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Abstract: - There are many different ways to detect incipient failures of electromechanical actuators (EMA) of 

primary flight command provoked by progressive wear. With the development of a prognostic algorithm it’s 

possible to identify the precursors of an electromechanical actuator failure, to gain an early alert and so get a 

proper maintenance and a servomechanism replacement. The present work aims to go beyond prognostic 

algorithms strictly technology-oriented and based on accurate analysis of the cause and effect relationships 

because if on one hand they show great effectiveness for some specific applications, instead they mostly fail for 

different applications and technologies. Through the development of a simulation test bench the authors have 

demonstrated a robust method to early identify incoming failures and reduce the possibility of false alarms or 

non-predicted problems. Authors took into account friction, backlash, coil short circuit and rotor static 

eccentricity failures and defined a model-based fault detection neural technique to assess data gained through 

Fast Fourier Transform (FFT) analysis of the components under normal stress conditions. 

 

 

Key-Words: - Artificial Neural Network (ANN), Electromechanical Actuator (EMA), BLDC Motor Failures, 

Fault Detection/Identification Algorithm, Prognostics 

 

1 Introduction 
In Aeronautics there are many components 

characterized by limited life duration even though 

conceived to last much more than the maintenance 

interval foreseen (safe life approach). Many 

elements can occur to provoke a reduction of such 

duration (i.e. unmonitored loads) and a malfunction 

can cause the inability to perform functionalities at 

the desired level. The safe life approach has got 

some limits because, as it doesn’t consist in the 

evaluation of the real status of the components, 

maintenance is restricted to the specific scheduled 

operations. As a matter of fact, potential initial 

flaws, possibly deriving from the manufacturing 

process, could degenerate in a sudden fault 

compromising the aircraft safety. Moreover, the 

safe-life criterion does not allow the individuation of 

the cause and the location of the malfunctioning 

while, as the replacement of the single failed 

component could be sufficient to restore the system 

functionality, its accurate identification could permit 

to replace it and not the whole system. As a 

consequence, this kind of intervention would entail 

a higher efficiency and a reduction of costs of the 

maintenance process. 

In recent years, prognostic concepts, because of 

their applications and strong impact, have attracted 

the attention of a large part of the scientific and 

technological community with reflection on the 

scientific literature. Despite contributions are often 

innovative and meaningful, they tend to disregard a 

comprehensive approach (i.e. systemic vision), 

being too theoretical or specific. 

The purpose of the prognostic is to extend the 

functionality and the efficiency for the desired 

performances of a component and to avoid 

unexpected failures able to threaten the mission of 

the system. In order to obtain such results, all 

possible failure modes have to be scouted and the 

ability to individuate the first symptoms of aging or 

wear has to be improved. A database of possible 

behaviors has to be settled, filled and planned in 

order to be effectively used for a proper failure 

propagation model. 

The Prognostics and Health Management (PHM) 

provides real-time data of the current status of the 

system and calculates the Remaining Useful Life 

(RUL) before a fault occurs; in fact, it analyzes the 

behavior of components and determines if they are 

damaged and need maintenance.  
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This approach represents an asset in comparison 

with the results obtained with classical monitoring 

and maintenance concepts (e.g. based on overhaul 

or life-limited parts) and it brings along many 

benefits such as: diminished operating costs, less 

maintenance interventions required, reduced amount 

of necessary redundancies, improved aircraft safety 

and reliability, simplified logistic. On the base of 

these analysis, maintenance actions can be planned 

appropriately and, as a consequence, downtime and 

related costs are limited and the management of 

spare parts warehouses is more effective. 

In this paper, the authors propose a more 

systemic and multidisciplinary approach: the 

electrical and mechanical characteristics of the 

actuator and its relevant failure modes are analyzed 

and modeled together in a multi-domain numerical 

mode implemented in MATLAB Simulink® 

simulation environment. The present research is 

focused on a fault detection/evaluation technique 

able to identify the failure precursors and evaluate 

the corresponding damage entity; the model aims to 

analyze the EMA performance and the effects of 

different progressive faults. We used the numerical 

analysis of the Fast Fourier Transform of the closed 

loop signals to identify proper precursors of the 

considered faults that an innovative neural 

prognostic algorithm can successfully reveal and 

properly identify. In order to assess the actual ability 

of the algorithms to correctly sort out the failure 

precursors, we developed a simulation test bench 

based on the injection of an irregular degradation 

pattern into the flight control system. This method 

seems affordable for the early identification of 

malfunctioning, because it reduces the risk of false 

alarms or unrevealed failures. To ensure the 

feasibility of the application of the proposed 

prognostic method on aircraft in the civil aviation 

category, real-time inflight analysis is not 

implemented because it refers only to preflight / 

postflight or ordinary maintenance procedures, 

when the data can be analyzed by an external 

computer without affecting the normal inflight 

operations. Furthermore, the proposed algorithms 

don’t introduce additional components or new 

sensors because they use only information got from 

transducers derived from virtual sensors that post-

process actual raw measurements or from the ones 

that already equip the considered system. These 

algorithms can be easily integrated in an automatic 

check process system, which can be performed by 

the maintenance staff. The built-in test can be 

executed without the component disassembly and 

requires a simple postprocessing and analysis of the 

downloaded data. 

2 Primary Flight Control EMA 
Primary flight controls are conceived to adjust and 

control the aircraft flight dynamic: thorough the 

rotation of the corresponding aerodynamic surfaces 

they generate unbalanced forces/couples acting on 

the aircraft. These controls usually make the aircraft 

rotate around one of the three body axis when one 

control surface is activated, possibly minimizing the 

coupling effects. In particular, aircraft primary flight 

controls are typically proportional servomechanisms 

with continuous activation: they must return a force 

feedback related to command intensity and a high 

frequency response. As their loss is a critical issue, 

their reliability must be very high. Until a few years 

ago, in aeronautical applications were employed 

hydromechanical and then, with the introduction of 

fly-by-wire technology, electrohydraulic actuators. 

Thanks to their high specific power and very high 

reliability, current aircrafts are often equipped with 

them. However, in more modern airliners are 

installed electro-hydrostatic (EHA) or electro-

mechanical actuators (EMA). 

The Electro-Hydrostatic actuator (EHA) usually 

consists of an electrical motor that converts 

electrical power into mechanical power, then 

transformed into hydraulic power through an axial 

piston pump. It replaces the hydraulic line with an 

electric signal and the highly-pressurized hydraulic 

fluid is maintained only near the actuator. This 

allows a consistent weight reduction. Moreover, 

according to the architecture, it can be employed a 

linear or rotary actuator. For all these reasons, EHAs 

provide attractive benefits and represent an 

interesting alternative to traditional hydraulic 

controls.  

 

Fig. 1: Electromechanical actuator (EMA) scheme 

Nevertheless, in the last years, the trend moved 

towards all-electric aircrafts and towards an 

extensive application of novel optimized electrical 

actuators, such as the electromechanical ones 

(EMA). In this field, the scientific activity is fervent 

and the interest of the aeronautical world is very 

high because, compared to the electrohydraulic 

actuators, the EMAs offer many advantages. 
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In particular, it must be noted that overall weight 

is reduced, maintenance is simplified and hydraulic 

fluids, often contaminant, flammable or polluting, 

can be eliminated. As a matter of fact, as reported in 

[1], the use of actuation systems based on EMAs has 

been increasing in various fields of the aerospace 

technology. 

As shown in Fig.1, a typical EMA actuator used 

in a primary flight control is composed by: 

1. an actuator control electronics (ACE) that closes 

the feedback loop comparing the commanded 

position (FBW) with the actual one and gives the 

reference current Iref; 

2. a power drive electronics (PDE) that regulates 

the three-phase electrical power; 

3. an electrical motor, often BLDC type; 

4. a gear reducer having the function to decrease 

the motor angular speed (RPM) and increase its 

torque to desired values; 

5. a system that transforms rotary motion into linear 

motion (e.g. ball-screws or roller-screws); 

6. a network of sensors used to close the feedback 

rings (current, angular speed and position) that 

control the whole actuation system (RVDT). 

 

 

3 EMA Numerical Model 
As previously mentioned, goal of this research is the 

proposal of a new technique able to identify 

precocious symptoms (usually defined as failure 

precursors) of EMA degradations.  

In order to assess the feasibility, the performance 

and the robustness of the aforesaid technique, a 

suitable simulation test bench has been developed in 

MATLAB/Simulink®. This numerical model, that is 

widely described in [2], is coherent with the 

considered EMA architecture shown in Fig. 1. 

 

Fig. 2: Proposed EMA block diagram 

As shown in Fig. 2, the propose EMA simulation 

model is composed by six different subsystems: 

1. Com: input block that generates the different 

position commands. 

2. ACE: subsystem simulating the actuator control 

electronics, closing the feedback loops and 

generating as output the reference current Iref. 

3. BLDC EM Model: subsystem simulating the 

power drive electronics and the trapezoidal 

BLDC electromagnetic model, that evaluates the 

torque developed by the electrical motor as a 

function of the voltages generated by a three-

phase electrical regulator. 

4. EMA Dynamic Model: subsystem simulating the 

EMA mechanical behavior by means of a 2 

degree-of-freedom (d.o.f.) dynamic system. 

5. TR: input block simulating the aerodynamic 

torques acting on the moving surface controlled 

by the actuator. 

6. Monitor: subsystem simulating the EMA 

monitoring system. 

It must be noted that this numerical model is able 

to simulate the dynamic behavior of the considered 

EMA servomechanism taking also into account the 

effects of BLDC motor non-linearities [3-7], end-of-

travels, compliance and backlashes acting on the 

mechanical transmission [8], analogic to digital 

conversion of the feedback signals, electrical noise 

acting on the signal lines and electrical offset of the 

position transducers [9] and dry friction (e.g. acting 

on bearings, gears, hinges and screw actuators) [10]. 

 

 

4 Considered EMA Progressive Faults 
As EMA have been only recently employed in 

aeronautics, their cumulated flight hours are still not 

enough to provide reliable statistics data about more 

recurring failures. However, it is possible to single 

out four main failure categories: mechanical or 

structural failures, BLDC motor failures, electronics 

failures and sensor failures. 

The present work has been mainly focused on the 

effects of mechanical failures due to progressive 

wear, which causes an increase of backlash and 

friction, and on two typical BLDC motor failures: 

the coil short-circuits (SC) and the bearing wear 

generating rotor static eccentricity (RE). 

As a general rule, the detection/evaluation of 

mechanical failure due to friction or backlash is 

usually directly performed by analyzing specific 

characteristics of the dynamic response of the 

system (e.g. position, speed or acceleration).  

Vice versa, in case of motor progressive failures, 

such as SC or RE, the characteristics of the 

mechanical transmission, in terms of inertia, dry and 

viscous frictions, backlashes, noises, etc., could 

disguise or mitigate the failure effects making 

inaccurate, if not ineffective, any prognostic effort. 

In these cases the analysis of electrical harmonics 

(e.g. phase currents) provides a better understanding 

of the failure progression and its estimation is far 

more accurate. 
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Electrical and sensor failures are not less important 

than the others, but their evolutions are usually very 

fast, if not instantaneous, and the corresponding 

precursors are often difficult to identify and evaluate 

in order to perform the fault detection/identification. 

The mechanical wear can also generate backlash 

in EMA moving parts such as gears, hinges, 

bearings and especially screw actuators. These 

backlashes, acting on the mechanical elements of 

the transmission, reduce the EMA accuracy and can 

lead to problems of reduced stiffness and reduced 

controllability of the whole actuator [10]. 

The most important progressive faults affecting 

BLDC motors can be generated by short-circuits of 

the stator coils or by wear phenomenon affecting the 

rotor bearing (generating a rotor static eccentricity). 

Short-circuit fault can actually occur within a 

coil, between two coils of the same phase, and 

between two different phases: given that the first 

case is the most common and generally occurs first, 

only the first case is considered in this paper. 

According to [11], it is also assumed that each phase 

winding consists of turns connected in series and the 

three-phase windings are wye-connected with a 

floating neutral point. 

 

Fig. 3: Schematic of turn-to-turn coil short circuit [11]. 

A schematic of the three-phase windings with an 

inter-turn fault in the a-phase winding is shown in 

Fig. 3, where as1 and as2 represent the healthy and 

the shorted turns, respectively, ia is the a-phase 

current, if is the circulating current in the shorted 

turns and Zf represents the possible external 

impedance between the shorted turns [12].  

It must be noted that stator short-circuits usually 

start between a few turns belonging to the same 

phase coil (turn-to-turn coil short circuit failure). As 

in short-circuited coils the voltage remains the same 

and the resistance decreases, the resulting current 

increases, generating a localized temperature rising 

in the conductor that, degrading the insulating paint, 

favors the extension of the failure to adjacent coils.  

If this kind of fault is not promptly detected it 

could propagate and generate severe phase-phase or 

phase-neutral BLDC motor failures.  

The static eccentricity of a rotating body consists 

in a misalignment between the rotor rotation axis 

and the stator axis of symmetry. This misalignment 

is mainly due to tolerances and imperfections 

introduced during motor construction or to a gradual 

increase of wear of the rotor shaft bearings. When 

this failure occurs, the motor having more than one 

polar couple generates a periodically variable 

magnetic flux, as the air gap varies during its 

angular rotation. In case of static eccentricity, the air 

gap changes during the rotor spinning (Fig. 4) as a 

function of the rotor position θr: 

   (1) 

where g0, is the clearance between stator and rotor, 

without considering misalignments, and the second 

term represents the variation of the air gap. In terms 

of motor performances, as reported in [13], the 

provided torque is lower than in nominal conditions, 

whereas, spectral analysis reveals the presence of 

sub-harmonics increasing for higher eccentricities.  

The rotor static eccentricity and the partial stator 

coil short circuit effects have been modeled by 

means of a simplified numerical algorithm. 

As both the failures change the magnetic 

coupling between stator and rotor, in fact, failures 

can be modelled by modifying the values and 

angular modulations of the back-EMF coefficients: 

   (2)  

where ζ is the rotor static eccentricity.  

The constants kea, keb and  kec are then used to 

calculate the corresponding counter-electromotive 

forces, ea, eb and ec, and to evaluate the mechanical 

couples, Cea, Ceb and Cec, generated by the three 

motor phases. The effects that these progressive 

failures produce on the dynamic behaviors of the 

considered actuation system are discussed in [2]. 

 

Fig. 4: BLDC Motor Rotor static eccentricity ζ: 

schematic of the reference system 
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5 Proposed FDI Algorithm 
As previously reported, an innovative model based 

fault detection and identification (FDI) technique, 

based on neural identification, is proposed as a 

prognostic method which analyzes data obtained 

through FFT spectral analysis [14-17]. In order to 

overcome the shortcomings found in the FDI 

algorithm proposed in [1], the authors developed an 

enhanced method, schematically reported in Fig. 5, 

based on two distinct checks: 

1. the first step of the FDI algorithm is based upon 

a simple deterministic algorithm that performs 

the fault detection (acting a simple selection 

between healthy and faulty system) as a function 

of the maximum value of the phase currents; 

2. the second one is realized by means of two 

Multilayer Perceptron (MLP) Neural Networks 

(NNs), each one designed and trained to perform 

a specific task [18]: the first neural network 

(ANN1) detects the damage type and classify it 

according to a predefined classification scheme, 

whereas the second network (composed by two 

parallel neural networks ANN2_SC and 

ANN2_RE, each specialized to evaluate a single 

type of progressive fault) provides a measure of 

the corresponding fault magnitude, according to 

a quantification scheme. 

The FDI method is performed analyzing the 

dynamic response of the EMA in case of high 

amplitude step position command Com, evaluating 

the evolution of defined physical parameters (e.g. 

the time-history of the here phase currents and the 

actuation speed) and extrapolating the information 

necessary to the NNs to process the aforesaid 

classification. In particular, the values of speed and 

currents are recorded in two matrices, referring to 

growing fault level conditions, where the magnitude 

of the considered faults can vary within proper 

ranges. Furthermore, proper levels of random noise 

are added to these signals (simulating experimental 

measures) in order to evaluate the robustness of the 

proposed method. 

 

Fig. 5: Schematic of the proposed FDI algorithm  

5.1 Maximum Phase Current Analysis 
Analyzing the correlations between the progressive 

faults and the corresponding BLDC phase currents, 

the authors found that the peak value of the three 

phase currents highlights a strictly monotone 

growing trend that is common to the different types 

of failure considered. Given that the maximum 

value of the phase current imax, net of disturbances 

due to line noise and ripple to the switching of the 

inverter, do not exhibit significant drifts when the 

system operates in nominal conditions, the authors 

developed an algorithm capable of discriminating 

the state of the system and, if necessary, declare the 

incipient fault condition when the said value of peak 

current exceeds an appropriate reference band. 

 

Fig. 6: Effect of the considered faults (% of Re or SC) 

on the maximum value of the phase current imax 

 

 

5.2 DataAnalysis: Phase Current 
The signal features, derived as a consequence of a 

defined fault condition, have been identified, 

evaluated and mathematically defined.  

Comparing each other Fig. 7 and Fig. 8, related 

to two different fault conditions, it is possible to 

define a correlation between these faults (types and 

magnitudes) and the distribution of the concavity of 

the phase current signals, in correspondence of the 

Two-Phase ON (TPO) phenomena.  

By approximating this part of the signal with a 

second degree equation and by varying the extent of 

the fault, it is observed that, in conditions of static 

rotor eccentricity (RE), for each phase, concavity is 

always positive, while short-circuit (SC) faults put 

in evidence an alternation of the signs of the 

concavity: two negatives and one positive in the 

TPO positive portion and vice versa, two positives 

and one negative when the TPO is the negative.  
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Analyzing all the positive and negative TPO 

sections as a single signal, it is possible to remark 

another observation regarding the signal symmetry: 

the SC fault condition shows symmetry with respect 

to the horizontal axis of the positive and negative 

signals (Fig. 7), while the RE condition shows a 

simply shifting of the aforesaid signal (Fig. 8). 

 

Fig. 7: Reference current - 25% short-circuit (SC) 

 

Fig. 8: Reference Current - 5% rotor eccentricity (RE) 

5.3 Data Analysis: Speed 
The behavior of the phase currents under fault 

conditions influences the behavior of the rotor 

speed. Through proper FFT analysis is possible to 

observe characteristic frequencies changing their 

magnitude when the failure increase: frequencies 

around the values of 0 Hz, 251 Hz, 503 Hz and 755 

Hz are peculiar of the SC fault, whereas the RE fault 

features frequencies around the values of 0 Hz, 122 

Hz, and 375 Hz. Also in this case maximum, 

minimum and average value trends are important to 

evaluate. 

 

 

5.4 FDI Neural Network 
The fault identification function (classification of 

the progressive fault type and evaluation of its 

magnitude) is performed by means of two neural 

networks, respectively called ANN1 and ANN2_SC 

or ANN2_RE, previously described in [1]. 

The first neural network (i.e. ANN1), that is 

activated when the Maximum Phase Current 

algorithm (shown in paragraph 5.1) identifies an 

eventual faulty condition, has to perform a first 

classification of the detected fault, discriminating a 

given condition of system failure through the 

considered single-fault conditions (i.e. SC and RE). 

The network is trained to associate a training 

vector P, elaborated from the MATLAB/Simulink® 

data, to a target vector TANN1. The training set P is 

composed of 126 rows, divided in 3 sections, each 

one characterized by a different noise level. Every 

section (42 rows each) contains two types of faulty 

data: a first half coming from SC faults and a second 

half coming from RE conditions.  

Each row of the aforesaid training vector P is 

structured with 7 characteristic elements: 

• three concavities: by means of the values +1 or -

1, those elements represent the three positive 

PhaseON concavities; 

• two velocity frequencies: the two main carrier 

frequencies of velocity; 

• two current parameters: the mean and maximum 

values of the envelope signal of the three 

PhaseON.  

The vector target TANN1 consists of three equal 

sections of 42 rows each for 2 columns: SC faults 

are represented by a unitary value in the first 

column, while at the contrary the RE faults have a 

unitary value in the second column (Fig. 9).  

The ANN1 is a pattern recognition neural 

network and is shaped as a single-hidden-layer 

perceptron, with a Log-Sigmoid activation function 

on the hidden layer. 
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Fig. 9: ANN1 target vector 

The task of the second neural network (i.e. 

ANN2) is to provide a quantification of the failure 

extent. Given that the two considered faults have a 

different evolution, and in order to achieve a more 

precise evaluation of these fault level, this NN is 

splitted in two different neural networks (ANN2_SC 

and ANN2_RE), each one specialized in a single 

type of fault. According to the type of progressive 

fault detected by the first network ANN1, only one 

of these ANN2s is activated. 

The training vectors P of the two ANN2 have the 

same macro-structure of the ANN1 training vector, 

with 3 sections characterized by a different noise 

level. As for the ANN1, also the two ANN2 neural 

networks perform a pattern recognition task; they 

are characterized to an identical morphology, but 

have different dimensions, due to an optimization 

procedure. 

The ANN2_SC training vector P contains 11 

elements in each row: 

• four  velocity FFT magnitudes: those elements 

indicate the amplitudes of the four characteristic 

peaks of the FFT speed signal (frequency: 0 Hz, 

251 Hz, 503 Hz and 755 Hz); 

• two current parameters: the mean and maximum 

values of the envelope signal of the three 

PhaseON; 

• five current FFT magnitudes: those elements 

represent the first five peaks of the current FFT. 

The ANN2_RE training vector contains 12 

elements in each row: 

• four velocity FFT magnitudes: those elements 

indicate the amplitudes of the four characteristic 

peaks of the FFT speed signal (frequency: 0 Hz, 

122 Hz and 375 Hz); 

• two velocity parameters: those elements relate to 

the relationship between the maximum value and 

the minimum value of the speed signal, and 

between the maximum value and the mean value 

of the speed signal;  

• two current parameters: the mean and maximum 

values of the envelope signal of the three 

PhaseON, 

• five current FFT magnitudes: those elements 

represent the first five peaks of the current FFT. 

For instance, assuming a classification pattern 

characterized by three levels of failure, the 

corresponding target vector TANN2 , as shown in Fig. 

10, results composed of three columns representing 

respectively small, medium and large fault 

conditions
1
. Also in this case a unitary value in a 

row permits the detection of the right fault. 

 

Fig. 10: ANN2 target vector 

It must be noted that these target vectors don’t 

present a net distinction from case to case (as it is 

for the TANN1) in their structure. In fact, the target 

vectors are structured with an element shared 

between two different contiguous fault level: these 

elements are called intersection and, introducing an 

overlap between adjacent levels, allow improve the 

fault detection capability of these NNs (see Fig. 10). 

It is observed that around the intersections there are 

bands of interference (i.e. range of fault percentages, 

typically from 2% up to 5%) in which both fault 

levels are perceived. 

 

 

6 Results 
Each Neural Network provides results in the form of 

percentage of probability that the input corresponds 

to the fault indicated by the target vector column. 

Those results are shown to the user as row vectors.  

The ideal output of ANN1 to an SC input should 

be in the form Y = [1 0], whereas, in case of RE, the 

output should be Y = [0 1]. It must be noted that, as 

shown in Table 1 and Table 2, the real results are 

very close to the theoretical ones. 

Table 1: SC fault recognition 

 
 

                                                 
1  The entity of these fault levels will be specified in more detail in the 

following paragraph (Fig. 11 and 12). 
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Table 2: RE fault recognition 

 

The results reported in Table 3 and Table 4 are 

relative to the two ANN2 conceived for a three 

levels classification. The ideal output should be Y = 

[1 0 0] for a small fault, Y = [0 1 0] for a medium 

fault and Y = [0 0 1] for a large fault, but in reality 

those results are more shaded.  

Table 3: Results obtained by SC fault analysis 

 

Table 4: Results obtained by RE fault analysis 

 

Plotting those results (as shown in Fig. 11 and 

12) it is possible to state the real behavior of the 

proposed algorithm (and its ability to perform the 

aforesaid classification) and it is also possible to 

evaluate the magnitude of the aforesaid bands of 

intersection caused by the overlapping of two 

contiguous fault levels in the target vector TANN2. 

It should be noted that, from a technical point of 

view, nothing prevents to increase the fault levels to 

more than three. The analysis performed on more 

than four fault levels, though, show that the 

interference band widen to such an extent that the 

network detection capability is impaired.  

This result represents only a theoretical 

limitation, however, as widening the level 

classification beyond a certain level would bring no 

real benefit to the prognostic analysis, with the only 

outcome of possible misinterpretation of result. 

 

Fig. 11: ANN2_SC – results by SC fault analysis 

 

Fig. 12: ANN2_RE – results by RE fault analysis 

 

 

7 Conclusions 
The obtained preliminary results prove that the 

proposed prognostic technique is successful for the 

diagnosis of the state of a BLDC motor even if the 

neural networks employed are very simple and not 

yet optimized. In the present work, the authors 

analyzed two faults: short-circuit of a stator coil and 

static eccentricity of the rotor and we overlooked the 

cross effects. Nevertheless, the obtained results 

encourage the use of the proposed technique to 

focus the research on other challenging issues, such 

as the electrical and sensor failures, where the 

development of progressive faults is frequently very 

fast and the corresponding failure precursors are 

often difficult to identify and evaluate. 

Fault Small Medium Large

3,00% 0,9983 0,0137 0,0012

4,50% 0,9835 0,0814 0,0011

6,50% 0,7688 0,4712 0,0007

8,20% 0,0308 0,991 0,0008

9,70% 0,048 0,9962 0,0015

13,00% 0,0001 0,9998 0,0005

15,80% 0 0,9819 0,022

18,30% 0,0002 0,7244 0,5025

20,20% 0,0001 0,0684 0,959

22,60% 0 0,0122 0,9995

Fault Small Medium Large

4,7% 0,8714 0,3649 0,0007

6,1% 0,0366 0,9917 0,0049

8,9% 0,0025 0,9978 0,0225

10,1% 0,0047 0,9975 0,0091

14,5% 0,0006 0,999 0,0134

16,9% 0,0001 0,9985 0,0732

18,8% 0 0,999 0,7035

21,2% 0 0,9978 0,8311

24,6% 0 0,0095 0,9991

27,6% 0 0,0506 0,9972
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To this purpose, the actuator model should be 

further detailed and new elements should be 

modeled. Combined failures should also be 

investigated. 
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