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Introduction 

Most of the present and future nuclear fusion devices, like the ITER [1] tokamak under construction in 

Cadarache (France) at a cost of 10+ billion Euro in a collaboration between 7 parties (China, EU, India, Japan, South 

Korea, Russian Federation and USA), use superconducting (SC) magnets to generate the magnetic field needed for 

the plasma confinement. 

The ITER magnet system is made of four sub-systems, see Fig. 1: 18 Toroidal Field (TF) coils, a Central 

Solenoid (CS), 6 Poloidal Field coils (PF) and 18 Correction Coils (CC) [2]. 

 

Fig. 1: The ITER magnet system (reproduced from [2]). 

The ITER cryoplant guarantees that all coils are cooled at ~ 4.5 K to ensure a sufficient temperature margin in 

order to avoid the quench of the SC magnets during operation. For all magnets, the coolant is supercritical helium 

(SHe), at a pressure of 0.5-0.6 MPa. Dedicated cryogenic cooling loops extract the heat load from the magnets, 

releasing it to saturated liquid helium (LHe) baths, acting as thermal buffers in the transfer of the load to the 

cryoplant, see Fig. 2. 

The inductive operation of a tokamak is intrinsically pulsed, as the CS acts as the primary coil of a transformer, 

driving a toroidal current inside the secondary (i.e., the plasma). In order to drive this inductive current, the CS 

operates with variable current producing a variable magnetic field and this leads in the end to AC losses and eddy 

currents in the magnets, notwithstanding their superconducting nature. In addition, during the plasma burn, nuclear 

fusion reactions in the plasma result in a non-negligible nuclear heat load on the TF coils, notwithstanding the 

screening of the different components located between them and the plasma. As the cryoplant must be designed and 

sized considering the peak heat load during operation, such pulsed scenarios can significantly increase its cost. As a 



consequence, the smoothing of the heat load from the SC magnets to the cryoplant is being investigated [3, 4, 5], 

also in consideration of the fact that the SC magnet system and related cryogenics are responsible for 25-30% of the 

total cost of the plant. A dedicated experimental facility (HELIOS) was realized at CEA Grenoble (France) [6, 7] 

and different strategies are under consideration, both from the experimental [8, 9] and the computational [10, 11, 12, 

13] points of view. 

Computational tools implementing detailed models, such as the 4C code [14], can be used to develop and test 

different control strategies. However, such tools require a large computational effort because they typically provide 

a very detailed description of the flow inside the magnet, which, on the other hand, is not needed when the main 

concern is the heat load to the cryoplant. 

As an alternative, fast models have been developed to predict the heat load to the cryoplant, based on the 

simplification of the set of partial differential equations (PDEs) describing the physics of the system [15, 16, 17, 18].  

A radically different approach to develop a simplified model for the heat load to the LHe bath has been recently 

proposed [19], where the whole cryogenic circuit and the SC magnets have been lumped in a single Artificial Neural 

Network (ANN) [20], and also successfully applied to the computation of the heat load that is transferred to the LHe 

bath during the ITER CS operation [21]. Although this first ANN model could not yet deal with control strategies, it 

showed advantages in terms of computational effort with respect to both the full physics model (as implemented in 

the 4C code) and also to other simplified physical models [18], with a reduction by a factor ~10000 with respect to 

4C and allowing a simulation in ~1/300 of real time on a single i7-4810MQ core. 

The inputs to the ANN are the heat deposition/generation in the magnet while the outputs (which are also fed 

back as additional inputs of the ANN, if needed) are the helium temperature, pressure and mass flow rate at the inlet 

of the heat exchanger (HX), see [19]. As a difference with respect to the above-mentioned PDE-based simplified 

models, the ANNs are based on simple matrix-vector products; the physics content of the ANN model is contributed 

by the choice of physically justified input/output variables and by the training performed using either physics-based 

models or directly experimental data. 

More recently, the ANN approach has been further extended, using them to model the magnet alone [22], which 

has then been replaced in the physical 4C circuit module by the ANN black-box. This opened the opportunity to 

model a scenario with a control acting on the cooling loop. The results of the novel approach have been compared 

against 4C simulations and they have also been validated showing a good agreement against experimental data from 

the HELIOS loop [23]. 



 

Fig. 2: The ITER magnets cooling system (reproduced from [12]). CBs are the cold boxes, CTCB is the 

cryoplant termination cold box, CCB is the cold compressor box, ST are the structures, CPs are the 

cryopumps. 

The present paper is focused on the optimization of the different degrees of freedom that an ANN allows, 

including both its structure and its parameters (inputs, outputs, number of delays and of hidden neurons, see below). 

The two resulting ANN-based models for the assessment of control strategies for the ITER CS and TF magnet 

systems, respectively, are then presented. The capability of such models to predict the heat load on the cryoplant in a 

standard operating scenario with no controls is shown first; then the two models are used to assess the effectiveness 

of different mitigation strategies for the smoothing of the pulsed heat load to the cryoplant. Finally, the results of the 

ANN-based models are compared with 4C in the most successful regulated scenario, both in terms of accuracy and 

computational time. 

 

1. ANN-based models 

In this section the parametric study performed to optimize the ANNs structure and parameters, to best design 

the two ANN-based models developed for the ITER CS and TF coils cooling systems, is presented. 

1.1. Physical objects 

1.1.1. ITER CS 

The ITER CS magnet (Fig. 3), whose details can be found in [21], is constituted by 6 different modules, cooled 

in a hydraulic parallel by SHe in forced flow and releasing the heat load to a LHe bath through a HX located 

downstream of the circulator, see Fig. 4a. The three upper modules (CSU) are first connected in a tight parallel 

through suitable piping and manifolds, and only at a second level connected to the tight parallel between the CS 


















































