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ABSTRACT 
 
In the present paper, the problem of detecting the critical notch angle, i.e. the angle providing 
the minimum failure load, for brittle or quasi-brittle structures containing either edge or center 
V-notches is investigated. The expression of the generalized fracture toughness is obtained 
according to Finite Fracture Mechanics. It is shown that a critical angle is always present: its 
value depends, through the brittleness number, on both material and geometric 
characteristics. Thus, the crack is not the most dangerous configuration. The result is 
supported by experimental results presented in the Literature. 
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INTRODUCTION 
 
Many experimental results [1-4] concerning three-point bending (TPB) and tensile tests on V-
notched brittle or quasi-brittle material specimens, show that the failure load does not 
increase monotonically as the notch opening angle ω increases, but it has a minimum in 
correspondence of a critical angle ωc. The problem of determining ωc was investigated in [5] 
to what concerns a semi-infinite edge V-notched slab and it is here extended to a center V-
notched infinite slab under remote tensile load, when the notch is subjected to mode I 
loading. Four different criteria based on a discrete crack advancement [2,6-8] are taken into 
account. Despite their predictions slightly differ from each other, all the approaches detect 
the minimum, whose value depends on the brittleness number s [9]: the larger s (i.e. the 
larger the fracture toughness and/or the smaller the tensile strength and/or the smaller the 
notch depth), the larger the ωc expected. A final comparison between theoretical predictions 
and experimental data confirms the validity of the present analysis. 
 
ANALYSIS OF SEMI-INFINITE EDGE AND CENTER V-NOTCHED SLABS 
 
The generalized stress intensity factor (SIF) KI

* related to an edge semi-infinite V-notched 
slab or to a center V-notched infinite slab under remote tensile load σ (Fig. 1) can be 
expressed, by means of dimensional analysis, as [1]: 
 

)ω(λ1*
I σ)ω(β −= aK , (1) 

 
where a is the notch depth for the edge notch case and half of its length in the centre notch 
case, λ is the solution of the eigen-equation derived by Williams (1952) and β is the shape 
function, which depends only on the notch angle ω. Values of β related to the two considered 
geometries can be found tabulated in [10] and they are plotted in Fig. 2 (note that they are 
modified according to the different definition of the generalized stress-intensity factor here 
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adopted i.e., λ1* )π2/()(σ −= xKx Iy  instead of λ1* /)(σ −= xKx Iy , xy being the reference system 

centred at the V-notch tip (Fig. 1)). They differ by a factor 1.12 for ω=0°, while they coincide 
for ω=180°.  
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Fig. 1: Geometry of tensile slabs: a) semi-infinite edge-notched b) infinite center-notched. 
 

 
Fig. 2: Function β for a semi-infinite edge notched slab (thin line) and for an infinite center-
notched slab (thick line) under remote tensile load. 
 
The generalized SIF KI

* is the coefficient of the dominant term of the stress field at the notch 
tip and, within brittle structural behaviour, it is expected to be the governing failure 
parameter. In other words, failure is supposed to take place whenever [1]: 
 

*
Ic

*
I KK = , (2) 

 
KIc

* being the generalized fracture toughness. A theoretical justification of this fracture 
criterion (Eq. 2) may be given in the framework of Finite Fracture Mechanics (FFM). 
According to FFM, fracture does not propagate continuously but by finite crack extensions ∆, 
leading to the following general relationship  
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where ξ(ω) is a dimensionless function depending on the fracture criterion used, while KIc 
and σu are the fracture toughness and tensile strength, respectively. 
Different ξ(ω) functions and critical distances ∆ related to different FFM approaches, are 
summarized in Table 1: they refer to the average stress (LS) criterion [2], the average energy 
(LE) criterion [6], the coupled point stress and average energy (PSLE) criterion [7], and the 
coupled average stress and average energy (LSLE) criterion [8].  

The energy-based criteria all involve a dimensionless coefficient µ, depending on the notch 
angle ω, which rises from the evaluation of the SIF for a short crack at the V-notch [11]. µ 
values can be found tabulated either in [12] or, in the present notation, in [5]. It increases 

from unity, when ω=0°, up to 1.12 √π, when ω=180°. On the other hand, the constant c 
assumes only two values: 1 for the center-crack case and 1.12 for the edge-crack case.  
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Table 1: Different ξ functions and critical distances ∆ according to different FFM criteria. 
 
Observe that the critical distances related to the coupled criteria are structural parameters, 
depending, through λ and µ, also on the notch opening angle ω. 
Inserting Eqs. (1) and (3) into Eq. (2), yields: 
 

1λ

u

f α
β

ξ

σ

σ −= , (4) 

 
where σf is the remote stress at failure and α is the dimensionless notch depth  
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The brittleness number s was introduced by Carpinteri [8]: low brittleness numbers 
correspond to brittle structural behaviours. In the present case, i.e. infinite or semi-infinite 
slabs, the characteristic structural size a is proportional to the notch depth, the only relevant 
size in the problem.  
 
NOTCH SENSITIVITY 
 
The determination of the critical notch angle may be formalized by deriving Eq. (4) with 
respect to ω and imposing the stationary condition. The following relationship is hence 
obtained: 
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By evaluating the derivatives λ’, β’ and ξ’ with respect to the notch opening angle ω, the 
inverse of Eq. (6) is plotted in Figs. 3 and 4, for the two geometries considered, providing the 

value of the critical notch opening angle ωc for a given α (or s) value. As it can be observed, 
in both the cases, ωc depends through s both on the material and the geometry. It is evident 
that the crack is the most dangerous V-notch (ωc=0°) only for extremely large notches and/or 
very brittle material (i.e., high fracture toughness and/or small tensile strength). All the FFM 
criteria are able to catch the minimum, although their predictions slightly differ from each 
other. Particularly, the PSLE approach generally provides the lowest ωc values, while the 
highest ωc values are obtained through the LSLE criterion.  
 

 
Fig. 3: Semi-infinite edge-notched slab under remote tensile load: critical notch-opening 
angle ωc vs. dimensionless notch depth α according to different FFM criteria. 

 
The problem could also be analyzed from the opposite point of view, that is by varying α (i.e., 
s), and keeping ω fixed in Eq. (4). For the sake of clarity, only the results obtained by 
applying the LSLE approach to the semi-infinite edge-notched slab are plotted in Fig. 5. It is 

evident that the minimum failure load is provided by the edge crack case only for α → ∞ (s → 

0), whereas it corresponds to the flat edge for α → 0 (s → ∞). In the intermediate cases, the 

minimum failure load is provided by a V-notch of amplitude ωc ranging from 0° up to 180° as 

α decreases from infinite to zero. In Fig. 5 also the envelope has been drawn, i.e. the line 
that is tangent to all the diagrams plotted keeping ω fixed, which provides the minimum 

achievable relative failure stress for each relative notch depth α. The graphic related to the 
center-notch case is very similar, as, qualitatively, those obtained by the other FFM criteria. 
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Fig. 4: Infinite center-notched slab under remote tensile load: critical notch-opening angle ωc 
vs. dimensionless notch depth α according to different FFM criteria. 
 

 
Fig. 5: Dimensionless failure load vs. dimensionless notch depth for a semi-infinite edge-
notched slab, according to the LSLE criterion. The black thick line represents the envelope of 
the other curves. 
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COMPARISON WITH EXPERIMENTAL DATA 
 
A comparison between experiments and theoretical predictions, provided by different FFM 
criteria, is performed in this section. In the case of finite geometries, notice that, by means of 
dimensional analysis, Eq. (4) can be rewritten as: 
 

)λ1(2

π
cr

ω
cr s

)ω,,(

)ω(ξ

P

P −=
hlhaf

 (7) 

 
where Pcr

ω and Pcr
π are the failure loads for a notch opening angle equal to ω and 180°, 

respectively, h is the specimen height and l its length. The shape function f replacing β, 
depends now not only on the amplitude but also on the relative notch depth and the 
slenderness ratio. Indeed, this latter dependence is practically negligible for tensile 
specimens with l/h>2 and for TPB specimens with l/h>8. The brittleness number now 

recovers the usual expression s=KIc/(σu√h).  
All the experimental data here considered [1-4] share the following common features: 
 
-The samples are edge V-notched: the notch radius is small enough not to affect the results. 
Moreover, specimens referring to TPB tests show a slenderness ratio l/h≈4, while, for tensile 
tests, l/h>2. 
-The loading is applied in mode I and fracture is of a brittle character. 
-The presence of a critical angle ωc rises from the evaluated failure loads, which do not 
increase strictly monotonically as a function of the notch opening angle ω. 
 

TPB tests on V-notched PMMA specimens carried out by Carpinteri [1], for instance, show 
the minimum failure load for ωc~45° (Fig. 6a). Similar results (ωc~40°) are obtained by 
Seweryn [2], testing double-edge notched tension (DENT) PMMA samples (Fig. 6b). 
Strandberg [3] performed tests on single edge notched tension (SENT) specimens made of 
soft annealed tool steel at –50°C. Although, in this case, the cracked specimens are the ones 
providing the minimum failure load, this lowest value, according to the Author himself, is due 
to pre-cracking procedure carried out to manufacture the cracked specimen and to a crack 
depth deviating by +16% from that related to the other tested geometries. For this reason, 
the fracture toughness value (as well as that of the tensile strength) were obtained from a 
best fit procedure in [3]. The same will obviously apply in the present study (Table 2). 
Moreover, since the failure load slightly decreases by passing from 30° to 60° and afterwards 
it increases monotonically with ω, ω~60° can be regarded as a minimum (Fig. 6c). 
Eventually, TPB tests carried out on polystyrene specimens [4] do not show a significant 
difference between the failure load for 60°-notch sample and 120°-notch sample (Fig. 6d) 
and the presence of a minimum between these two cases can be argued.  
In Fig. 6 there are also reported FFM predictions by means of Eq. 7. Shape functions are 
obtained either numerically [13] or by exploiting those already evaluated, as done for steel 
samples [3]: in this case, however, the shape function related to the crack-case has been re-
calculated. Material and structural properties, to what concerns different experiments, are 
reported in Table 2. 
As it can be seen from Fig. 6, a good agreement is generally found between experimental 
data and theoretical predictions. The highest values for the relative failure loads are provided 
by the PSLE criterion: its predictions slightly differ from those obtained by the other FFM 
criteria, which result to be very close. Notice that the LSLE approach always provides the 
lowest values. These behaviours also reflect on the critical angle ωc value, which is caught by 
all the FFM criteria (Table 2). For smaller s, the minimum is less marked (Fig. 6) and similar 
results are obtained from different approaches: while for DENT PMMA samples the critical 
value approaches the experimental one, for TPB PMMA specimens is lower. Note anyway,  
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Fig. 6: Relative failure loads vs. notch opening angle for different experimental tests: a) TPB, 
PMMA [1], b) DENT, PMMA [2], c) SENT, steel [3], d) TPB, polystyrene [4]. Experimental 
data (asterisks) and predictions related to different FFM criteria: LS (dashed line), LE 
(continuous thin line), PSLE (dotted line) and LSLE (continuous thick line).  
 
that no specimens with notch amplitude comprised between 0° and 45° were tested in [1]. 
For higher s (steel and polystyrene), the scattering between the predictions of the ωc value is 
slightly higher, especially for the PSLE criterion. Eventually, observe from Table 2 that the 
LSLE predictions on the critical angle result to be the closest to the experimental values and 
that the general trend obtained in Fig. 3 (i.e., the semi-infinite edge-notched geometry) is 
coherently recovered. 
 

Tests TPB, PMMA DENT, PMMA SENT, steel TPB, polystyrene 
σu (MPa) 123.80 104.90 2006.00 70.61 

KIc (MPa√m) 1.92 1.86 58.24 2.23 
s 0.0693 0.0756 0.1676 0.2354 

ωc (exp.) ~45° ~40° ~60° - 
ωc (LS)   24°   30°   48° 75° 
ωc (LE)   25°   32°   49° 80° 
ωc (PSLE)   21°   24°   32° 45° 
ωc (LSLE)   25°   34°   54° 87° 

 
Table 2: Material properties related to the experimental data considered in the present 
analysis and critical angle values ωc obtained experimentally and through different FFM 
criteria. 
 
CONCLUSIONS 
 
The presence of a critical angle providing the minimum failure load, in brittle or quasi-brittle 
structures containing edge and center re-entrant corners, is investigated. The study concerns 
both infinite and finite geometries, under different loading conditions. It is shown that a critical 



 8 

angle always exists and is more pronounced for large s values (i.e. relatively ductile 
materials and/or small structural sizes), while it becomes almost imperceptible for small s 
values: only in this case the crack tends to become the most dangerous configuration. 
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