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Abstract—In this paper, we tackle the in-network recovery of
sparse signals with innovations. We assume that the nodes of the
network measure a signal composed by a common component
and an innovation, both sparse and unknown, according to the
joint sparsity model 1 (JSM-1). Acquisition is performed as
in compressed sensing, hence the number of measurements is
reduced. Our goal is to show that distributed algorithms based
on the alternating direction method of multipliers (ADMM) can
be efficient in this framework to recover both the common
and the individual components. Specifically, we define a suitable
functional and we show that ADMM can be implemented to
minimize it in a distributed way, leveraging local communication
between nodes. Moreover, we develop a second version of the
algorithm which requires only binary messaging, dramatically
reducing the transmission load.

I. INTRODUCTION

In the last few years, an increasing attention has been paid
to the implementation of the alternating direction method of
multipliers (ADMM, [1, Chapter 2]) for distributed problems
with sparsity constraints. On one hand, sparsity has many
applications and its study has been boosted by the development
of compressed sensing theory [2] in the last decade, which
states that signals with few non-zero components can be
recovered from a reduced number of measurements. On the
other hand, the development of distributed algorithms has
emerged due to the large diffusion of networked technologies,
and specifically has addressed those sparse problems in which
measurements are acquired by the nodes of a network [3]. Dis-
tributed compressed sensing [4] has then focused on different
sparsity models and reconstruction methodologies, considering
first centralized reconstruction at a fusion center that gathers
all the data from the network, and lately tackling the more
challenging in-network reconstruction problem [5]–[10].

In the framework of in-network reconstruction, the devel-
opment of distributed versions of ADMM is very recent.
Born in the 1970s, ADMM is not novel, but has been
recently rediscovered thanks to its efficiency in large-scale
computing systems. Its rationale is the merging of dual de-
composition and augmented Lagrangian techniques to tackle
convex optimization. In distributed optimization problems
over networks, the use of ADMM combined with consensus
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Grant agreement n.279848 - CRISP project, by the Spanish Government
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techniques has been largely studied in the last decade, see,
e.g., [11], [12]. Concerning problems with sparsity constraints,
an ADMM procedure has been presented in [5] to undertake
a distributed basis pursuit problem, and then generalized to
separable optimization problems [6]. Parsimonious in terms
of communication steps, the distributed ADMM algorithm
introduced in [5], named D-ADDM, has the drawback of
requiring a coloring scheme for the underlying communication
graph for synchronization purposes: the nodes with same color
(i.e., nodes that are not neighbors) operate concurrently at
same time, using information from the neighbors. Concerning
general multi-agent problems, a distributed ADMM scheme
has been also studied in [13], which is proved to converge
and exhibit a faster convergence rate than state-of-the-art
subgradient methods (specifically the error is O

(
1
t

)
vs O

(
1√
t

)
,

t being the iteration step). Again synchronization is an issue:
this scheme requires a sequential update of the nodes. A
further asynchronous version has been lately studied in [14];
in [15] the synchronization problem has been addressed for
consensus optimization.

In [5], [6], [13], [14], [16], each node i of the network is
associated with a local variable xi and a function fi, so that the
functional f that one aims to minimize is separable and given
by f(x) =

∑
i fi(xi), where x = (x1, x2, . . . )

T . Moreover,
the variables are coupled by a linear constraint Ex = q where
E and q are matrices of consistent dimensions. As in [5],
this model can be used when the xi’s are local copies of a
unique common signal, which implies that E imposes (local)
consensus constraints.

The aim of this paper is to study a different and more
general model, where different sparse signals with correlated
support have to be in-network recovered. Specifically, we
address the joint sparsity model 1 (JSM-1, [3], [4]), which
assumes that each node has to recover a signal given by the
sum of a component common to all the network nodes and an
individual innovation component. Both components are sparse
and unknown. From a mathematical viewpoint, each node
is then associated with two variables, one for the common
component (on which consensus constraints are expected), and
one for the individual component. As we will see, this has
some advantages in the ADMM iterative procedure in terms
of synchronization: the two variables are updated sequentially,
in such a way so that all the nodes can proceed in parallel, in
contrast to [5], [13].

In practice, many applications can be represented using
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JSM-1. For example, JSM-1 can describe a sensor network
in which a common signal is measured, but different values
are expected at each sensor, e.g., due to a shift in the spatial
position or noise. The goal in this case may envisage both
the reconstruction of the signal and the evaluation of the shift,
which can be used, for example, for localization purposes. A
more sophisticated example comes from distributed spectrum
sensing in cooperative cognitive networks, whose aim is the
evaluation of the spectrum occupancy through a network
of collaborating cognitive radios [17], [18]. Sparsity can be
exploited to build a suitable model for this problem, which ac-
tually consists in the estimation of a common component (due
to the so-called primary users) and innovation components
(due to secondary users). In [18, Section IV] a model very
similar to JSM-1 was proposed, with an additional constraint
of orthogonality between common component and innovations.
A model with no innovations was instead considered in [17],
where the problem was formulated as a distributed Lasso
and tackled again via distributed ADMM. Sparsity was there
assumed both in frequency and space.

Centralized reconstruction for JSM-1 has already been
addressed in the literature. In [4] some asymptotic bounds
were proved, and a single linear program algorithm was used
for reconstruction, but its complexity was high. In [19], the
Texas Hold’ Em algorithm was used, which first estimates the
common part by computing an average of the measurements
(the innovation is considered as a noise with zero mean),
and then exploits it to recover the innovations. This approach
is guaranteed to work when the innovations are incoherent,
and performance bounds are given in [19, Theorem 3.1]. In
[20], [21] the JSM-1 problem is tackled assuming to have
side information available, more precisely the decoder exactly
knows one of the signals.

In this paper, in contrast, we study a distributed approach
to JSM-1, which has been scarcely studied yet: to the best
of our knowledge, the only relevant contributions are in the
spectrum sensing framework [18]. As in [18], our approach is
based on a Lasso reformulation of the problem that we tackle
with ADMM techniques. We start by showing a centralized
approach for reconstruction with ADMM, which turns out to
be a simple case of classical ADMM implementation [1]; af-
terwards, we move to the distributed setting and propose a dis-
tributed ADMM, whose convergence is discussed using results
from the recent work [22]. Further, we also propose a second
version of distributed ADMM in which only binary messaging
is required, which dramatically reduces the transmission load.
We remark that the choice of considering ADMM for JSM-1
instead of trying to distribute algorithms like [4], [19]–[21],
that are specific to JSM-1, has been motivated by ADMM
efficiency, mathematical rigor, inclination to be distributed, and
ease to extend to more general multi-agent contexts [13], [14].
These properties have spurred new interest towards ADMM,
whose theory up to a few years ago was complete only in
the standard case where the sum of two convex functions
was considered. Results on the generalized case, where the
sum of any number of convex functions is assumed (which is
fundamental to work with networked systems), are very recent
[13], [22].

The paper is organized as follows. In Section II, we formally
present the model and the problem we undertake. Afterwards,
we review the ADMM procedure (Section III) and explicitly
derive the centralized ADMM for JSM-1 (Section IV). In
Section V we introduce our distributed ADMM and discuss
its convergence, and in Section VI we introduce a new version
that only requires binary messaging. Section VII is then
devoted to numerical results: convergence times for our dis-
tributed ADMM are analyzed and compared to the centralized
algorithm, and performance results in terms of mean square
error are shown and compared with Texas Hold’Em, which
actually represents the state of the art for JSM-1 problems.
Finally, some concluding remarks are collected in Section
VIII.

A. Notation

Before proceeding let us introduce some notation. Given
x ∈ Rn, the `p-norm of x is denoted by ‖x‖p for p ∈ N+,
whereas ‖x‖0 gives the number of non-zero elements of x.
The identity matrix of size L × L will be denoted by IL. A
L×N matrix with all entries zero will be denoted by 0L×N .
The L-length vectors with all zero entries and ones will be
denoted by 0L and 1L, respectively. Notation A ⊗ B stands
for the Kronecker product of matrices A and B. A graph G is
defined as G := (N , E) where N and E stand for the set of
vertices and edges with cardinality |N | and |E| respectively.

II. SIGNAL MODEL

Consider a network composed of N nodes whose connec-
tivity is described through the connected graph G = (N , E).
Accordingly, node i ∈ N can communicate with node j ∈ N
if the edge {i, j} is included in E , or, in other words, j belongs
to the neighborhood set of i, denoted as Ni (see Figure 1).

In this scenario, each node observes a compressed version
of a signal {xi}i∈N ∈ RL through a set of linear and local
measurements, namely

yi = Aixi + ηi ; i ∈ N , (1)

where Ai ∈ RM×L (with M � L) stands for the measurement
matrix at the i-th node and ηi ∈ RM for additive noise. We
further assume that the observed signals follow the JSM-1
model [3], namely

xi = Ψzc + Φzi ; i ∈ N (2)

whith Ψ,Φ ∈ RL×L, and zc, zi ∈ RL. That is, the observed
signal at each node is composed of a common component
plus an innovation component, and we consider that these
components are sparse in some domain, specified by the
orthogonal bases Ψ and Φ. Hence, vectors zc and {zi}, which
are both unknown and sparse, contain the signal coefficients
in such domains, with the number of non-zero elements
given by kc = ‖zc‖0 and {‖zi‖0} = ki, respectively. As
for the signal supports, defined as Ωi := {l|zi,l 6= 0} for
i ∈ N and Ωc := {l|zc,l 6= 0}, they do not necessarily
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Figure 1. Example of 7 nodes with their respective observations connected
according to a random graph.

Algorithm 1 Computation of zc(t+ 1), {zi(t+ 1)}
1: Initialize zνc = 0L, {zνi } = 0L and ν = 0
2: while ‖zν+1

c − zνc ‖22 +
∑N
i=1 ‖z

ν+1
i − zνi ‖22 ≤ ε do

3: ν ← ν + 1
4: for i = 1, . . . , N do
5: zνi ← S τ1ρ

[
xi(t+ 1)− zνc + λi(t)

ρ

]
6: end for
7: zνc ← S τ2ρ

[∑N
i=1

1
N

(
xi(t+ 1)− zνi + λi(t)

ρ

)]
8: end while
9: zc(t+ 1)← zνc

10: zi(t+ 1)← zνi for i = 1, . . . , N

coincide. Hereinafter, to ease the notation, we will consider1

that Ψ = Φ = IL.
The ultimate goal is to reconstruct the triplets {xi, zc, zi}

at each node in a distributed manner. To that end, we attempt
to solve the following convex optimization problem:

min
{xi,zi},zc

1

2

N∑
i=1

(
‖yi −Aixi‖22 + τ1 ‖zi‖1 + τ2 ‖zc‖1

)
(3)

s.t. xi = zc + zi; i = 1, . . . , N, (4)

with τ1 > 0 and τ2 > 0 denoting weights aimed to promote
sparsity in the individual and common components, respec-
tively.

III. ADMM REVIEW

In order to make the manuscript self-contained, this section
briefly reviews the classical ADMM. For a detailed survey on
this optimization method, the interested reader is referred to
the seminal paper [1].

Let us consider the following structured convex optimization
problem:

min
x,z

f(x) + g(z) (5)

s.t. Gx+Bz − c = 0 (6)

with variables x ∈ Rn, z ∈ Rm, c ∈ Rp, matrices G ∈ Rp×n,
B ∈ Rp×m and convex functions f(x) : Rn → R and g(z) :

1However, the proposed algorithms also work for the case of different
sparsity bases with minor modifications.

Rm → R. In ADMM, the cost function is augmented by a
quadratic term, thus yielding:

min
x,z

f(x) + g(z) +
ρ

2
‖Ax+Bz − c‖22 (7)

s.t. Gx+Bz − c = 0, (8)

with ρ > 0. The augmented problem of (7)–(8) is still convex
and its Lagrangian reads:

L(x, z, λ) = f(x) + g(z) +
ρ

2
‖Ax+Bz − c‖22

+ λT (Gx+Bz − c) (9)

with λ ∈ Rp standing for the Lagrangian multipliers associated
with the p constrains in (8). Essentially, ADMM consists in
iterating the primal and dual variables of (9) as follows:

x(t+ 1) = argmin
x
L (x, z(t), λ(t)) (10)

z(t+ 1) = argmin
z
L (x(t+ 1), z, λ(t)) (11)

λ(t+ 1) = λ(t+ 1) + ρ (Gx(t+ 1) +Bz(t+ 1)− c) (12)

As for the proof of convergence the interested reader is
referred to [1, Appendix A].

IV. ADMM FOR JSM-1
Using the classical ADMM procedure described in the

previous section, we now address the problem of centralized
reconstruction in JSM-1. In the centralized scenario, it is
assumed that sensors convey both their measurements {yi} and
measurement matrices {Ai} to a central coordinator where the
triplets {xi, zc, zi} are reconstructed. As for the reconstruction
method, we propose an ADMM algorithm, which, to the best
of our knowledge, has not been yet addressed in the literature
for JSM-1. We will use it as basis to develop our distributed
schemes, which are our main purpose, and as benchmark to
test them.

First, note that the problem of (3)–(4) can be rewrit-
ten as the standard problem of (5)–(6) by defining x =[
xT1 , x

T
2 , . . . x

T
N

]T
, z =

[
zTc , z

T
1 , z

T
2 , . . . , z

T
N

]T
, G = IN ·L,

c = 0N ·L and matrix B = [1N ⊗ IL IN ⊗ IL]. Therefore,
following the rationale of (7), we can augment the cost
function and obtain:

min
{xi,zi},zc

1

2

N∑
i=1

(
‖yi −Aixi‖22 + τ1 ‖zi‖1 + τ2 ‖zc‖1

+
ρ

2
‖xi − zi − zc‖22

)
(13)

s.t. xi = zi + zc; i = 1, . . . , N (14)

where ρ is a positive constant. Thus, the Lagrangian of the
augmented problem reads:

L(x, z;λ) =
1

2

N∑
i=1

‖yi −Aixi‖22 +

N∑
i=1

τ1 ‖zi‖1 +Nτ2 ‖zc‖1

+

N∑
i=1

ρ

2
‖xi − zi − zc‖22

+

N∑
i=1

λTi (xi − zi − zc) , (15)
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with {λi} ∈ Rn standing for the Lagrangian multipliers
associated with the constraints in (14). Hence, according
Section III, the ADMM iterates2 are:

xi(t+ 1) = (ρIL +ATi Ai)
−1(ATi yi + ρ(zi(t) + zc(t))− λi(t))

zc(t+ 1), {zi(t+ 1)} = argmin
zc,{zi}

L(x(t+ 1), z;λ(t))

λi(t+ 1) = λi(t) + ρ (xi(t+ 1)− zi(t+ 1)− zc(t+ 1)) .
(16)

As for the minimization step of (16), the solution must
satisfy the following system of equations:

∂ziL(x(t+ 1), z;λ(t)) = 0L; i ∈ N , (17)
∂zcL(x(t+ 1), z;λ(t)) = 0L, (18)

with ∂xf denoting the subgradient of f with respect to x (see
definition in [23]). From (17), the optimal variables {zi(t +
1), zc(t+ 1)} must satisfy:

τ1si − ρ(xi(t+ 1)

− zi(t+ 1)− zc(t+ 1))− λi(t) = 0L (19)

for i ∈ N . In the equation above, the L-length vector si stands
for the subgradient of ‖zi‖1 evaluated at zi(t + 1) and its
components are si,l = 1 if zi,l(t + 1) > 0, si,l = −1 for
zi,l(t+ 1) < 0 and

si,l =
ρ

τ1
(xi,l(t+ 1)− zc,l(t+ 1))− λi,l(t)

τ1
∈ (−1, 1) (20)

for zi,l(t+1) = 0. From all the above and assuming zc(t+1)
to be known, zi(t+ 1) reads

zi(t+ 1) = S τ1
ρ

[
xi(t+ 1)− zc(t+ 1) +

λi(t)

ρ

]
, (21)

with Sα : Rn → Rn standing for the component-wise soft-
thresholding operator. That is, for any x ∈ R and α > 0

Sα(x) =

 x− α if x > α
x+ α if x < −α
0 otherwise.

(22)

As for the common component zc(t + 1), let sc be the
subgradient of ‖zc‖1 evaluated at zc(t+ 1) with entries given
by sc,l = 1 if zc,l(t+1) > 0, sc,l = −1 for zc,l(t+1) < 0 and
sc,l ∈ (−1, 1) for zc,l(t+1) = 0 for l = 1, . . . , L. Accordingly,
we have that

∂zcL(x(t+ 1), z;λ(t)) = Nτ2sc −
N∑
i=1

λi(t) (23)

−
N∑
i=1

ρ(xi(t+ 1)− zi(t+ 1)− zc(t+ 1)) (24)

Hence, assuming {zi(t+ 1)} known, zc(t+ 1) is given by:

zc(t+ 1) = S τ2
ρ

[
N∑
i=1

1

N

(
xi(t+ 1)− zi(t+ 1) +

λi(t)

ρ

)]
.

(25)

2Note that matrix (ρI+AT
i Ai)

−1 has to be computed only once. To lower
the computational complexity, one may also resort to the matrix inversion
lemma.

Bearing all the above in mind, we propose a coordinate
descent method to find the set of zc(t + 1), {zi(t + 1)}.
Essentially, we alternate minimizations with respect to zc(t+1)
and {zi} until convergence. This procedure is summarized in
Algorithm 1.

Proposition 1. The coordinate descent method proposed in
Algorithm 1 converges to the stationary solution of (17)–(18).

Proof. The minimization of the augmented Lagrangian with
respect to zc(t + 1) and {zi(t + 1)} turns out to be the
minimization of a composite convex objective function, i.e.
the sum of a smooth convex term and separable nonsmooth
terms (`1-norms). In this case, the block coordinate descent
method is known to converge to the optimal solution (see [24]
for further details).

Besides, note that from (24) and (20), the stationary condi-
tion of (18) can be rewritten as follows:

sc =
τ1
Nτ2

N∑
i=1

si (26)

From (26), we conclude that the condition τ2 ≤ τ1 must hold.
To see this, consider the opposite case, i.e. when τ2 > τ1, and
assume that si,l = 1 for all l = 1, . . . , L. Then, from (26), we
have that sc,l > 1 which contradicts the definition of sc,l since
sc,l ∈ [−1, 1] . Finally, we remark that the procedure proposed
in this section is based on the standard framework of ADMM,
therefore the following convergence result is guaranteed.

Proposition 2. The iterative procedure (16) (with Algorithm
1) converges to the optimal operating point.

Proof. The proof can be deduced by the classical ADMM
proof of convergence discussed in [1, Appendix A].

V. DISTRIBUTED ADMM FOR JSM-1

This section goes one step beyond Section IV and attempts
to find a distributed reconstruction method. To that end, we
propose to solve the following optimization problem:

min
{xi,zi,ζi,ci}

1

2

N∑
i=1

‖yi −Aixi‖22 + τ1 ‖zi‖1 + τ2 ‖ζi‖1 (27)

s.t. xi = zi + ζi; i ∈ N (28)

ζi = cj ; j ∈ Ñi (29)

with Ñi = Ni∪i. Here, we have introduced the local variables
{ζi}, {ci} that must be interpreted as the local and neighbors
guesses on the common component. The consensus constraint
of (29) and the fact that G is a connected graph make the
problem above still equivalent to (3). In order to solve (27)–
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(29), we resort to the generalized ADMM of [22] and build
the following augmented cost function:

min
{xi,zi,ζi,ci}

1

2

N∑
i=1

{
‖yi −Aixi‖22 + τ1 ‖zi‖1 + τ2 ‖ζi‖1

+
ρ

2
‖xi − zi − ζi‖22 +

θ

2

∑
j∈Ñi

‖ζi − cj‖22

}
(30)

s.t. xi = zi + ζi; i ∈ N (31)

ζi = cj ; j ∈ Ñi (32)

with ρ and θ standing for positive constants. As in the cen-
tralized approach (see Section IV), we write the Lagrangian:

L(x, z, ζ;λ, µ) =
1

2

N∑
i=1

{
‖yi −Aixi‖22 + τ1 ‖zi‖1 + τ2 ‖ζi‖1

+
ρ

2
‖xi − zi − ζi‖22 +

θ

2

∑
j∈Ñi

‖ζi − cj‖22

+ λTi (xi − zi − ζi)

+
∑
j∈Ñi

µTi,j(ζi − cj)
}
.

(33)

Now, in an attempt to find a distributed solution to
(30), we propose to sequentially update the primal variables
{xi, zi, ζi, ci} according to

xi(t+ 1) = (ρIL +ATi Ai)
−1(ATi yi + ρ(zi(t) + ζi(t))− λTi )

zi(t+ 1) = S τ1
ρ

[
(xi(t+ 1)− ζi(t)) +

λi(t)

ρ

]
ζi(t+ 1) = S τ2

ρ+θ|Ñi|

[
1

ρ+ θ|Ñi|
(
ρ (xi(t+ 1)− zi(t+ 1))

+ θ
∑
j∈Ñi

(
cj(t)−

µi,j(t)

θ

)
+ λi(t)

)]
(34)

ci(t+ 1) =
1

|Ñi|

∑
j:i∈Ñj

(
ζj(t+ 1) +

µj,i(t)

θ

)
; (35)

followed by the ascent updates of the dual variables, that is,

λi(t+ 1) = λi(t) + α (xi(t+ 1)− zi(t+ 1)− ζi(t+ 1))

µi,j(t+ 1) = µi,j(t) + κ (ζi(t+ 1)− cj(t+ 1)) ; j ∈ Ñi,

where {λi} and {µi,j} are the Lagrangian multipliers as-
sociated with constraints (31) and (32), respectively, and
α and κ are positive constants3. Interestingly, this iterative
method can be readily implemented in a distributed manner
by exchanging information among neighbor nodes only. The
proposed distributed ADMM for JSM-1 (referred to in the
sequel as DADMM), is summarized in Algorithm 2. Regarding
the convergence, applying the arguments in [22], we can prove
the following result.

Proposition 3. Algorithm 2 converges to an optimal solution.

3In practice, we set α = ρ and κ = β.

Proof. The reader is referred to Appendix A for the proof.

Interestingly, Algorithm 2 requires τ2 ≤ τ1 to achieve
cooperation among the nodes. To see that, assume that at
iteration t = 1 we have zi,l(t + 1) > 0 (the same reasoning
applies for zi,l(t+ 1) < 0 too). In this case, we have in step
8 of Algorithm 2 that ζi(t + 1) = S τ2

ρ+θ|Ñi|

[
τ1

ρ+θ|Ñi|

]
which,

according to the definition of the soft-thresholding operator,
yields 0 if τ2 > τ1. Then, if τ2 > τ1, by iterating the algorithm
one can observe that ζi,l(t) = ci,l(t) = 0 for any t > 0,
which means that each sensor performs the reconstruction in
an isolated manner.

Algorithm 2 Distributed ADMM (DADMM) for JSM-1
1: for all i ∈ N do
2: Initialize variables:

xi(1) = 0L; zi(1) = 0L; ζi(1) = 0L; ci(1) = 0L and
λi = 0L

3: end for
4: for t = 1, . . . , Tmax do
5: for all i ∈ N do
6: xi(t+1)← (ρI+ATi Ai)

−1(ATi yi+ρ(zi(t)+ζi(t))−
λi(t)

T )

7: zi(t+ 1)← S τ1
ρ

[
(xi(t+ 1)− ζi(t)) + λi(t)

ρ

]
8: ζi(t+1)← S τ2

ρ+θ|Ñi|

[
1

ρ+θ|Ñi|

(
ρ (xi(t+ 1)− zi(t+ 1))+

θ
∑
j∈Ni

(
cj(t)− µi,j(t)

θ

)
+ λi(t)

)]
9: Broadcast ζi(t+ 1) to each node j with j ∈ Ñi

10: ci(t+ 1)← 1
|Ñi|

∑
j:i∈Ñj

(
ζj(t+ 1) +

µj,i(t)
θ

)
11: Broadcast ci(t+ 1) to each node j with j ∈ Ñi
12: λi(t+1)← λi(t)+ρ

(
xi(t+1)−zi(t+1)−ζi(t+1)

)
13: for all j ∈ Ñi do
14: µi,j(t+1)← µi,j(t+1)+θ (ζi(t+ 1)− cj(t+ 1))
15: end for
16: for all j : i ∈ Ñj do
17: µj,i(t+ 1)← µj,i(t) + θ (ζj(t+ 1)− ci(t+ 1))
18: end for
19: end for
20: end for

VI. DISTRIBUTED ADMM WITH 1 BIT MESSAGES

The main drawback of the proposed DADMM, and the
distributed algorithms in general (i.e. [13]), scheme is the large
amount of information that needs to be exchanged among
neighboring nodes [i.e. ζi(t + 1) and ci(t + 1)] in each
iteration). This in turn results in a large energy consumption
and reduced network lifetime. To circumvent that, we propose
to quantize the exchanged variables with 1 bit only. In order
to retain most of the advantages of the scheme, we replace the
exact minimization updates of primal variables (34) and (35)
(steps 8 and 10 in Algorithm 2) by approximate minimization
updates based on the subgradient method, that is

ζi(t+ 1) = ζi(t)− ε sign
(
gζti

)
(36)

ci(t+ 1) = ci(t)− ε sign
(
gcti

)
, (37)



6

where ε denotes the step length, gζti and gcti stand for the
subgradient of the augmented Lagrangian with respect to ζi
and ci at time t, and sign(x) is defined component-wise
as sign(x) = 1 if x ≥ 0 and sign(x) = −1 otherwise.
Consequently, in DADMM-1bit nodes only need to broadcast
the sign of the innovations, namely sign(gζti ) and sign(gcti),
in steps 9 and 11 of Algorithm 2.

As for the computation of gζti , note that

gζti := τ2s− ρ(xi(t+ 1)− zi(t+ 1)− ζi(t))− λi(t)

+
∑
j∈Ñi

θ (ζi(t)− cj(t)) + µi,j(t), (38)

where the L-length vector s stands for the subgradient of
‖ζi(t)‖1. Similarly, for gcti we have that

gcti := −θ
∑
j:i∈Ñj

(
ζj(t)− ci(t) +

µj,i(t)

θ

)
. (39)

VII. NUMERICAL RESULTS

In the simulations, we consider signals {xi} of length
L = 100 with sparsity levels ki + kc = 10. The supports
of the common and innovation signals {zc, zi} are generated
uniformly at random, with non-zero elements drawn from a
standard Gaussian distribution. As performance metric, we
adopt the normalized mean square error, which for a generic
k-sparse signal x is defined as

MSE(x) =
1

kσ2
x

‖x̂− x‖22

with x̂ standing for the reconstruction of x and σ2
x for the

average power of the non-zero values.
First, Figure 2 compares, in the case of noiseless measure-

ments, the centralized ADMM with the Combined Community
Texas Hold ’Em algorithm, Texas in short, proposed in [25].
In particular, performances are measured by the average MSE
incurred in the reconstruction of {xi, zi, zc} when the sparsity
level of the common component varies, but the total sparsity
level is kept constant, i.e. ki + kc = 10. Numerical results
reveal that ADMM outperforms Texas Algorithm in all cases.
This is more evident for low values of kc, where the iterative
procedure of the proposed ADMM that jointly reconstructs
the common and innovation signals pays off. On the contrary,
for larger values of kc, Texas performance approaches that
of ADMM. This follows from the fact that, in this region,
the common signal may be reconstructed quite accurately by
simply treating the innovation components as additive noise.
As for the noisy scenario, Figure 3 reports the attained MSE in
the reconstruction of {xi, zi, zc} as a function of the SNR in
the measurements. Interestingly, Texas is able to reconstruct
the common signal more accurately than ADMM when the
SNR is low. However, it is worth noting that ADMM exhibits
a lower MSE in the reconstruction of {xi} for the whole range
of SNR.

Next, Figure 4 depicts the attained MSE for the three
proposed ADMM reconstruction methods (DADMM-1bit is
tested for different values of ε defined in (36)). In this setting,
we have considered M = 25 and a regular graph with

degree d = 5 for the distributed cases. Unsurprisingly, the
centralized approach converges much faster than its distributed
counterparts. Still, both the DADMM and the DADMM-
1bit with ε = 0.01 also achieve perfect reconstruction. For
DADMM-1bit, we observe that ε impacts on the accuracy of
the estimates and on the convergence speed: when ε increases,
the algorithm converges faster at the price of less accurate
estimation. Besides, this also explains the MSE oscillations
for large values of ε. More interestingly, for small values,
like ε = 0.01, DADMM-1bit performs virtually identical
to DADMM at the expense of 3 times more iterations to
converge. From a signalling viewpoint this is still favorable:
if, for instance, real values can be quantized over 16 bits, the
signalling ratio is 3/16.

In an scenario with a reduced number of measurements
(i.e. M = 20) , Figure 5 shows the attained MSE in the
reconstruction of the individual (zi) and common signals (zc).
Again, all exhibit an identical performance after convergence.
Interestingly, all algorithms achieve perfect reconstruction of
the common component zc thanks to the redundancy in the
number of node measurements but are unable to reconstruct
the innovations. To illustrate this point, we show in Figure
6 the MSE in reconstruction of the common and innovation
components as a function of the number of measurements per
sensor. As it can be observed, 18 measurements per sensor may
suffice for an accurate reconstruction of the common signal.
On the contrary, for an acceptable reconstruction quality on the
innovation components one may need more than 24 measure-
ments per sensor. Next, in Figure 7, we compare the DADMM
for JSM-1 to a general distributed ADMM strategy, called
in the sequel DADMM-c. DADMM-c first aims to achieve
consensus on the common signal by considering the innovation
components as noise4. After this consensus step, each sen-
sors performs the reconstruction of its innovation component
independently by an ADMM reconstruction method. Figure
7 shows the average MSE versus the sparsity level of the
common signal. As we can observe, DADMM outperforms
DADMM-c for the whole range of kc. This result proves
that the jointly reconstruction of the common and innovation
components pays off.

Finally, Figure 8 shows the attained MSE versus SNR
experienced in the sensors measurements for the distributed
ADMM algorithms proposed in this paper. Numerical results
reveal that DADMM is more robust to noisy measurements
than its 1-bit counterpart.

VIII. CONCLUSIONS

In this paper we have addressed the problem of in-network
reconstruction of jointly sparse signals with innovations. In
this scenario, the signal model accounts for a certain structure
on the sensor observations. That is, each sensor signal turns
out to be the combination of a common sparse signal plus
an innovation sparse component. As for the reconstruction
method, we have proposed to solve a Lasso-type problem by
means of ADMM due to its efficiency and fast convergence

4Note that this can be done by setting zi(t+1) = 0 in Step 7 of Algorithm
2.



7

0 2 4 6 8

10−2

10−1

100

101

Sparsity level of the common component kc

M
S
E

Comm. signal (Texas)
Indiv. signal. (Texas)
Signal (Texas)
Comm. signal (ADMM)
Indiv. signal (ADMM)
Signal (ADMM)

Figure 2. MSE in the reconstruction of {zi}, zc vs the sparsity level of the
common component kc (N = 20, M = 25, ki = 10−kc, L = 100, d = 5,
τ1 = 3e− 2, τ2 = 1e− 2).

properties. First, we have addressed the centralized scenario,
where all sensor measurements are collected at a fusion center.
In this case, we have derived an ADMM algorithm that
jointly reconstructs the common and innovation signals. The
proposed algorithm, which is based on the classical framework
of ADMM, is shown to converge to the optimal operating
point. Next, we have addressed the in-network reconstruction
scenario, in which nodes must reconstruct their observed sig-
nals distributedly and without the aid of a fusion center. In this
setting, the Lasso formulation has been modified accordingly
and a distributed ADMM scheme has been proposed. To our
best knowledge, this is the first distributed algorithm proposed
for JSM-1. In particular, the distributed ADMM can be cast
as the generalized ADMM, in which there exists more than
two primal minimization blocks per algorithm iteration. Then,
by standing on recent results on the generalized ADMM, we
have proved that our solution satisfies the necessary conditions
for convergence. Next, we have proposed modified version of
the distributed ADMM, which merely requires the exchange
of binary messages between neighboring nodes. Numerical
results have revealed that the centralized ADMM outperforms
other state-of-the-art methods and that the two distributed
ADMM schemes converge to the centralized ADMM solution
in a reasonable number of iterations. Interestingly, the 1-bit
version is shown to reduce the total number of transmitted
bits.

APPENDIX
CONVERGENCE OF DADMM

To prove the convergence of Algorithm 2, we stand on the
results of [22]. To that end, we first pose the optimization
problem of (27)–(29) as in [22] and then show that our
problem satisfy the assumptions [22, Assumption A.(a)-(f),
Corollary 3.1] for convergence.
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M
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Indiv. signal. (Texas)
Signal (Texas)
Comm. signal (ADMM)
Indiv. signal. (ADMM)
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Figure 3. MSE in the (centralized) reconstruction of {zi}, zc vs SNR of
the measurements (N = 20, M = 25, kc = ki = 5, L = 100, d = 5,
τ1 = 3e− 2, τ2 = 1e− 2, ρ = 0.01).
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Figure 4. MSE in the reconstruction of {xi} vs iteration number (N = 20,
M = 25, ki = kc = 5, L = 100, d = 5, τ1 = 3 · 10−3, τ2 = 6 · 10−4,
ρ = θ = 0.01).

Define vectors x =
[
xT1 , x

T
2 , . . . , x

T
N

]T
,

z =
[
zT1 , z

T
2 , . . . , z

T
N

]T
, ζ =

[
ζT1 , ζ

T
2 , . . . , ζ

T
N

]T
,

c =
[
cT1 , c

T
2 , . . . , c

T
N

]T
and functions

f1(x) =

N∑
i=1

‖yi −Aixi‖22

f2(z) = τ1

N∑
i=1

‖zi‖1

f3(ζ) = τ2

N∑
i=1

‖ζi‖1

f4(c) = 0

(40)

Then, the problem in (27)–(29) can be conveniently rewrit-
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Figure 5. MSE in the reconstruction of {zi} and zc vs iteration number
(N = 20, M = 20, ki = kc = 5, L = 100, d = 5, τ1 = 3 · 10−3,
τ2 = 6 · 10−4, ρ = θ = 0.01).
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Figure 6. MSE attained by DADMM in the reconstruction of {zi}, zc and
xi vs the number of measurements per sensor M (N = 20, M = 25,
ki = 10− kc, L = 100, d = 5, τ1 = 3e− 2, τ2 = 1e− 2).

ten as follows:

min
{x,z,ζ,c}

f1(x) + f2(z) + f3(ζ) + f4(c) (41)

s.t. E1x+ E2z + E3ζ + E4c = 0NL+N(d+1) (42)

where, for the sake of notation, we have considered that G is
a regular graph of degree d. Matrices E1, E2, E3 and E4 are
defined as follows:

E1 =
[
ẼT1 0TNL(d+1)×NL

]T
E2 =

[
ẼT2 0TNL(d+1)×NL

]T
E3 =

[
ẼT3 ĚT3

]T
E4 =

[
0TNL×NL BT1 · · · BTN

]T
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Figure 7. MSE in the (distributed) reconstruction of {zi}, zc vs kc (N = 20,
M = 25, d = 5 L = 100, d = 5, ki +kc = 10, τ1 = 3e−2, τ2 = 1e−4,
ρ = θ = 0.01).
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Figure 8. MSE in the (distributed) reconstruction of {zi}, zc vs SNR of the
measurements (N = 20, M = 25, d = 5 L = 100, d = 5, τ1 = 3e − 2,
τ2 = 1e− 2, ρ = θ = 0.01, ε = 0.01).

where Ẽ1 is N×N block diagonal matrix with diagonal blocks
given by the identity matrix IL. Similarly, Ẽ2 = Ẽ3 = −Ẽ1

and

ĚT3 = IN ⊗
(
1(d+1) ⊗ IL

)
(43)

Finally, Bi is defined in blocks as follows:

Bi =


B̃

(i)
1,1 . . . B̃

(i)
1,N

...
. . .

...
B̃

(i)
d+1,1 . . . B̃

(i)
d+1,N

 (44)

with

B̃
(i)
k,j =

{
−IL if j ∈ Ñi \ {0, . . . , j − 1}
0L×L otherwise

(45)



9

With the equivalent formulation of (27)–(42) we only need to
prove that our problem satisfy the following set of assumptions
(see [22, Assumption A.(a)-(f), Corollary 3.1])

a) The global minimum of (27)–(29) exists and can be
attained.
This naturally comes from the construction of the prob-
lem.

b) Let x̃1 = x, x̃2 = z, x̃3 = ζ, x̃4 = c. For any
k ∈ {1, 2, 3, 4} the functions (40) are decomposable as
follows:

fk(x̃k) = gk(Ãkx̃k) + hk(x̃k) (46)

where gk and hk are both convex and continuous over
their domains and Ãk are some matrices of proper
dimensions.
In our setting, on one hand, we have that h1(x̃1) = 0,
h2(x̃2) = f2(x̃2), h3(x̃3) = f3(x̃3), and h4(x̃4) = 0.
On the other, gk(Ãkx̃k) = 0 for k = 2, 3, 4 and
g1(Ã1x̃1) = f1(x̃1) with Ã1 being block-diagonal
matrix, i.e. Ã1 = diag [A1, A2, . . . , AN ]. Consequently,
our functions satisfy this assumption.

c) Each gk is strictly convex and continuously differentiable
over its domain with a uniform Lipschitz continuous
gradient.
In our case, we only need to prove that the `2 norm of
the Hessian of g1 is bounded5, that is,

‖∇2g1(Ãx)‖2 = ‖ÃT Ã‖2 ≤ κ

for some positive constant κ.
d) Functions hk(x̃k), k ∈ {1, 2, 3, 4} are polyhedral func-

tions.
To show this, note that functions h2 and h3 are both
the sum of polyhedral functions (`1 norms) and, hence,
from [26, Proposition 5.1.8], they are polyhedral too.
Besides, functions h1 and h4 are particular cases of a
linear function so they are also polyhedral.

e) For any fixed and finite λ, µ and ξ > 0,
∑
k hk(x̃k) if

finite for all x̃ ∈ {x̃ : L(x̃;λ, µ) ≤ ξ}.
It is easy to check that our L(x̃;λ, µ) is proper, that is,
fixed ξ > 0, the levet set L(x̃;λ, µ) ≤ ξ is bounded,
say, x̃ can not tend to infinity. This implies that the hk’s
are finite by their definition.

f) Each submatrix Ek has full rank.
This fact comes from the definition of matrices {Ek}.

g) The feasible set is polyhedral and the sequence of the
primal-dual iterates lies in a compact set (see [22,
Corollary 3.1]).
Since we are considering Euclidean spaces with usual
Euclidean distances, we know that the iterates lie in
a compact set whenever they are bounded. We then
prove their boundedness. By Assumption a), the solution
of problem (27)-(29) exists. Let us call such optimal
point ω? = {x?i , z?i , ζ?i , λ?i , µ?i,j}i∈N . By the theory of
the Lagrange multipliers, ω? is a stationary point for
Algorithm 2.

5Note that according to [22] the strongly convex part may be absent, which
is the case for f1 and f4

Given this, if Algorithm 2 is non-expansive, then the it-
erates are bounded6. In fact, starting from any X(0) with
‖X(0)− ω?‖ = d < +∞, then the non-expansivity im-
plies that ‖X(t)− ω?‖ ≤ d for any t ∈ N, assuming that
the sequence X(t) is updated according to Algorithm 2.
In other words, X(t) remains anchored to ω? and, thus,
is bounded.
To prove the boundedness of the iterates, it is then
sufficient to show their non-expansivity. To this purpose,
we recall that the soft thresholding operator is non-
expansive [27] and that

∥∥ρIL +ATi Ai)
−1
∥∥
2

= 1
ρ (which

can be obtained via simple linear algebra, since the min-
imum eigenvalue of ATi Ai is 0). These considerations,
along with the assumption that the graph is regular, are
sufficient to show the non-expansivity of each primal-
dual update (computations are omitted for brevity.)
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