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Abstract

Background: Biological research increasingly relies on network models to study complex phenomena. Signal
Transduction Pathways are molecular circuits that model how cells receive, process, and respond to information from
the environment providing snapshots of the overall cell dynamics. Most of the attempts to reconstruct signal
transduction pathways are limited to single regulator networks including only genes/proteins. However, networks
involving a single type of regulator and neglecting transcriptional and post-transcriptional regulations mediated by
transcription factors and microRNAs, respectively, may not fully reveal the complex regulatory mechanisms of a cell.
We observed a lack of computational instruments supporting explorative analysis on this type of three-component
signal transduction pathways.

Results: We have developed CyTRANSFINDER, a new Cytoscape plugin able to infer three-component signal
transduction pathways based on user defined regulatory patterns and including miRNAs, TFs and genes. Since
CyTRANSFINDER has been designed to support exploratory analysis, it does not rely on expression data. To show the
potential of the plugin we have applied it in a study of two miRNAs that are particularly relevant in human melanoma
progression,miR-146a andmiR-214.

Conclusions: CyTRANSFINDER supports the reconstruction of small signal transduction pathways among groups of
genes. Results obtained from its use in a real case study have been analyzed and validated through both literature
data and preliminary wet-lab experiments, showing the potential of this tool when performing exploratory analysis.

Keywords: microRNA, Signal transduction pathways, Data fusion, Cytoscape, Network analysis, Pathway analysis,
Network modules

Background
Network representation of intracellular biological
systems, considering molecular components within a cell
as nodes (e.g., genes, proteins, miRNA, etc.) and their
direct or indirect interactions as links, is steadily gaining
interest because of its potential to represent, characterize,
and model a wide range of intricate natural systems and
phenomena.
Among the different types of biological network mod-

els proposed in the literature [1], we are interested in
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Signal Transduction Pathways (STP) [2, 3]. A cell is
highly responsive to specific chemicals in its environment.
Broadly, signal transduction pathways can be viewed as
molecular circuits. They model how cells receive, process,
and respond to information from the environment toward
a biological identified end result, thus providing snapshots
of the (overall) cell dynamics. The number of these pro-
cesses shows how many ways the organism can react and
respond to its environment. Therefore, discovering new
STPs is an important task to contribute to the current
knowledge of the cell behavior.
The traditional approach to identify molecular compo-

nents of a signaling network is through gene knockout
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experiments and epistasis analysis [4]. In such experi-
ments, an organism is engineered to suppress the expres-
sion of one or more genes in order to study the resulting
perturbation in the cell dynamics. Although these exper-
iments are effective to identify simple direct signaling
activities, more complex signaling circuitries are difficult
to identify and understand.Moreover this analysis is time-
consuming, expensive, and sometimes the results can be
misinterpreted [5].
Computational approaches for modeling and recon-

struction of STPs are currently a hot research area. STPs
have been modeled through modular kinetic simulations
of biochemical networks [6], and detailed integration of
biochemical properties of the pathways [7]. Bayesian net-
works applied to multi-variate expression data have also
been used to infer signaling pathways [8]. More recently,
PPI networks have been largely used to reconstruct sig-
naling transduction pathways [9–13]. In general these
methods try to extract STPs from PPI networks, which are
known to be affected by a high rate of false-positive and
false-negative interactions. The use of expression data is
used to mitigate this uncertainty.
Most of the attempts to reconstruct STPs focus on

gene/protein based networks. However, networks involv-
ing a single type of regulator may not fully reveal the
complex regulatory mechanisms of a cell. Complexity
strongly increases when STPs include post-transcriptional
regulation mediated by microRNAs (miRNAs) interacting
with different transcription factors (TFs). It is predicted
that miRNAs regulate approximately 30% of the human
protein-coding genome [14], they are therefore highly
important in modeling the cell regulation. Only a few
attempts to reconstruct STPs includingmiRNAs, TFs, and
mRNAs can be found in the literature [15, 16].
Motivated by this, we have developed CyTRANS-

FINDER, a new Cytoscape 3.3 [17] plugin able to con-
struct three-component signal transduction pathways
with the presence ofmiRNAs, TFs and genes starting from
public available regulatory information. Rather than try-
ing to construct big networks as proposed in other studies,
CyTRANSFINDER focuses on reconstruction of small sig-
nal transduction pathways based on user defined regula-
tory patterns. These pathwaysmay be of direct use to drive
exploratory analysis enabling to better understand exper-
imental data and to further drive laboratory experiments.
Formally the problem addressed by CyTRANSFINDER is
the following: “Given two set of genes, to discover a set of
STPs connecting each gene of the first set with each gene of
the second set according to a signaling pattern set by the
user.” Recurring signaling patterns have been widely stud-
ied in gene regulatory networks as well as other real-world
complex systems scenarios [18], because of their central
role in driving regulatory responses by specific functions
[2]. This assumption is based on the expectation that

designs with higher modularity have higher adaptability
and therefore higher survival rates [19], thus suggesting
that modularity can spontaneously arise under changing
environments [20], which eventually results in extremely
complex systems made of simple basic building blocks
[19].
Since CyTRANSFINDER has been designed to sup-

port exploratory analysis, it does not rely on expression
data. It includes a data-fusion engine that scrapes infor-
mation from seven online repositories and integrates
them to infer candidate pathways. Different filters can
be applied to restrict or enlarge the set of produced
results based on the specific use cases. The integration
with Cytoscape 3.3 features an intuitive user interface
that automates complex tasks and makes the plugin a
potential software instrument for biologists with limited
skills in computer programming and network analysis.
Moreover, it enables to further process and analyze the
identified networks with the huge ecosystems of net-
work analysis plugins and functions already available in
Cytoscape 3.3.
To the best of our knowledge no other Cytoscape plugin

offers the functionalities provided by CyTRANSFINDER.
A Cytoscape 2.6 plugin implementing a front-end to
BIANA (Biologic Interactions and Network Analysis) is
the only tool that somehow offers functionalities related
to CyTRANSFINDER [21]. BIANA is a general Python
framework aiming at integrating information from several
external data-sets in network representations that can be
visualized through the Cytoscape plugin. However, differ-
ently from CyTRANSFINDER, most of the effort given
in BIANA is put on the possibility of describing exter-
nal data sources and rules to integrate data from different
sources. It is therefore a more generic software that does
not specifically focuses on the problem of reconstruct-
ing STPs, as done instead by CyTRANSFINDER. BIANA
standalone application appears discontinued from 2013,
while the latest plugin update is dated 2009 and the plugin
is only compatible with Cytoscape 2.6, which is becoming
obsolete.
To show the capability of the plugin, we have applied

it to a study of two miRNAs that are particularly
relevant in human melanoma progression, miR-146a
and miR-214. Results obtained from CyTRANSFINDER
have been analyzed and validated through both litera-
ture data and preliminary wet-lab experiments, showing
the capability of this tool when performing exploratory
analysis.

Implementation
In its basic setup, CyTRANSFINDER implements STP
discovery among two sets of genes into Cytoscape inte-
grating regulatory information on the Homo sapiens
(human) species. It is developed to work with Cytoscape



Politano et al. BMC Bioinformatics  (2016) 17:157 Page 3 of 17

3.3. All examples proposed in this paper have been
tested with the latest Cytoscape version (Cytoscape
3.3). Once installed from the Cytoscape App Man-
ager, CyTRANSFINDER is available from the Apps
menu of Cytoscape. Figure 1 shows a screenshot of
CyTRANSFINDER running on a small example whereas
Fig. 2 shows the conceptual architecture of the software
highlighting its main data sources and computational
modules.
CyTRANSFINDER processes three main inputs:

1. Source Regulator List (SRL) : is a list of regulators
working as root nodes of the inferred STPs.
Regulators can be either genes or miRNAs (DNM3 –
Dynamin 3 – NCBI ID: 26052 in the example of
Fig. 1).

2. Destination Gene List (DGL) : is a list of genes
working as leaves of the inferred STPs (ALCAM –
activated leukocyte cell adhesion molecule – NCBI
ID: 214 in the example of Fig. 1).

3. STP Pattern (STPP) : is a pattern provided through
an internal STPP specification language. It describes
a general template of regulators to be identified to
connect a source node sn ∈ SRL to a destination gene
dn ∈ DGL.

The user can enter the desired inputs through panel (A)
of Fig. 1. Both (SRL) and DGL are provided in a text file
formatted as described in Fig. 2. Each gene can be defined
by either the gene symbol or the NCBI gene ID, while miR-
NAs are defined using the miRBase identifier (e.g., hsa-
mir-214). The STPP can be chosen from a list of default
patterns or customized as described in the following
sections.
The RUN button in panel (A) of Fig. 1 starts the

STP search. CyTRANSFINDER fusion engine connects
to several on-line repositories to collect regulatory
information used to infer STPs connecting source and
destination nodes according to the selected STPP. The
identified STPs are then purged to remove duplicated

A B

C

D

E

Fig. 1 CyTRANSFINDER overview. a The main plugin control panel. It allows the user to set the source and destination list of genes and the specific
pattern of regulators to search. b Shows the graphical output of the plugin that consists of a network connecting source genes with destination
genes. Nodes of this network represent genes, TFs and miRNAs. c This panel allows to define a set of parameters related to the integration of
miRNAs into the generated STPs. They can be used to control the size of the generated networks. d This panel allows the user to export the results
in the form of a text file including all identified circuits or to delete the current experiment and start with a new one. e The Cytoscape node and
edge tables. They can be used to access detailed information on the nodes and arcs of the identified STPs
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Fig. 2 CyTRANSFINDER software architecture. CyTRANSFINDER processes three inputs: (1) the source list of genes (SRL), (2) the destination list of
genes (DGL), and (3) the STP pattern (STPP) to be reconstructed. Its fusion engine connects to several on-line repositories to collect regulatory
information used to infer STPs connecting source and destination genes according to the selected STP pattern. The identified STPs are then purged
to remove duplicated nodes and arcs and the result is returned to the user as a Cytoscape network or exported in the form of a tab separated text file

nodes and arcs and displayed in the form of a network
(panel (B) – Fig. 1).

STPP specification language
A STPP is a general sequence of regulators connecting two
genes (or amiRNA to a gene) that are of interest for a given
biological question. CyTRANSFINDER provides the user
with a simple STPP Specification Language to specify the
desired signaling pattern. Three regulators are available
in CyTRANSFINDER: (1) gene, (2) TF, and (3) miRNA.
The basic regulators are combined into a set of 6 possible
interactions that are reported in Table 1 together with the
notation used for their specification. They represent real-
istic biological interactions among the three regulators.
The user is free to combine all the interactions of Table 1
in order to describe the desired signaling pattern, which is
provided to CyTRANSFINDER in the form of a single text
file loaded when setting STPP Type to “Custom STPP” in
panel (A) of Fig. 1.
Five default STPPs representing common recurring

patterns often analyzed in the literature are directly

embedded in the plugin (Fig. 3); three STPPs starting
from genes and two starting from miRNAs. The Direct
miRNA STPP is the simplest pattern. A source gene hosts
a miRNA which also targets one of the destination genes.
The Indirect miRNA STPP, is similar to the Direct miRNA
STPP, but it involves a TF as miRNA mediator for the
destination genes regulation. The Double miRNA indirect
STPP is the most complex pattern that combines the
two previous ones into two levels of indirect regulation:
the first one is an Indirect miRNA STPP, which regu-
lates a Direct miRNA STPP that targets the destination
gene. Additionally, a version of the Indirect miRNA STPP
and of the Double miRNA indirect STPP starting from a
miRNA instead of a gene are available and named Indirect
s. miRNA and Double s. miRNA indirect, respectively.

Data fusion engine
The RUN button available in panel (A) of Fig. 1 starts the
CyTRANSFINDER data fusion engine. The engine first
parses the SRL, the DGL and the STPP provided by the
user. It then connects to several external repositories to
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Table 1 STPP Specification Language
# Regulation type Description Notation

1 TF �→ gene A transcription factor controlling the rate of transcription of a gene tf,gene

2 TF �→ TF A transcription factor controlling the rate of transcription of a another transcription factor tf,tf

3 TF �→ miRNA A transcription factor hosting a miRNA tf,mirna

4 gene �→ miRNA A gene hosting a miRNA gene,mirna

5 miRNA �→ gene A miRNA post-transcriptionally targeting a gene mirna,gene

6 miRNA �→ TF A miRNA post-transcriptionally targeting a TF mirna,tf

The list of interactions that can be used in CyTRANSFINDER to build a STPP. For each interaction the related notation is reported. The user is free to combine the interactions
in order to describe the desired pattern. The first element of the list must be a gene or miRNA and must be preceded by the term “source”, while the last element must a
gene and has to be be preceded by the term “target”

obtain interaction data to search for the existence of the
STPP among the genes contained in SRL and DGL.
Figure 4 provides a high-level pseudo-code of the imple-

mented data-fusion algorithm. The main algorithm is
described in the STPFinder procedure (Fig. 4 - lines 1–22).
This procedure receives as parameters the source and des-
tination node lists (i.e., SRL and DGL) and the STPP. The
STPP is an ordered list of regulators STPP = (r1, r2, ·, rn),
with ri ∈ {TF , gene,miRNA}. The produced STPs are
organized into a set of levels (stplevels in Fig. 4). Each
level contains a set of nodes and corresponds to one of
the elements of STPP. At the beginning of the search the
first level is initialized with the nodes contained in SRL

(Fig. 4 - lines 2). Nodes of adjacent levels are connected
through a set of interactions (stpinters in Fig. 4).
The search procedure is an iterative process that ana-

lyzes couples of consecutive STPP elements, i.e., STPPi
and STPPi+1 with i ∈ [1, |STPP| − 1] (Fig. 4 - lines 4–21).
For each node available at level i (Fig. 4 - lines 7–18) the
procedure searches a set of target nodes to add to level i+1
through the search function (Fig. 4 - lines 8). The way this
search works (Fig. 4 - lines 23–38) depends on the type of
regulators to search at level i and i + 1 of STPP, which in
turn requires to connect to different repositories to obtain
interaction data. Additional details regarding this process
will be provided later in this section. Each target node

Fig. 3 CyTRANSFINDER built-in STPPs. The figure presents the five default STPPs embedded in the plugin. i) Direct miRNA STPP is the simplest
pattern: a source gene hosts a intragenic mirna miRNA or is located close to the region of an intergenic miRNA, which targets one of the destination
genes. ii) Indirect miRNA STPP, is pretty similar to the Direct miRNA STPP, but it involves a TF as miRNA mediator for the regulation of the destination
genes. iii) the miRNA sourced version of (ii). iv) Double miRNA indirect STPP is the most complex pattern. It involves two levels of regulation; the first
indirect regulation is modeled on top of an Indirect miRNA STPP, which regulates a Direct miRNA STPP that targets the destination genes. v) The
miRNA sourced version of (iv)
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Fig. 4 CyTRANSFINDER data fusion algorithm. A pseudocode
description of the main steps carried out by the plugin to integrate
different data sources and to construct the final STP network

identified with this procedure is added to the set of nodes
at level i + 1 (Fig. 4 - line 14) and the set of interactions
between couples of nodes at the two levels is recorded as
well (Fig. 4 - line 15). When reaching the last couple of
STPP elements, all identified interactions are finally fil-
tered to limit them to those ending to one of the nodes
available in DGL (Fig. 4 - lines 9–11).
At the end of this iterative process, stplevels and stpin-

ters are used to build a Cytoscape network representing
the inferred STPs. stplevels contains the set of nodes of
the final network organized in levels and stpinters con-
tains the set of arcs connecting the different nodes. Panel
(B) of Fig. 1 shows an example of network identified when
searching for the Indirect miRNA STPP between DNM3
and ALCAM. This network represents the main output
provided by CyTRANSFINDER. Different symbols and

colors have been used to make it easy to identify the
different types of regulators in the network.
The same information can also be exported into a tab

separated plaintext file that enumerates all identified STPs
(Export button of panel (D) – Fig. 1). Each row of the file
reports a single STP (i.e., a signaling chain from one node
in SRL to a node in DGL according to the STPP) and each
column represents a regulator in the signaling chain (i.e., a
gene, miRNA or TF). This file is obtained by searching all
possible paths that connect nodes at the source level with
nodes at the destination level. This format is particularly
helpful for fast data inspection, especially when the num-
ber of discovered STPs is high, which eventually results in
a very complex network difficult to visualize.
The remaining of this section focuses on the way

interactions are obtained and integrated from public
repositories.

Transcription factors interaction data
Transcription Factors (TFs) related to gene entities are
extracted from TargetMine [22] using its RESTful inter-
face, which allows to search for TFs given a target gene.
This information is required to search for interactions of
type 1,2 and 6 of Table 1. It is important to highlight
that TargetMine does not provide any information regard-
ing the up- or down- regulatory activity of a TF; users
must eventually resort to manual validation in order to
understand the exact regulatory effect.

miRNA interaction data
Two different repositories are exploited to retrieve
miRNA based interactions.
Interactions of type 3 and 4 from Table 1 are obtained

through the miRIAD repository [23]. miRIAD is a web
search tool designed to access integrated information
concerning intragenic microRNAs and their host genes.
The miRIAD database references annotated genes from
human genome (hg19) and miRNAs annotated frommiR-
Base (version 19). Given a gene, CyTRANSFINDER uses
miRIAD to search for miRNAs “hosted” by the gene. Two
types miRNA interactions can be identified with this pro-
cedure. The main class is represented by the intragenic
miRNAs, which are mapped to intragenic loci of pro-
tein coding genes (namely “host genes”). Previous studies
have suggested that these miRNAs are transcribed in
parallel with their host transcripts [24, 25] therefore cre-
ating a direct signaling link. In addition to this, miRIAD
enables to search for intergenic miRNAs located in an
intergenic region close the the analyzed gene. The rela-
tionship between a gene and the intergenic miRNAs is
weaker than the one of intragenic miRNAs. Nevertheless,
it may represent a valuable information when perform-
ing explorative analysis. By acting on the miRNA host
type control (panel (C) – Fig. 1) the user is free to work
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with intragenic only interactions or both intragenic and
intergenic interactions.
Interactions of type 5 and 6 from Table 1 are instead

obtained fromTargetHUB [26]. This web-service provides
a programmer friendly interface to access multiple repos-
itories of miRNA target genes with a uniform set of APIs.
TargetHUB RESTful interface allows users to interrogate
information from four different databases: miRTarBase
[27], TargetScan [28], PicTar [29], and miRanda [30].
Using TargetHUB, the list of target genes of a miRNA can
be easily retrieved.
CyTRANSFINDER exploits TargetHUB functionalities

to allow users to filter miRNA targets (miRNA target set-
tings of panel (C) – Fig. 1). Filtering miRNA targets is a
very crucial step during STP discovery. In fact, the lack
of miRNA specificity and the large amount of possible
miRNA targets (in the order of thousands) may easily
increase the complexity of the networks generated by the
plugin. A wise usage of filters can dramatically reduce
the analysis time. Available filters include the possibility
of selecting specific miRNA target databases or to per-
form majority voting across multiple databases to have a
mandatory minimum or exact set of confirmations for the
target selection. Moreover, the user can decide to work
with regulatory information regarding mature o precursor
miRNAs.
Finally, miRNA target settings of panel (C) include an

additional control that acts in a opposite way with respect
to the other controls, and tries to enlarge the obtained
network. This control acts after the full STP search is
concluded adding to the network all external miRNAs
targeting at least one of the nodes identified in the gen-
erated network (i.e., not hosted by one of the network
nodes). This option is particularly useful whenever users
are focusing on the role of miRNAs in the studied phe-
nomena.

Results and discussion
In this section we show the capability of CyTRANS-
FINDER by presenting its application in the framework
of a research activity on human melanoma performed by
the authors of this paper. In previous studies we and oth-
ers identified that miR-146a and miR-214 are involved in
melanoma growth and metastasis formation by modulat-
ing several target genes. We are therefore interested in
performing discovery analysis searching for STPs involv-
ing these twomiRNAs. This represents a typical biological
question for which CyTRANSFINDER can provide explo-
rative analysis support.

STPs involving humanmiR-146a analysis
Human miR-146a is located on the positive strand of
chromosome 5. Although it is an intergenic miRNA and
it does not lie inside a host protein-coding gene, it

is overlapped to a manually-annotated long-intergenic-
noncoding RNA (lincRNA), CTC-231O11.1 ([31] and
http://www.ensembl.org). miR-146a has a crucial role
in the immune and inflammatory response, as well as
in many human pathologies including muscle disorders,
cancer and metastasis [31]. We and others found that
miR-146a has a dual role during melanoma development
and progression, favoring primary tumor growth while
inhibiting metastatic dissemination [32]. We are inter-
ested in exploring STPs involving miR-146a to identify
new regulatory paths of interest for the melanoma pro-
gression. In order to exploit CyTRANSFINDER for this
purpose we need to create a SRL and a DGL file.
Our SRL list contains themiR-146a (miRBase identifier

hsa-mir-146a) [see Additional file 1 – srl.txt]. We consid-
ered instead the set of miR-146a conserved target genes
according to TargetScan 5.2 algorithm (224 genes) as DGL
[see Additional file 1 – dgl.txt].
We performed an analysis using the Indirect s. miRNA

STPP using the default setting of the plugin for all fil-
ters, and we have been able to identify a set of 312 STPs
[see Additional file 1 – Indirect-miRNA-STPP] starting
from miR-146a. Among all, we got particularly interested
in TFAP2C (AP-2γ ). In our previous studies, we identi-
fied the central role of TFAP2C in melanoma progression,
and we are particularly interested in studying the STPs
involving this transcription factor ([33, 34]).
All the TFAP2C-mediated STPs are listed in Table 2 and

the related network is reported in Fig. 5. Notably, miR-
146a relation with TFAP2C was completely unknown.
Given the interest of this result, we performed gene

expression analysis via quantitative Real Time Polymerase
Chain Reaction (qRT-PCR) to further investigate this
relation. To obtain transient miR-146a or non-specific
control (pre-Cntrl) expression, human melanoma MA-2
cells (cultured as in [33]) were transfected using HiPer-
Fect (Qiagen) reagent, according to the manufacturer’s
instructions. Total RNA was isolated 48h later from using
TRIzol®Reagent (Invitrogen Life Technologies). 1 μg of
DNAse-treated RNA (RQ1 RNase-Free DNase, Promega)
was retrotranscribed with High-Capacity cDNA Reverse
Transcription Kit (Thermo Fisher Scientific,) and qRT-
PCRs were carried out using gene-specific primers for
TFAP2C mRNA detection (fw: TCCACGACATGCCT-
CACCA, rv: TCCTTCTGACAGGGGAGGTTCA).
Quantitative normalization was performed on the

expression of the GAPDH gene (qRT-PCR QuantiTect
Primer assay QT01192646, Qiagen). The relative expres-
sion levels between samples were calculated using the
comparative delta Ct (threshold cycle number) method
(2−��Ct) with a control sample as the reference point [35].
Data are presented as mean ± s.e.m. (standard

error of the mean) and Two tailed Student’s t-test
was used for comparison, with **P<0.01 considered

http://www.ensembl.org
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Table 2 List of the Indirect s. miRNA STPs obtained with
CyTRANSFINDER using humanmiR-146a as the source intergenic
miRNA,miR-146a targets according to TargetScan 5.1 as
destination genes and involving TFAP2C as a hub transcription
factor

SmiRNA TF DG Reference

hsa-miR-146a TFAP2C PRKCE

hsa-miR-146a TFAP2C GAS7

hsa-miR-146a TFAP2C C4ORF3

hsa-miR-146a TFAP2C ESYT2

hsa-miR-146a TFAP2C CUX1

hsa-miR-146a TFAP2C ZFYVE1

hsa-miR-146a TFAP2C RCSD1

hsa-miR-146a TFAP2C ELAVL1

hsa-miR-146a TFAP2C SLC38A1

hsa-miR-146a TFAP2C KCNIP3

hsa-miR-146a TFAP2C ATG7

hsa-miR-146a TFAP2C VASN

hsa-miR-146a TFAP2C SIN3A

hsa-miR-146a TFAP2C KIAA0284

hsa-miR-146a TFAP2C GGA2 [36]

hsa-miR-146a TFAP2C NOTCH2 [36]

hsa-miR-146a TFAP2C NPR3 [36]

hsa-miR-146a TFAP2C TDRKH [36]

Results are computed using miRNA targets confirmed in at lease one source
database. SmiRNA: Source intergenic miRNA; TF: Transcription Factor; DG:
Destination Gene; Reference: data available from literature

to be statistically significant. Based on these experi-
ments we were able to experimentally verify that miR-
146a is able to downmodulate TFAP2C expression
upon transient overexpression in human melanoma cells
(see Fig. 6).

Furthermore, by searching the literature for TF �→ gene
STPs involving TFAP2C and our DGL, we found a paper
by Woodfield and colleagues where direct regulation by
TFAP2C on GGA2, NOTCH2, NPR3 and TDRKH pro-
moter regions was demonstrated by chromatin immuno-
precipitation followed by sequencing (ChIP-Seq) analysis
[36], as shown in Table 2.
Next, we also searched for Double Indirect s. miRNA

STPP involving miR-146a and the selected DGL. Given
the complexity of this pattern, we performed the analy-
sis restricting to miRNA targets confirmed in at least two
databases out of the four available in TargetHUB. In this
case, we obtained a significantly shorter list of records,
that is reported in Table 3 and is visually reproduced in
Fig. 7.
Notably, the STPs identified by CyTRANSFINDER

seem of biological relevance, since our paths link miR-
146a to TFs SMAD4 and BRCA1 (miRNA �→ TF
regulation), as well-established in literature (Table 3).
SMAD4 is a key transcription factor involved in the
TGF-β mediated response [37], while BRCA1 is involved
in the DNA damage repair and is one of the main
mutated genes in familial breast and ovarian cancers [38].
SMAD4- and BRCA1- regulated genes (TF target (gene))
that we obtained, POR and CYP19A1 respectively, are
again well-established in literature (Table 3), and their
involvement downstream ofmiR-146a could be very inter-
esting, since they both have a role in hormones pro-
duction and cancer. POR gene codifies for cytochrome
P450 oxidoreductase enzyme, which catalyzes the biosyn-
thesis of steroid hormones and metabolize drugs [39],
while CYP19A1 codes for the aromatase enzyme that con-
verts androgens into estrogens, and which dysregulation
may affect estrogen production in breast cancer cases
[40]. POR and CYP19A1 genes host one microRNA each,
miR-4651 and miR-4713, respectively (gene �→ miRNA

Fig. 5miR-146a Indirect s. miRNA STPs involving TFAP2C. Subnetwork of the Indirect s. miRNA STPs using humanmiR-146a as source intergenic
miRNA,miR-146a targets according to TargetScan 5.1 as destination genes and involving TFAP2C as a hub transcription factor. Results are computed
using miRNA targets confirmed in at least one source database
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Fig. 6miR-146a overexpression leads to reduced TFAP2C mRNA levels. Quantitative-Real Time PCR (qRT-PCR) evaluation of TFAP2C mRNA was
performed in melanoma cells uponmiR-146a overexpression, compared to controls (pre-146a vs pre-Cntrl). Three independent preparations of
melanoma cells RNA were used and results were pooled together. **P<0.01

Table 3 List of Double Indirect s. miRNA STPs obtained with CyTRANSFINDER using humanmiR-146a as the source intergenic miRNA,
targets according to TargetScan 5.1 as destination genes and miRNA targets confirmed in at least two of the source databases

SmiRNA References TF References TF target (Gene) ImiRNA DG

has-miR-146a [37, 50–52] SMAD4 [39] POR has-miR-4651 MLL2

has-miR-146a [37, 50–52] SMAD4 [39] POR has-miR-4651 C10ORF76

has-miR-146a [37, 50–52] SMAD4 [39] POR has-miR-4651 PBX2

has-miR-146a [37, 50–52] SMAD4 [39] POR has-miR-4651 NF2

has-miR-146a [37, 50–52] SMAD4 [39] POR has-miR-4651 NPAS4

has-miR-146a [37, 50–52] SMAD4 [39] POR has-miR-4651 HIC2

has-miR-146a [37, 50–52] SMAD4 [39] POR has-miR-4651 LRTOMT

has-miR-146a [37, 50–52] SMAD4 [39] POR has-miR-4651 VAT1

has-miR-146a [53] BRCA1 [40, 54, 55] CYP19A1 has-miR-4713 GOSR1

has-miR-146a [53] BRCA1 [40, 54, 55] CYP19A1 has-miR-4713 SLC2A3

has-miR-146a [53] BRCA1 [40, 54, 55] CYP19A1 has-miR-4713 RNF4

has-miR-146a [53] BRCA1 [40, 54, 55] CYP19A1 has-miR-4713 SCN3B

has-miR-146a [53] BRCA1 [40, 54, 55] CYP19A1 has-miR-4713 GALNT10

has-miR-146a [53] BRCA1 [40, 54, 55] CYP19A1 has-miR-4713 MMP16

has-miR-146a [53] BRCA1 [40, 54, 55] CYP19A1 has-miR-4713 IER5L

has-miR-146a [53] BRCA1 [40, 54, 55] CYP19A1 has-miR-4713 GNL1

has-miR-146a [53] BRCA1 [40, 54, 55] CYP19A1 has-miR-4713 KIAA1274

has-miR-146a [53] BRCA1 [40, 54, 55] CYP19A1 has-miR-4713 KPNA6

has-miR-146a [53] BRCA1 [40, 54, 55] CYP19A1 has-miR-4713 NFASC

has-miR-146a [53] BRCA1 [40, 54, 55] CYP19A1 has-miR-4713 GGA2

has-miR-146a [53] BRCA1 [40, 54, 55] CYP19A1 has-miR-4713 ADARB1

SmiRNA: Source intergenic miRNA; TF: Transcription Factor; TF target (Gene): Transcription Factor target gene, which is also the host gene for a miRNA; ImiRNA: miRNA
located inside the TF target gene; DG: Destination Gene; Reference: data available from literature
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Fig. 7miR-146a Double Indirect s. miRNA STPs. Network of the Double Indirect s. miRNA STPs using humanmiR-146a as source intergenic miRNA,
miR-146a targets according to TargetScan 5.1 as destination genes and miRNA targets confirmed in at least two of the source databases

regulation; they are indicated as Intragenic microRNA).
miR-4651 andmiR-4713 target genes predicted by at least
2 algorithms are listed in Table 3 (DG), but, unfortunately,
since they are recently discovered miRNAs, none of their
target genes has been experimentally validated yet.

STPs involving humanmiR-214 analysis
Human miR-214 gene is located in the chromosomal
region 1q24.3, in intron 14 of the Dynamin-3 gene
(DNM3) inside an almost 8 kb-long noncoding RNA,
named DNM3os. This transcript contains the sequences
for miR-214 and miR-199a-2, two clustered miRs that are
approximately 6 kb apart.miR-214 is deregulated in a vari-
ety of human tumors including melanoma, breast, ovar-
ian, gastric, and hepatocellular carcinomas as reviewed
in [41]. In melanoma, we demonstrated that miR-214 has
essential roles in regulating invasiveness, extravasation
and metastasis formation [33, 34]. In particular, we iden-
tified a signature of 73 genes whose expression was driven
by miR-214 [33].
In order to identify new molecular pathways under-

lying miR-214-mediated regulation of these genes we
took advantage of CyTRANSFINDER. Differently from
the previous case, to show the use of the software on
a STPP starting from a gene, we used DNM3, the host
gene of miR-214, as SRL [see Additional file 2 – srl.txt]
and the miR-214-dependent signature mentioned above
as the DGL [see Additional file 2 – dgl.txt]. We searched
for Double miRNA Indirect STPs identifying 312 STPs
involving different transcription factors (TFs), miRNA
host genes (TF target gene) targeted by these TFs and
cognate intragenic miRNAs (ImiRNAs) as nodes [see
Additional file 2 – Double-indirect-miRNA-STPP.xlsx].

Interestingly enough, the majority of the STPPs were
controlled by two of the most relevant TFs for melanoma
biology, the transcription factor AP-2 gamma TFAP2C
(AP-2γ ) [33] and the cAMP responsive element bind-
ing protein 1, CREB1 [42]. We focused our attention on
the STPs driven by these two TFs and we selected a
subgroup (101) of STPPs, containing well-described intra-
genic miRNAs (Intragenic microRNAs) as nodes (Table 4
and Fig. 8).
Searching the literature for potential validations of

these STPPs, we were able to find partial validations.
The connection between miR-214 and TFAP2C was
clearly demonstrated in our previous work [33], where
we showed the direct targeting of miR-214 on TFAP2C
3′-UTR; while no data linking miR-214 and CREB1 were
found. No connections were observed for either TFAP2C
or CREB1 and the host genes of intragenic miRNAs (TF
target) present in the STPs, except for the phospholipid-
dependent protein-serine/threonine kinase PRKCA gene.
PRKCA plays a major role in intracellular signaling path-
ways associated with transformation and tumor progres-
sion and its expression was shown to be under the control
of TFAP2 transcription factor family [43].
Looking for potential targeting of the analyzed intra-

genic miRNAs (Intragenic microRNA) on genes of the
DGL we found numerous experimental validations in
the literature. In particular, we were interested in STPPs
driven by CREB1 since potential miR-214 �→ CREB1
connections could open up new lines of research in
understanding miR-214-driven metastatization. Among
CREB1-controlled STPs we found SREBP2 (TF target)
and miR-33a (Intragenic microRNA) that are known to
be co-regulated [44] and we previously demonstrated
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Table 4 List of a selection (101) of the Double Indirect miRNA STPPs obtained with CyTRANSFINDER using the host gene ofmiR-214,
DNM3, as the source gene, a signature of 73 genes published in [33] as destination genes, and involving TFAP2C and CREB1
transcription factors

SmiRNA References TF TF target (Gene) ImiRNA References DG

hsa-mir-214 [33] TFAP2C C9ORF3 HSA-MIR-27B-3p LRP6

hsa-mir-214 [33] TFAP2C C9ORF3 HSA-MIR-27B-3p [56, 57] MET

hsa-mir-214 [33] TFAP2C C9ORF3 HSA-MIR-27B-3p NCAM1

hsa-mir-214 [33] TFAP2C C9ORF3 HSA-MIR-27B-3p [57–59] ARHGAP12

hsa-mir-214 [33] TFAP2C C9ORF3 HSA-MIR-27B-3p HBEGF

hsa-mir-214 [33] TFAP2C C9ORF3 HSA-MIR-27B-3p EGFR

hsa-mir-214 [33] TFAP2C C9ORF3 HSA-MIR-27B-3p [56] MITF

hsa-mir-214 [33] TFAP2C C9ORF3 HSA-MIR-27B-3p [60] CDH11

hsa-mir-214 [33] TFAP2C C9ORF3 HSA-MIR-23B MITF

hsa-mir-214 [33] TFAP2C C9ORF3 HSA-MIR-23B [61, 62] PAK2

hsa-mir-214 [33] TFAP2C C9ORF3 HSA-MIR-23B [56, 62, 63] PTEN

hsa-mir-214 [33] TFAP2C C9ORF3 HSA-MIR-23B BMPR1B

hsa-mir-214 [33] TFAP2C C9ORF3 HSA-MIR-23B JAM3

hsa-mir-214 [33] TFAP2C C9ORF3 HSA-MIR-23B [56, 62] MET

hsa-mir-214 [33] TFAP2C BCAR3 HSA-MIR-760 MMP2

hsa-mir-214 [33] TFAP2C BCAR3 HSA-MIR-760 ITGA3

hsa-mir-214 [33] TFAP2C BCAR3 HSA-MIR-760 ENG

hsa-mir-214 [33] TFAP2C CALCR HSA-MIR-489 HBEGF

hsa-mir-214 [33] TFAP2C CALCR HSA-MIR-489 TIMP2

hsa-mir-214 [33] TFAP2C PTPRN2 HSA-MIR-595 TGFBI

hsa-mir-214 [33] TFAP2C PTPRN2 HSA-MIR-595 CDH11

hsa-mir-214 [33] TFAP2C KIAA1217 HSA-MIR-603 TIMP3

hsa-mir-214 [33] TFAP2C KIAA1217 HSA-MIR-603 BMPR1B

hsa-mir-214 [33] TFAP2C KIAA1217 HSA-MIR-603 ITGB3

hsa-mir-214 [33] TFAP2C PRKCA HSA-MIR-634 BCAM

hsa-mir-214 [33] TFAP2C PRKCA HSA-MIR-634 JAG1

hsa-mir-214 [33] TFAP2C PDE4D HSA-MIR-582 LRP6

hsa-mir-214 [33] TFAP2C PDE4D HSA-MIR-582 MITF

hsa-mir-214 [33] TFAP2C PDE4D HSA-MIR-582 BMPR1B

hsa-mir-214 [33] TFAP2C PDE4D HSA-MIR-582 JAM3

hsa-mir-214 [33] TFAP2C PDE4D HSA-MIR-582 ADAM9

hsa-mir-214 [33] TFAP2C LPP HSA-MIR-28 BCAM

hsa-mir-214 [33] TFAP2C GIPR HSA-MIR-642A CDH2

hsa-mir-214 [33] TFAP2C GIPR HSA-MIR-642B PTEN

hsa-mir-214 [33] TFAP2C GIPR HSA-MIR-642B PAK2

hsa-mir-214 [33] TFAP2C TENM4 HSA-MIR-708 BCAM

hsa-mir-214 [33] TFAP2C AKT2 HSA-MIR-641 TIMP3

hsa-mir-214 [33] TFAP2C AKT2 HSA-MIR-641 TFAP2A

hsa-mir-214 [33] TFAP2C AKT2 HSA-MIR-641 LRP6

hsa-mir-214 [33] TFAP2C AKT2 HSA-MIR-641 SEMA3A
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Table 4 List of a selection (101) of the Double Indirect miRNA STPPs obtained with CyTRANSFINDER using the host gene ofmiR-214,
DNM3, as the source gene, a signature of 73 genes published in [33] as destination genes, and involving TFAP2C and CREB1
transcription factors (Continued)

hsa-mir-214 [33] TFAP2C DAPK3 HSA-MIR-637 FLT1

hsa-mir-214 [33] TFAP2C DAPK3 HSA-MIR-637 CLU

hsa-mir-214 [33] TFAP2C ZRANB2 HSA-MIR-186 ITGA6

hsa-mir-214 CREB1 ZRANB2 HSA-MIR-186-5p [59] TFAP2A

hsa-mir-214 CREB1 ZRANB2 HSA-MIR-186 JAG1

hsa-mir-214 CREB1 ZRANB2 HSA-MIR-186 MITF

hsa-mir-214 CREB1 SUPT3H HSA-MIR-586 FLT1

hsa-mir-214 CREB1 SUPT3H HSA-MIR-586 EREG

hsa-mir-214 CREB1 SUPT3H HSA-MIR-586 EGFR

hsa-mir-214 CREB1 SUPT3H HSA-MIR-586 SEMA3A

hsa-mir-214 CREB1 KIF18A HSA-MIR-610 TIMP3

hsa-mir-214 CREB1 KIF18A HSA-MIR-610 LRP6

hsa-mir-214 CREB1 UGT8 HSA-MIR-577 CD44

hsa-mir-214 CREB1 UGT8 HSA-MIR-577 TFAP2A

hsa-mir-214 CREB1 UGT8 HSA-MIR-577 PTEN

hsa-mir-214 CREB1 TUFT1 HSA-MIR-554 PODXL

hsa-mir-214 CREB1 SREBF2 HSA-MIR-33A CDH11

hsa-mir-214 CREB1 SREBF2 HSA-MIR-33A MITF

hsa-mir-214 CREB1 SREBF2 HSA-MIR-33A CX3CL1

hsa-mir-214 CREB1 PANK1 HSA-MIR-107 CX3CL1

hsa-mir-214 CREB1 PANK1 HSA-MIR-107 LRP6

hsa-mir-214 CREB1 NRD1 HSA-MIR-761 TFAP2C

hsa-mir-214 CREB1 NRD1 HSA-MIR-761 PVRL2

hsa-mir-214 CREB1 NRD1 HSA-MIR-761 MITF

hsa-mir-214 CREB1 NFYC HSA-MIR-30E LRP6

hsa-mir-214 CREB1 NFYC HSA-MIR-30E CEACAM1

hsa-mir-214 CREB1 NFYC HSA-MIR-30E ITGA6

hsa-mir-214 CREB1 NFYC HSA-MIR-30E PTEN

hsa-mir-214 CREB1 NFYC HSA-MIR-30E ADAM9

hsa-mir-214 CREB1 NFYC HSA-MIR-30E SEMA3A

hsa-mir-214 CREB1 NFYC HSA-MIR-30E ITGB3

hsa-mir-214 CREB1 NFYC HSA-MIR-30E NCAM1

hsa-mir-214 CREB1 NFYC HSA-MIR-30E-3p [60] TIMP3

hsa-mir-214 CREB1 MRE11A HSA-MIR-548L PVRL2

hsa-mir-214 CREB1 MRE11A HSA-MIR-548L PAK2

hsa-mir-214 CREB1 SND1 HSA-MIR-593 ERBB2

hsa-mir-214 CREB1 TMEM245 HSA-MIR-32-5p [56, 58, 59] ITGA6

hsa-mir-214 CREB1 TMEM245 HSA-MIR-32-5p PTEN

hsa-mir-214 CREB1 TMEM245 HSA-MIR-32-5p [64] SEMA3A

hsa-mir-214 CREB1 TMEM245 HSA-MIR-32-5p [65] ITGAV

hsa-mir-214 CREB1 TMEM245 HSA-MIR-32-5p MITF
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Table 4 List of a selection (101) of the Double Indirect miRNA STPPs obtained with CyTRANSFINDER using the host gene ofmiR-214,
DNM3, as the source gene, a signature of 73 genes published in [33] as destination genes, and involving TFAP2C and CREB1
transcription factors (Continued)

hsa-mir-214 CREB1 COPZ1 HSA-MIR-148B [66] ERBB3

hsa-mir-214 CREB1 COPZ1 HSA-MIR-148B [34] ALCAM

hsa-mir-214 CREB1 COPZ1 HSA-MIR-148B MET

hsa-mir-214 CREB1 COPZ1 HSA-MIR-148B NCAM1

hsa-mir-214 CREB1 COPZ1 HSA-MIR-148B PODXL

hsa-mir-214 CREB1 COPZ1 HSA-MIR-148B [63] PTEN

hsa-mir-214 CREB1 COPZ1 HSA-MIR-148B MITF

hsa-mir-214 CREB1 CPE HSA-MIR-578 PVR

hsa-mir-214 CREB1 CPE HSA-MIR-578 PTEN

hsa-mir-214 CREB1 CHM HSA-MIR-361 PODXL

hsa-mir-214 CREB1 SMC4 HSA-MIR-15B-5p [64] SEMA3A

hsa-mir-214 CREB1 SMC4 HSA-MIR-15B-5p [63, 67] APP

hsa-mir-214 CREB1 SMC4 HSA-MIR-15B-5p [58] PAK2

hsa-mir-214 CREB1 SMC4 HSA-MIR-15B-5p PODXL

hsa-mir-214 CREB1 SMC4 HSA-MIR-15B-5p PVRL2

hsa-mir-214 CREB1 SMC4 HSA-MIR-15B-5p [65] TFAP2A

hsa-mir-214 CREB1 SMC4 HSA-MIR-15B-5p [63] ARHGAP12

hsa-mir-214 CREB1 SMC4 HSA-MIR-15B-5p KDR

hsa-mir-214 CREB1 SMC4 HSA-MIR-15B-5p CX3CL1

hsa-mir-214 CREB1 SMC4 HSA-MIR-15B-5p LRP6

Results are computed using miRNA targets confirmed in at least two databases. smiRNA name: source intragenic microRNA; TF: Transcription Factor; TF target (Gene):
Transcription Factor target gene, which is also the host gene for a miRNA; ImiRNA: miRNA located inside the TF target gene; DG: Destination Gene, list of targets of the
intragenic miRNAs predicted by at least two algorithms; Reference: data available from literature

to be downregulated by miR-214 [45]. Very recently,
Zhou and colleagues demonstrated miR-33a tumor sup-
pressive role in melanoma, thus suggesting a potential
additional effect of miR-214 in promoting melanoma
malignancy via the downregulation of another miRNA,
miR-33a [46]. We demonstrated the ability of miR-214
to promote melanoma progression by downregulation
of miR-148b at least partially via TFAP2C regulation,
thus leading to miR-148b targets derepression, such as
ALCAM [34]. Interestingly enough, we were able to find
miR-148b and ALCAM in one of the STPs, but sur-
prisingly from CyTRANSFINDER analysis CREB1, and
not TFAP2C, resulted to be the master regulator of
the pathway. These new data are very interesting for
us and we would like to investigate this potential path-
way more in detail. In fact, it has been demonstrated
that CREB1 is able to regulate TFAP2A expression in
melanoma [47], so we could hypothesize a double control
of miR-214 on TFAP2C, direct, via targeting, and, indi-
rect, via CREB1, thus leading to a strong promotion of
melanoma progression. Finally, another STP interestingly
linkedmiR-214 tomiR-15b-5p. In particular, 5 (SEMA3A,
APP, PAK2, TFAP2A and ARHGAP12) out of 10 DGL

genes resulted to be validated targets of this miRNA
and moreover, miR-15b was shown to be involved in
tumor cell proliferation and apoptosis in malignant
melanoma [48].

Conclusions
Here we presented a new plugin for Cytoscape,
CyTRANSFINDER that provides support to dis-
cover three-component signal transduction pathways
with the presence of miRNAs, TFs and genes. Dif-
ferently from other tools, the plugin is specifically
designed to perform exploratory analysis and to
identify new biological circuits to be tested in lab-
oratory. Therefore, it only relies on aggregation of
complex repositories without requiring any expression
data.
To show the capabilities of this plugin we applied it

to a real use case involving the study of two miRNAs
that are particularly relevant in human melanoma pro-
gression. Taken together, our analyses on the STPs gen-
erated by CyTRANSFINDER unravelled many relevant
potential pathways regulated by miR-146a and miR-
214 in human physiology and pathology; some of these
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Fig. 8miR-214 Double Indirect miRNA STPs. Sub-Network of a selection of 101 interesting Double Indirect miRNA STPs using human DNM3 as
source gene, a signature of 73 genes published in [33] as destination genes, and involving TFAP2C and CREB1 transcription factors. Results are
computed using miRNA targets confirmed in at least two databases

are validated in literature, while others were validated
by us.
This should give a clear view of the potential this

tool has to support biologists in discovering novel
signal transduction pathways regulated by miRNAs and
transcription factors.
A detailed tutorial containing a step-by-step guide

covering all CyTRANSFINDER features is available at
http://apps.cytoscape.org/apps/cytransfinder.
We are currently at the first release of this tool.

One of the critical aspects of this implementation is
the huge amount of data the plugin needs to retrieve
from the Internet and to process internally. This in
turns requires processing time that ranges from a
few minutes for very simple lists of genes to sev-
eral hours for complex lists of genes such as the
one used in the proposed case studies. Future releases
will address this specific aspect by introducing several
caching mechanism enabling to reduce the network
traffic and to significantly increase the computation
speed.
Moreover, we are also interested in inserting new

features to make the generated networks as specific as
possible. Recently, we discovered mimiRNA, a database
of miRNA expression profiles data across different tissues
and cell lines [49]. mimiRNA incorporates a sample
classification algorithm that groups identical miRNA or
mRNA experiments from separate sources and provides
reliable expression profiles of miRNA in different tis-
sues and cell lines. We plan to integrate mimiRNA into
CyTRANSFINDER as an additional filter enabling to
select only intra/intergenic miRNAs that are expressed in

a set of tissues or cell lines of interest for the user, thus
reducing the size of the generated networks.
Finally, we are evaluating the possibility of defining

a scoring approach to help users to select STPs
based on different search criteria (e.g., involvement
of the identified regulator in a disease based on
literature, strength of the single identified interactions
based on scores available in other external databases,
etc.).
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animals. For this reason no ethical approvals are required.

Availability and requirements
• Project name: CyTRANSFINDER
• Project home page: http://apps.cytoscape.org/apps/

cytransfinder
• Operating system(s): Platform independent
• Programming language: Java
• Other requirements: Java 8 or higher, Cytoscape

3.3 (latest version tasted is Cytoscape 3.3)
• License: Creative Commons License (http://

creativecommons.org/licenses/by-nc-sa/4.0/)
• Any restrictions to use by non-academics: Only

those imposed already by the license
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experiment carried out on miR-146a. The archive contains the following list
of files:
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• srl.txt: the file containing the SRL.
• dgl.txt: the file containing the DGL.
• Indirect-miRNA-STPP.xlsx: an excel file containing the full list of 312

Indirect miRNA STPPs identified by CyTRANSFINDER using human
miR-146a as the source intergenic miRNA andmiR-146a 223 target
genes according to TargetScan 5.2 as DGL. Results are computed
using miRNA targets confirmed in at lease one source database.
SmiRNA: source intragenic miRNA; TF: Transcription Factor; DG:
Destination Gene. (ZIP 201 kb)

Additional file 2: This file is a zip archive containing data regarding the
experiment carried out on miR-214. The archive contains the following list
of files:

• srl.txt: the file containing the SRL.
• dgl.txt: the file containing the DGL.
• Indirect-miRNA-STPP.xlsx: an excel file containing the full list of 312

Indirect miRNA STPPs identified by CyTRANSFINDER using human
miR-146a as the source intergenic miRNA andmiR-146a 223 target
genes according to TargetScan 5.2 as DGL. Results are computed
using miRNA targets confirmed in at lease one source database.
SmiRNA: source intragenic miRNA; TF: Transcription Factor; DG:
Destination Gene.
an excel file containing the full list of 292 Double Indirect miRNA
STPPs identified by TransFINDER using DNM3 as the Source Gene, the
cognate human intragenic miR-214 as source intragenic miRNA
(SmiRNA) and a previously described signature of 73 genes whose
expression was driven by miR-214 [33] as destination genes (DG). TF:
Transcription Factor; TF target (Gene): Transcription Factor target
gene, which is also the host gene for a miRNA; intragenic miRNA:
miRNA located inside the TF target gene; DG: Destination Gene, list of
targets of the intragenic miRNAs predicted by at least two algorithms
TS: Transcription Factor. (ZIP 192 kb)
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