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Abstract 

In the last ten years, interest in manipulating droplets in microchannels has emerged from two 

important motivations. The first arise from the desire to produce well controlled droplets for 

material science applications, for example in the pharmaceutical or food industries. In this 

context, microfluidics allows for producing such droplets in a controlled and reproducible 

manner, also allowing complex combinations to be designed and explored. A second 

motivation originates with the advent of the -omics era, which has a much need for being able 

to carry out experiments at the smallest possible scale (if possible single cells or molecules), 

on a massively parallel platform and with high throughput. In this case, droplets are viewed as 

micro-reactor in which samples are confined, and which offer a way to manipulate small 

volumes.  

Droplet microfluidics is the most powerful microfluidic technology used to produce and 

manipulate monodisperse droplets. This technique addresses the need for lower costs, shorter 

times, and higher sensitivities to compartmentalize reactions into picolitre volume, instead of 

the microlitre volumes commonly used with standard methods.  

Droplets can provide a well-defined environment into which individual cells can be 

compartmentalized in a controlled way. This coupled with the advantages of droplet 

microfluidics has allowed the development of several methods for single-cells analysis. In this 

work a microfluidics label-free approach for circulating tumor cells (CTCs) detection is 

presented. In the last decades, CTCs have received enormous attention as a new biomarkers 

for cancer study, for this reason their capture and retain represents a major challenge in cancer 

research. Many issues regarding the detection and characterization of CTCs are owing to their 

extremely rarity (one CTCs for 5 x 10
9 

erythrocytes/mL and for 7 x 10
6
 leucocytes /mL) and 

their heterogeneous nature (there is no unique biologic marker for CTCs identification). 

Although much promising progress has been made in CTCs detection, the robustness in 

distinguishing between healthy cells and CTCs, and the isolation of live CTCs need to be 

improved further. The method developed in this work exploits the so-called Warburg effect 

(WE): even in the presence of oxygen cancer cells limit largely their metabolism to glycolysis 

leading to increased production of lactate. Using droplet microfluidics, cancer cells are 

compartmentalized into a picolitre droplets and lactate secreted by cells are retained in the 

droplet. The secretion of lactate leads to a rapid increase in the concentration of acid in cell-

containing droplets. CTCs are thus detected by monitoring the pH of the droplet using a pH-

sensitive dye, without the need for surface-antigen labeling. A suspension of tumor cells 
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(A549) mixed with white blood cells were emulsified in picoliter droplets, and it was 

observed a clear fraction of droplets with a reduced pH, leading to a distinct population of 

droplets containing a cancer cell from empty or WBC containing drops. With this method a 

very few number (up to 10) of tumor cells in a background of 200,000 white blood cells are 

detected, with average detection rates in the range of 60%. To demonstrate that this is a 

general method for detection of cancer cells, several cancer cell lines were tested, including 

ovarian TOV21G, breast MDA-MB 453, glioblastoma U231, colorectal HT-29, breast MCF-7 

and MDA-MB-231  and all showed acidification of droplets. With the method established, 

samples based on blood cancer patients with confirmed metastatic disease were tested. The 

results show clearly that numerous positive droplets are detected in the sample of metastatic 

patients. Moreover, this method is capable of retrieving live cells, opening up routes for 

further large scale investigation of the nature of CTCs. 

Another interesting area where droplet-based microfluidics is playing an increasingly 

important role is the synthesis of functional polymeric microparticles or microgels. They have 

been suggested as diagnostic tools for the rapid multiplexed screening of biomolecules, 

because of their advantages in detection and quantification.  

In the second part of this thesis, the synthesis of polymeric microparticles, functionalized with 

peptides, through droplet microfluidics is presented. Peptide was efficiently encapsulated into 

the polymeric microparticles in order to create a functional microparticles for selective protein 

detection in complex fluids. Protein binding occurred with higher affinity (KD 0.1-0.4 µM) 

than the conventional detection methods (KD 70 µM). Current work demonstrate easy and fast 

realization of functionalized monodisperse microgels using droplet microfluidic and how the 

inclusion of small molecules within polymeric network improve both the affinity and the 

specificity of protein capture. This work provides advances in gel particle functionalization 

and opens new possibilities for direct molecules detection in complex fluids. A possible 

application of this method was for label-free aflatoxin M1 (AFM1) detection. AFM1 is the 

most toxic, carcinogenic, teratogenic and mutagenic class of aflatoxins (AFs) and can be 

present due to <fungal contamination> in a wide range of food and feed commodities, such as 

milk and dairy products, representing an important issue especially for developing countries. 

Currently, the detection methods used to quantify AFM1 require complex and laborious 

sample pretreatments, expensive instruments and skilled operators, thus limiting their 

application. Driven by the need of overcoming some of these limits, poly(ethylene glycol) 

dyacrilate (PEGDA) functional microparticles were produced using  microfluidics. Two novel 
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peptides were synthesized for specific aflatoxin detection and encapsulated in PEGDA 

microparticles for AFM1 detection. AFM1-binding peptides occurred with high affinity (KD 

3.66-6.57 pM, respectively for the two sequences) and detection was achieved measuring 

AFM1 innate fluorescence. The detection limit of this technique for AFM1 was estimated to be 

1.64 ng/Kg, with a dynamic detection range between 3.28 ng/Kg and 70 ng/Kg, which meets 

present legislative limits of 50 ng/Kg for AFM1 in milk. Therefore, the developed systems 

provides a promising approach for rapid screening of food contaminates because it resulted to 

be simple, sensitive, specific, and with not need multiple separation steps, overcoming the 

limits of the traditional AFM1 detection methods, which are expensive and time consuming. 

The use of microfluidics has allowed development of robust, label-free, sensitive and high-

throughput platforms which may be used in the near future to improve the quality of life. 
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CHAPTER 1  

 
 
 
 

General introduction  
and thesis outline 

 
 
 
 
 
 
 
 
 

Academics like complexity and emergency. The real world puts up with it reluctantly, but 
really wants simplicity…. 

…whatever simplicity is. 

(G. Whitesides). 

 

 

 

 

You know you’ve achieved perfection in design, not when you have nothing more to add, 
but when you have nothing more to take away.  

(de Saint-Exupery) 
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1.1 Microdroplets in Microfluidics: an evolving platform  for 

cell biology and sensing 

In 1954 Joshua Lederberg published a “simple method for isolating individual microbes”
1
, 

demonstrating the compartmentalization of single cells into nanoliter droplets. However, 

although the basic ideas of compartmentalization of cells and the study of enzymatic 

reactions in microdroplets were demonstrated, it has taken almost 50 years for Lederberg’s 

vision to become reality. With the advent of the -omics era there is an apparent need arisen 

for being able to carry out experiments at the smallest possible scale (single cells or 

molecules), on a massively parallel platform and with high throughput
2
. Recent advances 

in microfluidics have enabled the development of powerful tools for manipulation small 

amount (10
-6

 to 10
-12

 litres) of volume in channels at length scales of tens to hundreds of 

micrometers
3
. Microfluidics coupled with the technologies developed by the micro-

electromechanical systems (MEMS) field have provided the possibility to build up 

extremely reproducible and well defined fluidic chips, commonly referred as micro-total 

analysis systems (uTASs)
4,5

 or Lab-on-a-chip (LOC). This combination has resulted in a 

rapidly growing interest by researches to use microfluidic microdroplets for cell biology 

and biosensing applications
2,6-8

. The key features of microparticles in microfluidics are that 

they are monodisperse in size and therefore potentially suitable for carrying out 

quantitative studies, provide a compartment in which species can be isolated, provide the 

possibility to work with extremely small volumes and single cells or molecules, and offer 

to perform very large numbers of experiments
2
 (figure 1.1). These specific features have 

enabled the use of microdroplets as tools for discoveries in cell biology and bio-detection. 
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Figure 1.1: Microdroplets in microfluidics: A) microdroplets for single-cells analysis; B); C) 

droplet microfluidics for functional microparticles production; D) Dual fluorescence colloid-filled 

hydrogel granules (“Janus” particles). Reproduced with permission from ref []   

 

 

1.1.1 Key characteristics of microdroplets in microfluidics  

Compartmentalization, monodispersity, small, fast reactions 

The compartmentalization of reactions in microdroplet can be applied to a very wide range 

of experiments, chemical or biological. For example, in experiments where droplets 

contain single cell or living organisms, the environment of the cell can be controlled and its 

changes can be measured and studied. Microdroplets prepared through microfluidic 

platforms are highly monodisperse, with polydispersities in the range of 1 %  (in 

diameter)
9,10

. Thus every experiment took place in the same volume, controlling the 

concentration of reagents and reaction products. Furthermore, the analysis of reactions in 

bulk emulsions by screening individual droplets takes a considerable amount of time and 

therefore every droplet is analyzed at a different reaction time. With microfluidics, the 

screening is not much faster, but the rank order of droplets can be maintained and so every 

droplet has the same time lag between formation and screening. Additionally, droplets can 

be analyzed directly on-chip using integrated techniques, such as fluorescence detection, so 

they can be analyzed at controlled times
11-13

. The advantage of microfluidic technologies is 

crucial: as monodisperse droplets are formed on-chip and reactions are initiated at the point 

of drop formation or by droplet fusion, every droplet is identical in terms of concentrations 

and time-analysis. This has an important advantage in single-cell or single-molecule 
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studies, where stochastic variations require the detailed analysis and combination of data 

from large numbers of experiments
14

. 

Typical droplet volumes are in the nanoliter (nL) to picoliter (pL) range. As a result, 

reagent consumption is extremely small, allowing for the screening and analysis of 

precious compounds. Controlling the volume of droplets, the ability to tune the 

concentration of macromolecules in droplets also provides an ideal platform for exploring 

optimum conditions for protein crystallization
12,15

. Moreover, the confinement of a single 

cells in droplets allows released molecules to accumulate in a small compartment, their 

concentration hence rapidly increases into droplet, and the time required to detect the 

released molecules is reduced
16

.  

 

1.2 Droplet microfluidics 

Droplet-based microfluidics involves the generation and manipulation of monodisperse 

droplets, which can serve as compartments for single cell analysis or can be polymerized 

into polymeric microparticles for diagnostics and biosensing
17

. Unlike continuous flow 

systems, droplets enable isolated reactions to be performed in parallel without cross-

contamination or sample dilution. Microfluidic droplet-based systems represent a high-

throughput platform for biological and chemical research
18,19

. The formation of droplets 

can be done with passive mechanisms, such as with co-flowing streams, cross-flowing 

streams in a T-shaped junction, and elongation flow in a flow focusing (FF) geometry
20

 

(figure 1.2) or with active electrohydrodynamic (EHD) mechanisms, such as 

dielectrophoresis (DEP)
21

 and electrowetting on dielectric (EWOD)
22

.  

 

 

Figure 1.2: Standard geometries used for controlled droplet formation in microfluidic devices – T-

junction, Flow-focusing Device (FFD) and Co-flow. Reproduced with permission from   

Generally, two immiscible liquids such as a hydrophilic solution and hydrophobic oil are 

combined at a rate in which the shear force at the fluid interface is sufficiently large to 

cause the continuous phase to break the aqueous phase into discrete droplets
23,24

. The 

dimensionless Capillary number (Ca) plays a key role in droplet break-off. Droplet 
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formation is driven by the competition between the viscous stress and the surface tension 

of the two immiscible fluids, and occurs at a critical Ca:    
   

 
, where  [Pa-s] and U0 

[m/s] are the viscosity and velocity of the continuous phase, respectively, and  [N/m] is 

the interfacial tension between the immiscible phases
25,26

. Above a certain critical capillary 

number, droplet break off occurs. A low value of Ca indicates that the stresses due to 

interfacial tension are strong compared to viscous stress. Drops flowing under such a 

condition nearly minimize their surface are by producing spherical ends. In the opposite 

situation of high Ca, viscous effects dominate and one can observe large deformations of 

the drops and asymmetric shapes
26

. It is important to note that the critical capillary number 

is system dependent as different values have been reported by various groups using 

different geometries. To realize this number, it is important to consider the relative 

viscosity between the two phases. Selection of a more viscous hydrophobic phase will 

facilitate formation of droplets
20

. For example, for water-in-oil (W/O) emulsion, 

hydrophobic phase commonly consists of oils, which tends to be naturally more viscous 

than water. The immiscibility of the two-phases ensures the isolation and 

compartmentalization of each phase. 

Passive droplet generation techniques are ideal for experimental conditions where a large 

number of droplets are desired, namely for high-throughput or parallel analysis 

applications, such as large-scale PCR
27

 or culturing techniques
28

. Furthermore, the 

composition of the neighboring droplets can be controlled by adjusting the relative 

concentration of the upstream aqueous solution. This is especially useful for chemical 

analysis applications, such as enzymatic assays
29

, drug discovery assays
30

 and protein 

crystallization techniques
12

. 

 

1.3 Droplet microfluidics applications  

The high control and integrative ability available for operating and manipulating droplets 

make droplet microfluidic technology ideal for biomedical and biotechnology applications. 

In particular, the areas where droplet-based microfluidic platforms are playing an 

increasingly important role and of interest for this thesis are the analysis at single cell level 

and the synthesis of functional hydrogel microparticles for biosensing and detection
31

.    
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1.3.1 Droplet microfluidics: a tool for single-cells analysis 

Droplet microfluidics allows the isolation of single cells in a well-defined (potential sterile) 

environment and the manipulations at a throughput of thousands of droplets per second
32

. 

A strong advantage of analyzing single cells in droplets is the ability of rapid detection of 

cell-secreted molecules due to the low volume surrounding each encapsulated cell, thereby 

overcoming one of the major limitations of traditional flow cytometry (FC) and 

fluorescence-activated cell sorting (FACS)
33

. In addition, in microfluidic systems, droplets 

can be merged with other droplets
34

, split into two
35

 or dielectrophoresis (DEP)-sorted
36

 for 

further analysis.  

The growing of emerging technologies have enabled to integrate electrodes into 

microdevices providing electrical control over droplet motion and manipulation
20

. For 

examples the integration of DEP-based sorting in droplet microfluidics has allowed to 

retrieve a specific subset of droplets from the rest of the droplet stream. The retrieval of a 

small population of cells for further analysis is a crucial step in cases of circulating tumor 

cells, hybridoma production or drug screening. Recently, DEP combined with laser-

induced fluorescence (LIF) technique has allowed to separate target droplets from the rest 

of the droplet stream with electric fields according to their fluorescent content, thereby 

isolating the droplets of interest
36-38

. LIF is a spectroscopy method that offer very sensitive 

and ultra fast detection in many applications such as cell-based assays, PCR detection and 

binding assay
39

.  

Griffiths, Weitz and coworkers showed an example of integrated on-chip fluorescent-

activated droplet sorting system, based on DEP-sorting, for high-throughput analysis of 

single cells (figure 1.3). They described a binding assay to detect antibodies secreted from 

single mouse hybridoma cells. Secreted antibodies were detected by co-

compartmentalizing single mouse hybridoma cells, a fluorescent probe and single beads 

coated with anti-mouse IgG antibodies in 50 pL droplets. When the binding occurs a 

clearly distinguishable signal of fluorescence inside droplet is generated and recorded by 

laser. If the intensity of the fluorescence is above a preselected threshold such droplet is 

actively sorted via DEP
40

.  
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Figure 1.3: Integrated on-chip fluorescent-activated droplet sorting system, based on DEP-sorting, 

for high-throughput analysis of single cells. Three steps are describe:1) cells encapsulation; 2) 

droplets containing cells reinjection in a second device; 3) droplets containing green fluorescent 

beads are sorted using a fluorescence activated droplet sorter. Reproduced with permission from 

Ref [40] 

Single cell is the fundamental component of life, therefore, single-cell analysis in not just 

one more step towards more-sensitive measurements, but is a decisive jump to a more-

fundamental understanding of biology
41

. For a long time it is assumed that cell cultures 

were of homogeneous nature, and analyze a collection of cells would give an accurate 

assessment of the behavior of the cells in that culture or tissue. This means that the average 

response of the cells can be interpret as the response of the all cells in that sample
42

. Thus, 

droplet microfluidics certainly plays a significant role in elucidating the heterogeneities of 

cell populations and their underlying causes, finding the rare cells that average only a 

single cell per milliliter of blood. Droplets features allow many of the challenges in single-

cell analysis to be overcome
43

. There are of course challenges with integration as the 

droplet microfluidics circuitry becomes more complex, nevertheless droplet microfluidics 

has the potential to support scientific progress in further analysis of the fundamental 

component of life- the cell. 

1.3.1.1 Circulating tumor cells detection 

Circulating tumor cells are small amount of cells shedding into bloodstream from both 

primary and metastatic lesions and are thought to be responsible for the hematogenous 

spread of cancer to distant sites
44-46

. Strong evidence for CTCs as prognostic markers has 

been documented for breast cancer
47

, but CTC detection is also connected to metastatic 
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relapse and progression in other tumor entities, including prostate, lung and colorectal 

cancer
48-51

. In ongoing studies, the clinical utility of CTCs for treatment decisions is being 

evaluated
51

. In particular the use of CTCs as a real-time liquid biopsy has received 

attention during the past years
52

. In addition, their capture directly from a patient’s blood is 

a non invasive method for cancer detection. However, the capture of CTCs from a patient’s 

blood with high efficiency and purity is still a technical challenge. The capture and 

analysis of CTCs is very difficult owing to the low levels of these cells in blood
53

 

(approximately one CTC in a billion blood cells is seen in cancer patient blood). Moreover, 

the heterogeneous nature of CTCs poses an additional challenge, as there is no unique 

marker for their identification
53-56

. Furthermore, in order to carry out cell culture and 

molecular analysis of the CTCs, their capture are expected to be kept viable.  

Various techniques have been recently explored to isolate CTCs from patient blood (figure 

1.4) in which microtechnologies devices and materials have been demonstrated as possible 

solutions
57

.  

 

Figure 1.4: CTC separation methods. A) Immunoaffinity purification; B) Aptamer-based 

separation; C) Nanorough surfaces; D) Microfi lters; E) Hydrodynamic separation; F) 

Dielectrophoresis; G) Approaches integrating multiple CTC capture principles together. 

Reproduced with permission from  Ref [57] 

At the moment the only system commercially available which gets approval from the US 

Food and Drug Administration (FDA) for CTC analysis is CellSearch. It is an 

immunomagnetic enrichment method that relies on targeting a marker specific to epithelial 

cells, the epithelial cell adhesion molecule (EpCAM). However CellSearch has a number 



  Chapter 1  

15 

 

of limitations, for examples has a lack of sensitivity that limits its applicability to the 

analysis of cells with high EpCAM levels
58,59

, and not all CTCs present high EpCAM-

expression. An additional constraint is the inability to access cellular material after cells 

are enumerated. To this end it is necessary develop technologies that have to be efficient 

enough to recover as many CTCs as possible thus ensuring the enumeration process 

reflects the status of the cancer patient and guarantees enough CTCs for the post-capture 

analysis to study the cancer metastasis process. Separation methods should be therefore 

able to release CTCs without damaging them and need to be less time-consuming and be 

able of conducing high-throughput separation, due to the short life of CTCs
60

. Finely, these 

technologies must be effective for most types of cancer patients and cancer at different 

disease stages. 

 

1.3.2 Droplet microfluidic: a platform for functional 

microparticles production for detection applications. 

Droplet microfluidic techniques provide some of the most promising approaches to 

produce and functionalize monodisperse polymeric microparticles
61

 for biosensing and 

detection (figure 1.5).  

 

Figure 1.5: Functional microparticles tailored by droplet-based microfluidics. Reproduced with 

permission from Ref. [61] 

These microparticles are obtained through the polymerization of the emulsion 

microdroplets template, generated by microfluidic device. Polymerization can be perform 

via different mechanisms: heat-based, light-based and chemical-reaction-based methods
17

. 

In all cases the discrete phases are comprised of a thermally, photochemically or 

chemically curable material that can be converted into solid microparticles under specific 

stimuli.  
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Polymeric microparticles can be functionalized employing creative strategies in droplet 

microfluidics, which are difficult to achieve using conventional suspension. For example, 

they can be engineered with diverse biological entities such as peptide, protein or nucleic 

acids
62

 to detect proteins, DNA, mRNA, microRNA in complex fluid
63

. 

A few reports investigated the synthesis of enzyme-immobilized hydrogel microparticles 

and their ability for the biosensing of small molecules
64

. For example, in 2012 Kantak et al. 

used microfluidic T-junction to generate poly(ethylene) glycol (PEG) microparticles, 

containing fluorescein isothiocynate dextran (FITC-dextran) and a sugar binding protein, 

for a fluorescence-based glucose detection assay
65

.  

1.3.2.1 Poly(ethylene glycol) (PEG) microparticles 

Polyethylene glycols (PEG) (figure 1.6) are commonly used in biotechnological 

applications due to their biocompatibility and low-biofouling properties
62,66-68

. In 

particular, PEG layers have been used to prevent non-specific binding of protein on sensing 

surfaces
69,70

.  

 

Figure1.6: Polyethylene glycols (PEG) 

PEGs are relatively inexpensive and available in a large range of molecular weights and 

chemical modifications: PEG molecular weights ranging from a few hundred to several 

thousand grams per mole have been used to fabricate particles
71

. Conveniently, PEGs show 

good solubility in aqueous buffers required for biomolecule manipulation and PEG 

particles have thus been the substrate of choice for hydrogel particle-based assays so far. 

PEG microparticles are usually prepared using the free-radical polymerization of reactive 

(meth)acrylate PEG derivatives or polyethylene glycol diacrylates (PEGDA) in the 

presence of a UV-sensitive photoinitiator
72-74

. The UV-induced activation of the 

photoinitiator generates a benzoyl free radical through a homolytic scission of a C–C bond, 

subsequently triggering the covalent crosslinking of the gel
75

. 

One immunoassay on PEG microparticles was reported by Appleyard et al. in 2011
76

. The 

authors developed a complete sandwich immunoassay for multiplexed detection of 

cytokines on barcoded poly(ethilenglycol) dyacrilate (PEGDA) particles synthesized 

through microfluidic device. Target samples were spiked in fetal bovine serum (FBS) in 
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order to mimic the complexity of biological samples. The bio-inert poly PEG hydrogel did 

not collect non-specific signal in these complex samples, avoiding the need for prior 

purification of the sample.   

1.3.2.2 Microfluidics for food analysis: aflatoxin M1 

Microfluidics is a technology that allows constructing small, fast and cheap microfluidic 

analytical systems for food analysis
77

. The presence of a variety of food contaminants and 

residues at low concentration, their difference in physicochemical behavior and the 

complexity of the food matrix make food analysis a challenging task. Chromatographic 

techniques are commonly used in food analysis
78

, however they are relative slow, require 

extensive sample preparation and need trained personnel. As a consequence, they are 

expensive and time consuming for routine analysis.  

The need for cheap and high throughput has encouraged the development of new 

technologies and more suitable analytical methods
79

.  

In the last two decades, one of the major challenges in the field of food analysis, is the 

detection of aflatoxins (AFs). AFs are a major class of mycotoxins produced primarily by 

Aspergillus species
80

. Aflatoxin M1 (AFM1) is the most toxic, carcinogenic, teratogenic 

and mutagenic class of AFs
81

; it is a hydroxylated metabolite of aflatoxin B1 (AFB1) 

(figure 1.7) and it is normally excreted in milk by dairy mammals as a result of the direct 

intake of AFB1–contaminated feedstuff.  

 

Figure 1.7: aflatoxin B1 metabolism 

AFM1 has been classified as a Group 1 carcinogenic agent by the International Agency 

for Research on Cancer in 2002 (IARC 2002). Once present in milk, AFM1 is unaffected 

by thermal treatments, such us pasteurization or sterilization
82

. In 2006, the European 

Union (UE) set the legal limit for AFM1 to 0.05 µg/Kg. This has prompted the adoption of 

regulatory limits in several countries, which, in turn, requires the development of validated 

official analytical methods for rapid and cost-effective screening of AFM1 on a large scale. 

Various analytical methods and strategies have been applied for the detection of AFM1, 
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e.g., thin-layer chromatography (TLC), HPLC, gas chromatography (GC), liquid 

chromatography−mass spectrometry (LC-MS), enzyme-linked immunosorbent assay 

(ELISA), direct fluorimetry, fluorescence polarization, and various biosensors/lateral flow 

devices (LFD)
83-88

. However, it is known that these methods not only require expensive 

instruments and skilled operators but also complicated sample pretreatment thus limiting 

their application, especially in developing countries
89

. In this perspective, the use of 

droplet-based microfluidics coupled with the use of biorecognition elements (such as 

enzymes, peptides and antibodies) could realize simple and low cost platform for 

aflatoxins detection. 

1.4 Outline of Dissertation 

Microfluidics is an increasingly tool for single-cells analysis and also for functional gel 

microparticles production. We use droplet microfluidics to study rare cancer cells and to 

synthesize polymeric microparticles for selective protein detection in complex fluid. The 

final aim of this work concerns the realization and the optimization of microfluidic 

technologies for the development of diagnostics tools for personal care and of relative 

simple and rapid system for food contaminants detection.  

In Chapter 2 a microfluidics approach for circulating tumor cells (CTCs) detection, based 

on single-cell metabolism determination, is presented. Droplet microfluidics is used to 

compartmentalize each cell inside a picoliter droplet and lactic acid production by 

compartmentalized cancer cells is detected by monitoring the pH of the droplet through 

LIF at approximately 1kHz. The results are promising, and open the routs for further work 

in vivo.  

In Chapter 3 droplet microfluidics for functional microgels synthesis, for biosensing 

application, is presented. A labeled peptide was encapsulated into microparticles for 

specific molecules detection in complex media. The encapsulation of the peptide increase 

the specificity and the sensitivity of the biomolecules detection, providing an advantage in 

biotechnological field.  

Finally, in Chapter 4, microfluidic microparticles for label-free AFM1 detection is 

presented.  The same method described in Chapter 3 is used for the production of 

functional PEGDA-microparticles for AFM1 screening. Two novel peptides, synthesized in 

our laboratory for specific aflatoxin recognition, were encapsulated into the polymer 
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network. Due to AFM1 natural fluorescence, the efficacy of the method was provided by 

CM.  

Final conclusions and future perspectives, with some parameters that still need to be 

optimized are synthetically presented and discussed in Chapter 5. 
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2. CHAPTER 2 

 

A microfluidic approach for single-cell  

metabolism determination, a tool for circulating tumor cells 

detection 

Abstract. The number of circulating tumor cells (CTCs) in blood is strongly correlated 

with the progress of metastasic cancer, for this reason their capture and retain represents a 

major challenge in cancer research. Traditional methods to isolate and characterize CTCs 

are based on immunostaining or discrimination of physical properties. Recently 

microengineered devices have been demonstrated as a possible solution to capture and 

processing of CTCs. Here, a label-free method is presented. It exploits the so-called 

Warburg effect (WE): even in the presence of oxygen cancer cells limit largely their  

metabolism to glycolysis leading to increased production of lactate. Cells are 

compartmentalized into a pL droplets using droplet microfluidics. Cancer cells secrete 

lactic acid faster than healthy cells, acidifying the extracellular environment. The lactic 

acid production can be detect by monitoring the pH changes within droplets. Cancer cells 

are detected by finding droplets with significant pH changes. This method is capable of 

retrieving live cells, opening up routes for further large scale investigation of the nature of 

CTCs.   
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2.1. Introduction 

The progression of cancer from a localized tumor to metastasis is central to  often 

devastating effects of this complex illness. A release of CTCs from primary tumor into the 

bloodstream is one of main routs for the formation of metastases in distant organs
1
.CTCs 

that posses an aggressive phenotype can invade a healthy tissue and form secondary 

tumors, which are often cause of patient's death. A recent clinical research has shown that 

level of CTCs in metastatic patient's blood is a predictor of survival, indicating the value of 

CTCs as a biomarker for cancer diagnosis, prognostic outcome evaluation, and treatment 

monitoring
2-5

. Therefore, the isolation and the analysis of CTCs has a potential to provide 

an insight in blood-born metastasis and monitor cancer response noninvasively following 

therapeutic intervention.  

The capture and analysis of CTCs is very challenging owing to their extreme rarity relative 

to erythrocytes (5 x 10
9 

cells/mL) and leucocytes (7 x 10
6
 cells/mL) in patient's blood

6
. 

Although red blood cells can be easily removed by lysis, leucocytes (white blood cells) 

share many of the physical, chemical and biological properties of CTCs, leading to high 

contamination levels in many CTC detection methods
7
. The heterogeneity of CTCs poses 

an additional challenge, as there is no unique biologic marker for their identification
8,9

. 

Biochemical techniques for detection and enumeration of CTCs exploit the presence of 

surface and cytoplasmic proteins (epithelial cell adhesion molecule (EpCAM), HER2, 

EGFR, MUC1, or CKs) that are not present in leukocytes
10

. Currently the only clinically 

validated method (CellSearch®) is based on the enumeration of epithelial cells that are 

separated from the blood by EpCAM-coated magnetic beads and identified with the use of 

fluorescently labelled antibodies against cytokeratin (8, 18, 19) and with a fluorescent 

nuclear stain
11

. CellSearch® and other methods base on immunostaining are able to detect 

reliably EpCAM-positive CTCs. However, a potential problem for detection of EpCAM 

positive CTCs is the variation of EpCAM expression in cancer cells. When detached from 

the primary tumor, metastatic tumor cells may experience the epithelial-to-mesenchymal 

transition (EMT), which leads to the disappearance of epithelial features such as EpCAM 

expression, and such approaches using the EpCAM biomarker may result in the loss of 

partial populations of CTCs, which may have more aggressive metastatic potentials
12,13

. To 

overcome this limitation alternatives methods based on physical properties such as the 

mechanical properties of CTCs, size, deformability, or electric charge, have been 
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developed. They are low cost, label-free and, most importantly, permit significantly higher 

throughput compared to immunostaining-based methods. While these techniques achieved 

satisfactory isolation efficiency, the viability of the captured CTCs was compromised. 

Moreover, morphological analysis of CTCs has shown that the size of these cells varying 

from 4 to 30 µm, thus some CTCs could be as large as leukocytes, resulting in a potential 

loss of subpopulations of CTCs
14

. 

Although significant progress for CTCs detection has been made, further improvement is 

necessary. Methods capable of detection and isolation of live, intact CTCs will open 

opportunities for detailed analysis of CTCs and metastasis.  

In the 1920s Otto Warburg observed an anomalous metabolism of cancer cells for the first 

time
15.

 Even in the presence of oxygen cancer cells limit largely their metabolism to 

glycolysis leading to increased production of lactate, phenomenon that has been termed 

“Warburg effect” or “aerobic glycolysis”
16

. An altered metabolism of cancer cells (and 

associated extracellular acidification via various mechanisms) is widespread across 

different types of cancers, and it  has been accepted as a hallmark of cancer
17

. The 

Warburg-correlated upregulation of glucose uptake is well-known, and forms the basis of 

F-fluorodeoxyglucose Positron-Emission Tomography (FDG-PET), currently applied in 

the diagnosis, staging and monitoring of almost all types of cancer
18

.  Although the 

Warburg effect has been known for over 50 years, it has never been used to detect CTCs, 

as such cells are so rare that they do not noticeably alter  lactate levels in  blood.  

Here we present a label-free method for CTCs detection exploiting the abnormal metabolic 

behavior of cancer cells (WE) using droplet microfluidics. A suspension of tumor cells 

from a cancer cell line (lung - A549) were emulsified in 35 pL droplets. All molecules 

secreted by cancer cell are retained in the droplet and concentration of secretion product 

rapidly increases due to the small volume of the droplets. Thus CTCs are detected by 

measuring lactate or pH changes in the extracellular compartment without the need for 

surface-antigen labeling. We then mixed A549 cells with white blood cells (WBCs), as 

these will be the primary background in blood samples taken from patients, and observed a 

clear ~ 2 fold intensity difference between droplets containing cancer cells and empty or 

WBC containing drops (Figure 2.1).  
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Figure 2.1: schematic representation. A) lactate secretion by CTCs provide an acidification of 

extracellular environment; B) different of fluorescent between droplets contain cancer cells and 

empty or WBC containing drops; C) detection of environment acidification due to lactate secretion 

via pH measurement. 

 

2.2. Results and discussion 

2.2.1. Characterization using cell lines 

The key technological breakthrough presented here lies in splitting the macroscopic 

(blood) sample into small (picoliter-nanoliter) aqueous droplets in oil (water-in-oil 

emulsion) using droplet microfluidics
19

. Each droplet contains at most a single cell and all 

molecules secreted by this single cell are retained by the droplet
20

. To establish the validity 

of our approach, we emulsified a suspension of tumor cells from a cancer cell line (lung - 

A549) in 35 pL droplets in the presence of culture medium and a lactic acid assay mixture. 

The number of cells in each droplet followed a Poisson distribution ensuring >90% single 

cell encapsulation (Figure 2.2) and we demonstrated the production of lactate by A549 in 

drops.  
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Figure 2.2: distribution of cell occupancy in droplets. Distributions shown for emulsification of 1 

000 000 cell/mL (A) and 5 000 000 cell/mL (B). By far the majority of droplets are empty, but 

more than 90% of droplets containing cells have only 1 cell per droplet. 

In order to simplify the assay, we measured lactate secretion indirectly, by monitoring the 

pH of the droplet using a ratiometric pH-sensitive dye (Snarf-5F). Figure 2.3 clearly show 

a difference in fluorescent intensity, that means a drop in pH inside droplets, between 

empty droplets, droplets containing cancer cells or containing WBCs. There is some spread 

in the fluorescence. This variation is most likely due to a difference in lactate secretion 

rates between individual cells. 

 

Figure 2.3: detection of acidification due to lactate secretion via pH measurement. pHrodo Green 

dye was used to indicate pH changes. Results are comparable to lactate assay and confirm the 

difference between cancer cells and WBCs. 

To screen droplets with higher throughput in a semi-automated way, we engineered an 

inverted microscope, so that each droplet can be analyzed using laser-induced fluorescence 

at approximately 1 kHz
21,22

 (Figure 2.4). For each droplet the ratio of emitted fluorescence 

at 580 and 630 nm is calculated in real time. In the presence of cell secreting lactate the pH 
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inside a droplet reduces below 7.4 and as a result an increase in 580/630 ratio above 1 is 

observed (Figure 2.4A). 

 

 

Figure 2.4: Detection of CTC using dual emission SNARF 5F dye. (A) Fragment of a raw data 

trace. Inset shows micrograph of a detected CTC. (B) Schematic of experimental setup.: laser-

induced fluorescence setup. 

Real time analysis of each droplet enables us to capture images (Figure 2.4A) of a subset 

of droplets with increased 580/630 fluorescence ratios, thus providing an additional 

verification. The assay consists of three steps: a sample emulsification, incubation and a 

readout. To facilitate subsequent reinjection step droplets were generated, collected and 

incubated in a device with a cone-shaped chamber. After incubation all droplets are 

injected in another device where each droplet is interrogated and fluorescence ratio is 

determined. 

We made a calibration curve of Snarf-5f to correlate fluorescence intensity (ratio between 

fluorescence intensity at 580 nm and intensity at 630 nm) with pH changes inside droplets 

(Figure 2.5). A set of Joklik’s modified EMEM solutions was prepared and titrated to 

various pHs between 7.4 and 5. These solutions were emulsified and ratio of obtained 

droplets detected similarly to A549 samples. 
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Figure 2.5: calibration of SNARF-5F response. Ratio between fluorescence intensity at 580 nm 

and intensity at 630 nm. 

2.2.2. Outperforming other methods 

Using the developed method, we investigated secretion in various cancer cell lines. The 

secretion of lactate leads to a rapid increase in the concentration of acid in cell-containing 

droplets. Even after short incubation times (<2 minutes) a population of acidified droplets 

appears. This population increases further, approaching saturation after 10-20 minutes. 

Therefore, all our experiments were carried out using incubation times of at least 10 

minutes (Figure 2.6).  

 

Figure 2.6: (Top panels) Dot plots showing a population of droplets becoming increasingly acid 

over time. (Bottom panel) A fraction of droplets reaching certain ratio (>1 – green trace; >1.5 – red 

trace) 

0,5 

1,0 

1,5 

2,0 

2,5 

3,0 

3,5 

4,0 

4,5 

5 5,5 6 6,5 7 7,5 

R
at

io
 

pH 



  Chapter 2  

42 

 

To demonstrate that this is a general method for detection of cancer cells, we tested several 

other cancer cell lines, both EpCAM(+) and (-) including ovarian TOV21G, breast MDA-

MB 453, glioblastoma U231, colorectal HT-29, breast MCF-7 and MDA-MB-231 - and 

found that all show acidification of droplets (Figure 2.7). The results makes our method 

suited to study a range of cancer types. These include epithelial cancers in which activation 

of EMT during cancer cell invasion triggers loss of epithelial markers, as well as non-

epithelial cancers such as melanoma. 

 

Figure 2.7: metabolic response of selected cancer cell lines. WBC response is given for 

comparison. 

2.2.3. Optimization: A549 mixed to WBC for clinical samples 

simulation 

We used A549 cell line mixed with WBCs to simulate clinical samples and to investigate 

analytical figures of merit of the developed method. Experiments were then repeated using 

larger numbers of cells. Figure 2.8A shows data points for 2 millions droplets of an 

emulsified A549 suspension, and we see a clear fraction of droplets with a reduced pH. 

Figure 2.8B shows data points for 2 millions droplets produced from a sample of WBCs 

from a healthy donor; visual inspection of the captured image of the few acidic droplets 

detected never confirmed the presence of WBCs. Figure 2.8C shows data points for 2 

millions droplets of the same sample with A549 cells spiked in, leading to a distinct 
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population of acidified droplets. These figures clearly demonstrate that our method is 

capable of distinguishing healthy cells from metabolically active A549.  

CTCs are extremely rare cells and the detection of these cells requires an assay with high 

sensitivity and specificity. To quantify both, we emulsified mixtures of A549 tumor cells 

with WBCs in ratios ranging from as few as 10 : 200,000 to 130 : 200,000 A549:WBC 

(total samples sizes containing 1M/mL WBCs). Figure 2.8D shows the number of tumor 

cells detected vs. number of tumor cells spiked in. Our method is capable of detecting 

A549’s even at the lowest dilutions tested, with average detection rates for all experiments 

in the range of 60%. We note that at low cell count, deviations between expected and 

recovered cell numbers might be due to variations in actual cells compartmentalized, and 

losses due to adhesion to tubing or syringe. Importantly, none of the low pH droplets 

contained WBCs (as confirmed by analyzing the video images). 

 

 

Figure 2.8: Detection of A549 cells. (A) A 549s alone in Joklik medium (pH 7.3). (B) isolated 

WBC alone in medium. (C) Mixture of A549 and WBCs in medium. (D) Absolute and relative 

recovery of spiked A549 in presence of WBC. 

2.2.4.  Capture of cancer cells from blood sample of patients 

With the method established, we tested samples based on blood of healthy donors as well 

as cancer patients with confirmed metastatic disease. To be able to process a large amount 

of blood, we depleted lysed blood of CD45+ cells by magnetic labeling (Miltenyi Biotec). 

Figure 2.9 shows clearly that, in the CD45(-) fraction, no positive droplets are observed in 

samples derived from the blood of healthy volunteers, whereas numerous positive droplets 
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are detected when either A549s are spiked into the healthy donor sample, or the sample of 

a metastatic patient is analyzed.  

 

Figure 2.9: CTC detection in clinical samples. (A) Healthy volunteer sample. (B) Healthy 

volunteer sample with spiked tumor cells. (C) Sample from metastatic colorectal cancer patient. 

2.3. Conclusions 

This work provides the first proof-of-concept data that the cancer cell metabolism, and 

more specifically, the acidification of the extracellular microenvironment (so-called 

Warburg effect), can be used to identify and count rare tumor cells and CTCs. This method 

could overcome some limits of other technologies used for CTCs capture. Further work is 

needed to confirm these results and clarify how they can impact in clinical routine: positive 

events need to be isolated and characterized for cancer-specific proteins and genetic 

mutations, while clinical parameters as sensitivity, specificity, predictive values, must be 

established by dedicated clinical trials.  
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2.4. Experimental Section 

 Microfluidic circuit fabrication: 25 µm thick layer of SU8-2025 was spun on 

silicon wafer, baked, exposed through transparency mask, baked again and developed 

according to manufacturer instructions (MicroChem corp.). Sylgard 184 (PDMS) 

prepolymer and crosslinking agent (Dow Corning) were mixed at a mass ratio of 10:1 

(w/w); a mixture was poured onto a master, degassed and cured at 65°C for at least 2h. The 

replica was detached from master and reservoirs were bored using a blunt hypodermic 

needle.  A PDMS replica was washed in soapy water and ethanol, and blow dried with 

nitrogen.  A clean glass slide and a clean PDMS replica were treated with oxygen plasma 

and bonded. The device was silanized with 1% (Tridecafluoro-1,1,2,2-Tetrahydrooctyl)-1-

Trichlorosilane (Sigma-Aldrich) in FC-40 (3M), fluorinated oil, which was introduced into 

microfluidic channels (enough to completely wet whole microfluidic network) and then the 

device was kept at 95°C for at least 30 min. To fabricate a reservoir for an emulsified 

sample a brass cone (10 mm in dia. and 5 mm tall; ~130 µL volume) was placed directly 

on silicon wafer and replicated together with photolithographically defined features.   

Cells: Cell lines were a courtesy of Di Loreto lab, Hubrecht lab, and Colombatti lab. White 

blood cells (WBCs) were obtained by lysing whole blood with lysis solution (BD) 

according to manifacturer’s protocol. 

Droplet production: Monodisperse droplets are generated in chips with 20 µm wide T-

junction. Continuous phase: 2% (w/w) surfactant (Krytox–Jeffamine–Krytox A–B–A 

triblock copolymer)
1
 in HFE-7500 (3M) Dispersed phase: cell suspension in HBSS or 

Joklik’s modified EMEM, Optiprep 15%, pH-sensitive dye (4 µM. Flow rates are set such 

                                                 

1
 V.Chokkalingam, J.Tel, F.Wimmers, X.Liu, S.Semenov, J.Thiele, C.G.Figdor, W.T.S.Huck, Lab Chip 2013,13, 

4740-4744, doi: 10.1039/C3LC50945A 
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as continuous phase flow is at least 2 times higher than a flow rate of a dispersed phase; a 

typical flow rate for disperse phase was 300 µl/h and 600 µl/h for continuous phase. 

Lactate enzymatic assay: A three-channel architecture microfluidic circuit was used: one 

channel bringing the cell suspension (dispersed phase), one bringing the reagents of lactate 

assay (Cell Technology, Inc.) and one bringing continuous phase. Emulsification step was 

performed at 4°C to slow down cell metabolism to avoid lactate contamination of the 

whole solution by cancer cells. With this microfluidic device we could expose cells to the 

enzymes of the lactate assay only after encapsulation in the micro-droplets, to avoid 

unspecific activation prior the encapsulation. Images were taken after 15 min incubation at 

room temperature after emulsification.  

Widefield fluorescence imaging (lactate assay, pHRodo green experiments): An inverted 

epifluorescence microscope (Olympus IX81) was equipped with xCite 120Q lamp (Lumen 

Dynamics Group Inc.), resorufin and FITC filter sets (Semrock) and iXon 897 camera 

(Andor). An aliquot of processed sample was pipetted on a microscope glass slide and 

covered with a cover slip to prevent evaporation. 

High throughput detection with SNARF-5F. Setup: An inverted microscope (Olympus 

IX70) was used to analyze flowing droplets one by one.  A laser (488 Argon-ion Cyonics) 

beam was expanded (2x) and focused down with a cylindrical lens crossing orthogonally 

the microfluidic channel. The fluorescence signal of excited droplets was collected with a 

40x objective (Olympus LUCPlanFLN, 40x/0.60), split with dichroic filter (DLP555, 

Semrock) and detected through bandpass filters (579/34 630/38) by Photo Multiplier Tubes 

(PMTs) (H957-15, Hamamatsu). Signal went through a transimpedance amplifier with 

1V/uA gain and was detected by the acquisition system (National Instruments cRIO-9024, 

analog input module NI9223) with a 10 μsec scan rate. The acquisition system was driven 

by LABView in house written software. The software detects all data-points of a droplet 

over a set threshold and computes in real time averaged values; it also provides trigger 

pulse for image capture on a camera. Liquids were pumped using neMESYS (Cetoni) 

syringe pumps. 

A549 quantitation. Cultured cells were washed with PBS, trypsinized and transferred into 

medium (typical concentration 500,000 to 1000,000 cell/mL). Cells were spun down and 

resuspended in Joklik’s modified EMEM (pH 7.4). If lower concentration of A549s was 

required, cell suspension was diluted to ~ 1000 cell/mL in Joklik’s modified EMEM. 100 

µL of sample solution was obtained by mixing cell suspension, SNARF-5F stock (conc. 1 
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mM) and in Joklik’s modified EMEM. Fraction of obtained solution was used to verify 

A549 concentration in counting chamber. 1 to 2M cell/ml suspension of WBC in Joklik’s 

modified EMEM was used to prepare samples of A549 with WBCs. Samples were 

emulsified at flowrate of 300 µL/h (600 µL/h for oil), collected in cone reservoir and 

incubated for 20 minutes. Droplets were reinjected from cone device directly into a readout 

device (50 to 100 µL/h for droplets; 300 to 500 µL/h for spacer oil). Detected cancerous 

cells were verified with images acquired for droplets with reduced pH. 

CD45 immunomagnetic depletion: We followed manifacturer’s protocol for CD45+ 

depletion using Miltenyi human CD45 Microbeads, MidiMACS™ Separator, MultiStand 

and LD Column. 

Patient protocol: 1-2mL of whole blood from metastatic cancer patients was lysed, 

depleted of CD45+ fraction, CD45-Alexa488 stained and resuspended in incubation buffer, 

for a final volume of 50uL 15% Optiprep. 

Patient spike protocol: A549 cells were spiked into 1-2mL of whole blood from healthy 

donor and “patient protocol” was followed. 
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3. CHAPTER 3  

Microfluidic synthesis of Peptide-functionalized microgels 

for in serum selective protein detection 

Abstract. Polymeric microparticles represent a robustly platform for detection of 

clinically relevant analytes in biological samples; they can be functionalized with multiple 

types of biologics entities, enhancing their applications as a new class of colloid materials. 

Microfluidics offers a versatile platform for synthesis of monodisperse and engineered 

microparticles. Microfluidic synthesis of novel polymeric microparticles endowed with 

specific peptide due to its superior specificity for target binding in complex media is 

presented. A peptide sequence was efficiently encapsulated into the polymeric network and 

protein binding occurred with high affinity (KD 0.1-0.4 µM). Fluidic dynamics simulation 

was performed to optimize the production conditions to obtain monodisperse and stable 

functionalized microgels. The results demonstrate the easy and fast realization, in a single 

step, of functionalized monodisperse microgels using droplet-microfluidic technique, and 

how the inclusion of the peptide within polymeric network improve both the affinity and 

the specificity of protein capture. 

 

This work has been submitted for publication: G.Celetti; C. Di Natale; F. Causa; P.A. Netti; “Functionalized 

poly(ethylene glycol) diacrylate microgels by microfluidics: in situ peptide encapsulation for in serum 

selective protein detection”.  
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3.1. Introduction 

Recently, hydrogels-based technologies have been developed for a wide range of 

biotechnology applications including diagnostic
1-3

, drug delivery
4,5

 and tissue 

engineering
6,7

. Because of their biocompatibility and high tunability hydrogels represent 

ideal candidates for biosensing applications. Their microstructure and interfacial 

proprieties can also be rendered responsive to various stimuli through chemical and 

physical cues, resulting in “smart” materials which can respond to their local environment
1
. 

In particular, hydrogels can be engineer with different biological entities such as nucleic 

acids or peptides for capture and detection of proteins, DNA, mRNA and microRNA
8
. 

Hydrogels are typically prepared and processed as bulk materials such as monolithic 

structures or supported films. However, emerging applications for delivery and transport 

purposes in microscopic environments require miniaturization and tailoring of hydrogel 

architecture at increasingly small length scales. This requirement has prompted 

development of new methods for synthesis of hydrogel microparticles, as know as 

“microgels”
1
. Hydrogel microparticles have been suggested as diagnostic tools for the 

rapid multiplexed screening of biomolecules, due to their advantages in detection and 

quantification
9-11

. Compared to traditional planar arrays, particle-based arrays offer easier 

probe modification, more efficient mixing, and higher reproducibility
12

. However, 

appropriate methods to functionalize of large microparticles have not yet been developed
13

.  

Synthesis of hydrogel microparticles in microfluidics represents one of the most promising 

production methods; two examples are droplet microfluidics
14-16

 and flow lithography
14

. In 

particular, droplet microfluidics facilitates fabrication of spherical microparticles (i.e., 

microspheres) or microparticles with complex chemical compositions and potentially 

enables high throughput synthesis
17

. Prior reports have demonstrated the ability of 

microfluidic-based platforms to synthesize, functionalize and encode microparticles with 

multiple bioactive agents
14,18,19

, overcoming the conventional emulsion polymerization 

methods
20

.  

Due to its biocompatibility and low-biofouling properties poly(ethylene glycol) (PEG) has 

been widely used for hydrogels particles-based assays. Various approaches have explored 

PEG’s utility as biosensor platform including direct physical entrapment
21

 or covalently 

linking the biomolecules  to the polymer network
22

.  
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Most of validated detection strategies use monoclonal antibodies as target recognition 

moieties, but the use of these large macromolecules has several limitations, including poor 

stability and high production costs
23,24

. In contrast, small molecules like peptides can be 

prepared synthetically and they mimic the antibody binding site by using only a small 

cluster of residues, even though with lower affinity and specificity toward biomolecule 

target
25

. Hydrogel networks endowed with bioactive peptides have been already reported 

for applications such as tissue engineering, where short peptide sequences were 

demonstrated to elicit specific cell functions or change the materials network upon specific 

cell responses
26

. However, the capability of hydrogel microparticles, functionalized with 

small molecules in a single step, to increase the affinity and the specificity of a protein 

capture has not yet been explored.  

Here, droplet microfluidics is used for one step synthesis of monodisperse and stable 

micrometer poly(ethylene glycol) diacrylate (PEGDA) hydrogels. A reactive and labeled 

peptide sequence was incorporated in the microgels to create a functional microparticles 

for selective protein detection in complex fluid (Figure 3.1), eliminating the need for 

costly and time-consuming labeling steps. Computational fluidic dynamics simulation 

(CFD) was used to optimize the design of the device investigating the parameters that 

influence droplet formation. Protein detection in buffer and in complex biological medium 

was demonstrated by confocal technique. This approach promises to be useful for 

producing a novel, efficient and sensitive polymeric microparticles to detect bio-molecular 

targets with higher affinity in complex medium. 

 

Figure 3.1: Schematic representation of Strep-tag II-microparticles synthesis able to detect 

Streptavidin protein in human serum. Such approach includes: phase modelling; microfluidic 

fabrication and validation; microgel synthesis; and assay validation for selective protein detection. 
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3.2. Results and discussion 

3.2.1.  Microfluidic design 

Microfluidic design (Figure 3.2), was optimized to obtain monodisperse and stable 

functional microgels in order to create a tool-system for biosensing.  

 

Figure 3.2: Schematic representation of FFD for Strep-tag II-microparticles synthesis. 

Droplet formation process is affected by several physical parameters such as flow rates, 

viscosity of the fluids, dimensions of the geometry, Capillary number (Ca) and surface 

tension
15

; therefore, the design of optimal microfluidic device for the production of 

monodisperse and stable emulsion relies on controlling such parameters.  

In the first set of simulations the influence of geometry and Ca on 

droplet production was investigated. Firstly, the dimensions of 

the device junction were changed; in particular, different widths 

and lengths were modeled. Based on the simulation results, 50 × 

35 × 50 (width × depth × length) were the chosen dimensions of 

the junction in the region of droplet formation. 

Droplet formation is driven by the competition between the 

viscous stress and the surface tension of two immiscible fluids, 

this occurs at a critical Capillary number
27

. For this, the influence 

of Ca on emulsion stability was investigated, maintaining 

geometry device constant. Ca can be modified by varying the 

flow rate of the continuous phase (Qoil). Simulation results 

shows three different flow patterns after the junction: elongation 

flow pattern, stable emulsions and unstable emulsions (Figure 3.3 

A, B, C). It is difficult generate stable emulsion at high flow 

Figure 3.3: Three distinct 

regions were observed: a) 

elongation flow of thread, b) 

stable droplets, (c) unstable 

droplet formation 
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rates of prepolymer solution (Qp > 5 µl/min, in this case); in fact, W/O emulsion could not  

separate uniformly from the junction due to the unstable hydrodynamic pressure of 

PEGDA prepolymer phase. When the value of Ca is in a limited range 0.005 ~ 0.055, the 

prepolymer phase breaks into a stable emulsion (regime of stable emulsions Figure 3.3B). 

Choi et al. also investigated flow patterns to obtain stable polymeric droplets
28

. 

Precise control of particle size and monodispersity is critical for many applications of 

microgels; microfluidic platform provides control over a wide range of sizes. For this 

reason, in the second set of simulations the influence of Qoil on the droplet size was 

investigated, while Qp was kept constant. Once the dimensions of the device have been 

fixed, microgels with a wide range of sizes, ranging from 10 to 90 µm, were produced. 

Droplets diameters were calculated during simulation analysis. In particular, a droplet size 

was determined by the flow rates of the two phases and the ratio between these flow rates, 

as proposed by Collins et al. Maintaining the ratio of the two flow rates constant, droplets 

size decreases as Qoil increases.  

In order to stabilize droplets against uncontrolled coalescence, the use of surfactant is 

necessary. These amphiphilic molecules are commonly used to stabilize the droplet 

interface and to prevent coalescence of droplets
16

. The interfacial tension is strongly 

dependent on the surfactant’s local surface coverage, but, in turn, it affects significantly 

droplet size and stability during emulsification
27

. The interfacial tension between the two 

phases is influenced by the viscousities of the fluids. Figure 3.4 show the correlation 

between the polymer's concentration in the disperse phase and its viscosity. Increasing the 

amount of the polymer, the viscosity of the disperse phase increases resulting in a loss of 

droplets' stability. 
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Figure 3.4: measures of PEGDA viscosity solution at 20%, 40%, 60% wt. through 50 mm flat-

plate geometry by rheometer. The viscosity increase when the concentration of PEGDA in water 

solution (disperse phase) increase.  

If the prepolymer concentration is lower than 20 wt %,  its solution can be used to form 

droplets, but required UV curing is  long and these droplets deform and damage easily
8
. In 

contrast, a solution with PEGDA concentration higher than 60 wt % can be cured by UV 

light in less time; but it is difficult to control the stability of the droplets because of their 

high viscosity
29

. A dispersed phase at 20 wt.% of PEGDA was chosen, setting the length of 

the circuit in the device at 10 cm for droplets polymerization directly in flow using the UV 

lamp of the microscope. 

3.2.2. PEGDA peptide-microgels synthesis and characterization 

Here microfluidic synthesis of biodegradable PEGDA peptide-microgels for diagnostic 

applications is reported. The encapsulated peptide (Strep-tagII) contains sequence of eight 

amino acid (H2N–WSHPQFEK–COOH) selected from a random peptide library as an 

artificial ligand for streptavidin protein
30

. It is usually used for efficient protein purification 

in a single step and it is also important in the study of metallo-proteins
31

. The peptide was 

labeled with fluorophor for verification of its encapsulation. Microgels formation is shown 

in Figure 3.5 and described in Experimental Section. Briefly, the pre-polymer solution 

containing Strep-tagII-FITC peptide was injected through the central channel of the 

microfluidic device, as disperse phase, and oil solution with surfactant through its two 
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opposite side channels, as continuous phase. Disperse phase was sheared into 

monodisperse droplets by continuous phase.  

Microfluidic set up allows robust and rapid synthesis of functional and uniform polymeric 

microparticles in a single step, overcoming the limits of the conventional suspension 

polymerization methods. Strep-tagII-microgels are monodisperse in size with a coefficient 

of polydispersity (PDI) < 0.003 and the homogeneity of the peptide inside the microgels 

(≈1.31 pg of peptide in each microgel) was confirmed by confocal image (Figure 3.6). 

Uniform particle size and homogeneous peptide labeling make this approach promising for 

selective protein detection. 

 

 

Figure 3.5: PEGDA-peptide microgel (20% PEGDA, 0.1% Darcour, 0.5 mg/mL peptide). (A) 

Strep-tagII microgels synthesis by microfluidic device. (B)Size distribution of PEGDA-peptide 

microgels. (C) Fluorescent image of Strep-tagII-FITC encapsulation. (D)Phase contrast image of 

microgels. Scale bars are 100 µm. 
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Figure 3.6: image 3D of PEGDA Strep-Tag-II,confirm the homogeneity of the peptide inside 

microgels. 

Despite the addition of biologic entities may lead to a slight increase in the deviation of 

diameter, the resulting microgels remained largely uniform, thereby demonstrating the 

ability of our approach to encapsulate biomolecules in polymeric microparticles.  

PEGDA has been chosen for its advantages over other polymers and its specific 

proprieties, such as good biocompatibility, non-toxicity, low immunogenicity in vivo, and 

resistance to protein adsorption. Moreover, polyethylene glycol (PEG) hydrogels are 

widely used in biomedical fields such as drug delivery and tissue engineering
32

 

Finally, to verify the secondary structure of the peptide in solution and inside microgels, 

circular dichroism (CD) was performed. CD spectra of peptide registered in aqueous buffer 

solution (Figure 3.7A) revealed a random coil content due to the absence of Cotton bands 

at 205, 222 nm that are typical of helix conformations. As showed in figure 3.7A the 

addition of different TFE concentrations results in an increase of helical content, in 

particular at 60% of TFE peptide spectrum shows a presence of little Cotton bands at 205 

and 222 nm. The same experiments were carried out for peptide incorporated into the 

microgels. CD data confirmed that Strep-tagII peptide retains its structure (random-coil as 

it expect for small peptides) after its encapsulation, as previously reported for other 

peptides
33

. Figure 3.7B shows CD spectrum of Step-tagII peptide and Strep-TagII 

microgels. In order to analyze the structural behavior of the peptide encapsulated into the 

microgels, CD spectrum at 60% of TFE was recorded. In contrast of peptide spectrum at 

60% of TFE, peptide encapsulated didn’t change its conformation even with high TFE 

content, showing only a slight band at 220nm. Figure 3.7C and D show CD data of Strep-
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tagII-microgels recorded at 0 and 60% of TFE and peptide spectrum in solution and 

incorporated inside microgels at the same TFE concentration. 

 

Figure 3.7: CD analysis of Strep-tagII peptide and Strep-tagII peptide-microgels, in phosphate 

buffer 10 mM pH 7. Overlay of Strep-tagII peptide CD spectra recorded (A) with increasing 

amounts of TFE (from 0 to 60%), Overlay of StreptagII-peptide and StreptagII-microgels CD 

spectra in buffer solution (B), Overlay of StrepTagII microgels CD spectra recorded (C) with 0% 

and 60% of TFE and Overlay of StrepTagII peptide and microgels recorded (D) with 60% of TFE. 

Importantly, our strategies is relatively simple and robust, and encapsulated molecules 

retain their structure during microgels processing. Moreover, we demonstrate that CFS 

allow a robust control over microgels synthesis, avoiding fabrications of many different 

microfluidic devices. 

3.2.3. Protein-binding analysis in PBS and human serum 

One motivation for using peptides in polymeric networks for protein detection is to employ 

them to have a selective protein detection in complex mixtures
34

. Protein-binding peptide 

is described in more details in Experimental Section. Different concentrations of 

Streptavidin protein (labeled with Atto-425), ranging from 0.16 µM to 1.6 µM, were used 

in the experiment. Figure 3.8B shows Streptavidin-Atto-425 fluorescence on Strep-tagII-

microgels in PBS. The selective binding of protein was demonstrated using the same 
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protocol for Control-microgels labeled with rhodamine B (Figure 3.8E). Atto-425 

fluorescence signal occurred only on Strep-tagII-microgels and its intensity increased with 

increasing protein concentration (Figure 3.8L) in sample, giving a reasonably specific 

binding signal.  

Most important is to test binding in complex mixtures where other interfering proteins are 

in abundance. We evaluated the accuracy of our system directly in biological environment. 

Fluorescence image (Figure 3.8H) confirms protein-binding peptide and the accuracy of 

the microgel-based assay also in complex matrix. 

 

Figure 3.8: Fluorescence detection of specific and unspecific binding both in PBS and in human 

serum. Single component detection: (A) strep-tagII-microgels (green) and (B) Streptavidin binding 

microgels (blue); (C) Overlay image. The single component images demonstrate that there is no 

occurrence of overlapping signals. (D) PEGDA microgels labeled with Rhodamine B (red) as a 

control of unspecific signal; (E) fluorescence image of streptavidin on control microgels; (F) 

overlay channel; (G) Strep-tagII-microgels (green) and (H) Streptavidin binding microgels (blue) in 

human serum; (I) Overlay image for specific protein-binding peptide in human serum; (L) Bioassay 
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system efficiency of microgels-bounding; (M) Performance of bioassay system for protein 

detection in PBS and in human serum. The binding event is detected by measuring the fluorescence 

intensity of Atto-425 conjugated Streptavidin directly on 50 microgel particles. Statistical 

difference between Strep tag II-microgels and control microgels *p<0.05 (mean±SD n=2) in PBS 

and *p>0.05 (mean±SD n=2) in human serum. 

It is evident that Streptavidin-Atto-425 recognition is specific and dose-response (Figure 

3.9A), with an estimated KD of 0.40±0.11 µM, which demonstrate a good affinity toward 

Streptavidin protein. As reported the maximum constant affinity between such peptide and 

protein is about 70 µM
35,36

, therefore microgel is able to improve the sensitivity and 

specificity of protein detection. We observed that there was no obvious change of 

fluorescent intensity when the concentration of Streptavidin-Atto-425 was higher than 1.6 

µM. Thus the saturation point of Streptavidin-Atto-425 was higher than 1.6 µM in PBS.  

Moreover Figure 3.9B shows that the fluorescence intensity of the Streptavidin-Atto-425 

is dose-responsive and specific in serum as well, with a KD of 0.12±0.047 µM
37

. Such 

performance is ascribable to the capability of the polymeric network to offer antifouling 

properties, thus improving the specificity of the capture.  

 

Figure 3.9: Strep-tagII-microgels-protein binding confocal results. (A) the Streptavidin-ATTO-425 

recognition (red curve) is specific, unlike Control-microgels (black curve) (mean±SD n=2). (B) 

Comparison of confocal binding by non linear fitting in buffer (red curve) and in serum (blue 

curve). 
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We synthesized functional microgels for selective protein detection both in PBS and in 

complex fluid, using droplet-microfluidics. This method is relative simple, rapid and 

support the use of microfluidic device as a manufacturing platform for biosensing. 

We believe that the reported system can be broadly applicable for rapid synthesis of 

microgels for different application like food contaminants detection, using different small 

molecules. 

3.3.  Conclusions 

Here we report droplet-microfluidics for the easy and rapid synthesis of biodegradable 

PEGDA peptide-microgels for selective biomolecules capture in complex medium, unlike 

conventional techniques. Based on numerical simulations, we fabricate microfluidic device 

to produce stable and monodisperse microgels. Uniform distribution of the specific peptide 

within the microgel was achieved and the efficiency of peptide-to–protein binding both in 

PBS and human serum was confirmed. These functional microparticles allows the 

enhancement of binding affinity and the specificity in complex media. 

Our system is simple and flexible towards the detection of different molecules, does not 

require preliminary treatments of the sample and allows for the specific detection in 

complex fluid because of its antifouling properties. The control of physical and chemical 

properties of microgels through droplet microfluidics and the flexibility to encapsulate 

different molecules make our method useful for any direct bio-detection in complex fluids. 
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3.4.  Experimental Section 

General Materials and Method. Poly(ethylene glycol) diacrylate (PEGDA, 700 MW), the 

non polar solvent light mineral oil and the nonionic detergent sorbitan monooleate (Span 

80) were purchased from Sigma Aldrich. Crosslinking reagent Darocur 1173 was 

purchased from Ciba. Reagents for peptide synthesis (Fmoc-protected amino acids, resins, 
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activation, and deprotection reagents) were purchased from Iris Biotech GmbH 

(Waldershofer Str. 49-51 95615 Marktredwitz, Deutschland) and InBios (Naples, Italy). 

Solvents for peptide synthesis and HPLC analyses and Streptavidin ATTO-425 were 

purchased from Sigma-Aldrich; reversed phase columns for peptide analysis and the LC–

MS system were supplied respectively from Agilent Technologies and Waters (Milan, 

Italy). Pooled human serum from healthy donors was supplied by Lonza (Life Technology 

Ltd, Paisley, UK). All chemicals were used as received. 

Microfluidic device fabrication. Microfluidic device consists of two inlets for the 

continuous and disperse phase, a narrow orifice in which the main channel and the two 

opposite channels converge, and a serpentine in which droplets were polymerized. The 

dimensions of the the microchannel dimensions in the region of droplet formation is  50 × 

35 × 50 (width × depth × length); the serpentine is 10 cm long. The microfluidic device 

was fabricated by combining the conventional photolithographic and soft-lithographic 

techniques. Briefly, negative photoresist (Mr-DWL 40 phtoresist, Microresist technology) 

was spun onto a silicon wafer at 2000 rpm for 30 s to make a 35 µm thick layer of 

photoresist. Then, the photoresist was baked and subsequently exposed using DWL 66 Fs 

LASER technology system (Heidelberg instruments). After the exposed sample had been 

post-baked and developed, the microfluidic flow focusing device master was prepared. The 

surface of the device mold was treated with tridecafluoro-1,1,2,2-tetrahydrooctyl-1-

trichlorosilane to facilitate the peeling off of the polydimethyl-siloxane (PDMS, Sylgard 

184, Dow Corning) replica. PDMS (10:1 polymer to curing agent) was poured on the 

patterned silicon wafer containing negative-channels. The PDMS-based microfluidic 

device was peeled off from the wafer and bonded on a glass slide with oxygen plasma 

treatment.  

Computational Fluid Dinamic simulation. To optimize the design of the device, 

computational fluid dynamics simulations were performed using COMSOL Multiphysics 

4.2b software. During the simulation, all geometries were created two-dimensional based 

on the dimensions of the designed microfluidic device. A two-dimensional model was 

chosen to reduce complexity and computation time. The momentum and mass balances 

were modeled by Navier-Stokes equations and the level set method (LSM) was used to 

model the two phases. The principle on which LSM is based is the assignment of a so-

called level set function Φ(x, t) to the space occupied by an interface, where x denotes the 
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co-ordinates of a point within that space at a time t. The function is initialized at time t0, 

and then a numerical scheme is used to approximate the value of Φ(x, t) over small time 

increments, thus enabling the propagation of the interface to be tracked in time. The 

interface is represented by the zero contour of the level set function Φ. Φ > 0 on one side 

of the interface and Φ < 0 on the other. The level set function is chosen such that the 

position of the water–oil interface is described by the 0.5 contour of the level set function 

Φ and for Φ > 0.5 the break off occurs and the droplet is formed. Channel geometries were 

meshed using the free meshing tool and the channel walls were specified as wetted walls 

with a constant contact angle, measured experimentally using the instrument Contact 

Angle CAM 200. The interfacial tension between the continuous phase and the prepolymer 

solution was changed to investigate the influence of the surface tension (γ) on the droplet 

sizes. γ was measured by pendant drop CAM 200. The viscosity of the two fluids was 

measured with 50 mm flat-plate geometry by rheometer.  

Synthesis of Strep-TagII peptide. Strep-tagII-peptide ((WSHPQFEKD(OAll))) synthesis 

was performed on a fully automated multichannel peptide synthesizer Biotage® Syro 

Wave™. Preparative RP-HPLC was carried out on a Waters 2535 Quaternary Gradient 

Module, equipped with a 2489 UV/Visible detector and with an X-Bridge
TM

 BEH300 

preparative 10× 100 mm C18, 5μm column. LC–MS analyses were carried out on an 

Agilent 6530 Accurate-Mass Q-TOF LC/MS spectrometer. Zorbax RRHD Eclipse Plus 

C18 2.1 x 50 mm, 1.8 µm columns were used for the analyses. The Strep-tagII-peptide was 

synthesized in the acetylated/amidate version, employing the solid phase method on a 

50 μmol scale following standard Fmoc strategies. Rink-amide resin (substitution 

0.45 mmol/g) was used as solid support. Activation of amino acids was achieved using 

HBTU/HOBt/DIPEA (1:1:2). All couplings were performed for 15 min and deprotections 

for 10 min. To monitor peptide entrapment, Lysine side chain amine fluorescein labeling 

was achieved by on-resin treatment with fluorescein isothiocyanate (FITC) after removing 

methyltrityl (Mtt) protecting group using 1% TFA in DCM for 30 min. Peptide was then 

removed from the resin, by treatment with a TFA/TIS/H2O (95:2.5:2.5, v/v/v) mixture for 

90 min at room temperature; then, crude peptide was precipitated in cold ether, dissolved 

in a water/acetonitrile (1:1, v/v) mixture, and lyophilized. Product was purified by RP-

HPLC applying a linear gradient of 0.1% TFA CH3CN in 0.1% TFA water from 5% to 

70% over 30 min using an X-Bridge
TM

 BEH300 preparative 10× 100 mm C18, 5μm 
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column at a flow rate of 10 mL/min. Peptide purity (95%) and identity (1488 amu) was 

confirmed by LC–MS (data not shown). Purified peptide was lyophilized and stored at 

−20 °C until use. 

Synthesis of functional microgels. Microgels were synthesized using light mineral oil 

containing nonionic surfactant Span 80 (3 wt%) as a continuous phase and poly(ethylene 

glycol)diacrylate (PEGDA) (20 wt%) with photoinitiator (0.1 wt%) and Strep-tagII-FITC 

(0.5 mg/mL) as a disperse phase. Droplets were formed injecting prepolymer solution, 

disperse phase, through the central channel and oil solution, continuous phase, through two 

opposite side channels. The uniform PEGDA-peptide droplets were crosslinked in flow to 

form monodisperse microgels. To photopolymerize droplets DAPI microscopy filter (9.8 

mW, λ=360 nm) was used, focusing the UV light on the serpentine and regulating the 

diaphragm aperture of the microscope, for 15s. After photopolymerization, microgels were 

collected in an eppendorf and washed three times with a solution of ethanol (35 v/v%) and 

acetone (10 v/v%) to remove the oil. After washing, microgels containing Strep-tagII-FITC 

were analyzed by confocal microscopy. Polyethylene tubes were connected to the inlets 

and outlets and the solutions were injected using high-precision syringe pumps (neMesys-

low pressure) to ensure a reproducible, stable flow. This system was mounted on an 

inverted microscope (IX 71 Olympus) and the droplets formation was visualized using a 

4× objective and recorded with a CCD camera Imperx IGV-B0620M.  

Protocol of peptide encapsulation and protein-binding analysis. Peptide was encapsulated 

adding Strep-tagII-FITC (0.5 mg/mL) to the disperse phase prior to microgel synthesis. 

Fluorescent microgels without peptide, used as negative control, were obtained dissolved 

0.1 mg of Rhodamine B in 10 mL of water solution. Binding experiments were performed 

incubating Strep-tagII-microgels and microgels without peptide (Control-microgels) with 

Streptavidin-Atto-425 (peptide/protein ratio 5/1) in PBS (pH 7.4) and human serum from 

healthy donors (final volume 200 mL) at room temperature for 2 h. After incubation Strep-

tagII-microgels and Control-microgels were centrifuged for 5 min at 10000 rpm and the 

supernatant was measured by fluorescence spectroscopy (λ exc 436 – λ em484) using a 

Perkin Elmer 2300 Enspire Plate Reader. 

To demonstrate the ability of our system to detect specific protein, 100 µL of Strep-tagII-

microgels were suspended in 1 mL of PBS and different concentrations of Streptavidin 

protein, ranging from 0.16 µM to 1.6 µM, were added and these solutions were incubated 
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for 2 h. After the incubation, microgels were washed three times and their fluorescence 

was analyzed. The same protocol was used for microgels without peptide, as a negative 

control, and for Strep-TagII-microgels in serum analysis as well. 

Confocal Microscopy. Microgels images, before binding, were collected with Leica 

confocal microscope SP5 (Leica Microsystems), provided with an HCX IRAPO L 

25.0×/0.95 WATER objective and an Argon laser (488 nm as selected wavelength) as 

excitation sources for FITC-peptide. Detection occurred at the 500-530 nm band. Images 

have been acquired with a resolution of 1024 × 1024 pixels, zoom 1, 2.33 A.U. pinhole. 

All our experiments were performed at room temperature.  

Fluorescence analysis of protein-binding was performed by Zeiss LSM700 confocal 

microscope, using 20× dry objective. Two-channel fluorescence images were acquired, 

simultaneously, using multitrack mode. 480 nm and a 405 nm DAPI solid state lasers as 

excitation sources were used for peptide-FITC and Streptavidin-Atto-425-protein 435, 

respectively. Fluorescence was detected at 500-530 nm and 410-450 nm bands, 

respectively.  

Circular Dichroism analysis. CD spectra were recorded using a JascoJ-1500 

spectropolarimeter in a 1.0 cm quartz cell at room temperature. The spectra were recorded 

from 300 to 190 nm, with a band width of 1 nm, a time constant of 16 s, and a scan rate of 

10 nm/min. Blank samples were subtracted from all recorded spectra. 

Statistical analysis. The results of confocal experiments were analyzed by software 

GraphPad Prism version 5.04 and experimental data were expressed as mean ± standard 

deviation. One-tailed analysis of variance with an Unpaired t-Test was performed to 

compare all experimental groups and to determine statistical significance of p < 0.05. The 

evaluation of KD was calculated by a non-linear fitting approach using GraphPad Prism 

version 5.04 software. 
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4. CHAPTER 4  

 

Label-free method for aflatoxin detection: microfluidic 

microgels functionalized with two novel peptides 

Abstract. A novel method using droplet microfluidics for aflatoxin M1 (AFM1) detection is 

presented. AFM1 is the most toxic, carcinogenic, teratogenic and mutagenic class of aflatoxins 

(AFs) and is present in a wide range of food and feed commodities, such as milk and dairy 

products. In the last ten to twenty years the presence of AFM1 in such products has been an 

important issue world, especially for developing countries. In this work poly(ethylene glycol) 

dyacrilate (PEGDA) functionalized microparticles, as a novel tool for sensitive and label-free 

detection of aflatoxin M1 (AFM1), were synthesized. PEGDA microparticles were produced 

and functionalized through droplet microfluidic device. Two novel peptides, synthesized for 

specific aflatoxin detection, were encapsulated into the microgels directly in flow. AFM1 

detection was achieved measuring its innate fluorescence. The fluorescent signal increased 

with the increment of AFM1 concentration in sample. The detection limit of this technique for 

AFM1 was estimated to be 1.64 ng/Kg, with a dynamic detection range between 3.28 ng/Kg 

and 656 ng/Kg, which meets present legislative limits of 50 ng/Kg. Therefore, the developed 

systems, using microfluidics, provides a promising approach for rapid screening of food 

contaminates because it is simple, sensitive, specific, without the need of multiple separation 

steps, overcoming the limits of the traditional AFM1 capture methods, which are expensive 

and time consuming. 
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4.1. Introduction 

AFM1, a hydroxylated metabolite of aflatoxin B1, is often found in milk from animals fed 

with aflatoxin B1-contaminated feeds (Figure 4.1)
1,2

. AFM1 can be also found in a variety of 

dairy products such as cheese, yogurt, and infant formula due to its resistance to heat 

treatment
3
. AFM1 is the most toxic, carcinogenic, teratogenic and mutagenic class of 

aflatoxins
4
. Therefore, the contamination of foods by AFM1 could pose a serious risk to 

public health, especially to milk consumers.  

 

Figure 4.1: schematic representation of AFM1 

The EU limits the total AF levels to no more than 0.05 µg/Kg in milk (the United States Food 

and Drug Administration established action levels for AF concentration of 0.5 µg/Kg, 

however the Codex Alimentarius set 0.05 µg/Kg as the regulatory limit)
3
. This has prompted 

the adoption of regulatory limits in several countries, which, in turn, requires the development 

of validated official analytical methods for rapid and cost-effective screening of AFM1 on a 

large scale. 

Currently, several qualitative and quantitative methods have been developed to detect AFM in 

milk and in dairy products
5-9

. Among them, thin layer chromatography and immune 

chromatographic assay are the most commonly used methods for rapid qualitative detection 

and semiquantification of aflatoxins. For examples, the quantification of AFM is usually 

conducted by high performance liquid chromatography (HPLC) and enzyme linked 

immunosorbent assay (ELISA)
10,11

. The HPLC fluorimetric detection method can quantify 

AFM with high accuracy and very low detection limits, but it requires complex and laborious 

samples pretreatments, such as defatting of milk and subsequent extraction of AFM by 

methanol or immunoaffinity columns
12,13

 . Moreover the chromatographic methods require 

expensive instrumentatio and skilled operators
1314

, thus limiting their application, especially 

in developing countries. In addition, several biosensors have also been developed to analyze 
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the AFM, including electrochemical immunochip sensor and DNA-based electrochemical 

membrane
15-17

. 

The emerging research field of microfluidics provides exciting new possibilities for advanced 

development of new analytical methods
18-20

. Droplet microfluidic technologies enable to 

develop a novel biosensor with high control and can tailor the properties of biosensors in a 

very simple manner to meet the needs of specific applications. However, droplet microfluidics 

is used only for biomedical and chemical research; limited work has been done for detection 

of food contaminates using these technologies.  

Recently, biorecognition elements (such as enzymes, peptides and antibodies) are used for 

detection of specific anilities. Several group have synthesized antibodies for aflatoxin 

recognition, with high sensitivity
6,21

. The use of these large macromolecules has several 

limitations, including poor stability and high production costs
22

. In contrast, small molecules 

like peptides can be prepared synthetically and mimic the antibody binding site by using only 

a small cluster of residues, even though the affinity and specificity toward biomolecules target 

result to be lower if compared with antibodies
23

. Based on these consideration, 64 peptides 

were screened and the sequences which showed the best affinity to aflatoxin were 

synthesized. 

Poly(ethylene glycol) (PEG) is commonly used in biotechnological applications due to its 

low-fouling and biocompatibility properties. PEG is used to prevent non-specific binding of 

protein on sensing surface and it is relative inexpensive
24

. These properties make PEG an 

attractive material for biosensors intended to work in complex samples without purification, 

overcoming the complex and laborious steps of samples purification that is typical in the 

conventional methods. Various approaches have explored PEG’s utility as biosensor 

platform
25

, but we believe that its use in recognition of food contaminants has not yet been 

developed.  

We report a simple, low-cost and label free method for aflatoxin M1 detection based on 

microfluidic poly(ethylene glycol) diacrylate (PEGDA) microparticles functionalized with 

two novel peptides. 64 anti-AFM sequences were screened by Surface Plasmon Resonance 

(SPR) technique, and the sequences showing best binding affinity (KD= 180±0.5 µM and 

KD=172±0.4 µM) were chose for our system.  AFM1 capture beads were made from PEGDA 

microparticles functionalized with the selected peptide moieties. All tests have been 

performed using AFM1 conjugated with BSA, becuase the BSA-conjugation make the toxin 

less harmfull and easier to manage. AFM1-BSA-binding peptides occurred with high affinity 
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(KD 3.66-6.57 pM, respectively for the two sequences) and detection was demonstrated by 

fluorescent technique. The results demonstrate that the proposed system system is able to 

detect levels of AFM1-BSA in according with the current legislative requirements of 50 

ng/Kg. 

The method developed for Streptavidin recognition in complex matrix can be used for 

aflatoxins detection providing a promising approach for the screening of food contaminates 

and small molecules.  

4.2. Results and discussions 

4.2.1. Peptides sequences characterization  

The first step was the selection of the peptide sequences that has showed the best affinity with 

AFM1. To this end, a preliminary Molecular Docking experiment for studying affinity 

between AFM1 and several peptides was performed using Cdocker, an algorithm of 

Discovery Studios software. Molecular Docking is usually used for the prediction of the 

preferred orientation of one molecule to a second one when bound to each other to form a 

stable complex
26

. Knowledge of the preferred orientation in turn may be used to predict the 

strength of association or binding affinity between the molecules using, that in our case are 

been peptide and AFM1. This part of work is been made in a parallel PhD work, and it is not 

the object of this one. Briefly, here it is reported a description of the peptides which were 

chosen for the work.  

After Molecular Docking experiment, 64 peptides were synthesized through combinatorial 

chemistry, for its rapidity and low cost unlike conventional synthetic way of handling one 

molecule at time
27

. Eight amino acids alanine, arginine, aspartic acid, asparagine, threonine, 

proline, isoleucine and tryptophan (A,R,D,N,T,P,I,W  respectively) were chosen as building 

blocks, because of their chemical properties (i.e. solubility, different functional groups), their 

easy availability and their low cost. The amino acids chosen for preparing a library of 

sufficient size have functional groups in their lateral chains that could not react under our 

synthesis conditions. To avoid synthetic problems, the composition of the library was 

simplified by neglecting other amino acids (see experimental section for more details). In this 

way a known linear amino acid sequence was easily obtained. To estimate the biospecific 

interaction peptides-aflatoxin a commercially available instrument (SensiQ) was used, which 

employs the principle of Surface Plasmonic Resonance (SPR). Refractive index changes 

associated with peptide binding to the aflatoxin-BSA conjugate are detected and quantified 
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(as response units (RU)) by the instrument as a sensorgram
28

. In our experiments AFM1-BSA 

conjugated as ligand was immobilized on the chip COOH5, achieving 400 RU immobilization 

level (approximately 1RU is about equal to 1pg/mm
2
 of ligand immobilized). Direct binding 

of each peptide with AFM1 were performed by injecting different concentration of peptides 

(see Experimental Section). Figure 4.2 shows the binding of the best two sequences in real-

time as a plot of time (seconds) versus response signal (RU) (sensorgrams). The dissociation 

rates (KD), which define the kinetics and affinities of the interaction, was calculated from 

these sensorgrams
28

. 

 

 

Figure 4.2: Sensorgram of response unit versus time illustrating the binding of peptides  to 

immobilized aflatoxinM1-BSA. 

SPR offers several advantages over traditional immunoassay techniques for studies of binding 

interactions. It provides real-time and high throughput monitoring of KD with high sensitivity 

of detection. The two sequences had shown a better sensitivity for AFM1 than the others, 

therefore they were chosen as a recognition element for microgels assay development. 

4.2.2. Biosensing development  

The detection of AFM1-BSA was carried out by using microgels after their functionalization 

with the two novel peptides (WNDDRD(OAll)) and (WNDPRD(OAll)). Both microgels were 

obtained using similar method, for simplicity, only the procedure for one peptide is showed. 

PEGDA peptide-microparticles were synthesized in a flow focusing device. We first 

demonstrated a distribution of the peptide inside the microgels. For this, the two peptides 

were fluorescently labeled with rhodamine at the β-alanin (B) site (Rhod-BNDDRD(OAll) 

and Rhod-BNDPRD(OAll)). The fluorescence images (figure 4.3) show monodisperse 
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hydrogel particles with a uniform distribution of the labeled peptide within these particles (≈ 

9.6e-3 pg of peptide per microparticle), results that are similar to our previous work (chapter 

3).  

 

Figure 4.3: PEGDA-peptide microgel with (Rhod-BNDDRD(OAll). A) Fluorescent image of (Rhod-

BNDDRD(OAll) encapsulated; B)Phase contrast image of microgels. Scale bars are 30 µm. 

Peptide (without rhodamine) was mixed with PEGDA solution before synthesis and PEGDA 

peptide-microparticles were formed by a continuous microfluidic procedure (described in 

Chapter 3). Briefly, the pre-polymer solution containing peptide, a disperse phase, was 

injected through the central channel of the microfluidic device and oil solution with 

surfactant, a continuous phase, was injected through two side channels. Under optimized flow 

rate conditions disperse phase was sheared into monodisperse droplets by continuous phase. 

The obtained PEGDA peptide-microgels are monodisperse in size with a coefficient of 

polydispersity (PDI) < 0.003.  

PEGDA has been chosen for its resistance to protein adsorption. Peptide retains its structure 

(random-coil as it expect for small peptides) after its encapsulation, as previously reported for 

other peptides
29

 and confirmed in our previous work (chapter 3).  

Detection through fluorescence relies on the presence of a chromophore in the molecules, and 

AFs already have natural fluorescence (Figure 4.4) and can be detected directly with 

fluorescence techniques
30

.  
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Figure 4.4: Normalized ground state absorption, excitation and emission spectra for aflatoxin. 

As shown in Figure 4.5 the fluorescence intensity increased with the increase of AFM1-BSA 

concentration in both experiments. Figure 4.5  also shows a correlation between fluorescent 

signal and AFM1-BSA level (ng/Kg) in the dynamic range from 3.28 ng/Kg to 70 ng/Kg. We 

also observed that there was no obvious change of fluorescent intensity when the 

concentration of AFM1-BSA is higher than 70 ng/Kg. Thus the saturation point of AFM1-

BSA is at 70 ng/Kg in PBS. The results demonstrate the highly sensitivity of this method with 

an estimated KD of 3.66±1.55 and 6.57±3.95 pM respectively for (WNDDRD(OAll)) and 

(WNDPRD(OAll)), which obviously make a good affinity toward AFM1-BSA. Moreover, our 

system is able to detect levels of AFM1-BSA in according with the current legislative 

requirements of 50ng/L. 

 

 

Figure 4.5: Correlation between fluorescent signal and AFM1-BSA level (ng/Kg) in the sample. A) 

zoom for (WNDDRD(OAll))-AFM1-BSA binding in the range from 3.28 and 65 ng/Kg. B) zoom for 

(WNDPRD(OAll))-AFM1-BSA binding in the range from 3.28 and 65 ng/Kg. 
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Further, we synthetized microgels without peptide (a negative control) and performed the 

same protocol.  As shown in Figure 4.6, PEGDA microgels without peptide did not show a 

significant fluorescent signal compared to functionalized microgels, demonstrating the high 

specificity of peptide-microgels assay. 

 

 

Figure 4.6: AFM1 detection confocal results. A)bright field and B) fluorescent images of AFM1-

binding microparticles without peptide; C) fluorescent images of WNDDRD(OAll)-microgels binding 

and D) WNDPRD(OAll)-microgels binding. Different zoom is used, scale bar 30 µm. 

The demonstrated method is attractive alternative for AFM1 detection and quantification due 

to its specificity and reproducible properties of hydrogel particles. Importantly, our strategy is 

relatively simple and robust, and encapsulated molecules retain their structure during 

microgels processing. For the first time small molecules were used for AFMs detection and 

the functionalization of the microgels is provided directly in flow, avoiding the long and time 

consuming steps that characterize conventional techniques
31

 for microgels functionalization. 

The work reported here is an initial investigation into developing new technology in food 

contaminants detection; the work is still in progress and gives “proof-of-concept” of the 

technology for an important application.  

4.3. Conclusion 

In this work, we report a novel method for label-free and sensitive monitoring of AFM1, by 

using microfluidic functional microgels in PBS. Compared with conventional techniques, 

such as HPLC or ELISA, the peptide-microgels strategy is simple, sensitive, and specific, 
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without the need for multiple sample preparation or separation steps or a skilled operator. We 

believe that the reported system could be applicable for rapid AFM1 detection in milk, due to 

PEGDA property to prevent non-specific binding of proteins on sensing surface.  

4.4. Acknowledgments 

The experiment performed in this chapter were performed in collaboration with Concetta Di 

Natale, who developed peptide synthesis protocol and performed SPR experiment. Vincenzo 

Calcagno is gratefully acknowledged for fruitful discussion. 

4.5. Experimental Section 

General Materials and Method. Poly(ethylene glycol) diacrylate (PEGDA, 700 MW), the non 

polar solvent light mineral oil and the nonionic detergent sorbitan monooleate (Span 80) were 

purchased from Sigma Aldrich. Crosslinking reagent Darocur 1173 was purchased from Ciba. 

Reagents for peptide synthesis (Fmoc-protected amino acids, resins, activation, and 

deprotection reagents) were purchased from Iris Biotech GmbH (Waldershofer Str. 49-51 

95615 Marktredwitz, Deutschland) and InBios (Naples, Italy). Solvents for peptide synthesis, 

HPLC analyses and AFM1-BSA conjugate (4-8 mol AFM per mol BSA) were purchased from 

Sigma-Aldrich; reversed phase columns for peptide analysis and the LC–MS system were 

supplied respectively from Agilent Technologies and Waters (Milan, Italy). Pooled human 

serum from healthy donors was supplied by Lonza (Life Technology Ltd, Paisley, UK). All 

chemicals were used as received. 

Microfluidic device fabrication. Microfluidic device consists of two inlets for the continuous 

and disperse phase, a narrow orifice in which the main channel and the two opposite channels 

converge, and a serpentine in which droplets were polymerized. The dimensions of the 

microchannel dimensions in the region of droplet formation is  50 × 35 × 50 (width × depth × 

length); the serpentine is 10 cm long. The microfluidic device was fabricated by combining 

the conventional photolithographic and soft-lithographic techniques. Briefly, negative 

photoresist (Mr-DWL 40 phtoresist, Microresist technology) was spun onto a silicon wafer at 

2000 rpm for 30 s to make a 35 µm thick layer of photoresist. The photoresist was baked and 

subsequently exposed using DWL 66 Fs LASER technology system (Heidelberg 

instruments). After the exposed sample had been post-baked and developed, the microfluidic 

flow focusing device master was prepared. The surface of the device mold was treated with 

tridecafluoro-1,1,2,2-tetrahydrooctyl-1-trichlorosilane to facilitate the removal of a 
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polydimethyl-siloxane (PDMS, Sylgard 184, Dow Corning) replica. PDMS (10:1 polymer to 

curing agent) was poured on the patterned silicon wafer containing negative-channels. The 

PDMS-based microfluidic device was peeled off from the wafer, treated with oxygen plasma 

and bonded with a glass slide.  

Synthesis of peptides. Peptide libraries and single peptides were prepared by the solid phase 

method on a 50 μmol scale following the Fmoc strategy and using standard Fmoc-derivatized 

amino acids. Briefly, synthesis were performed on a fully automated multichannel peptide 

synthesizer Biotage® Syro Wave™. RINK AMIDE resin (substitution 0.71 mmol/g) was 

used as solid support. Activation of amino acids was achieved using HBTU-HOBt-DIEA 

(1:1:2), whereas Fmoc deprotection was carried out using a 40% (v/v) piperidine solution in 

DMF. All coupling reactions were performed for 15 minutes and deprotection reactions for 10 

minutes. 8 different amino acids (Arg, Asn, Pro, Trp, Leu, Ala, Asp and Thr) were chosen to 

build a peptide library based on their chemical and physical properties. The solid phase 

(4,55g) was split into 64 different tubes and each reactor holds the combination of the eight 

amino acids, selected for the library construction, as first and second coupling. At the end of 

coupling procedure previously reported; we obtained 64 different di-peptides that constituted 

the first peptide library. The di-peptide with the best binding properties (selected by SPR 

technique) was chosen as an initial solid phase for the second library. We prepared 4,55 g of 

the resin with the selected dipeptide immobilized on its surface by the same solid phase 

synthesis described procedures. We split this new solid phase into 64 different tubes and we 

bound a third amino acid to the activated α-carboxylic group of the second amino acid. The 

synthesis steps were the same as those followed for the first and second amino acid. At the 

end a fourth amino acid was linked to the third one by the same synthesis procedures. We 

obtained 64 tetrapeptides that had the same first and second amino acid but different third and 

fourth one and that constituted our second and last library. The best binding tetra-peptides, 

selected by SPR, were rhodaminate to monitor their entrapment in microparticles.  Lysine side 

chain amine rhodamine labeling was achieved by on-resin treatment with rhodamine 

isothiocyanate (TRITC) after removing methyltrityl (Mtt) protecting group using 1% TFA in 

DCM for 30 min. 

SPR analysis. The interactions between all 64 di-peptide and tetra-peptide were measured 

using SPR technique with SensiQ Pioneer from AlfaTest (Rome, Italy). In order to measure 

the affinity of the peptides (analyte) with the aflatoxin (ligand), AFM1-BSA conjugated was 

immobilized at a concentration of 50 µg/mL in a 10 mM acetate buffer pH 3.7 (flow 10 
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µL/min, injection time 20 min) on a COOH1 SensiQ sensor chip, using EDC/NHS chemistry 

(0.4 M EDC - 0.1 M NHS, flow 25µl/min, injection time 4 min), achieving a 7000 RU signal. 

The reactive residues were deactivated by treatment with ethanolamine hydrochloride 1 M, 

pH 8.5. In order to study the aspecific binding of peptides against BSA, the reference channel 

was prepared by activation with EDC/NHS and immobilized the only BSA at a concentration 

of 50µg/mL and reaching the same RU signal of the toxin (7000). The binding assays were 

performed at 25 μl/min, with a contact time of 4 min, all peptides were diluted in the stock 

buffer, HBS (10 mM Hepes, 150 mM NaCl, 3 mM EDTA, pH 7.4). The injection of analytes 

(100 μl) was performed at the indicated concentrations. The association phase (kon) was 

followed for 180 s, whereas the dissociation phase (koff) was followed for 300 s. The complete 

dissociation of the formed active complex was achieved by addition of 10 mM NaOH, for 60 

s before starting each new cycle. To subtract the signal of the reference channel and evaluate 

the kinetic and thermodynamic parameters of the complex, the software QDAT analysis 

package (SensiQ Pioneer, AlfaTest) was used. For tetra-peptide library binding experiment 

was conducted by Fast step injection. Fast Step is an in situ-dilution method that enables 

stepped analyte gradient injections to be performed where the concentration of sample steps 

up, or down, according to a predefined profile without reliance on dispersive mixing in a flow 

channel. The analyte concentration is modulated en route to the flow cell on-the-fly. This 

eliminates the overhead associated with multiple loading, injecting and clean up cycles 

making possible substantial reductions in experimental time and complexity. The dissociation 

of analyte can be accurately estimated from a single dissociation phase curve recorded after 

the step injection is complete. The sample throughput can be increased by >10-fold compared 

to conventional methods. In this case an analyte concentration of 1mM was used with a flow 

rate of 200 µl/min, a contact time of 20 sec and a dissociate time of 120 sec. As for bulk 

standard cycles, a 20% of sucrose was used. In all experiments kinetic parameters for all tetra- 

peptides were estimated assuming a 1:1 binding model and using QDAT software (SensiQ 

Technologies). 

Synthesis of functional microgels. Microgels were synthesized using light mineral oil 

containing nonionic surfactant Span 80 (3 wt%) as a continuous phase and poly(ethylene 

glycol)diacrylate (PEGDA) (20 wt%) with photoinitiator (0.1 wt%) and peptides (70 mg/L) as 

a disperse phase. Droplets were formed injecting prepolymer solution, disperse phase, through 

the central channel and oil solution, continuous phase, through two opposite side channels. 

The uniform PEGDA-peptide droplets were crosslinked in flow to form monodisperse 
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microgels. On average droplets were exposed to UV light for 15s. The UV light (9.8 mW) 

was filtered with DAPI microscopy filter (λ=360 nm) and focused on the device. The 

diaphragm aperture of the microscope was used to limit exposure to the serpentine region of 

the chip. After photopolymerization, microgels were collected in an eppendorf and washed 

three times with a solution of ethanol (35 v/v%) and acetone (10 v/v%) to remove the oil. The 

device inlets and outlets were connected with polyethylene tubes, and the solutions were 

injected using high-precision syringe pumps (neMesys-low pressure) to ensure a reproducible, 

stable flow. This system was mounted on an inverted microscope (IX 71 Olympus) and 

droplet formation was visualized using a 4× objective and recorded with a CCD camera 

Imperx IGV-B0620M. 

Protocol of peptides encapsulation and AFM1-BSA detection. Microgel was functionalized by 

adding the selected peptide (WNDDRD(OAll) or WNDPRD(OAll)) in the disperse phase 

prior to a microgel synthesis. Binding experiments were performed incubating peptides-

microgels with AFM1-BSA in PBS (pH 7.4) (final volume 100 µL) at room temperature for 2 

h. 5 µL of peptide-microgels were suspended in 100 µL of PBS and different concentrations 

of AFM1-BSA, ranging from 3.28 ng/Kg to 656 ng/Kg, were added. After the incubation, 

microgels were washed and their fluorescence were analyzed by confocal. The same protocol 

was used for microgels without peptide, as a negative control. 

Confocal Microscopy. Fluorescence analysis of protein-binding were performed by Leica SP5 

confocal microscope (Leica Microsystems), provided with an HCX IRAPO L 25.0×/0.95 

WATER objective and a 360 nm as selected wavelength as excitation sources for AFM1-BSA. 

Detection occurred at the 420-450 nm band. Images have been acquired with a resolution of 

1024 × 1024 pixels, zoom 1, 2.33 A.U. pinhole. All our experiments were performed at room 

temperature.  

Statistical analysis. The results of confocal experiments were analyzed by software GraphPad 

Prism version 5.04 and experimental data were expressed as mean ± standard deviation. The 

evaluation of KD was calculated by a non-linear fitting approach using GraphPad Prism 

version 5.04 software. 

Safety. Aflatoxins are powerful hepatotoxins and carcinogens, so great care should be taken to 

avoid personal exposure and potential laboratory contamination. All items coming in contact 

with aflatoxins (glassware, vials, tubes, etc.) were immersed in a 10% bleach solution for 1-2h 

before they were discarded. Pure aflatoxin standard was handled in a hood with extreme 

caution. 
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CHAPTER 5 

5.1. Conclusions and outlook 

Microdroplets in microfluidics has become a fast moving research area that is rapidly being 

established as a powerful tool for complex chemical and biological experiments
1
. Crucial to 

this progress has been the development of simple modules for the manipulation of droplets in 

the past 10 years. Monodisperse droplets can now be generated and manipulated on-fluidic 

chip (including heating, cooling, fusing, mixing, storing, sorting, etc.) essential for carrying 

out experiments in bulk
2
.  

Compartmentalization is clearly a powerful concept for isolating and studying single cells and 

their environments
3,4

. Microfluidic droplets are monodisperse, can be formed and analyzed at 

sufficiently large numbers, and manipulated efficiently while containing the small amounts of 

cellular material uncontaminated within those droplets. Integrated devices coupled to highly 

sensitive, ideally label-free detection methods, provide a new tool for exploring single-cell 

genomics, proteomics, and for food contaminates detection, which are research areas our 

findings contribute to.  

Droplet-based microfluidics has allowed for the study of rare tumor cells and circulating 

tumor cells (CTCs) in progressively more cell-like systems. CTCs are typically detected by 

immunomagnetic separation methods [Cellsearch], which require laborious operating steps 

and may result in the loss of target cells
5
. Our approach, contributes the field of cancer 

research providing a robust and label-free method to CTCs detection, without damaging them, 

thus opens new routes to further characterization of CTCs as key for therapeutic targets 

identification. We show that cancer cell metabolism, and more specifically, both the 

acidification of the extracellular microenvironment and the Warburg effect
6
, can be used to 

identify and count rare tumor cells and CTCs. Further work is needed to clarify how these 

results could impact in clinical routine. CTCs nature could be characterized for predicting 

cancer progression, achieving personalized cancer treatments and monitoring their efficacy. 

On the other side droplet microfluidics allows for the production of functional microparticles 

as biosensors
7,8

. The use of microfluidics has allowed the synthesis of new class of 

microparticles with novel shape, compartments and microstructures, which are very difficult 

to achieve using the conventional bulk emulsification methods. Our work provides innovative 
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advances in gel particle functionalization and opens new possibilities for direct molecules 

detection in complex fluids. We show how the compartmentalization of small analytes and the 

choose of polyethylene glycol (PEG), for its antifouling property, improve the sensitivity and 

the specificity of the detection system. We developed a label-free strategy to detect aflatoxin. 

It is  typically screened by chromatographic methods, which need multiple separation steps of 

the sample and require skilled operators
9
. Microparticles strategy is simple and sensitive and 

could be applicable for direct aflatoxin detection in milk thanks to PEG property to prevent 

non-specific binding of protein on sensing surface. More works in this area could be directed 

towards its clinical integration forward from current “proof-of-concept”. The next step 

therefore is to use this method to aflatoxin detection directly in milk.  

The systems we described may provide some improving in the actual research on cancer and 

food contaminants screening. The using of microfluidics has followed for the develop of 

robust, label-free, sensitive and high-throughput platforms which we hope will be used in the 

near future to improve the quality of life. 
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