theory we introduced in
Chapter 2 it is known that the number of measurements required to have a good
reconstruction depends on the sparsity of the signal, we want to correctly allocate
the measurements in a content-adaptive fashion. Lastly, it is worth noting that we
want this procedure to be fully compressive meaning that all the operations but the
recovery must be performed in the compressed domain.

To motivate our algorithm, let us start by considering two blocks b1,b2 ∈ RB×B

extracted from an image I ∈ RNB×NB.
In Figure 4.1 two common kinds of block characteristics are depicted: low (b1)

and high (b2) spatial frequency blocks. Natural images typically involve large
smooth regions [60] hence the number of low frequency blocks is significantly higher
than the high frequency ones. Therefore, a compressive imaging scheme taking the
same number of measurements on all blocks is going to provide significantly sub-
optimal performance, since smooth blocks are going to be over represented (b̂1),
and high-frequency blocks under represented (b̂2) in the compressed representation.
This may also lead to significant blocky artifacts in the reconstructed image. This
can be seen in the recovered blocks b̂1 and b̂2 in Fig. 4.1 where the block with high
spatial frequencies has a noticeably less visually satisfying recovery. The algorithm
we are going to introduce aims to adapt the sensing process by selecting a suitable
number of measurements for each block depending on its statistics. Let us start
by considering the block b1 which shows low spatial frequencies. The correlation
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Figure 4.1: Blocks in natural images exhibit high (b1) and low (b2) spatial frequencies.
b̂1 and b̂2 are the recovered blocks with M/N = 0.1

coefficient ρ computed using an AR(1) LS estimator (as described in (3.5)) using
vec(b1) is high, as one may expect, i.e., ρ = 0.99 ' 1. The same coefficient, esti-
mated from compressed measurements using Algorithm 1 (compression ratio of 0.3,
with B = 16) is ρ̂ = 0.95.

On the other hand, a block which contains high spatial frequencies b2 will result
in lower correlation coefficient (ρ = 0.6 and ρ̂ = 0.55 respectively computed from
uncompressed and compressed block).

This means that by working in the compressed domain, hence without the need of
recovering the signal, we can adapt the number of needed measurements depending
on the complexity of each block. We remark that, in this specific application, since
we are only interested in measuring the compressibility of each block of the image,
an AR(1) model is perfectly adequate to the task at hand.
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4.1.1 Adapting the compression ratio
In order to correlate the compression ratio r = M/N and the AR(1) coefficient ρ
we must define a function that will result in high compression ratio when ρ ' 1,
and will reduce it as the correlation coefficient goes toward zero. In this Chapter
we propose to use a function fc(ρ) which has been empirically shown to be effective.
The function is defined as:

fc(ρ) = b(Mmax −Mmin) |1− ρ|γ +Mminc, (4.1)

where Mmax (Mmin) corresponds to the maximum (minimum) value of M which is
desired for the problem of interest and γ is a parameter which can be used to tune
the recovery quality. For values of γ higher than 0.5, as the signal becomes less
complex (ρ approaches 1) the number of measurements slowly decreases. On the
other hand, when γ is smaller than 0.5, as long as ρ is not very close 1 the number
of required measurements does not decrease steeply. This behavior is highlighted
in our experiments where we show that different γ lead to different reconstruction
qualities.

4.1.2 Adaptive compressive imaging scheme
We now put it all together and introduce a scheme in which the number of measure-
ments is adapted to the complexity of signal itself. The scheme we consider involves
a sensor and a reconstruction unit. This approach is very general and allows us to
include many different subproblems as special cases. In fact, this scheme can be
employed for any kind of signal, although in this work we consider its application to
block-based compressive imaging. The basic concept is that the sensor first acquires
a small batch of measurements. From those measurements, using the proposed es-
timator the actual number of measurements needed to achieve the desired quality
is calculated, and more measurements are acquired so as to reach this number. It
should be noted that the estimation algorithm can run directly on the sensor; alter-
natively, one could envisage that the first batch is sent to the RU, which runs the
estimation and then requests from the sensor the extra measurements needed.

Though not considered in this work, we could equivalently employ this scheme in
a compressive imaging system [61] in which measurements are acquired at subsequent
time intervals, instead of block by block.

We assume the sensor acquires the image by means of CS which is performed
separately on each block bi of size B × B which the image is composed of. At
first, each block bi ∀i ≤ nB is sensed using the minimum number of measurements
Mmin, which is typically not sufficient for a visually satisfactory reconstruction.
From this batch of measurements, the complexity can be efficiently estimated using
Algorithm 1. At this point, the sensor is aware of the complexity of each block since
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it has access to ρ̂i ∀i ≤ nB. The number of needed measurements MR to achieve
a satisfactory recovery is then computed using (4.1) for each block and the missing
Mi = MR−Mmin measurements y?i ∈ RMi×1 ∀i ≤ nB are requested from the sensor.
The last step consist in the recovery of each block. To solve the problem we employ
the BCS-SPL-DDWT technique introduced in [1] which performs block CS image
recovery and showed superior recovery capabilities. In order to suit our problem,
this algorithm has been adapted by substituting fixed sensing matrices with sensing
matrices which are different in size for each block. More in detail the adaptive
sensing problem defined at each block bi becomes[

y?i
yi

]
=
[
Φ?

Φi

]
vec(bi),

where y?i and Φ? are the measurements and the sensing matrix obtained during
the first coarse compression at a fixed compression ratio given Mmin; yi and Φi are
instead the measurements and the sensing matrix resulting after the estimation of
the correlation coefficient ρi.

Block size

The choice of the block size is crucial to achieve good performance. In fact, if
the blocks are not sufficiently small the approximation of the block with an AR(1)
process will not hold since the block is more likely to contain subregions which
exhibit different types of correlations among the pixels. More formally, we can state
that we seek a dimension B for the blocks such that the stationarity assumption on
the blocks is satisfied. We ran experiments over different images and we found that
one of most common choices for block size i.e., B = 16 is the largest block size that
fits the stationarity requirements. Hence, this is the block size we have used for the
experiments presented in the next section.

4.2 Results
In this section we show the performance of the proposed adaptive compressive imag-
ing scheme. The parameters of Algorithm 1 denoted by Θh were set according the
prior knowledge we have on the blocks statistics. We chose ρα = 0.8 and ρβ = 0.8
because, as previously discussed, this values lead to a distribution on the parameter
ρ highly peaked around 1 since we expect most of the blocks to be smooth. The
Bayesian parameters were set as a = 2, b = 1. These values were experimentally
found to yield better recovery results. Then we set Mmin = 22 to be large enough
to allow good complexity estimation from the first batch of measurements, but still
not sufficient image recovery, and Mmax = 250 to be large but still having M/N < 1.
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Given the image Cameraman, we start by showing in Fig. 4.2 the actual number
of measurements chosen by the algorithm for each block by taking into account three
different values of γ. Higher values of γ favor more complex blocks by allocating
most of the measurements to this class of blocks. As the value of γ decreases, more
measurements are added to blocks which show medium complexity. The result is an
increased compression ratio for high γ values and a reduced compression for smaller
values.

Next, we assess the end-to-end performance of the adaptive compressive imaging
system by evaluating the PSNR and SSIM [62] values of recovered images compared
with non-adaptive BCS-SPL-DDWT algorithm. For this experiment the parameters
are set as above; in both the adaptive and non-adaptive case, the same total number
of measurements is used; in the non adaptive case, the measurements are equally
split among all blocks. The results of these experiments are shown in Table 4.1. We
can see that in the vast majority of the cases considered, the ability to adapt the
number of measurements according to the complexity of the block leads to superior
recovery performance. More in detail, the proposed algorithm reached PSNR gains
ranging from 0.4dB up to more than 6dB. We also considered a very sparse image
containing well defined edges and smooth regions i.e., the Shepp-Logan phantom
image. The results are extremely good for the proposed adaptive algorithm which is
able to efficiently allocate the measurements only where needed. For this particular
case the gain reached up to 4 dB. Very high gains are also achieved when considering
depth-map images (shown in Fig. 4.3) where allocating more measurements mainly
in high complexity regions is crucial.

In Fig. 4.4 we show a crop of the image Lena acquired with the adaptive and
non-adaptive algorithms. The detail shows a high frequency region which is good
tesbed for evaluating the visual quality of the recovered images. As can be seen a
higher visual quality is achieved when the adaptive algorithm is used. The details
are better preserved due to the higher number of measurements allocated in this
region.
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(a) Original image (b) γ = 0.2 (c) γ = 0.5

(d) γ = 0.8

Figure 4.2: Number of required measurements for each block for different values of the
parameter γ. In (b)—(d) gray intensity indicates the number of measurements needed for
the corresponding block. Black corresponds to Mmin and white to Mmax.

(a) Teddy (b) Ballet

Figure 4.3: Depth-map images taken from [4] and [5].
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4 – Adaptive compressive imaging

(a) Original image (b) Proposed adaptive system

(c) Non-adaptive [1]

Figure 4.4: Detail of Lena; (a) original image; (b) image recovered using the proposed
algorithm; (c) image obtained using [1].
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4 – Adaptive compressive imaging

Table 4.1: Comparison between the proposed adaptive compressive imaging system and
BCS-SPL-DDWT [1].

γ PSNR (dB) SSIM M/N
proposed [1] proposed [1]

Lena
0.2 37.1390 36.7500 1.0000 1.0000 0.5360
0.5 30.9200 30.4680 1.0000 1.0000 0.1930
0.8 28.1990 27.3360 1.0000 0.9970 0.1110

Cameraman
0.2 34.2470 33.4370 1.0000 1.0000 0.4760
0.5 29.0850 28.8230 1.0000 0.9990 0.2550
0.8 25.9430 25.0910 1.0000 0.9940 0.1320

Barbara
0.2 28.4160 27.8840 1.0000 0.9980 0.4820
0.5 24.3780 23.9040 1.0000 0.9970 0.2320
0.8 22.8490 22.8590 1.0000 0.9900 0.1430

Monarch
0.2 36.5910 35.3400 1.0000 0.9980 0.4860
0.5 28.1490 27.6660 1.0000 0.9950 0.2040
0.8 25.1980 23.9850 1.0000 0.9910 0.1260

Shepp-Logan
Phantom

0.2 32.2890 31.1050 1.0000 0.9980 0.1640
0.5 31.7860 28.1710 0.9980 0.9960 0.1010
0.8 30.0290 26.2460 0.9980 0.9940 0.0830

Teddy
0.2 39.2730 33.4550 1.0000 0.9980 0.3750
0.5 29.3980 27.2180 0.9970 0.9960 0.1710
0.8 26.5270 24.9280 0.9950 0.9940 0.0990

Ballet
0.2 34.7370 30.8670 0.9990 0.9980 0.3500
0.5 30.4340 26.2080 0.9950 0.9940 0.1360
0.8 26.5790 26.1400 0.9950 0.9950 0.1010
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Chapter 5

Compressive covariance estimation

Being able to estimate the covariance matrix of a process is of paramount importance
in many signal processing operations. In fact, the statistics of the signal carried
by the covariance matrix are, in most cases, a sufficient statistic for most of the
signal processing problems. Interestingly, when this information can be directly
estimated from the compressed sensing measurements, then it can be easily included
in compressive signal processing tasks leading to improved performance.

In fact, the knowledge of the covariance matrix of a signal estimated in the
compressed domain has a lot of applications, including compressive power-spectrum
estimation [63] [64], wideband spectrum sensing [65], incoherent imaging [66] and
direction-of-arrival estimation [67] [68]. All these techniques take advantage from
compressive covariance estimation since the number of sensors needed for the signal
acquisition can be dramatically reduced. In order to estimate the covariance ma-
trix of a process in the compressed domain, the main approaches used in literature
are: maximum likelihood estimation (MLE), least squares [69] and convex optimiza-
tion [6]. However, while the second approach is not able to guarantee the positive
semidefiniteness of the covariance matrix, the former requires to have samples which
shows a good statistical significance. It is also worth noting that, in order to make
the compressive covariance estimation possible, the first two approaches require the
sensing process to be able to preserve the second order statistics of the signals which
can the be used to recover the covariance matrix. In order to provide guarantees
for the preservation of the correlation matrix structure, in [70] the authors propose
optimal sensing matrix design through the use of the sparse rulers.

Differently from the aforementioned methods, the proposed approach focuses
instead on the estimation of the parameters of a covariance matrix defined by the
structure of the AR process. This approach is computationally light, and it also
ensures the positive semidefiniteness of the covariance matrix.

41



5 – Compressive covariance estimation

5.1 Estimation
So far we have presented an efficient way to estimate the coefficients of a com-
pressed AR(p) process. In the following we discuss an important application which
arises from the aforementioned technique: the compressive estimation of a struc-
tured Toeplitz covariance matrix. This kind of matrices play an important role in
different fields such as integral equations, spline functions, mathematics, statistics,
and signal processing.

Due to the nature of AR(p) processes, the associated covariance matrix has a
Toeplitz structure. Before derivating the compressed covariance matrix estimator,
let us introduce some notation: the symbol tril(•) denotes the operator which ex-
tracts the lower triangular part of a matrix, while we will use toeplitz(a) to denote
a matrix built as a Toeplitz matrix constructed from vector a .

Let us start with a simple model of a set of observations of AR(p) processes:

AX = V,

where X ∈ RN×O are the column-wise AR processes, V ∈ RN×O are the column-wise
driving noise vectors and A is the regression matrix (common to all the observation
vectors) which only depends on the coefficients vector a ∈ R1×p. In particular, we
have A = tril (toeplitz(a?)), having defined a? = [1 − a 0 . . . 0]ᵀ ∈ R1×N .

We recall that, by definition, the driving noise processes V are distributed ac-
cording to N (0, Iσ2

v), therefore:

µX = 〈X〉 =
〈
A−1V

〉
= 0

¯
.

Then, we can write the covariance matrix of the AR(p) process as

Σ = 〈(X− µx)(X− µx)ᵀ〉 = 〈XXᵀ〉 =
= A−1 〈VVᵀ〉A−1ᵀ = A−1σ2

VI A−1ᵀ.
(5.1)

Therefore, given the coefficients a of the process and the variance of the driving
noise σ2

V , the covariance matrix of the process is uniquely defined by these two
parameters.

Given the compressed measurements y = ΦX, we can use (3.7) to estimate a,
without any prior knowledge of σ2

V. In order to estimate σ2
V let us write

〈yᵀy〉 = 〈XᵀΦᵀΦX〉 =
〈
VᵀA−1ᵀΦᵀΦA−1V

〉
=

= tr(A−1ᵀΦᵀΦA−1Iσ2
V)+

+ 〈V〉ᵀ A−1ᵀΦᵀΦA−1 〈V〉 ,
= σ2

Vtr(A−1ᵀΦᵀΦA−1).
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5 – Compressive covariance estimation

Thus, we can estimate σ2
V as

σ̂2
v = 〈yᵀy〉

tr(A−1ᵀΦᵀΦA−1) , (5.2)

using the sample mean estimator to compute the term 〈yᵀy〉.
To summarize, the covariance Σ of a compressed AR(p) process can be estimated

according to (5.1) exploiting the coefficients vector a computed with (3.7) and the
driving noise variance σ2

v computed with (5.2).

5.2 Results
In the following we show the performance of the proposed technique for compressive
covariance estimation and compare it with the algorithm proposed by Eldar et al.
in [6] for structured Toeplitz covariance matrices. For the experiments, we generated
synthetic AR processes of order p = 4, size N = 100 and considered O = 200 obser-
vations. Then, we compressed the resulting X ∈ RN×O with different M/N ratios.
The results were then averaged by running 1000 different experiments employing
random sensing matrices.

To assess the performance we employ the normalized mean squared error (NMSE)
defined as ‖Σ−Σ̂‖2

F

‖Σ‖2
F

where Σ and Σ̂ are the true and the estimated covariance matrices
respectively. As we can see from Fig. 5.1, at all undersampling rates the proposed
algorithm shows lower NMSE than [6]. We also analyze the effects of higher orders
of the regression and model mismatch. In Fig. 5.2 we show the NMSE of both
techniques when the order of the process is p = 10. We considered this value since
this is typically the largest order considered for natural signals. The experiment
shows that the proposed algorithm is able to achieve lower NMSE compared to [6]
and the results are comparable with those obtained with a smaller order.

Next, we analyze the mismatch scenario. Typically when the order of the process
p is unknown, a good practice is to use an order slightly larger than the guessed
one. Therefore we show an experiment in which we purposely used an increased
order for the proposed AR(p) compressive covariance estimation algorithm. As in
the previous experiments, the true order of the process is p = 4 while the augmented
one is p+ 3. As can be seen in Fig. 5.3 the proposed methods deals well with model
mismatch and achieves results similar to those obtained using the correct value of
p.
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Figure 5.1: NMSE on compressive covariance estimation computed for the proposed tech-
nique and [6] evaluated at different compression ratios.
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Figure 5.2: NMSE for the proposed technique and [6] techniques with p = 10.
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Figure 5.3: NMSE for the proposed technique and [6] techniques with a mismatched model
order p+ 3.
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Chapter 6

Compressive AR classification

Heretofore we have discussed signal processing techniques and applications which
take advantage (in terms of computational cost or improved accuracy) of being per-
formed in the compressed domain. In this chapter we discuss another important
application which directly falls in this category: compressive classification. The
compressive classification attracted quite a lot of attention and few authors ad-
dressed this problem in their works which can be divided in two main categories:
dictionary based and `2 distance based. Let us briefly discuss both categories.

The first category aims to use a dictionary whose atoms are related to the differ-
ent classes to be identified. Hence, given a new compressed vector to be classified,
after it has been recovered, ideally the largest element in the sparse representation
will reveal the correct class. This approach has been used for robust face recognition
in [71].

The second category exploits the `2 distance preservation due to the restricted
isometry property (RIP) [46]. This property, which characterizes good sensing ma-
trices used in CS, states that the `2 norm of a compressed signal is preserved up
to a multiplicative constant. Hence, if the distance between two compressed vec-
tors is preserved, distance based classification techniques can be directly applied to
the compressed measurements. This approach is used in [72] [73]. However, if the
distance between two vectors can not be directly used for classification, working
in the compressed domain will not lead to any advantages. Other works, like the
one in [74] put the focus on the compression of features extracted from the signal
itself. The problem arising with this latter kind of compressive classification is that
at some point it is necessary to have the knowledge of the original signal which is
used to extract the feature vectors. While this is possible for signal acquired using
traditional schemes and then compressed, the same can not be said for signals which
have been acquired using CS hardware.

Differently from the techniques discussed above, the method we propose esti-
mates the feature vectors used for the classification task in the compressed domain
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6 – Compressive AR classification

achieving a fully compressive classification. As feature vectors we propose to use
the coefficients of an autoregressive (AR) model of order p, which well approximate
signals having a shaped spectrum. Many of the natural signals can be approxi-
mated using an AR model, among others the ones we consider in this work are
speech signals and texture patches. In order to estimate the AR parameters in the
compressed domain, we employ the technique described in Chapter 3 which consists
in an ad-hoc sensing matrix construction and a least squares estimator. Differ-
ently from other techniques, the specific structure of the sensing matrix allows us to
preserve the structure of the regression, which we propose to use for classification
tasks. Then, the classification can be performed with well-known techniques such
as support vector machines (SVM).

It is important to note that the proposed technique is not designed for a specific
signal class, but is rather a more general approach. Thanks to ability of the AR
processes to approximate a wide range of signals, our compressive classification
technique can be employed in many different applications.

Moreover, as experimentally shown in Chapter 3, the proposed sensing matrix
has excellent recovery capabilities thus allowing the recovery of the compressed signal
if needed.

6.1 SVM classifier
The SVM classifier is one of most well-known algorithms for machine learning. It
has been successfully applied in many different applications such as text and image
recognition. Being a learning algorithm, at first it needs to be trained in order
to learn the structure from the data itself. More formally, one wants to learn a
mapping X → Y where x ∈ X is the available data and y ∈ Y is the corresponding
class label. When data is linearly separable, one may use as classifier the function
f(x) = sign(wᵀx+b), that is check if the new data point to be classified is above or
below the separating hyperplane defined by wᵀx + b. This means that during the
training stage the goal is to find the parameters {w,b} which define the separating
hyperplane with the additional constraint of maximum margin separation between
the two classes. However, in most cases the data is not linearly separable, i.e., it
is not possible to find an hyperplane which can exactly separate the two classes of
data. To overcome this, it is useful to use kernel functions which allow to map the
data to a higher dimensional space in which it may be possible to find a separating
hyperplane. Hence, the classifier function becomes f(x) = wᵀΦ(x) + b where Φ(x)
is a kernel function which maps x ∈ Rn to Φ(x) ∈ Rm with n� m. As for the linear
classifier, finding the set of parameters {w,b} which can guarantee data separation
with the constraint of maximum margin separation can be written as a quadratic
programming problem which can be efficiently solved.
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6.2 Compressive classification with SVM
Here, we discuss the SVM classification of the compressive AR feature vectors. More
formally, we want to map the compressively estimated AR parameters a ∈ A to the
class label l ∈ L using a SVM classifier. In order obtain better results, we employ
a Gaussian radial basis function as kernel function for the SVM. This function,
apart from being one of most used kernel functions, is the one who led to better
experimental results.

We continue our discussion with a synthetic experiment: we generate 10000 AR
processes of order p = 6 and length 1000 samples which are supposed to belong to
two different classes. The first class is the one in which the first 3 elements of a
are different from zero while the remaining elements are zero. The second class has
instead the first 3 elements of a set to zero, while the others non null. It is also
worth noting that the AR coefficients a have been generated in such a way to be
wide sense stationary, i.e., the roots of the polynomial defined by

zp − a1zp−1 − · · · − ap−1z− ap = 0,

have to lie inside the unitary circle.
We investigate how SVM training and classification behave when working directly

in the compressed domain at different compression ratios. For both compressed and
uncompressed scenarios, we trained the SVM with 6000 out of a total of 10000
AR feature vectors. When considering the uncompressed classification, the AR
parameters have been estimated using the Yule-Walker method since it is fast and
achieves good results. We repeated the experiment over 100 different realizations
and we averaged the results. The results of this experiment can be seen in Fig.
6.1. When the classification is performed in the original domain, we have that the
99% of the signals is correctly classified. On the other hand, when training and
classification are performed in the compressed domain, the proposed method is still
able to achieve good classification performance. As shown in Fig. 6.1, with less
then 20% of the samples of the original signal, the compressive classification is able
to correctly identify 95% of the signals. Moreover, as the M/N ratio increases the
classification percentage in the compressed domain asymptotically tends to the one
obtained in the original domain.

Next, we discuss what happens if training and classification are not performed
in the same domain, namely compressed and original domains. This may be the
case for the datasets which have not been compressively acquired, but rather com-
pressed at a later stage and on which SVM classifiers have already been trained.
In the same Fig. 6.1, it can be seen that the proposed technique is able to achieve
the same good results and that the classification performance is almost the same
independently from where training has been done: compressed or original domain.
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Figure 6.1: Results of the classification task of synthetic signals in the original and original
domains. The black curve represents compressive classification performance using a SVM
trained on non-compressed AR feature vectors.

The same performance is achieved because of the small distance between the true
and compressively estimated AR coefficients as discussed in Chapter 3.

Hence, we can state that the compressive classification based on AR feature
vectors can be used to efficiently classify signals based on their AR feature vector.

6.3 Experimental results
In this section we test the proposed classification scheme on two kinds of natural
signals: speech and texture. Since AR models efficiently approximate the signals’
spectrum, they are well suited to be used for classifying this classes of signals which
exhibit a well defined spatial or temporal spectrum. More in detail speech signals
are commonly approximated with AR models of order p ∼ 10 . For what concerns
texture modeling, since the textures exhibit spatial frequencies with a well-defined
spectrum AR approximation can be efficiently employed. Non-compressive autore-
gressive approximation of texture patches has been addressed in [75].

49



6 – Compressive AR classification

6.3.1 Speech voiced/unvoiced frame classification
The classification of frames extracted from speech signals into voiced or unvoiced is
of paramount importance. Parametric voice compression and voice recognition are
just few of the applications which need to be aware if a given frame is voiced or
unvoiced. A frame is considered voiced if the sound is produced by the vibration of
the vocal cords at specific frequencies e.g., pronunciation of vowels as shown in Fig.
6.2(a). On the other hand, a frame is considered unvoiced if there is not a distinct
frequency, but rather a filtered signal due to the modulation of the sound by the
vocal tract e.g., pronunciation of consonants as can be seen in Fig. 6.2(b).
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Figure 6.2: Frames extracted from TIMIT dataset. (a) is a voiced frame, (b) is an unvoiced
frame.

To test the proposed compressive classification for voiced/unvoiced classification,
we used 30000 audio signals from the small TIMIT dataset [76]. We considered a
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frame length of 30ms which, considering a sampling rate of 16KHz corresponds to
frames of 480 samples each. To label the frames as voiced and unvoiced we used an
algorithm used for this purpose [77] which takes into account the zero crossing and
the signal energy to decide whether a frame is voiced or unvoiced. The order we set
for the approximating AR model is p = 6 since is the one which resulted in better
results. This order is smaller than the ones used in speech coding (typically p ∼ 10)
since it is enough to classify frames in the two classes we consider (voiced/unvoiced).

For a given dataset made of 30000 labeled frames, we used 30% of these frames
to train the SVM. We performed the training and the classification in both uncom-
pressed and compressed domain at different compression ratios. As done before, we
averaged the results over 100 different realizations.

The results of this experiment are shown in Fig. 6.3. As can be seen, the clas-
sification in the original domain reaches 80% of correctly classified signals. The
compressive classification reaches 79% of correctly classified signals with a com-
pression ratio of M/N = 0.26 and then, as the compression ratio gets closer to 1, it
surpasses the uncompressed classification reaching up to 81.3% of correctly classified
signals.
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Figure 6.3: Results of the classification task of speech signals in the original and original
domains.
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The low classification accuracy obtained both in the compressed and original
domains can be explained by noting that there is not an actual ground truth, in fact
the data has been labeled using an algorithm which is not guaranteed to correctly
label all the frames which have been used for this experiment.

However, it is worth noting that again the proposed compressive classification is
able to reach and even surpass the classification performed in the original domain.
As pointed out before, this can be explained by the fact that an actual ground truth
does not exist, but rather the labeling is obtained with a voiced/unvoiced detection
algorithm. Moreover, this could also be the result of the denoising property of CS.

6.3.2 Texture classification
The last kind of signal we consider for compressive classification is the texture class.
Being able to correctly classify textures is a task which has applications for image
recognition and segmentation e.g., determine if a patch extracted from an image
represents wood or grass.

(a) (b)

(c) (d)

Figure 6.4: Example texture patches from the CUReT database [7]. (a)-(b) belong to
class 1, (c)-(d) belong to class 28.

For this experiment we used the texture data from the CUReT database [7]
which contains 92 image patches for each of the 61 represented texture classes. We
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considered the task of classifying a patch to belong to the class 1 or 28. In Fig. 6.4,
example patches for each of the considered classes are depicted.
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Figure 6.5: Results of the classification task of texture patches in the original and original
domains.

Each patch of size 200 × 200 pixels has been further divided into smaller sub-
patches of size 100 × 100 pixels which have been vectorized according to the zig-
zag reordering to be then used for the classification task. The zig-zag re-ordering,
rather than raster scan vectorization experimentally showed to lead to superior
performance.

For the experiment 350 patches out of 1472 total patches were used for training,
the remaining patches were used as test. The choice of the patches to be put in the
training and test set has been done using a random permutation, but still keeping an
even number of patches for each of the two considered classes in both training/test
sets. The order of the AR process we employed for the computation of the feature
vectors used in this experiment is p = 3. Even though small, this is the value which
showed better classification performance.

Then, the results were averaged over 100 realizations to assure consistency in
the results.
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The classification results are shown in Fig. 6.5. As can be seen, the perfor-
mance achieved in the original domain is excellent with 100% of correctly classified
patches. When the training and classification are performed in the compressed do-
main, with as low as 14% of measurements with respect to the original signal length,
the classification performance is already higher than 99%.
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Chapter 7

Distributed covariance estimation

7.1 Introduction

In recent years, wireless sensor networks (WSN) emerged as an inexpensive way to
collect spatially distributed data such as temperature or gas concentrations. The aim
of WSN is not only that of collecting distributed data, but also that of collaborating
to accomplish a task (e.g., estimating the covariance matrix of a process) given
that each node has only a portion of the whole data required for the task to be
accomplished.

Since signal transmission among nodes in a WSN is limited due to energy con-
sumption of the radio interface, CS which allows to compress while acquiring a signal,
emerged as a viable solution to reduce the communication load in WSN. Moreover,
since the recovery of a compressed signal is computationally expensive and often is
not required (e.g., only some parameters of the signals are needed), detection and
estimation problems from CS measurements [11] are extremely suitable to be per-
formed directly at nodes. A common assumption is to model the noise affecting the
signal with additive white gaussian noise (AWGN), in which case the noise variance
is a sufficient statistic to perform signal processing operations. However, when the
noise affecting the signal is not AWGN, estimating the covariance matrix of the
noise process is fundamental to improve the detection/estimation performance in a
variety of inference techniques [78].

The problem of distributed covariance estimation, which has received a lot of at-
tention recently in the non-compressed case, is mainly addressed by the distributed
estimation of the principal eigenvectors or eigenvalues of the covariance matrix.
Moreover, a large number of techniques proposed in literature tackle this problem
using a fusion center to which the nodes send the measurements for processing,
which however, it introduces a single point of failure. Differently, the setting we
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consider in this Chapter is a fully distributed one with no fusion center and lo-
cal computations at the nodes. The distributed eigenvector problem is considered
in [79] via distributed estimation of the sample covariance matrix followed by local
eigen-decomposition. Other authors [80] propose instead algorithms able to directly
estimate the smallest (largest) eigenvectors. Ad hoc algorithms for the distributed
estimation of the largest eigenvalues have also been proposed as in [81]. Moreover,
very few papers in literature consider the distributed architecture when the covari-
ance matrix is that of a noise process having observation matrix Y , whose columns,
distributed among the nodes, contains different realizations of the process. This set-
ting is important for detection and estimation tasks because the resulting covariance
matrix captures the statistics of the process common to the nodes. This model is
considered in [82] where the authors compare the centralized estimation with two
different fully distributed approaches based on the average consensus protocol to
estimate the largest eigenvector of the covariance matrix of the process.

The drawback of such approaches is the potential increase of the exchanged
data among nodes and hence energy consumption. In particular, the aforemen-
tioned techniques requires the nodes to exchange (with all the other nodes or with
a smaller subset) signals whose length is the same as the one of the acquired signal.
In this Chapter we also consider the problem of distributed covariance estimation.
Specifically, we aim at developing estimation techniques that require a small com-
munication load to perform the distributed estimation task, thereby requiring much
less energy than existing techniques. Consequently, the proposed method differs
markedly from existing methods for two main reasons: instead of estimating the
eigenvectors of the covariance matrix we estimate the whole covariance matrix but
in a parametric fashion in order to reduce the communication load; moreover, we
estimate the covariance matrix of a noise process corrupting CS measurements in-
stead of the original signal samples. This latter difference, besides complicating the
estimation process, has interesting practical implications. In fact, once the covari-
ance has been estimated, each node can perform signal processing operations on the
compressed data, e.g., inference and detection tasks [11] exploiting the knowledge
of the noise statistics to obtain improved accuracy. In particular, in this Chapter
we propose a new distributed algorithm for the estimation of the covariance matrix
of a colored noise process affecting CS measurements using a parametric approach.
In fact, we propose to model the colored noise with an autoregressive process (AR)
of order p since this model is able to characterize the colored noise process using
only few parameters. Hence, given that we model the colored noise with only few
parameters, the approach we propose is extremely parsimonious on the communica-
tion cost among the nodes. Moreover, the noise covariance matrix estimate obtained
with the proposed algorithm can be used to improve the performance of compressive
detection and estimation tasks in non-AWGN noise. In order to show this, we derive
a compressive detector and assess its performance, showing that with the distributed
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estimation of the covariance matrix indeed improves the detection accuracy.

7.2 Preliminaries

7.2.1 Model and assumptions

The topology of the sensor network we are considering throughout this work is
represented by a graph G = (V,E). For each node of the network v ∈ V a signal is
acquired according to the model

y(v) = Φ(v)x(v) + n(v),

where x(v) ∈ Rn is a sparse or compressible signal in some domain (e.g., Fourier or
DCT) and Φ(v) ∈ Rm×n with m < n is the sensing matrix: the operator which per-
forms the dimensionality reduction. According to CS theory [10] Φ is chosen to be a
random sensing matrix whose entries are distributed according to N ∼ (0, 1

m
). Then,

Φ(v)x(v) can be approximated as white noise [83]. The vector n(v) ∈ Rm is assumed
to be a colored noise process that corrupts the linear measurements. In this work, the
colored noise is approximated with a parametric model, i.e., an autoregressive pro-
cess of a order p, denoted as AR(p). The goal of this work is to perform distributed
estimation of the covariance matrix of the noise given that each node is corrupted
by a different realization of the same noise process. Having the colored noise n ap-
proximated with an AR(p) process, we can formally define the time-varying nature
of such a process as nt =

p∑
i=1

nt−iai + wt being a = [a1 . . . ai ap]> the coefficients of
the regression and w the driving noise process. Then the covariance matrix of the
process can be written as C = A−1A−ᵀ, where (·)−ᵀ denotes the transpose of the
inverse operator, A = tril(toeplitz(u)) and u = [1 a 0 . . . 0]ᵀ ∈ Rm. In order to
estimate C we need to estimate the parameter vector a. Although many estimators
have been proposed in literature [84], our work relies on the least squares estimator
as it allows us to obtain closed form expression for the covariance estimator.

7.2.2 Unbiased least-squares estimate

For notation simplicity let us drop the superscript (v) and consider a single node in
this subsection. Given a realization n ∈ Rm of an AR(p) process and the associated
regression vector nᵀ

t = [nt−1 . . .nt−p], the t-th sample can be written as nt = nᵀ
t a+

wt, where wt ∼ N(0, σ2
v) is the t-th sample of the driving noise process vector w.
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The least-squares estimator of the regression coefficient vector a is then given by

aLS = min
a
‖n−NaLS‖2

2 where N =


nᵀ
p+1
...

nᵀ
m

 . (7.1)

By means of the bias compensation principle [85], the least-squares estimate can be
decomposed in the unbiased estimate term a and the bias term as

a = aLS + σ2
wR−1a, (7.2)

where R = ∑m
t=1 ntn>t and σ2

w = var(Φx). As we can see from (7.2), there are
two unknowns: a and σ2

w. Therefore we have developed an iterative algorithm
based on alternating the estimation of the unknowns. The distributed algorithm
we introduce in Section 7.3.1 unbiases the least-squares estimate relying on the
technique developed in [85], where the authors obtain the unbiased estimate âILS
according to Algorithm ??.

Algorithm 2 Iterative AR(p) LS estimate unbiasing

1: k2 = σ2
v

σ2
w

2: Ĵ(aLS) = σ2
w(k2 + 1 + aᵀ

LSa)
3: while not stopIter do
4: σ̂2

w(i)← Ĵ(âLS)
k2+1+âᵀ

LS âILS(i−1)
5: âILS(i)← âLS + σ̂2

w(i)R−1âILS(i− 1)
6: σ̂2

n(i)← k2σ̂2
w(i)

7: end while

7.3 Distributed covariance estimation algorithm

7.3.1 Proposed method
As introduced in section 7.2.1, the estimation of the covariance matrix can be re-
duced to the estimation of the common parameter vector a of the AR(p) process
realizations among the nodes. The idea of using a parametric representation for the
covariance matrix of the process allow us to distribute the estimation task keeping
the communication cost low. Namely, at each iteration the nodes only need to ex-
change with their neighbors a small parameter vector of length p � m. To do so,
we split the problem into sub-problems to be iteratively solved at each node, in such
a way that at the end of the iterations each node v has a consistent estimate of the
covariance matrix Ĉ across the whole network.
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Let us start by defining a global functional in which we have a term related
to the node-dependent least-squares estimation of the AR parameters â(v)

LS and a
second term, derived from (7.2), for bias removal which contains the vector variable
a that is common to all nodes. In fact, since the noise component affecting the nodes
corresponds to a different realization of the same noise process, the consensus is on
the parameters a(v)∀v ∈ V that are the local unbiased coefficients vector estimates.
Since the local least-squares estimates at each node are biased according to the
compressed measurements the node has acquired, this parameter is updated and
kept local. Hence, the functional F is defined as:

F(a,a(1)
LS , . . . ,a

(v)
LS , . . . ,a

(|V |)
LS ) = min

∑
v∈V

f (v)(a,a(v)
LS) = (7.3)

= min
∑
v∈V
‖y(v)

+ − [0 Y(v)]ā(v)‖2︸ ︷︷ ︸
least squares term

+λ ‖[(I − σ2
w

(v)R−1(v)) − I] ā(v)‖2︸ ︷︷ ︸
unbiasing term

,

given ā(v) = [a(v)
LS a]ᵀ, y(v)

+ = [y(v)
p+1 . . . y(v)

m ] and Y(v) = [y(v)ᵀ
p+1→1 . . . y(v)ᵀ

m→m−p+1]ᵀ,
where ya→b , [ya ya−1 . . . yb+1 yb]. In particular, the first term of the functional,
which only updates the least-squares component a(v)

LS of the vector ā(v), is equivalent
to (7.1) as its solution corresponds to the AR(p) least-square estimate. The second
term instead links the local least-squares estimates with the unbiased estimate a
(that is common to all nodes) thought σ2

w
(v) and R−1(v). Hence, this latter term

is defined as the least-squares solution of the bias equation (7.2). Moreover, a
regularization parameter λ is used to weight the second term. To distribute the
functional F we use the subgradient consensus method proposed in [86], where each
node v alternates between a gradient descent step towards the minimum of the
function f (v) and a consensus step. Since, as already pointed out, by nature of the
noise process all the nodes share the same unbiased coefficients, the consensus step
is performed on the coefficients a(v). Therefore, in order to perform the consensus,
each node v only needs to exchange a vector made of p parameters with its Nv

neighbors corresponding to the coefficients vector a(v). The resulting step to be
performed at each node at each iteration is then:

a(v)(i+ 1) =
|V |∑
j=1

[W]hvj(a(v)(i)− τg(v)(a(v)(i))), (7.4)

where g(v)(a(v)) = ∂f (v)(a(v)(i)), τ is the gradient descent step size and the notation
[W]h indicates that h consensus iterations are performed according to the adjacency
matrix W. However, computing the step in (7.4) requires the knowledge of σ2

w
(v)

due to its dependency on g(v). Since this variable is assumed to be unknown, it
is iteratively estimated according to step 5 of the unbiasing algorithm described in
Algorithm ??. The distributed algorithm procedure is summarized in Algorithm ??.
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Once the algorithm has reached the convergence, namely ‖â(v)(i)−â(v)(i−1)‖2 <
α given the arbitrary parameter α � 1, each node can hence locally build the
estimate of the covariance matrix Ĉ(v).

The parameter h specifies the number of the consensus iterations of the algorithm
and it is a trade-off parameter between consistency of the estimates and communi-
cation cost across the network. More formally, the communication cost (expressed
in exchanged data samples) can be written as

D = h(|V ||Nv|Rp),

where |Nv| is constant and R is the number of iterations of the algorithm. As we
experimentally show in Sec. 7.4, h = 2 is a good compromise between estimation
quality and communication cost.

Algorithm 3 Distributed parametric covariance matrix estimation
Intialize:

ā(v) ← 0
σw

2(v) ← var(y(v))
k2(v) = σ2

v

σ2
w

(v)

while not stopIter do
For each node v ∈ V
ā(v)(i+ 1)← ā(i)− τg(ā(v)(i), σ2

w
(v)(i))

σ̂w
2(v)(i+ 1)← Ĵ(ā(v)(i))

k(v)2+1+aᵀ
LS

(v)(i)a(i)(v)

a(v)(i+ 1) =
∑
v∈Nv Wa(v)(i)

ā(v)(i+ 1) = [a(v)(i+ 1) a(v)
LS(i+ 1)]ᵀ

end while
Â(v) ← tril(toeplitz([1 a(v) 0 . . . 0])), Ĉ(v) ← Â(v)−1Â(v)−ᵀ

7.3.2 Convergence
Although in this work we are not presenting a proof of convergence of the proposed
algorithm, we discuss its convergence properties by separately analyzing the two
directions in which the algorithm moves that are: the subgradient consensus step
and the variance estimation. At first, let us assume that σ̂2

w is known at each node.
Then the following theorem can be stated:

Theorem 1. Having the sequence {ā(i)(1), . . . , ā(i)(|V |)}∞i=0 generated by algorithm
2, with h ≥ (log(β)− log(4NM(β + αC)))/ log(γ) and f ∗ > −∞ we have that:

lim
i→∞

inf f(a(i)(v)) ≤ f ∗ + αNC2/2 + 3ncβ , ∀v ∈ V

60



7 – Distributed covariance estimation

Proof. This theorem comes from Th. 1 in [86], we hence need to prove that
in our case all the related assumptions are satisfied. Assumption 1 is satisfied
since we have that ‖g(v)(a)‖ ≤ C = (2‖YᵀY‖ + ‖λSᵀS‖)‖a‖ + ‖2Yᵀy+‖ with
S = [(I − σ2

w
(v)R−1(v)) − I], then if ‖a‖ ≤ ∞ we have that C ≤ ∞. Assumption 2

is satisfied for the topology we are mainly considering throughout this Chapter: the
ring topology. Lastly, Assumption 3 is satisfied since the problem we are considering
is unconstrained.

In the proposed algorithm we are assuming that σ2
w is not known at each node

and hence must be estimated. The unbiasing estimator given by the Algorithm 1 is
proven to converge in [85] to the unbiased estimate and hence σ2

w converges to σ2
w
∗.

Differently from this estimator, the proposed algorithm does not have the knowledge
of the true least squares estimate a(v)

LS. It has instead, at each step, a local estimate
of a(v)

LS given by the subgradient step which is going towards the optimum a(v)
LS
∗. As

we numerically show in the next section, the proposed algorithm shows empirical
convergence. Intuitively we can hence say that, even though the convergence is not
proved when σ2

w is not known in advance, the alternated estimation of least squares
term and the noise variance, tends to go towards the optimum of the functional
defined in (7.3).

7.4 Experimental results

7.4.1 Estimation of AR coefficients
For the purpose of numerical evaluation of the proposed algorithm, at first we con-
sider the estimation error and the consensus reached on the parameters of the AR
process in a given network after a suitable number of iterations. The considered
network is arranged in a ring topology and is given by the graph G with |V | = 10,
and |Nv| = 2. Each node acquires a signal y(v) = Φ(v)x(v) where Φ(v) are gaussian
random sensing matrices whose entries are drawn from N ∼ (0, 1

m
) and x(v) are

sinusoidal signals (sparse in frequency domain) for which different signal to noise
ratios are taken into account. The length of x(v) is n = 800, and that of y(v) is
m = 200. For the experiments, along with AR noise, we also considered pink noise.
This kind of noise, which is a non-white gaussian noise, exhibits a decreasing spec-
trum and is present in many physical, biological and economical systems. Hence,
for this experiment we considered both synthetic AR noise of order p = 3 and pink
noise which is approximated with an AR process. Since from our experiments the
pink noise is well approximated with an AR process of third order, we choose p = 3.
When considering pink noise, since the true AR coefficients are not available, the
relative error we consider is given by ‖a∗−â(v)‖

‖a∗‖ where a∗ is the estimate obtained in
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a centralized fashion. The results in Fig. 7.1 show that a relatively small number of
exchanged data samples (160000 samples) are sufficient to reach very low errors on
the estimates â(v). Along with a low estimation error, we also show that the local
estimates at each node reach consensus. More in detail, for the AR process with
SNR = −3dB, the maximum distance among the nodes reduces down to 9e−3 as
the number of iterations are bigger than 80.

Since the number of consensus iterations h is a trade-off between closer estimates
and higher communication cost, we experimentally evaluate the role of the parameter
h. We can see from Fig. 7.2 that, given a fixed error on the AR coefficients estimates
to be reached, increasing this consensus parameter leads to closer estimates but at a
higher communication cost. For the experiments we show in the following sections,
we chose h = 2 as it is a good trade-off for keeping the communication cost low
while maintaining accurate estimates across the network.
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Figure 7.1: Relative error ‖a−â(v)‖2
‖a‖2

∀v ∈ V . The vertical bars at each iteration corresponds
to the range of errors of all the nodes in the network at the given iteration.

7.4.2 Estimation of covariance matrix
Starting from the good results obtained for the AR parameters estimates, in this
section we present some results on the estimated covariance matrix in order to assess
the performance of the proposed technique. The distance metric we use to compare
the estimate is the Forstner distance [87], a widely used method for evaluating the
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Figure 7.2: Trade-off curve for different values of consensus parameter h.

distance of two positive semi-definite covariance matrices. It is defined as d(A,B) =
tr(ln2(

√
A−1B

√
A−1)), where in our setting A is C, the sample covariance matrix

of the process (averaged over 5000 realizations), and B is the local estimate of the
covariance Ĉ(v). As shown in Fig. 7.3, the distance between the matrices C and
Ĉ(v) decreases as the proposed algorithm iterates, moreover the local distances (i.e.,
computed using the nodes local estimates) tend to converge. Then, we compare
our technique with the one proposed in [82] for the estimation of the eigenvector
associated with the largest eigenvalue of the covariance matrix in a distributed
setting. More in detail, among the techniques the authors propose, we use the
technique adapt then combine that, according to their experiments, leads to better
results. The setting we use for the comparison is the same as described above, and
the number of iterations for the compared algorithm is fixed to 200. The metric used
in this experiment is the angle between the principal axes of the true and estimated
covariance matrices.

In Table 7.1 we summarize the results of the comparison. As can be seen, the
proposed technique leads to lower angles between the principal axes while keeping
the communication cost extremely low. Moreover, the proposed technique estimates
the whole covariance matrix of the noise process instead of just the principal eigen-
vector and hence it allows a wider range of applications.

7.4.3 Compressive detection in distributed setting
The proposed algorithm allows us to estimate in a distributed fashion the covariance
matrix of a non-white noise process keeping the communication cost very low. Hence,
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Figure 7.3: Forstner distance between Ĉv and C computed for each estimate Ĉ(v)∀v ∈ V.
This figure only shows the Forstner distance up to 70 iterations since in the remaining
iterations the distance does not change having reached convergence.

Table 7.1

exchanged data (samples) angle (rad)
Proposed algorihtm 160000 0.24
Ghadban et al. [82] 2000000 0.45

we further validate the proposed technique by including it in a compressive signal
processing task. More in detail we consider the detection of a compressed signal
given its CS measurements corrupted by additive colored noise as introduced in [11].
Similarly to Sec. 7.4.1, let us assume to have a wireless sensor network represented
by the graph G arranged in a ring topology with |V | = 10. Then, we assume that
each node v acquiring a CS signal is then connected to its neighbors given |Nv| = 2.
We are now interested in the signal detection problem at node v?, more in detail we
want to distinguish between the hypotheses:{

H0 : y(v?) = n(v?)

H1 : y(v?) = Φ(v?)x(v?) + n(v?),

where Φ(v?), x(v?) are known, and n(v?) ∼ N (0, C) is the colored noise with unknown
covariance matrix C.

64



7 – Distributed covariance estimation

In order to improve the performance of the detector, the knowledge of the noise
statistics is required. In particular we need the covariance matrix of the noise pro-
cess. Hence, assuming that the node v? needs an estimate of the covariance matrix
of the noise process to accurately solve the detection problem, it runs together with
its neighbors the distributed covariance estimation algorithm described in Algorithm
2. From now on, assuming that the node v? has obtained the estimate Ĉ?, we will
drop the superscript “?′′ to improve readability.

Relying on standard detection theory [78] we can show that, in our setting, the
Neyman-Pearson (NP) optimal detector, namely the likelihood ratio test, can be
written as t = yᵀĈᵀΦx. Then, denoting the probability of false alarm as PF and
that of detection as PD, it can be shown that the PD in function PF = α is given
by:

PD = Q

(√
V0Q

−1(α) + µᵀĈ−1Φx− E1√
V1

)
, (7.5)

where

µ = E[n], V0 = σ2xᵀΦᵀ(ĈĈᵀ)−1Φx− (µᵀĈ−1Φx)2,

E1 = xᵀΦᵀĈ−ᵀ(Φx+ µᵀ),
V1 = xᵀΦᵀĈ−ᵀΦx− xᵀΦᵀĈ−ᵀµᵀµC−ᵀΦx.

We hence show the receiver operating characteristics (ROC) curves for the detection
problem we introduced. We compare the covariance matrix estimate Ĉ with those
obtained by assuming the noise to be white and hence having no knowledge of noise
statistics averaging the results over 50 different runs of the algorithm. Using the
estimated covariance Ĉ, we show both theoretical results in (7.5) and experimental
ROC curves obtained by running 500 Monte Carlo (MC) tests. Then, we compare
them with those obtained by a standard detector assuming the noise to be white,
hence being unaware of the noise statistics.

The results we present are for two different compression ratio values, namely
m
n

= {0.11,0.22}. Moreover, the SNR we consider is extremely low SNR = −19dB,
this choice is made to show the detection performances for extremely noisy signals,
using the proposed setup. It is worth noting that when higher SNRs are considered,
the ROC curve reaches the optimality. As we can see from Fig. 7.4, the compressive
signal detection using the estimated covariance matrix according to the proposed
method, outperforms a compressive signal detection algorithm unaware of the noise
covariance matrix. Moreover it can be seen that even though the number of mea-
surements m and the SNR value are very low, the detection task is efficiently solved.
Lastly, we can see that the experimental results confirm the theoretical performance.
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Figure 7.4: ROC performance comparison of noise unaware signal detection (AWGN) and
using the proposed covariance matrix estimate.
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Chapter 8

Bayesian KSVD

Heretofore we discussed how to extract information from CS measurements and
how to eventually improve the recovery process. In this Chapter, we focus instead
on the sparse representation which is one of the key components of the CS. In
fact, being able to efficiently sparsify a signal may lead to better recovery with
less measurements. As previously discussed, the sparser a signal, the smaller the
number of required measurements to achieve a good signal recovery. In particular,
in this Chapter we mainly focus on non-CS sparse representations before moving,
in Chapter 9, towards CS dictionary learning.

Let us now introduce the dictionary learning problem in a more formal way: we
aim to find a sparse representation of each signal in a database of Q natural signals
to RP concatenated column-wise into a matrix as Y = [y1, · · · ,yQ] ∈ RP×Q. We
do this by finding a set of K atoms in the signals’ ambient space, concatenated
into a dictionary matrix D = [d1, · · · ,dK ] ∈ RP×K . This dictionary, and the
corresponding assignment matrix X = [x1, · · · ,xQ] ∈ RK×Q for the signals, are
recovered by solving an optimization problem where we seek the best reconstruction
of our signals given a budget T for the number of non-zero entries allowed in each
column of X. Formally this problem takes the form

min
D,X
‖Y −DX‖2

F

s.t. ‖xq‖0 ≤ T, q = 1, . . . , Q,
(8.1)

where ‖ · ‖0 denotes the `0-(pseudo)norm, which counts the non-zero entries in a
vector, and ‖ · ‖F denotes the Frobenius norm.

Since the objective function ‖Y −DX‖2
F is not convex in X and D jointly, but

biconvex, that is, convex in X and D individually, this problem can be addressed
by alternating minimization over each variable separately. However, the exact min-
imization over X is well known to be NP-hard. Therefore greedy methods, among
which the popular K-SVD algorithm [2], are used to approximate the true solu-
tion. Alternatively, the sparsity constraint can be relaxed, resulting in the following
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problem
min
D,X
‖Y −DX‖2

F

s.t. ‖xq‖1 ≤ T, q = 1, . . . , Q,
(8.2)

where ‖ · ‖1 denotes the vector `1-norm. A wide array of techniques from convex
optimization can be applied to solve this problem (e.g., [2, 88–90]).

An alternative approach to the problem is studied in the work by Skretting and
Engan [91], Recursive Least Squares Dictionary Learning Algorithm (RLS-DLA),
which performs a continuous update of the dictionary after each training vector
is processed. Therein lies the main difference between RLS-DLA and other pre-
vious approaches such as its precedent ILS-DLA [92] or K-SVD [2]. However, its
convergence has not been established.

Along with deterministic methods to solve the dictionary learning problem, other
authors proposed a probabilistic approach. In their seminal works, Olshausen and
Field [20] and Lewicki and Sejnowski [93] introduced a generative model for the data
which allowed them to develop a Maximum Likelihood (ML) estimator for both the
sparse coding and the dictionary. According to this model, when the prior on the
sparse signal is a heavily peaked Laplacian distribution around zero and the resid-
ual is approximated by a zero-mean Gaussian distribution, the dictionary learning
problem reduces to the one in (8.2). Following this work, other authors proposed
modifications to either the sparse approximation step, the dictionary update, or
both. In [94], using the same generative model introduced in [20], the authors pro-
posed the use of Orthogonal Matching Pursuit (OMP) to solve the sparse coding
problem and a closed form solution for the dictionary update equation. Later pa-
pers focused on the use of a Maximum a Posteriori (MAP) approach instead, which
allows to impose constraints on the dictionary as well. For instance, in the work
of Kreutz-Delgado et al. [95] a unit-norm Frobenius prior is placed on the dictio-
nary. However, due to the intractability of such a prior, they propose to use an
approximate solution and the FOCUSS [96] algorithm in order to obtain the sparse
solution. Other choices of priors involve smoother (less sparse) priors based on the
Kullback-Leibler divergence for the `1 regularization as in [97]. The advantage of
this latter approach lies in the increased stability of the sparse solution and the
efficient convex inference.

All of the aforementioned techniques use ML or MAP estimators to solve the
dictionary learning problem. However, the main drawback of such approaches is
that they do not take into account the uncertainty of the estimated sparse repre-
sentation coefficients, which, as we will later examine, leads to reduced algorithmic
performance.

Moreover, since the variance of the noise is not explicitly taken into account in the
model, these algorithms have to rely on other techniques for noise estimation. The
importance of having a good estimate of the noise variance is discussed in [89] where
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the authors show that when using K-SVD for image denosing [21], the resulting
PSNR is highly affected by the precision of the noise variance estimate.

To overcome these problems a few techniques have been developed. These in-
clude the incorporation of the noise variance/covariance information in the model
as a parameter that can be estimated and taking into account the uncertainty of
the estimates. The author in [98] proposed an Expectation Maximization (EM)
algorithm in which the posterior of the sparse signal x is estimated along with the
dictionary. In more detail, each column of X is modeled using a Laplacian prior
which, however, leads to an intractable posterior distribution, for which the authors
propose to use a variational approximation of the prior which tranforms the poste-
rior of the sparse signal into a Gaussian form. Finally, an EM algorithm is developed
in order to estimate the parameters of the model. However, with this approach, the
authors do not place a prior on the entries of the dictionary.

Following a similar strategy, but introducing more complex models, Zhou et al.,
[89] and [99], introduced a beta-Bernoulli prior for the selection of the active-set; that
is, the smallest possible set of atoms in the dictionary which is capable of efficiently
explaining the underlying signal structure. In addition, they introduced a Dirichlet
patch clustering in order to cluster the data which have the same probability of
being represented using a fixed set of atoms. Finally, the full posterior distribution
is estimated through Gibbs sampling. In order to deal with large data sets, the same
model was also adapted to process randomly partitioned data [100]. In more detail,
the parameters of the model are inferred locally for each set of partitioned data and
then aggregated using a moving average to generate the global parameters of the
model resulting in an increased robustness to local minima and reduced memory
requirements.

In this Chapter we propose a novel Bayesian algorithm for solving `1 dictionary
learning problems. Our approach aims at estimating the whole posterior distribution
of X (thus taking into account the uncertainty of the estimated coefficients) but with
an automatic technique for the estimation of the parameters which originates with
the introduced models. The proposed approach is applied to image denoising and
inpainting in order to test its performance in different applications of interest in
image processing.

Notation: In order to improve readability, we discuss the notation we are going to
use throughout this chapter. For a matrix X, its ith column and jth row are denoted
by xi and xj, respectively. The (i, j)-th entry of a matrix X is denoted by either
xij or X(i, j), whichever makes the notation clearer. Given a vector x, diag(x)
represents the square matrix with the entries of x on its diagonal, while given a
square matrix X, diag(X) extracts its diagonal into a vector. Given a square matrix
X, Tr(X) and |X| denote the trace and determinant operators, respectively. The
M × 1 all-zero vector is denoted by 0M , and finally, the M ×M identity matrix is
denoted by IM .
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8.1 The K-SVD algorithm
Among the most popular algorithms for dictionary learning, K-SVD [2] is a greedy
approach that approximately solves the standard `0 problem in (8.1). In K-SVD the
optimization is performed coordinate-wise alternating between X and D.

At each iteration of the K-SVD algorithm, given the current state update of the
dictionary, the Orthogonal Matching Pursuit (OMP) algorithm [101] is first applied
to determine the support of X, i.e., the locations of the non-zeros in X, while the
values at these non-zero locations obtained from OMP are discarded. Notice that
this requires manually fixing the number of non-zero components in each column of
X.

After OMP, D and the non-zeros of X are updated. The term DX can be
decomposed as

DX =
K∑
k=1

dkxk .

This decomposition forms the basis of a cyclic update procedure, where each pair of
{(dk,xk)}Kk=1 is updated individually while all other pairs are held constant at their
most recent values. Specifically, for the jth pair, the objective function in (8.1) can
be expressed as the sum of a residual and a rank-one matrix, i.e.,

min
dj ,xj
‖Y −DX‖2

F = min
dj ,xj
‖Rj − djxj‖2

F, (8.3)

where the residual term
Rj = Y −

∑
i /=j

dixi

does not depend on (dj,xj). Because djxj has at most rank one, the minimization
in (8.3) is precisely a low-rank approximation problem, which can be solved via the
Singular Value Decomposition (SVD) [102].

Before computing the SVD of Rj, we note that the support of X has already been
determined using OMP. Resetting xj via the SVD of Rj would destroy its sparse
structure. To resolve this issue, instead of considering Rj, we consider R̃j, which is
formed by retaining the columns of Rj that correspond to the non-zero entries in
xj. We will see later that this restricted processing has a clear justification in the
Bayesian context. Concretely, we have

djx̃j = σ1u1v1,

where σ1 is the largest singular value of R̃j, u1 and v1 are its corresponding left
and right singular vectors, and x̃j denotes the row vector xj after imposing the
known sparsity support. After this step, the values at the non-zero locations of
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xj are set equal to x̃j. Notice that this restricted non-zero update does not have a
mathematical justification and will reduce the quality of the SVD fitting. A justified
way to alternate between atom and representation updates will be proposed in the
coming sections.

The advantage of the K-SVD algorithm is its simplicity, as the update steps
are greedy in nature. One major drawback, though, is that the uncertainty of the
estimates of D and X is not taken into account in the estimation procedure. While
not taking into account the uncertainty in the atoms of D may not be a problem
due to the generally large number of columns in X, each column of X normally has
a reduced number of non-zero components and their inherent uncertainty should
be accounted for. Furthermore, K-SVD requires to know the number of non-zero
components in each column of X, information that may not be available or may
even be column dependent. In this Chapter we will show how these problems can
be tackled in a principled manner using Bayesian modeling and inference.

8.2 Hierarchical Bayesian Model

8.2.1 Noise Modeling
The use of the sparsity inducing `1 norm in (8.2) requires an elaborate modeling,
following our previous work in [103], we begin by modeling the observation process
by using

p(Y|D,X, β) ∝ β
PQ

2 exp
{
−β2 ‖Y −DX‖2

F

}
, (8.4)

where β is the noise precision. We assume that

p(β|aβ, bβ) = Γ(β|aβ, bβ) ∝ βa
β−1 exp(−bββ),

with aβ > 0 and bβ > 0 being the shape and inverse scale parameters, respectively.

8.2.2 Modeling of D and X
Since we expect the columns of D to be normalized vectors we utilize the following
prior on D

p(D) =
K∏
k=1

p(dk)

where
p(dk) =

{
const if ‖ dk ‖= 1
0 elsewhere
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We now proceed to model the columns of X. Although various general sparsity
promoting priors could be considered here, see [104], we will only investigate the use
of the Laplace prior on the components of the columns of X in this work. The non-
conjugacy of the likelihood in (8.4) and Laplace prior distributions makes the use of
this prior for the columns of X intractable. In our approach we address this issue by
applying instead a three-tiered hierarchical prior on each column of X, which has
the same sparsifying effect as a Laplace prior while rendering the inference tractable.

For each column xq, q = 1, . . . , Q of X, we utilize

p(xq|γq) =
K∏
k=1
N (xkq|0, γkq)

= N (xq|0K ,Γq)

where γq is a K × 1 column vector with elements γkq, k = 1, · · · , K, and Γq =
diag(γq) along with the tiered hyperpriors

p(γq|λq) =
K∏
k=1

Γ(γkq|1, λq/2)

and

p(λq|νq) = Γ(λq|νq/2, νq/2),

where we assume a flat distribution on νq.
With marginalization, this hierarchical model yields a Laplace distribution of xq

conditioned on λq

p (xq|λq) =
λK/2q

2K exp
{
−
√
λq‖xq‖1

}
.

8.2.3 Complete System Modeling
Throughout this Chapter we will denote by

Γ = [γ1, · · · ,γQ] , λ = [λ1, · · · , λQ] , ν = [ν1, · · · , νQ]

the hyperparameters associated with X.
We also denote the entire set of unknowns as

Θ =
{
{dk}Kk=1, {xq}

Q
q=1,Γ,λ,ν, β

}
.

Based on the above presented modeling, the complete system modeling is there-
fore given by the joint distribution

p(Y,Θ) = p(Y|D,X, β)p(β)p(D)p(X|Γ)p(Γ|λ)p(λ|ν)p(ν). (8.5)
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8.3 Inference
Our scheme for estimating D and X depends on our ability to estimate the posterior
distribution p (Θ|Y). We do this using variational distribution approximation [105].
Specifically, with Mean-Field Factorization, the joint posterior distribution is ap-
proximated as

q (Θ) = q(β)q (Γ) q (λ) q(ν)q(X)
K∏
k=1

q(dk),

where in our case it is assumed that q (Γ), q (λ), and q(ν) are degenerate distribu-
tions. We also assume that each q(dk), k = 1, . . . , K is a degenerate distribution on
a vector with ‖ dk ‖2= 1.

For each θi ∈ Θ where q(θi) is assumed to be degenerate, we can update its
value by calculating

θ̂i = arg max
θi

ln q (θi) = arg max
θi

〈ln p (Y,Θ)〉Θ\θi , (8.6)

where 〈·〉Θ\θi denotes the expectation taken with respect to all approximating factors
q(θj), j /= i.

For each θi where q(θi) is assumed to be non-degenerate, we apply calculus of
variations and obtain

ln q (θi) = 〈ln p (Y,Θ)〉Θ\θi + C, (8.7)

where C denotes a constant independent of the variable of current interest. For
non-degenerate distributions q(θi), the updated value θ̂i will denote its mean.

8.3.1 Estimation of X, Γ, λ, and ν

In order to find an approximate posterior distribution of X, we apply (8.7) and
obtain

ln q(X) = 〈ln p(Y|D,X, β) + ln p(X|Γ)〉Θ\X + C

=
Q∑
q=1

〈
−β2 ‖yq −Dxq‖2

2 −
1
2xT

q Γ−1
q xq

〉
Θ\xq

+ C

=
Q∑
q=1

− β̂2
∥∥∥yq − D̂xq

∥∥∥2

2
− 1

2xT
q Γ̂−1

q xq

+ C. (8.8)
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It is clear from (8.8) that the columns of X in the posterior distribution approx-
imation are independent with

ln q(xq) = − β̂2 ‖yq − D̂xq‖2
2 −

1
2xT

q Γ̂−1
q xq + C .

It is straightforward to see that q(xq) is a Gaussian distribution

q(xq) = N (xq|x̂q,Σxq)

with covariance matrix and mean vector defined respectively as

Σxq =
(
β̂D̂TD̂ + Γ̂−1

q

)−1
(8.9)

x̂q = β̂ΣxqD̂Tyq. (8.10)

Next, taking the appropriate expectation and finding a solution to (8.6) we can
calculate the updates for the hyperparameters associated with X. Specifically, the
optimal γ̂kq is given by

γ̂kq = − 1
2λ̂q

+
√√√√ 1

4λ̂2
q

+
x̂2
kq + Σxq(k, k)

λ̂q
;

the optimal λ̂q is given by
λ̂q = ν̂q + 2K − 2

ν̂q +
K∑
k=1

γ̂kq

;

and finally, the optimal ν̂q is found via numerically maximizing
νq
2 ln νq2 − ln

(
Γ
(
νq
2

))
+ νq

2
(
ln λ̂q − λ̂q

)
.

8.3.2 Estimation of D
First notice that we assume that the columns of D are independent of each other in
the posterior distribution approximation, i.e.,

q(D) =
K∏
k=1

q(dk) ,

with these distributions degenerate on a point in ‖ dk ‖= 1.
Focusing on a single dk and applying (8.6), we have

d̂k = arg min
dk

〈
‖Y −DX‖2

F

〉
Θ\dk

s.t. ‖ dk ‖= 1.
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We can write 〈
‖Y −DX‖2

F

〉
Θ\dk

=
〈∥∥∥Y −DX̂

∥∥∥2

F

〉
Θ\dk

+
〈∥∥∥D (

X̂−X
)∥∥∥2

F

〉
Θ\dk

(8.11)

where we have
〈∥∥∥Y −DX̂

∥∥∥2

F

〉
Θ\dk

=
∥∥∥∥∥∥Y −

∑
i /=k

d̂ix̂i − dkx̂k
∥∥∥∥∥∥

2

F

= C + ‖x̂k‖2
2dT

kdk − 2bT
kdk (8.12)

with

bk =
Y −

∑
i /=k

d̂ix̂i
(x̂k)T

.

Notice that (8.12) is the only term used in K-SVD to update the atoms of the
dictionary.

The uncertainty of the estimate of xq is incorporated in the estimation of dk by
the second term on the right hand side of (8.11) which we now calculate. It can be
expressed as 〈∥∥∥D (

X̂−X
)∥∥∥2

F

〉
Θ\dk

=
〈∥∥∥dk(x̂k − xk)

∥∥∥2

F

〉
Θ\dk

+ 2
〈

Tr

dk(x̂k − xk)
∑
i /=k

d̂i(x̂i − xi)
T
〉

Θ\dk

+ C. (8.13)

Now, the first term on the right hand side of (8.13) can be written as〈
‖dk(x̂k − xk)‖

〉
Θ\dk

= ckdT
kdk, (8.14)

where

ck =
〈
‖x̂k − xk‖2

2

〉
Θ\dk

=
Q∑
q=1

Σxq(k, k),

and Σxq(k, k) denotes the (k, k)-th element of Σxq defined in (8.9).
Similarly, the second term on the right hand side of (8.13) can be written as

〈
Tr

dk(x̂k − xk)
∑
i /=k

di(x̂i − xi)
T
〉

Θ\dk

= aT
k dk, (8.15)
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where

ak =
Q∑
q=1

∑
i /=k

Σxq(i, k)d̂i .

Substituting (8.14) and (8.15) into (8.13), we obtain〈∥∥∥D (
X̂−X

)∥∥∥2

F

〉
Θ\dk

= ckdT
kdk + 2aT

k dk + C, (8.16)

and substituting (8.12) and (8.16) into (8.11), we obtain〈
‖Y −DX‖2

F

〉
Θ\dk

= ekdT
kdk − 2(bk − ak)Tdk + C

=
∥∥∥∥∥√ekdk − 1

√
ek

(bk − ak)
∥∥∥∥∥

2

+ C,

where
ek = ‖x̂k‖2 + ck .

Defining

tk = 1
√
ek

(bk − ak)

we obtain 〈
‖Y −DX‖2

F

〉
Θ\dk

= ‖tk −
√
ekdk‖2 + C .

We can therefore finally write

d̂k = arg min ‖tk −
√
ekdk‖2

s.t. ‖ dk ‖= 1,

which produces

d̂k = 1
‖ tk ‖

tk = bk − ak
||bk − ak||

. (8.17)

8.3.3 Estimation of Noise Precision β

Keeping the terms dependent on β in (8.5) and applying (8.7), we obtain

ln q(β) =PQ2 ln β − β

2
〈
‖Y −DX‖2

F

〉
Θ\β

+ (aβ − 1) ln β − bββ + C,

from which we see that q(β) is a Gamma distribution with mean

β̂ = PQ+ 2aβ∑Q
q=1〈‖yq − D̂xq‖2〉xq + 2bβ

. (8.18)
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8.4 Fast Inference Procedure Based on Empirical
Bayes

The inference procedure introduced in the previous section is mathematically sound
but has a practical limitation: computing Σxq in (8.9) for each q requires the in-
version of a K × K matrix. This matrix inversion at each iteration step can be
computationally costly and memory intense.

In order to reduce the computational complexity and alleviate memory require-
ment, we propose a fast inference procedure based on the use of Empirical Bayes [103,
106,107]. The principle of this approach is first presented in [106] in the context of
Sparse Bayesian Learning (SBL) and later adapted in [103] and [107] for recovery
of sparse signals. Here we adapt it for the sparse dictionary learning problem.

Specifically, for each xq, we adopt a constructive approach for identifying its
support, i.e., the locations where it assumes non-zero values. The values of the
hyperparameters at these non-zero locations are obtained via Maximum A Pos-
teriori (MAP) estimation. With such support identification and hyperparameter
estimation, the effective problem dimensions are drastically reduced due to sparsity.
Finally, the estimated values of xq in its support are obtained via (8.10).

8.4.1 Fast Bayesian Inference for Γ and X
We will derive in this section a fast inference approach for Γ and X. We have

p(yq|β̂, D̂,γq) = N (yq|0P ,Cq)

with covariance matrix
Cq = β̂−1IP + D̂ΓqD̂T.

Separating the contribution of a single γkq from Cq, we have

Cq = −kCq + γkqd̂kd̂T
k ,

Using the matrix inversion lemma we obtain

C−1
q = −kC−1

q −
−kC−1

q d̂kd̂T
k
−kCq

−1

γ−1
kq + d̂T

k
−kC−1

q d̂k
,

and using the determinant identity we obtain

|Cq| = |−kCq||1 + γkqd̂T
k
−kCq

−1d̂k| .

77



8 – Bayesian KSVD

Utilizing p(yj|β̂, D̂,γq) and p(γq|λ̂q) our goal is to maximize the following func-
tion of γq

L(γq) = −1
2

log |−kCq|+ yT
q
−kC−1

q yq + λq
∑
n/=k

γnq


+ 1

2

[
log 1

1 + γkqsiq
+

h2
kqγkq

1 + γkqskq
− λqγiq

]
= L(−kγq) + l(γkq),

(8.19)

where
l(γkq) = 1

2

[
log 1

1 + γkqskq
+

h2
kqγkq

1 + γkqskq
− λqγkq

]
and skq and hkq are defined as

skq = d̂T
k

(
−kCq

)−1
d̂k

hkq = d̂T
k

(
−kCq

)−1
yq

.

The quantities skq and hkq do not depend on γkq. Therefore, the terms related to
a single hyperparameter γkq are now separated from others. A closed form solution
of the maximization of L(γq), when only its kth component is changed, can be found
by holding the other hyperparamters fixed, taking its derivative with respect to γkq
and setting it equal to zero.

The optimal γ̂kq can be obtained as follows

γ̂kq = mkq1[h2
kq
−skq≥λq ] (8.20)

where

mkq =

−skq(skq + 2λ̂q) + skq
√

(skq + 2λ̂q)2 − 4λ̂q(skq − h2
kq + λ̂q)

2λ̂qs2
kq

It is crucial for computational efficiency that once a hyperparameter γkq is up-
dated using (8.20), the quantities skq, hkq, x̂q, and Σxq are efficiently updated.
Similarly to [103], for a given q the parameters skq and hkq can be calculated for all
basis atoms d̂k efficiently using the following identities

Skq = β̂d̂tkd̂k − β̂2d̂tkD̂ΣxqD̂td̂k
Qkq = β̂d̂tkyq − β̂2d̂tkD̂ΣxqD̂tyq

skq = Skq
1− γkq Skq

qkq = Qkq

1− γkq Skq
,
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where Σxq and D̂ include only the columns k that are included in the model
(γkq /= 0). Moreover, Σkq and x̂q can be updated very efficiently when only a
single coefficient γkq is considered, as in [103]. With the fast updates for {xq} in
hand we can formally state the full Algorithm 4 which we call the Bayesian K-SVD
(BKSVD) method.

At step 9 of the algorithm, a candidate γkq must be selected for updating. This
can be done by randomly choosing a basis vector d̂k, or by calculating each γkq and
choosing the one that results in the greatest increase in L(γ) in (8.19), which results
in a faster convergence. The latter is the method implemented in this work.

An important contribution of the algorithm is the estimation of the noise preci-
sion β, which is derived in the previous section using (8.18).

In the approach presented in [108], the estimation of the noise precision is un-
reliable at early iterations and hence it is necessary to set it to a fixed value at the
beginning of the algorithm. Unreliable estimates can indeed significantly affect the
performances of the technique. However, in the proposed method β is estimated us-
ing a set of signals which are assumed to share the same noise variance, thus leading
to reliable estimates even at early BKSVD iterations.

Let us complete this section by analyzing the proposed approach and comparing
it to K-SVD. First we examine the variance estimates provided by the Relevance
Vector Machine and the ones provided by the proposed method in terms of sparsity.
The RVM model corresponds to the particular case of λ = 0 in our model. For the
RVM we have

γRVM
kq =


h2
kq−skq
s2
kq

if h2
kq − skq > 0

0 otherwise.

Let us now examine the difference γRVM
i − γL

i , where γL
i denotes the estimate using

the Laplace prior as presented in this work. When h2
kq − skq < λ we have

γRVM
kq − γL

kq =
0 if h2

kq − skq < 0
γRVM
kq if 0 ≤ h2

kq − skq < λ.

When h2
kq − skq ≥ λ, the derivative of the function l(γkq) at γkq = γRVM

kq is −λ < 0.
Since dl(γkq)

dγkq
|γkq=0 > 0, the maximum of l(γkq) occurs at a smaller value γL

kq than
γRVM
i . Consequently we always have

γRVM
kq ≥ γL

kq,

That is, the estimates γL
kq using the Laplace prior are always not greater than

the estimates γRVM
kq of the relevance vector machine. Note also that compared to

RVM more components will possibly be pruned out from the model when λ > 0,
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since the cardinality of the set xq(k) for which h2
kq − skq > λ is smaller than that of

the set xq(k) for which h2
kq − skq > 0. These observations imply that the solution

obtained by the proposed method is at least as sparse as the one provided by the
RVM. This will also be shown empirically in the experimental section.

We now relate the proposed BKSVD model to K-SVD. In K-SVD the number
of non-zero components, S, in xq is fixed in advance. In BKSVD we can update γq
until convergence and then keep only its S largest values. We can also run BKSVD
in a greedy fashion until S non-zero components are incorporated.

Finally, let us compare the iterative procedures for BKSVD and K-SVD. In K-
SVD to update the kth atom we select the non-zero components in x̂k. If the qth
component is selected, this means that γkq is non-zero in our fast formulation. Notice
that the components selected by BKSVD (γkq /= 0) and the ones selected by K-SVD
(x̂kq /= 0) coincide almost surely. K-SVD then proceeds to find the rank one SVD
decomposition of the residual term

Rk = Y −
∑
i /=k

d̂ix̂i,

where only the columns yq with non-zero γkq are considered. This produces an
update of dk and the non-zero components of x̂k. On the other hand, BKSVD not
only takes into account the residual Rk in ‖Y−∑

i /=k
d̂ix̂i−dkx̂k‖2

F, see (8.12), but also

makes the uncertainty of the estimation of X reponsible for some of the variation of
the model, see 〈‖D

(
X̂−X

)
‖2

F〉Θ\dk in (8.13).
To update the kth atom BKSVD utilizes (8.17), while K-SVD utilizes the rank

one decomposition of Rk to update d̂k and the non-zero elements in xk. For BKSVD,
once the kth atom has been updated we can also update the non-zero components
in xk. Both strategies will be compared in the experimental section.

8.4.2 Suboptimal greedy version
Since the Bayesian K-SVD algorithm we introduced in the previous sections takes
into account the uncertainties of the coefficients to improve the estimation, it is
computationally expensive. As an example, using non-optimized code on a server
equipped with Intel Xeon® CPU E5-4640 @ 2.40 GHz processor, the learning and
reconstruction phases for a 64 × 255025 Y matrix using Q = 256 atoms require 3
hours and 30 minutes, respectively. During training and reconstruction, the bottle-
neck is in the computation of the sparse representation in which atoms are added,
deleted or reestimated.

To improve the overall speed of the Bayesian K-SVD algorithm, and in partic-
ular, that of the sparse representation computation, we introduce a faster version.
Inspired by the approach of greedy algorithms like OMP, we propose to compute
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Algorithm 4 Pseudocode for BKSVD algorithm
1: Input: Y, initial normalized D
2: Output: D̂, Γ̂, the posterior approximations q(xq),
3: q = 1, . . . , Q
4: initialize Γ and λ to zero
5: while not converged do
6: for q in 1, . . . , Q do
7: while not converged do
8: Choose a k ∈ {1, . . . , K}
9: (or equivalently choose a γkj)

10: Find optimal γ̂kq using (8.20)
11: Update Σxq and x̂q based on γ̂kq
12: Update skq and hkq
13: Update λ̂j and ν̂j
14: end while
15: end for
16: for k in 1, . . . , K do
17: Update dk using (8.17)
18: end for
19: Update β̂
20: end while
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the sparse representation in an additive suboptimal fashion. This faster version only
adds atoms instead of reestimating or deleting elements in the support of the sparse
signals. That is, when the likelihood is maximized only by removing or reestimating
a new atom, the sparse representation calculation stops. This approach allows for
the whole BKSVD algorithm to perform fewer operations and hence leads to faster
iterations.

To validate the proposed approach, we ran the following synthetic experiment.
We generated a D64×150 dictionary and a sparse matrix X150×1500 with different
numbers of non-zero components per column, see Table 8.1, and calculated Y = DX
with no noise.

We compared the BKSVD algorithm and its faster version by examining the
percentage of columns in X for which each method correctly selects at least 80% of
the atoms, as shown in Table 8.1. As can be seen in it, the performance of the two
algoritms is comparable for smaller values of s.

We show next in Figure 8.1 the required computation times using different dic-
tionary sizes K with K = iP , i = 2,3,4, P = 64 and the values of Q corresponding
to the total number of overlapping patches in 128 × 128,256 × 256 and 512 × 512
images assuming full overlap. As can be seen from it, the computational savings
are significant. All the experiments we present in Sec. 8.5 are performed using this
faster and greedy method.

Table 8.1: Performance of the BKSVD algorithm and its faster greedy version for different
percentages of non-zero components s

s (%) Optimal
sparse coding

Greedy
sparse coding

3 100.00 100.00
6 100.00 99.87
10 99.67 98.50
13 92.00 70.00

8.5 Experimental results
We carried out experiments on denoising and inpainting to demonstrate the perfor-
mance of the proposed BKSVD algorithm on real data. Experiments were performed
on four typical grayscale images, namely Barbara, Boat, Lena and Peppers.

For both denoising and inpainting a dictionary of 256 atoms was learned. The
dictionary was initialized with an overcomplete DCT dictionary. To have an unbi-
ased dictionary, the mean is removed from each patch before running the BKSVD
algorithm and then added back to the processed patches. Images are divided into
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Figure 8.1: Time required to compute the sparse representation of synthetic data (as in
the experiment in Table 8.1) for the proposed methods.

8 × 8 overlapping patches vectorized in columns and stacked into a matrix. We
use maximum overlap for better performance, although it slows down the represen-
tation task. Recovered overlapping patches are then averaged according to their
pixel contribution to the image. We used a = b = 1 for the Gamma hyperprior
distribution.

(a) Noisy image (σ = 20) (b) BKSVD Denoising (c) K-SVD Denoising

Figure 8.2: Comparison of the denoising performances of BKSVD and K-SVD algorithms.
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(a) r = 75% missing pixels (b) BKSVD inpainting (c) K-SVD inpainting

Figure 8.3: Example of inpainting results.

8.5.1 Denoising
To assess the performance of the proposed fast BKSVD algorithm, we compare
it with K-SVD . Differently from K-SVD, which requires knowledge of the exact
noise variance, information rarely available in real problems, the proposed Bayesian
approach automatically estimates its value. To perform a fair comparison, K-SVD
is run with both the noise variance estimated by our method and the true added
noise.

We learned the dictionaries for both K-SVD and BKSVD using the noisy patches
of the image itself (of size 256× 256 pixels). We corrupted the images with additive
white Gaussian noise (AWGN) with standard deviation

√
1/β ∈ {5,10,15,20,25,50}.

We show in Table 8.3 a comparison of the two techniques. As we have already
mentioned, we compared the proposed BKSVD algorithm with both the K-SVD
aware of the true noise standard deviation and using the one estimated by our
algorithm. Notice that, since our noise estimate is very close to the true one, these
two experiments we performed using K-SVD present similar results.

Table 8.2: Estimated σ using the ”Lena” image.

σ 5 10 15 20 25 50
σ̂ 5.54 10.39 15.01 19.55 24.46 46.80

The proposed method performs equally or better than K-SVD in 20 out of 24
experiments and also is capable of estimating the noise variance. Notice also that
unlike our method, K-SVD is very sensitive to noise variance mismatch. This mis-
match can decrease its PSNR performance by a few dBs [89]. On the other hand,
our technique performs a completely automatic noise variance estimation and is
more robust to high noise levels because it takes into account the uncertainty of the
estimates.
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We show in Table 8.3 the average percentage of non-zero components in the es-
timated X. As can be seen, while PSNR and SSIM values are similar for both tech-
niques, BKSVD always obtains sparser solutions which indicates that the learned
dictionary with our method contains atoms which can better represent the signal.

An example of denoising is shown in Figure 8.2 where we can see the denoised
”Lena” provided by both methods. As shown in this figure, the proposed technique
preserves edges and high spatial frequencies better than K-SVD, which leads to a
flatter and more blurry image. Moreover, as we already pointed out previously, our
method does not require any prior information on the noise corrupting the images
since its variance is automatically estimated.

Table 8.2 shows both the true synthetic noise standard deviation and the corre-
sponding estimation by our method for the denoising experiment using the ”Lena”
image.

8.5.2 Inpainting
Sparse coding is also capable of dealing with missing information. The problem
stated in (8.1) needs to be adapted to handle this lack of information at the recon-
struction phase, that is, after the dictionary has been learned.

For this experiment, a dictionary of 256 atoms was learned from a database of 23
images. From every image, we selected the 4096 patches with the highest variances.
Following the approach in [2], these images did not contain missing values. During
testing, and for images not in the training set, 25%, 50% and 75% of the pixels in
those images were removed (set to zero) from every non-overlapping patch of each
512 × 512 test image. No noise was added. Regarding the K-SVD parameters, a
very small σ was used since the image has no noise.

During testing, the process was adapted to deal with the missing information.
Let nq denote the position of the pixels in a patch q where the information is avail-
able. We create the set of truncated vectors ỹq = yq(nq) which contain the entries
of yq restricted to the indices in nq, and consider the set of truncated dictionar-
ies for these signals D̃(q) = [d1(nq), · · · ,dK(nq)]. We then estimate xq from the
observation model

ỹq = D̃(q)xq, q = 1, . . . , Q.

Finally, the image is recovered from the estimated representations x̂q and the
full dictionary, Ŷ = DX̂. This process is depicted in Figure 8.4.

As we can see in table 8.4, the results obtained by the proposed method outper-
form those obtained by K-SVD, suggesting an improved capability of representation
by the learned BKSVD dictionary. Notice that for high percentages r of missing
pixels and due to the scarcity of data both methods perform similarly, although the
proposed on still performs slightly better. We show a graphical example in figure 8.3
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8 – Bayesian KSVD

for the highest ratio of missing pixels (r = 75%). There is a noticeable improvement
in the visual quality of the image recovered by our method in contrast to the too
smooth K-SVD reconstruction.

Figure 8.4: Inpainting process: (a) two patches from image I, y1 and yq (missing pixels
in red), (b) vectorization of patch yq; rows from D corresponding to the missing pixels
in yq are also highlighted in red, (c) highlighted entries are discarded from the problem
formulation, (d) recovery using the full dictionary D.
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8 – Bayesian KSVD

Table 8.4: Inpainting results. Comparison of the proposed BKSVD algorithm with K-SVD
for different ratios (r) of missing pixels. PSNR and SSIM values are given.

r (%) Barbara Boat Lena Peppers
BKSVD K-SVD BKSVD K-SVD BKSVD K-SVD BKSVD K-SVD

25 39.1773 30.9816 38.5391 34.3484 41.5410 36.9890 39.4880 35.1438
0.9869 0.9524 0.9743 0.9455 0.9811 0.9700 0.9676 0.9389

50 33.1485 26.4042 32.6518 29.7701 36.1429 32.3366 34.7303 31.6623
0.9568 0.8600 0.9239 0.8763 0.9512 0.9257 0.9261 0.8951

75 27.3552 23.8155 27.3947 26.1601 30.3712 28.7631 29.2929 28.3120
0.8605 0.7213 0.8021 0.7568 0.8800 0.8477 0.8542 0.8318
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Chapter 9

Compressive BKSVD

Heretofore we described a novel dictionary learning technique which, exploiting the
Bayesian inference, enables a fully automatic estimation of the parameters of the
model and improves the performance over the well-known KSVD. The natural evo-
lution of such technique is the extension in the compressed domain. In fact, CS
heavily depends on the sparsity of the original signal and in turn on the quality of
the sparsifying basis. Being able to estimate a good sparsifying basis given a set
of random projections would be extremely useful in many applications in which the
basis is not known a-priori or when standard bases are not able to correctly sparsify
a given signal. In this chapter we introduce the compressive BKSVD by leveraging
the BKSVD model we described in Chapter 8.

9.1 Modeling

The modeling we consider for the C-BKSVD is the same as the one we introduced
for the BSKVD. In fact, the hierarchical structure we employed on X to enforce the
sparsity as well as the modeling of the columns of the dictionary D do not require
any modification. The transformation induced by CS is a linear transformation
which does not involve any stochastic quantities. However, we need to take into
account that projecting all the signals in X onto the same subspace spanned by a
single sensing matrix Φ may lead to errors. As pointed out in [8], projecting all
the training signals onto the same low-dimensional subspace may lead to the loss
of the original signal space and the ability to correctly recover the signals. It is
worth noting that this approach does not require extra memory or transmission
costs because there is no need to store or transmit all the sensing matrices since a
seed used to generate the random matrix is enough to build the sensing matrices on
the fly.
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9 – Compressive BKSVD

This said, the model we take into account is given by

yq = Φ(q)Dxq ∀q ∈ 1 . . . Q

where each training signal is projected by means of a different sensing matrix.

9.2 Inference
The C-BKSVD inference follows the same structure as the one for the BKSVD
algorithm, except for few differences we need to take into account which are due
to presence of different sensing matrices. For what concerns the inference on the
sparse representation X, since it is performed independently for each column xq, we
can directly refer to the method in Section 8.3.1 with the only difference that each
signal is projected by a different Φ(q) . The main differences rely in the dictionary
update step in which the uncertainties coming from the sparse representation are
joined to improve the dictionary inference. More in detail, focusing on a single dk,
applying (8.6) we have

d̂k = arg min
dk

∑
q

〈
‖yq −Φ(q)Dxq‖2

2

〉
Θ\dk

s.t. ‖ dk ‖= 1,

then, the argument of the minimization problem can be written as∑
q

〈
‖yq −Φ(q)Dx̂q‖2

2

〉
Θ\dk

+
∑
q

〈
‖Φ(q)D (x̂q − xq) ‖2

2

〉
Θ\dk

(9.1)

If we focus on the first term we have
∑
q

〈
‖yq −Φ(q)Dx̂q‖2

2

〉
Θ\dk

=
∑
q

〈
‖yq −Φ(q)∑

i /=k
d̂ix̂iq −Φ(q)dkxkq‖2

2

〉
Θ\dk

= C + dᵀ
kAkdk + bkdk, (9.2)

with
Ak =

∑
q

(xkq )2Φ(q)ᵀΦ(q),

and

bk = −2
∑
q

xkq

yq −Φ(q)∑
i /=k

d̂ixiq

ᵀ

Φ(q).

Now let us focus on the second term on the right hand side of (9.1). As it will
become clearer in the following steps, this term includes the uncertainty related to
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the selection of the atoms of the dictionary in terms of the variance of the components
of X. It can be written as

∑
q

〈
‖Φ(q)dk

(
x̂kq − xkq

)
‖2

2

〉
Θ\dk

+2
∑
q

〈(
Φ(q)dk

(
x̂kq − xkq

))ᵀ
Φ(q)∑

i /=k
d̂i
(
x̂iq − xiq

)〉
Θ\dk

.

(9.3)
At this point, the first term in (9.3) is

∑
q

〈
‖Φ(q)dk

(
x̂kq − xkq

)
‖2

2

〉
Θ\dk

= dᵀ
kckdk, (9.4)

with
ck =

∑
q

Φ(q)ᵀΦ(q)Σxq(k, k).

In the same way, if we consider the second term of (9.3) we can write

2
∑
q

〈(
Φ(q)dk

(
x̂kq − xkq

))ᵀ
Φ(q)∑

i /=k
d̂i
(
x̂iq − xiq

)〉
Θ\dk

= akdk (9.5)

with

ak = 2
∑
q

∑
i /=k

Σxq(i, k)d̂k

ᵀ

Φ(q)ᵀΦ(q).

If we then substitute (9.2) (9.4) and (9.5) into (9.1) we obtain
∑
q

〈
‖yq −Φ(q)Dxq‖2

2

〉
Θ\dk

= dᵀ
kHdk + gkdk + C,

with

H = Ak + ck,
gk = bk + ak,

which is a quadratic problem that can be solved by putting the derivative equal to
zero as

(H + Hᵀ)dk + gᵀ
k = 0,

leading to the update step for the dk column of the dictionary D

dk = −(H + Hᵀ)†gᵀ
k. (9.6)

The whole compressive BKSVD algorithm is summarized in Algorithm 5.
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Algorithm 5 Pseudocode for compressive BKSVD algorithm
1: Input: Y, initial normalized D and Φ(q) ∀q ∈ 1 . . . Q
2: Output: D̂, Γ̂, the posterior approximations q(xq),
3: q = 1, . . . , Q
4: initialize Γ and λ to zero
5: while not converged do
6: for q in 1, . . . , Q do
7: while not converged do
8: Choose a k ∈ {1, . . . , K}
9: (or equivalently choose a γkj)

10: Find optimal γ̂kq using (8.20)
11: Update Σxq and x̂q based on γ̂kq
12: Update skq and hkq
13: Update λ̂j and ν̂j
14: end while
15: end for
16: for k in 1, . . . , K do
17: Update dk using (9.6)
18: end for
19: Update β̂
20: end while
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9.3 Experimental results
In this section we numerically evaluate the proposed compressive BKSVD and com-
pare it with the compressive KSVD introduced in [8]. The compressive KSVD follows
the standard KSVD approach which alternates the use of OMP-like algorithms to
obtain a sparse representation with the dictionary update step. It is in this last step
that lies the main difference with respect to the KSVD since a different dictionary
update step is needed due to the fact that different sensing matrices are employed
and the SVD step can not be used.

Our experiments are performed using synthetically generated data. More in
detail, we generate a random dictionary D ∈ R50×10 which is column normalized.
Then, Q sparse signals xq are generated with 3 non-zero elements each having values
drawn from a normal distribution according to N (0,80). Having the dictionary and
the sparse representation, we obtain sq = Dxq and the compressed measurements
as yq = Φ(q)sq.

At this point, in order to evaluate the performance of the proposed method
we compare the compressive BKSVD with the compressive KSVD in terms of cor-
rectly learned atoms in the dictionary and recovery error. To detect the number
of correctly learned atoms we identify an atom as correctly learned if the correla-
tion between this atom and any of the atoms of true dictionary is larger than 0.98.
For what concerns the recovery error we define the mean relative recovery error as
er = (1/Q)∑q ‖D̂x̂k −Dxk‖2

2/‖Dxk‖2
2. We tested these parameters using different

compression ratios M/N and different number of training signals Q. The results are
then averaged over 10 different runs. It is worth noting that since the compressive
BKSVD typically requires more iterations to reach convergence, we fixed for both
algorithms the number of iterations to 1000. Moreover, since the compressive KSVD
requires the knowledge of the exact sparsity of each column of X, we gave to the
algorithm the true sparsity level we set to 3.

As we can see in Fig. 9.1 and 9.2, except for very small compression ratios, the
proposed technique outperforms the compressive KSVD. In particular, a compres-
sion ratio value higher than 0.3 allows the proposed technique to reach very small
recovery errors and to correctly learn all the atoms in the dictionary. On the other
hand, smaller values of the compression ratio seem to favor the compressive KSVD.
Nevertheless at such compression ratios even though the technique in [8] performs
better is still unable to reach acceptable recovery errors making the recovered signal
too different from the true one. This behavior at small compression ratio values can
be explained by the fact that the proposed technique does not have access to any
prior information differently from the compressive KSVD which has the knowledge
of the sparsity of the signals. In fact, when the signals are extremely compressed,
having access to some prior information can lead to improved performance. More-
over, we can state that the number of training signals is a crucial parameter which
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Figure 9.1: Mean relative error comparison for the proposed compressive BKSVD and [8] at
different compression ratios using a different number of training signalsQ = {100,200,500}.

can determine the success of the dictionary learning and thus the recovery. For the
experiments we performed it can be seen that a number of training signals Q < 200
is not enough to reach acceptable performance.

The advantage of such technique over the compressive KSVD is not only that it
reaches better performance, but also that we do not need any additional information
in the process. As in the BKSVD all the quantities are automatically estimated as an
additional feature of the method. More in detail, the knowledge of the true sparsity
is typically hard to guess and wrong guesses may lead to inconsistent results.
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Figure 9.2: Percentage of correctly learned atoms for the proposed compressive BKSVD
and [8] at different compression ratios using a different number of training signals Q =
{100,200,500}.
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Chapter 10

Conclusions

In this thesis we explored the possibility of extracting information about the original
signal directly in the compressed domain. In order to achieve this goal we introduced
an AR modeling of the underlying signal which allowed us to characterize a signal by
means of few parameters. Next, we showed that these parameters can be efficiently
estimated with good accuracy in the compressed domain employing an ad-hoc sens-
ing matrix coupled with a LS or Bayesian estimators depending on the model order.
On top of this novel framework we developed few interesting applications:

• Compressive covariance sensing

• Compressive classification

• Adaptive compressive imaging

Then, we focused on compressive signal processing in the distributed setting.
In this case when the noise corrupting CS measurements is non-white the knowl-
edge of the covariance matrix of the noise process is of paramount importance to
perform compressive signal processing applications. We addressed this problem by
introducing an iterative and fully distributed algorithm thanks which each node of
the network can obtain the covariance matrix of the colored noise process. We also
showed that this technique allows the nodes to improve the performance of com-
pressive signal processing operations, e.g., signal detection. The main advantage
of such technique comes from the noise modeling which has been modeled accord-
ing to an AR process. Hence, being able to define the covariance matrix of the
process with few parameters allowed us to reach excellent performance at very low
communication costs.

The last topic we covered in this thesis was dictionary learning. In particular,
concerning the non-compressed case, we proposed a Bayesian alternative to the
well-known KSVD algorithm for dictionary learning. Going Bayesian allowed us to
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improve the overall performance by incorporating all the uncertainties in the process
and to automatically estimate all the parameters of the model which would otherwise
hard to tune. Moreover, sparse representations are not only useful per se but are
part of the foundation of the CS. This said, we also showed how the CS framework
can take advantage by using this technique to estimate the best sparsifying basis
which would ultimately lead to a better recovery.

10.1 Future work
With the techniques we described in this work, we expanded the ways in which CS
measurements can be used as a direct source of information rather than a proxy
for the signal recovery. However, there are still some paths which can be followed
and which may lead to interesting research problems. These would eventually lead
to advances in compressive signals processing and signal recovery. In the follow we
describe some future work which may be interesting to further investigate.

• Provide theoretical guarantees for the ad-hoc sensing matrix In this thesis we
experimentally showed that the proposed ad-hoc sensing matrix construction
provides good CS recovery capabilities. Even though is quite a tough task to
provide RIP guarantees for the sensing matrix we introduce, it would be useful
to have such results in order to have a more complete characterization of the
sensing process we proposed in this work.

• Consider different signal modeling Whilst the AR modeling we extensively
discussed in this thesis turned out to be an effective way yo model a signal in
order to extract information from CS measurements, it would be of interest
to consider other kinds of modeling. If we consider 2D signals such as im-
ages, it would be natural to consider other kinds of models which exploit the
bidimensional structure of the signal. Since we are more interested in para-
metric models because of their compactness, simultaneous AR models are an
interesting model to investigate.

• Extend compressive BKSVD As shown in Chapter 9, the Bayesian KSVD
algorithm can be successfully adapted to the CS scheme in order to learn a
good sparsifying basis which can improve the recovery process. However, the
results we showed are preliminary and more work is needed. In particular
it would be interesting to perform a more complete analysis of the probable
gains that this technique can provide when the signals to be recovered are
sparse in the subspace spanned by the columns of a suited dictionary but are
compressible in a standard fixed basis. Moreover, it would also be of interest
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to assess the performance of this approach with some real applications which
take advantage of a good basis such as compressive image denoising.
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