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1
INTRODUCTION

This introductory chapter provides a quick preview of the book contents, with the main
purpose of defining what a macromodel is, motivating why macromodels are important,
and overviewing the most important requirements that macromodels should meet in
order to be of practical use. There are no derivations in this chapter, and any results that
are stated here are not proved but only illustrated through simple examples. Details will
be discussed in the following chapters of this book.

1.1 WHY MACROMODELING?

Many real-world problems are too complex to be modeled in full detail starting from
first principles. In fact, the processing time and the memory requirements for a direct
simulation of a fully detailed system, such as a chip-package-board electronic structure
or a high-voltage power system, are prohibitive on any computer. For this reason,
common engineering flows are based on divide and conquer approaches. Different
devices and subblocks, which comprise the system, are characterized and modeled
independently, with a level of accuracy that meets the application requirements. These
individual models are then suitably interconnected for system-level analyses, usually in
the form of time-domain simulations, allowing a full system study with an acceptable
computational effort. The extraction of the models, that is, the macromodeling task, is
of course an essential step in the overall procedure.

We understand by the termmacromodel a reduced-complexity behavioral description
of a device or a collection of devices. Macromodels are inherently approximate, since
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2 INTRODUCTION

their construction deliberately neglects some aspects that are deemed unimportant for the
system behavior. Nonetheless, macromodels must be accurate enough to allow appro-
priate decisions by designers based on the results of subsequent numerical simulations.
Depending on the application, macromodels may have to fulfill additional properties.
Among these, the most common is passivity, which arises as a fundamental constraint
when representing structures that are unable to generate energy, such as electrical inter-
connects; hence, the title of this book, “Passive Macromodeling”.

Many different approaches to macromodeling are available. Two popular classes of
techniques, sometimes denoted as white-box and gray-box, assume a model structure
that reproduces or mimics the physical topology of the system that the macromodel
intends to represent. For instance, a set of physical conductors may be represented by
a network of resistances (representing ohmic losses in each conductor), capacitances
(representing charge accumulation at conductors in close proximity), and possibly
coupled inductances (representing magnetic coupling between conductors). Either an
automated extraction software or an expert designer is required for the construction of
such models. This task may, however, become very difficult when the topology of the
underlying physical structure becomes very complex. Even worse, the internal structure
of the device to be modeled may be only partially known to the engineer who is in
charge of building the macromodel. In such cases, exploiting an incomplete knowledge
of the system in the model development is very difficult and likely to fail.

This book develops a complementary black-box approach. We seek for models
that reproduce the behavior of a physical structure with respect to its input and output
characteristics, observed from well-defined external terminals. No information on the
internal structure of the actual system is exploited in the construction of the macromodel.
This implies that there is usually no direct link between the internal topological and
dynamical structure of the model and that of the physical system. A typical application
scenario involves the availability of a limited number of time- or frequency-domain
responses, obtained by a direct measurement or through a commercial field solver.
Macromodels are constructed by fitting the parameters of a suitable model class to this
data. The following example illustrates this point on a simple two-port circuit block.

Let us consider the two-port circuit element depicted in Figure 1.1(a), assumed to
be the reference (true) system. We evaluate the corresponding 2 × 2 admittance matrix
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Figure 1.1 Original two-port circuit (a) and its synthesized model (b).
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Y(s) defined at ports (1) and (2). The elements of this matrix are rational functions of
the complex frequency s, which can be written as

Y11(s) = Y22(s) =
2s + 4

3s2 + 10s + 7
, Y12(s) = Y21(s) =

−s − 3
3s2 + 10s + 7

. (1.1)

Starting from (1.1) and applying one of the (black-box) circuit synthesis methods,
which will be discussed later in Chapter 11, leads to the equivalent circuit depicted in
Figure 1.1(b). Since no information on the original topology was used in the synthesis,
this equivalent circuit looks very different from the original. Some circuit elements are
even negative. Yet, the behavior of the two circuit realizations as observed from ports
(1) and (2) is identical, as a frequency sweep of the admittance matrix entries depicted
in Figure 1.2 confirms.

One may ask the question whether one circuit realization is preferable to the other. As
a general guideline, whenever some information is available on the original system, this
should be exploited in the construction of the model. Referring to the aforementioned
example, if we know that the original system is comprised of three inductors connected
in a “wye” configuration, then it is clear that the circuit topology in Figure 1.1(a) is
preferable. Even if the value of the circuit elements is not known, it can be easily
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Figure 1.2 Admittance responses of the two circuit realizations shown in Figure 1.1.



4 INTRODUCTION

estimated from measured port responses through a fitting process. However, when the
number of connected elements in the original system is very large, as in the case of
parasitic networks, with possibly many internal nodes that are not available externally,
guessing the original topology and estimating the component values from external
responses is not feasible. In this case, one should abandon the hope for a topology-aware
model and resort to a pure black-box approach. If relevant for the application at hand,
one may further seek for circuit realizations of the macromodel that do not include
negative elements. This is indeed possible, as discussed later in Chapter 11.

1.2 SCOPE

In this book, we restrict ourselves to the treatment of systems and devices that are linear
in their input–output behavior. Thismay at first sound restrictive, as nonlinear devices are
found in many real-world systems. However, for most electronic and high-voltage power
applications, most of the overall complexity is due to electromagnetic coupling or inter-
action between various system parts. Sometimes this interaction is unwanted and labeled
as parasitic, while sometimes it is required and designed for proper system functioning.
Such effects are inherently linear in the vast majority of applications. Therefore, linear
macromodeling can be viewed as a process that replaces a high-complexity network of
parasitics, or more generally a complex electromagnetic structure, with a lower complex-
ity model at a well-defined set of interface ports. Additional devices with a nonlinear
behavior can be modeled separately and included later in the same time-domain sim-
ulation, by suitably interconnecting all individual blocks at their interface ports. This
modular approach is straightforward with computer simulation programs such as Simu-
lation Programwith Integrated Circuit Emphasis (SPICE) or Electromagnetic Transients
Program (EMTP). Modeling of nonlinear devices requires techniques that are funda-
mentally different from those of linear theory, and as such it falls outside the scope of
this book.

We further restrict ourselves to univariate modeling, by assuming only frequency
or time as the free (independent) variable, although the topic of multivariate macro-
modeling is emerging as a more and more important field of research and application.
Multivariate macromodeling involves introducing in the model expressions one or more
additional variables, such as material or device design parameters. Preservation of this
dependence in behavioral macromodels is extremely valuable for designers, who need
to determine the best parameter configuration that allows suitable system performance
metrics to be met, possibly after an optimization loop. Multivariate macromodeling
is still a somehow immature field, with only partial results and sometimes inefficient
or inaccurate algorithms available. For this reason, we have decided to not discuss
multivariate macromodeling except for one introductory section in Chapter 14.

There are various other reasons why macromodeling approaches are important or
prove useful in applications, some of which are listed as follows.

Inclusion of frequency-dependent effects. Many devices are characterized
by strong and possibly complicated frequency-dependent effects. The series
impedance of a transmission line is a simple example, where the frequency
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dependence induced by skin and proximity effects results in a complex
transcendental function of frequency. With the exception of a few idealized
cases, it may be very difficult, if not impossible, to capture these effects in a
time-domain simulation without resorting to some kind of macromodeling or
approximation procedure.

Modeling from measurements. Sometimes a device is known only through
time-domain or frequency-domain measurements of its input–output responses.
This situation is quite common when the device is not developed in-house but
acquired from a vendor, in which case no knowledge of the internal structure,
geometry, or materials is available. The black-boxmacromodeling techniques that
we discuss in this book are ideally suited for this scenario, allowing extraction
of efficient simulation models from measured responses (e.g., impedance or
voltage–current waveforms). Based on such models, system-level simulation and
optimization becomes simple and efficient.

Hiding proprietary information. Macromodeling represents a given device with a
closed-form (rational) representation of its transfer function, or with an equivalent
state-space model. The parameters in these representations (pole–residue pairs
or state-space matrices) are derived through a mathematical procedure and are
therefore not related to the topology of the underlying system. Only the external
port behavior is retained or approximated, not the internal structure. This approach
automatically permits to hide proprietary information, so that the resulting macro-
model can be freely shared without disclosing sensitive details. This is true even
when the macromodel is synthesized as an equivalent circuit netlist, since the
various elements that are produced are obtained through a mathematical synthesis
process and are again not related to the internal structure of the device being
modeled.

Fast behavioral characterization. Macromodels can be used for interpolation.
This feature turns out to be quite useful when the characterization of a complex
structure, for example, the evaluation of the response at one frequency using
a field solver, is computationally expensive. When a macromodel is available,
possibly derived from a small set of frequency samples, the determination of the
response at many other frequency points can be achieved simply by evaluating
the closed-form expression of the macromodel. Further, if the macromodel
construction is embedded in the characterization loop and suitably interfaced with
the field solver, it can be used as an adaptive sampling engine that automatically
selects a minimal subset of frequency points that are strictly necessary for the
model extraction. Several examples will be presented in Chapter 13.

Extrapolation. The aforementioned interpolation properties can also be extended to
the extrapolation of a transfer function to the entire complex plane. The response
of a closed-form macromodel is a function of the complex frequency (Laplace)
variable s, so that its evaluation can be performed anywhere in the complex plane.
This enables a fast computation of transient responses using numerical inverse
Laplace transform (NILT), which has some inherent advantages with respect to
the standard inverse Fourier transform and for which efficient algorithms exist.
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Fast time-domain simulation.Macromodels are essentially closed-form expressions
that match the device responses with a prescribed accuracy. When macromodels
are based on rational approximations in the complex frequency domain, the con-
version between frequency and time domains is straightforward, due to the analytic
inversion properties of the Laplace transform. This in turn enables including the
macromodels in transient simulators based on time stepping, as recursive convolu-
tion blocks. The latter are particularly efficient when compared to other alternative
transient simulation approaches.

Subnetwork equivalencing.Macromodeling enables divide and conquer approaches
for handling large circuits, networks, and systems. Even if the direct simulation
of a large-scale system is feasible, a much faster simulation is sometimes
possible by identifying one or more subsystems and replacing them with suitable
reduced-complexity macromodels matching their input–output responses. The
automation of this procedure is a key enabling factor for improving scalability
and capacity of modern circuit solvers.

1.3 MACROMODELING FLOWS

Black-box macromodels can be constructed following many different approaches,
depending on what kind of information is available on the original system. These
approaches lead to different “flows”, intended as well-defined sequences of steps
leading to the final deliverable model. We introduce the most common flows next,
leaving a more detailed motivation and discussion to Chapter 4.

1.3.1 Macromodeling via Model Order Reduction

Let us consider Figure 1.3. In this scenario, the starting point is a detailed knowledge of
geometry and material properties of the structure under modeling. This information is
typically available in computer-aided design (CAD) data files elaborated by designers.

The first step in this flow involves the electrical or electromagnetic description of
the system behavior, so that all functional and parasitic effects of interest are properly
accounted for. One has to properly define what are the interface ports for the system
and decide what are the variables that will play the role of inputs (excitations) and
outputs (responses). Typically, the dual variables at each port (voltage/current or
incident/reflected scattering waves) are split, with one acting as input and the other
acting as output. In this phase, appropriate boundary conditions are also established.
Then, the geometry is suitably meshed, and Maxwell’s equations are formulated
in integral or differential form and discretized on this mesh. In particular, only the
space dependence is discretized, whereas the time (or frequency) dependence is left
continuous. The result of this process may be available either as a possibly large system
of ordinary differential equations (ODEs) or differential algebraic equations (DAEs),
or as a large-scale equivalent circuit. These alternative forms provide the input to the
actual macromodeling stage. Note that whenever the system behavior is formulated as a
large-scale circuit, the standard modified nodal analysis (MNA) method can be applied
to construct an equivalent DAE or ODE system.
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Figure 1.3 Macromodeling flow based on model order reduction.

Macromodeling via model order reduction (MOR) starts from the aforementioned
internal description of the underlying system, and attempts to compress the existing
large-scale model or circuit by reducing its size and complexity, while preserving its
input–output characteristics. Many different techniques are available. Pure topological
reduction methods process directly the equivalent circuit using graph theoretical tools,
in order to exploit (approximate) equivalences and reduce the number of components.
These methods will not be discussed in this book. When starting instead from an ODE or
DAE description, several approximation methods can be used to project the state-space
system onto a lower dimensional subspace while preserving input–output accuracy.
Moment matching and truncated balancing methods belong to this class. In some cases,
these approaches are able to preserve passivity, such as the well-known algorithm
PRIMA. In some other cases, an optional passivity check and enforcement step may be
applied. As a last step, the model is included in an external solver for later simulations.

MOR approaches are not the main subject of this book. However, due to their
importance in many application areas, we dedicate Chapter 5 to an introduction to the
basic and most commonly used algorithms, also providing a number of key references.

1.3.2 Macromodeling from Field Solver Data

This second macromodeling flow is probably the most common in several application
areas. We refer to Figure 1.4, from which we see that the starting point is the same
as for the MOR-based approaches, that is, a detailed knowledge of geometry and
material properties of the true system. What makes the difference here is the type
of field solver that is used to discretize the structure and extract its electrical or
electromagnetic responses. For the MOR case, the solver must be “open,” so that we
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Figure 1.4 Macromodeling flow based on computed responses by full-wave solvers.

can export the internally discretized ODE or DAE systems. This situation is common
for solvers that are developed in-house either at academic and research institutions or in
large companies. However, most general-purpose commercial solvers are deliberately
“closed,” since exporting intermediate processing and discretization results might
disclose sensitive details on the embedded proprietary algorithms. Such solvers only
allow exporting the results of the computations, either in the form of transient responses
excited by user-defined stimuli (e.g., in the case of solvers based on the finite difference
time-domain method or similar algorithms) or in the form of sampled frequency
responses (e.g., in the case of solvers based on finite element or method of moments).
In other words, once imported and processed by the solver, the system becomes a black
box, characterized only through input–output responses.

A black-box macromodeling algorithm is required in this flow. We can distinguish
between frequency-domain techniques, which operate mostly by applying rational
curve fitting to the transfer matrix samples, and time-domain methods, which construct
the macromodel by directly processing transient excitations and responses as obtained
by time-domain solvers. Alternatively, transient solver outputs may be processed by
standard numerical Fourier transform techniques to derive estimates of the frequency
responses, which can then be processed by frequency-domain macromodeling schemes.
In all cases, the macromodeling process may produce a nonpassive model. Therefore,
as discussed later in this chapter, a passivity check and enforcement step is usually
performed after a state-space conversion, but before the synthesis of the macromodel
in a form that is compatible with later system-level simulations. Alternatively,
passivity enforcement and synthesis can be performed directly from a pole–residue
representation, without going through a state-space realization.

1.3.3 Macromodeling from Measured Responses

The last macromodeling flow that we discuss is truly black box. With reference to
Figure 1.5, we assume that the device under modeling is not available in the form of
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Figure 1.5 Macromodeling flow based on measured responses.

a CAD model, but as real hardware, either as a prototype or as final product. In this
situation, one can characterize the structure through direct measurement. The most
common approach is to perform the measurement in the frequency domain through a
vector network analyzer (VNA), obtaining a set of frequency samples of the scattering
matrix of the device. An alternative is to perform measurements in the time domain,
for example, using time-domain reflectometry (TDR), by launching an excitation pulse
as input and recording the resulting response as output. Such transient data can be
processed by a time-domain macromodeling algorithm.

We see that this flow is very similar to the flow depicted in Figure 1.4. The only
difference is the replacement of a “virtual” measurement performed by a numerical
field solver with a real measurement performed on hardware. These two flows form
the main motivation for this book, which presents various algorithms for processing
input–output responses of a black-box system, in order to obtain an accurate, passive,
and efficient behavioral macromodel. The following sections offer a preview of the
main macromodeling steps.

1.4 RATIONAL MACROMODELING

The construction of behavioral macromodels follows a two-step procedure. First, the
model class is designed in order to be representative of the systems under investigation.
Second, a numerical procedure is applied for the estimation of the model parameters, so
that the model responses match those of the target system. For the specific case of Linear
Time-Invariant (LTI) systems, we can devise the model structure directly in the fre-
quency (Laplace) domain, by choosing a particular functional form for themodel transfer
functionH(s). The most common choice is to letH(s) be a rational function of the com-
plex frequency s, which is equivalent to the assumption that the model dynamic behavior
is expressed in the time domain as a set of ordinary differential equations (ODEs), with
time t being the independent variable. This equivalence, as well as a description of the
various forms in which the ODEs can be formulated, will be discussed later in Chapter 3.
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Most readers will be familiar with rational functions H(s) described as the ratio of
two polynomials

H(s) =
N(s)
D(s)

=
b0 + b1s + b2s

2 + · · · + bmsm

1 + a1s + a2s
2 + · · · + ansn

(1.2)

with prescribed numerator and denominator degrees m and n, respectively. The rational
function (1.2) can be recast into a pole–zero form

H(s) = α
(s − z1)(s − z2) · · · (s − zm)
(s − p1)(s − p2) · · · (s − pn)

,

where coefficients pj and zj are the poles and the zeros, respectively. A third equivalent
representation is the pole–residue form

H(s) = r0 +
r1

s − p1
+

r2

s − p2
+ · · · + rn

s − pn

, (1.3)

where the coefficients rj are the residues and where we assumed m = n.
We will see that, when the system under investigation is electrically large, so that the

effects of finite propagation speed are visible in its terminal responses, it may be appro-
priate to modify the aforementioned rational model form by embedding explicit delay
terms. The latter are very simple in the Laplace domain, since a delay τ is represented by
the exponential factor e−sτ . Chapter 12 will discuss various forms in which such delay
operators can be combined with (1.3) when modeling distributed structures. Restrict-
ing for the moment our attention to the delayless case, it turns out that the model form
that is exploited in the most successful macromodeling algorithms is the partial fraction
form (1.3). This is mainly due to the superior robustness of the numerical algorithms
that compute the model parameters, in this case, poles and residues.

As stated earlier, the most common macromodeling scenarios require the determina-
tion of the model parameters in the frequency domain, by matching the model response
to a set of frequency samples obtained by measurement or numerical simulation of the
system under investigation. Denoting as H̆k the available frequency response data at
frequency sk = jωk, we can cast the macromodeling problem as a simple rational curve
fitting, which finds the coefficients rj and pj such that

H̆k ≈ H(jωk) = r0 +
r1

jωk − p1
+

r2

jωk − p2
+ · · · + rn

jωk − pn

(1.4)

holds for all available frequency points k = 1, · · · ,K. Alternative formulations allow to
obtain the model parameters from sampled time-domain responses, as will be discussed
in Chapters 6 and 7.

A direct curve fitting based on a least squares (LS) formulation of (1.4) leads to a
nonlinear and nonconvex optimization, whose solution becomes very challenging when
the model order n exceeds few units. A number of alternative methods will be described
in this book for solving (1.4). We will see that the most effective approaches will be
variants of the so-called vector fitting (VF) method. The VF algorithm is amazingly
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robust and accurate, yet very easy to implement. We give here a short preview, deferring
a detailed derivation and discussion to Chapters 7 and 8.

The main VF idea builds on the simple consideration that any rational function can
be written as a ratio of rational functions

H(s) =
c0 +

∑n
j=1

cj

s−qj

1 +
∑n

j=1
dj

s−qj

, (1.5)

from which we see that the poles qj , which are common to both numerator and denom-
inator, cancel out completely. Additionally, we see from (1.5) that the poles pj of H(s)
in (1.3) coincide with the zeros wj of the denominator

ξ(s) = 1 +
n∑

j=1

dj

s − qj

=

∏n
j=1(s − wj)∏n
j=1(s − qj)

. (1.6)

In (1.5) and (1.6), the common poles qj are assumed to be known constants, while the
associated numerator and denominator residues cj and dj are unknown. Applying now
the fitting condition H̆k ≈ H(jωk) to (1.5) for s = sk = jωk and multiplying by ξ(jωk)
both sides of the resulting expression leads to

⎛
⎝1 +

n∑
j=1

dj

jωk − qj

⎞
⎠ H̆k ≈ c0 +

n∑
j=1

cj

jωk − qj

, k = 1, · · · ,K. (1.7)

Since (1.7) is a linear combination of the unknowns cj , dj for each frequency ωk, this is
recognized as a linear least squares problem, whose solution is straightforward. As soon
as coefficients dj are computed, we use (1.6) to obtain the zeros wj , which provide an
estimate of the model poles pj . The latter are finally used to solve a second linear LS
problem expressed by (1.4), in order to obtain the model residues rj . For better results, it
is usually appropriate to iterate the procedure by restarting the scheme with a new set of
“initial” poles defined as qν

j = wν−1
j , where ν denotes the iteration index. This process

is commonly denoted as “pole relocation.”
The VF scheme was introduced in this form in the late 1990s. Although rational

modeling via complex curve fitting was already known and applied since many decades,
earlier formulations were not robust enough for routine application to complex and pos-
sibly high-order systems. The superior performance of VF thus led to a fast diffusion
in both academia and industry, making this scheme the method of choice for rational
macromodeling.

1.5 PHYSICAL CONSISTENCY REQUIREMENTS

Rational macromodels are almost invariably required to comply with certain constraints
associatedwith the “physical” properties of real-world systems. Themost common prop-
erties are as follows.
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Realness. Any physical system excited by a real-valued input signal responds with a
real-valued output signal. This requirement translates into the simple transfer func-
tion condition H∗(s) = H(s∗), where ∗ denotes the complex conjugate operator.
For rational macromodels, this implies that all poles pj and residues rj in (1.3) are
either real or come in complex conjugate pairs.

Causality. Any physical system that is originally at rest and that is excited by an
input signal that is applied starting at some time t0 must produce an output that
is zero for t < t0. In other words, the effect must follow the cause that produced
it. This is the concept of causality. In the frequency domain, causality imposes
an integral relation (the so-called Kramers–Krönig dispersion relations) between
real and imaginary parts of the system transfer function, which form a Hilbert
transform pair. In the particular case of rational macromodels, it turns out that
these conditions are guaranteed if all model poles have a strictly negative real
part.

Reciprocity. The vast majority of multiport electrical or electromagnetic systems
arising in practical applications satisfy the reciprocity conditions, which imply
certain symmetry properties of the transfer matrix H(s). For the most common
impedance, admittance, or scattering representations, reciprocity implies
H(s)T = H(s).

Stability. Several definitions of stability exist that apply in different situations. For
instance, the bounded-input bounded-output (BIBO) stability imposes a strong
requirement on the system, which must produce a bounded signal as a response
to a bounded excitation. For the particular case of rational macromodels, this
requirement translates into a constraint on the location of the model poles, which
must be confined into the left half of the complex plane (asymptotic stability).
Other less stringent definitions are sometimes needed, as will be discussed in
Chapter 2. Practically, all VF implementations include an explicit constraint that
forces the model poles to be in the left half complex plane, since this condition
guarantees at the same time asymptotic stability and causality.

Passivity. We can regard passivity as the most crucial and general property. A
passive system is not able to generate energy on its own, under any condition. It is
allowed to release power to the external environment, but only if some energy has
been previously “stored” in the system. One can visualize this concept through an
analogy with a water tank, from which one can extract water with a given flow rate
only if it is not empty. We will see that a passive model must have a transfer matrix
H(s) that is either Positive Real (in the case of impedance or admittance, in short
immittance representations) or Bounded Real (in case of scattering representa-
tions). These conditions are first stated in Chapter 2 and developed in great detail
for rational and state-space macromodels in Chapters 9 and 10. The theory that is
elaborated in these chapters will show that passivity implies realness, causality,
and stability (suitably defined). Restricting our focus on impedance or admittance
systems, we will see that the following eigenvalue condition must hold:

λi ≥ 0 ∀λi ∈ λ(H(jω) + H(jω)H) ∀ω ∈ R . (1.8)



PHYSICAL CONSISTENCY REQUIREMENTS 13

This condition may in fact be hard to check and even harder to enforce when
building a macromodel. We can thus safely state that passivity enforcement is
the most numerically challenging step in the overall macromodeling procedure,
most often requiring a trade-off between optimality (in terms of accuracy) and
efficiency.

We further elaborate the concept and the implications of passivity for a particular case
of a one-port impedance Z(s). This impedance is passive when

1. it is stable, so that one can define the frequency response Z(jω) as the steady-state
voltage solution under a sinusoidal current excitation with unit amplitude and
(angular) frequency ω;

2. the real part of Z(jω) is nonnegative at all frequencies,

Z(jω) = R(ω) + jX(ω) , R(ω) = Re{Z(jω)} ≥ 0 ∀ω ∈ R .

This statement, which particularizes the more general condition (1.8) to the scalar
one-port case, is certainly familiar to the reader, who expects that a positive resis-
tance is not able to generate energy;

3. its real part is an even function of frequency, R(ω) = R(−ω), and its imaginary
part is an odd function of frequency, X(ω) = −X(−ω) . This is an immediate
consequence of the realness condition.

Let us now assume that R(ω) is negative at some reference frequency ω0, so that
R0 = R(ω0) < 0 and condition 2 is violated. Figure 1.6 illustrates this situation on a
simple test case. The active power absorbed by the impedance in sinusoidal steady-state
(AC) conditions at frequency ω0 reads P0 = R0I

2
rms, where Irms denotes the root mean

square (RMS) value of the current through the impedance. Clearly, also P0 < 0, so that
the impedance releases active power with a constant supply rate to the circuit block B
to which it is connected.
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Figure 1.6 Real part of a nonpassive impedance Z(s), with Re{Z(jω0} < 0.
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Assume B as a series connection of an inductor L and a capacitor C, with inductance
and capacitance values such thatω2

0LC = 1. The resulting circuit, depicted in Figure 1.7,
resembles a simple RLC oscillator, with the exception that the resistance is replaced
by the impedance Z(s). We now excite the system through a series voltage source
e(t) = sin(ω0t), which is switched on at t = 0 and off again after three exact periods,
at t = 3T = 6π/ω0. This source is characterized by a dominant spectral component at
ω0, which is injected in the circuit. The reactive components L and C, which are clearly
passive devices, resonate at this frequency. Even if the source is switched off so that for
t > 3T , the circuit is free-running, the impedance Z(s) continues to inject power into
the system. As a result, we obtain an unstable transient solution, as Figure 1.8 confirms.

This example illustrates the general fact that a system formed by an interconnection
of several subsystems is not guaranteed to remain stable when at least one of its com-
ponents is not passive. More generally, there exists a simple algorithmic procedure that,
given any nonpassive component, synthesizes a destabilizing passive termination [164].
We therefore conclude that nonpassive models (of passive structures) should always
be avoided, because system-level simulations based on such models may blow up with
exponential rate, even if the terminations are passive. Conversely, any interconnection
of individually passive subsystems is always guaranteed to be stable. We therefore see
that passivity is of paramount importance under the standpoint of engineers or designers
that are responsible for model generation and provision.

L C

e(t)Z

i(t)

B

Figure 1.7 Template unstable circuit.
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Figure 1.8 Unstable transient response computed from the circuit shown in Figure 1.7.
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1.6 TIME-DOMAIN IMPLEMENTATION

One of the reasons why rational macromodels are so widely used in many engineering
applications is the straightforward process that is required for their inclusion as
subblocks in system-level transient simulations. The two main approaches that are
usually adopted are illustrated here using a simple one-port and one-pole example,
described by an admittance model

Y (s) =
r

s − p
, (1.9)

with p and r real. A more complete treatment of the general case is postponed to
Chapter 11.

Rational transfer functions characterize the class of lumped LTI circuits. Therefore,
one may seek for a process that, starting from a mathematically derived rational
macromodel, synthesizes an equivalent circuit whose transfer function matches exactly
the macromodel expression. This is in fact a particular case of the general circuit
synthesis theory, developed several decades ago and now well established. However,
the focus is here not to build a physical circuit realization in hardware, but to produce
an equivalent netlist that proves efficient when solved by simulation software such as
SPICE or EMTP. Therefore, more flexibility can be exploited in the synthesis.

The extraction of an equivalent circuit that corresponds to (1.9) is straightforward.
Considering that the corresponding impedance is

Z(s) = Y (s)−1 =
s

r
+

−p

r
,

we can represent the macromodel as a series connection of an inductance L = 1/r
and a resistance R = −p/r. If the model order is greater than 1, so that more partial
fraction terms like (1.9) are present, the individual series RL blocks corresponding
to each partial fraction are connected in parallel, leading to a Foster-like topology. In
this realization, all circuit elements are positive only if the poles are real and negative
and if the corresponding residues are positive. This may not always be true, in which
case one should adopt a synthesis process that is suited to the particular solver that
will be used for transient analysis. If this solver accepts negative elements, no other
action is required. Otherwise, more sophisticated approaches are in order. In any case,
as discussed in Chapter 11, there are many alternatives for the synthesis of general
multiport immittance or scattering macromodels as equivalent netlists, thus allowing a
direct macromodel inclusion in standard circuit simulators.

A second approach for transient analysis of interconnected systems that embed
one or more macromodels is a direct discretization of the time-domain macromodel
response. From (1.9), we can derive the corresponding impulse response through the
inverse Laplace transform, obtaining

y(t) = L −1{Y (s)} = rept, t ≥ 0 .
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The current response due to a voltage excitation v(t) is easily obtained through
convolution

i(t) = y(t) ∗ v(t) =
∫ t

0
y(t − τ)v(τ)dτ =

∫ t

0
rep(t−τ)v(τ)dτ . (1.10)

Upon time discretization, here assumed for simplicity with uniform time stepping
tk = kΔt, the current response samples ik = i(tk) are given by

ik ≈ Δt

k∑
�=0

ŷk−�v� , (1.11)

where the definition of the discrete impulse response samples ŷk−� depends on
the particular quadrature rule used to discretize (1.10). This expression provides a
discrete-time characteristic equation for the macromodel, which can be easily interfaced
with nearly any transient solver.

Although the coefficients in (1.11) are known analytically and can be precomputed,
this approach is almost never used in practice. In fact, since the kernel in the convolution
integral is an exponential function, a simple trick allows to discretize and cast (1.10) as
a recursive convolution

ik ≈ α1ik−1 + β0vk + β1vk−1 , (1.12)

where the coefficients α1, β0, and β1 can be precomputed based on r, p, and Δt, using
a prescribed quadrature rule. This recursive form is much more efficient: only one past
sample of both input and output signals is required at each time step, instead of the full
set of past samples in (1.11). Various approaches, discussed in Chapter 11, are available
to extend (1.12) to the general multiport case, to any input–output representation and to
construct an appropriate interface with an external solver.

1.7 AN EXAMPLE

We consider here a simple real-world example, which illustrates the various steps of
passive macromodeling that will be the subject of this book, with emphasis on the
passivity requirements and their implications.

Let us consider the transmission line depicted in Figure 1.9. This structure consists
of a simplified model of a low-frequency power transmission system, for which we want
to simulate a transient voltage response excited by a constant unit voltage source E0 that
is applied at t = 0 at one of the line ends and then disconnected at t = 0.1 s. The other
line end is left open.

The first step is to characterize the external port behavior of the transmission
line. We opt for the admittance representation, which defines the relation between
port currents and port voltages in the frequency domain and which is known to be
well defined for this structure. The admittance matrix Y̆(s) is calculated at a set of
discrete frequency samples sk = jωk by means of analytical formulae, which include
suitable terms accounting for skin effect losses in conductors. The admittance data
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Open at t = 0.1 s

Figure 1.9 A transmission line system: single conductor (diameter 21.66mm,DCper unit length
resistance RDC = 0.121 Ω/km) of 2 km length, placed in air 18 m above a lossy ground (conduc-
tivity σc = 0.1 S/m).

samples Y̆k = Y̆(jωk) are regarded as an “exact” representation of the line behavior,
albeit only at discrete frequencies. The thin solid line in Figure 1.10(a) depicts the
frequency-dependent magnitude of Y̆11 and Y̆12.

The second step involves processing this admittance data to obtain a macromodel.
We use the VF algorithm to obtain a model in the form

Y(s) = R0 +
R1

s − p1
+

R2

s − p2
+ · · · + Rn

s − pn

, (1.13)

whose responses are compared to the original admittance data in Figure 1.10(a). We see
that accuracy is excellent, since the model responses closely match the reference.

It turns out that this model is not passive, since a check based on (1.8) reveals that one
of the eigenvalues λi is negative in a narrow frequency band close to DC (s = 0). This
passivity violation occurs because the rational macromodel, although very accurate, is
only an approximation of the true responses. The unavoidable approximation error is
responsible for the passivity violation. Nevertheless, we perform the required transient
analysis, obtaining the results depicted in Figure 1.10(b). At first look, these resultsmight
seem correct. However, if the transient simulation is extended, the detrimental effects of
passivity violation become clearly visible. Figure 1.10(c) shows in fact that the transient
results obtained from the nonpassive model blow up exponentially.

Understanding that passivity is a mandatory requirement, we generate a new passive
model by perturbing the residues of the nonpassive model. Full details of this procedure
are provided in Chapter 10. The transient analysis is then repeated using the obtained
passive model. The results are depicted in Figure 1.10(b) and (c). We see that the early
time responses of the two models are practically undistinguishable on this scale. How-
ever, we also see that the late-time behavior of the passive model remains bounded, as
we expect from physical reasons. The instability has been completely removed.

1.8 WHAT CAN GO WRONG?

The transmission line example discussed in Section 1.7 demonstrated that when proper
care is taken in all steps of macromodel construction, the results are expected to be
accurate and the macromodel-based simulations will be fast and efficient. However, in
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Figure 1.10 (a) Comparison between the exact frequency-dependent admittance responses of
the transmission line shown in Figure 1.9 and a corresponding (nonpassive) rational macromodel.
(b) Comparison between transient responses v2(t) obtained from a passive and a nonpassive
macromodel. (c) For late time, the nonpassive model drives the simulation to instability.

some situations, the macromodeling procedure may fail. In this section, we review the
most common reasons for such failures.

Let us focus on black-box macromodeling flows based on rational fitting of sampled
frequency data. Rational functions are universal approximators. In principle, any set
of finite data samples can be accurately fitted with a rational function, provided that a
sufficient order is considered. Even a set of finite randomly selected complex numbers
can be fitted with a rational function, in which case the order will be very large, and the
intersample behavior of the interpolant will at best look “strange,” possibly with “wild”
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Figure 1.11 Rational approximation of a set of randomly generated complex data samples. The
approximation is excellent when observed at the available frequency points. However, the rational
function behavior between the samples and especially beyond the last frequency point exhibits
very large oscillations.

oscillations. Figure 1.11 provides an illustrative example. This extreme case is included
here to stress the fact that the rational fitting problem does not pose particular difficulties
per se. In fact, difficulties mostly arise when trying to enforce the physical consistency
requirements discussed in Section 1.5 to represent data samples that are not compatible
in some sense with these constraints.

The most notable case occurs with obvious passivity violations in the original data
samples. Let us reconsider the scalar impedance example discussed in Section 1.5, which
is characterized by a real part R(ω) that is negative in a frequency interval (ω1, ω2); see
Figure 1.6. Whatever fitting algorithm is adopted to construct a rational model H(s),
whenever the passivity constraint is enforced, the real part of the model transfer function
H(jω) = H ′(ω) + jH ′′(ω) will be nonnegative, H ′(ω) ≥ 0 for all ω. Therefore, there
will be a mismatch Δ′(ω) = |H ′(ω) − R(ω)| that cannot be reduced below a minimum
value, dictated by the extent of the passivity violation, that is, the minimum negative
value ofR(ω) in (ω1, ω2). This situation is illustrated in Figure 1.12, where theminimum
distance Δ between the set of passive models and a given nonpassive system H̆(s) is
emphasized. We have the following two alternatives.

1. Disregard the passivity constraint, and construct a macromodelHn(s) by focusing
on its accuracy with respect to the given (nonpassive) data H̆k = H̆(jωk); in this
case, the model will be not passive, shown as filled circle in Figure 1.12.
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Hn(s)

Hp(s)

� H̆(s)

Linear time-invariant (LTI) systems

Passive LTI systems Δ

Figure 1.12 The distance between a passive modelHp(s) (open circle) and a nonpassive system
H̆(s) (star) cannot be smaller than a minimum amount Δ. Releasing the passivity constraint may
lead to a nonpassive model Hn(s) (filled circle) that closely matches the original system.

2. Enforce passivity of the model Hp(s), paying the price of a less accurate fit with
respect to the given data samples; this case is shown as open circle in Figure 1.12.

The presence of passivity violations in terms of a negative real part (for scalar
systems) or some negative eigenvalues (1.8) for multiport systems may be due to
several reasons. When dealing with measurements, noise and improper calibration or
deembedding may lead to localized passivity violations. When simulated data obtained
from field solvers are used, we should acknowledge that such responses are obtained
through a discretization procedure, which is never exact. The unavoidable numerical
approximation errors may in fact be the root cause for passivity violations. It is
also not uncommon that such issues arise from bad solver settings from nonexpert
users, nonphysical assumptions on material properties, and even trivial errors in data
postprocessing. Such issues should not be resolved by postfixing inconsistent solver
results or corrupt data, but by guaranteeing a proper usage of the solver, with adequate
settings and with a physically consistent definition of the underlying electrical or
electromagnetic system.

Nonetheless, it is a fact that exported data fromfield solversmay undergo hidden post-
processing steps that are aimed at “eliminating” any residual passivity violation. Most
of the times, this postprocessing makes the inconsistencies in the data even worse. For
instance, at the time of this writing, there were several commercial solvers on the market
that artificially “clip” negative eigenvalues before making the data available to the user,
as depicted in Figure 1.13. This procedure is detrimental, since the resulting responses
will be inevitably flawed by another and more subtle type of inconsistency, a causality
violation. Since proper understanding of these concepts requires some theoretical back-
ground that will be developed in Chapter 2, we only illustrate here the symptoms on a
simple test case.

Let us consider again Figure 1.13, where two sampled frequency responses are rep-
resented: an original smooth but nonpassive response H̆(jωk), and a nonsmooth and
(only) apparently passive response H̆clip(jωk), obtained by clipping its real part so that
all negative values are redefined to some small positive values ε > 0. Figure 1.14 shows
the results of a rational fitting applied to the two datasets, performed without imposing
any passivity constraint, but enforcing model stability so that all poles have a negative
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Figure 1.13 Real and imaginary parts of a nonpassive impedance (solid and dashed lines), and
real part of the artificially “clipped” responses (dots).
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Figure 1.14 (a) Stable rational macromodel (8 poles) computed from original (nonpassive)
impedance data. (b) Stable rational macromodel (16 poles) computed from clipped impedance
data. (c) Evolution of fitting errors through iterations (the number next to each marker denotes the
model order at the corresponding iteration).
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Figure 1.14 (Continued)

real part. The model computed from H̆(jωk) is very accurate, although nonpassive (this
is in fact the same situation depicted by the filled circle in Figure 1.12). Conversely, the
model computed from H̆clip(jωk) is very inaccurate. Moreover, the approximation error
does not converge below the desired accuracy threshold δ = 10−3 even when increasing
the model order through the iterations (see the progress of the model order used for each
iteration, as indicated in panel (c)). We conclude that clipping the real part has induced
a new kind of problem in the data, which cannot be fitted with a stable rational function.
Based on the discussion in Section 1.5, this is a clear evidence of noncompliance with
causality constraints.

In summary, we can state that rational macromodeling with or without passivity
constraints is expected to be successful whenever the data from which the models are
constructed are consistent with physical requirements. If this is not the case, probably
the best approach would be to throw the inconsistent data away, to investigate what is
the root cause that led to this inconsistency, and to regenerate the data after fixing the
problem. Any step in the construction of macromodels must be well under control, and
any heuristic postfix at any stage of the process is very dangerous and should be avoided.


