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Abstract

We consider the logistics capacity planning problem arising in the context of supply-chain
management. We address the tactical-planning problem of determining the quantity of
capacity units, hereafter called bins, of different types to secure for the next period of
activity, given the uncertainty on future needs in terms of demand for loads (items) to
be moved or stored, and the availability and costs of capacity for these movements or
storage activities. We propose a modeling framework introducing a new class of bin
packing problems, the Stochastic Variable Cost and Size Bin Packing Problem. The
resulting two-stage stochastic formulation with recourse assigns to the first stage the
tactical capacity-planning decisions of selecting bins, while the second stage models the
subsequent adjustments to the plan, securing extra bins and packing the items into
the selected bins, performed each time the plan is applied and new information becomes
known. We propose a new meta-heuristic based on progressive hedging ideas that includes
advanced strategies to accelerate the search and efficiently address the symmetry strongly
present in the problem considered due to the presence of several equivalent bins of each
type. Extensive computational results for a large set of instances support the claim
of validity for the model, efficiency for the solution method proposed, and quality and
robustness for the solutions obtained. The method is also used to explore the impact
on the capacity plan and the recourse to spot-market capacity of a quite wide range of
variations in the uncertain parameters and the economic environment of the firm.

Keywords: Logistics capacity planning, uncertainty, stochastic variable cost and size
bin packing, stochastic programming, progressive hedging



1 Introduction

The efficient consolidation of goods for movement and storage is essential for companies
that aim to be competitive in the market and fulfill customer demand in a cost-efficient
and flexible manner (Crainic et al., 2013b). Modern companies manufacture or acquire
goods that are then consolidated into appropriate containers, which are in turn consol-
idated for long-distance, often international, transportation into ships or trains. Before
reaching the final customer, the goods are stored for varying periods into a number of
depots, warehouses or distribution centers. All these activities require that capacity, as
containers, ship or train slots, motor carrier tractors, and warehousing space, be available
when and where needed.

The planning of such logistics capacity directly affects the distribution and operating
costs of the company, and therefore is a major challenge in supply chain management
(Monczka et al., 2008). Logistics capacity planning as a tactical planning decision ad-
dresses the needs of the company for sufficient capacity to move and store its goods to
meet demand in the next cycle of its activities. When tactical decisions are made, the
company does not have detailed knowledge of many decision parameters such as the fu-
ture demand and, thus, its real needs in terms of loads to be moved or stored, and the
availability and costs of capacity. Such information becomes available, however, at the
time for operational decisions, and it can be used to reconsider and update the capacity
planning.

Our goal is providing models and methods to support decision making in logistics
capacity planning. We focus, in particular, on the relation between a firm and its logis-
tics capacity provider, and the tactical-planning problem of determining the quantity of
capacity to secure for the next period of activity (from four to twelve months) given the
uncertainty on future demand as well as on the availability of the means providing the
required capacity.

Bin packing models offer important decision-support tools for transportation and lo-
gistics (Perboli et al., 2014a), and appear appropriate for the problem at hand. In bin
packing problems, items must be packed into containers or other types of boxes and
spaces, generally called bins, the particular characteristics of items and bins in terms of
dimensions and costs generating a rich set of problem settings and formulations (e.g.,
Crainic et al., 2011b; Baldi et al., 2012). The packing formulations currently proposed
in the literature deal only partially, however, with the requirements of capacity plan-
ning. Most research focuses on operational issues, and very few address packing and
uncertainty.

We aim to contribute to fill this gap and introduce the Stochastic Variable Cost and
Size Bin Packing Problem (SVCSBPP), a new class of stochastic bin packing formulations
providing a modeling framework for the tactical capacity-planning problem with uncer-
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tain demand, item characteristics, availability of extra bins in the future as well as their
actual costs and dimensions. We propose a two-stage integer stochastic programming
formulation. The first stage concerns the selection of bins, while the second stage con-
cerns the acquisition of extra capacity (bins) and the assignment of loads (items) to bins
selected in the first and second stages, once the actual demand information, i.e., number
of characteristics of items, is revealed. To address realistically-sized instances, we also
propose an efficient meta-heuristic based on Progressive Hedging principles (Rockafellar
and Wets, 1991) for the SVCSBPP.

The contributions of this paper are:

1. A modeling framework for securing logistics capacity for a tactical-planning horizon,
while explicitly considering uncertainty in both supply, i.e., the future availability
and cost of various bin types, and demand as the number and dimension of items.
This framework takes the form of a new class of stochastic bin packing problems,
the SVCSBPP, which generalizes previous work (Crainic et al., 2014a) through a)
the possibility that bins available in the future be different in cost and dimensions
from those planned, and b) the explicit representation of the uncertainty on the
future availability of bins in numbers and costs. This generalization contributes
greatly to the practical relevance of the methodology, through the modeling of the
spot market. It introduces, in particular, the possibility that no feasible solution
exists due to insufficient availability of extra bins in the future, requiring additional
care in formulating the two-stage model. Different from previous models, this gen-
eralization leads to a two-stage formulation that includes integer decision variables
in the second stage to represent the selection of additional bins.

2. A new and effective meta-heuristic for the two-stage formulation of the SVCS-
BPP. The proposed solution method is based on PH ideas, uses the heuristic of
Crainic et al. (2011b) to address the scenario subproblems, and includes several
enhancements to deal with the particular characteristics of the problem. A par-
ticularly challenging characteristic is the symmetry inherent to packing problems,
and strongly present in the SVCSBPP due to the presence of several equivalent
bins of each type. The many equivalent but apparently different solutions in their
choice of bins significantly impairs the efficiency of a meta-heuristic implementing
classical PH features. Several novel strategies are thus proposed, in particular a
new definition of ”consensus”, the associated temporary global solution, and the
heuristic penalty adjustments, together with bundle variable fixing.

3. An extensive computational campaign using a large set of instances of various di-
mensions and combinations of different levels of variability in the stochastic param-
eters. The campaign includes the assessment of the efficiency of the meta-heuristic,
the evaluation of the interest to explicitly consider uncertainty, an analysis of the
impact of problem characteristics on capacity planning, the structure of solutions
and the sensitivity to changes in data in particular, as well as an evaluation of the
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robustness of the decisions over a long time period under different economic and
demand-evolution scenarios.

The numerical analysis indicates that the value of uncertainty is significant and that
the proposed PH-based meta-heuristic finds good solutions fast. They also show that
the proposed formulation is able to represent the impact of various levels of variation
in the random parameters, and yields good-quality plans (solutions). Indeed, solutions
are conservative and minimize the need to adjust the plan. Moreover, the capacity
plan is robust (variations in the demand implying low operating costs) and relatively
insensitive to changes. One may therefore conclude that SVCSBPP is a useful tool for
logistics capacity planning under uncertainty, and that the proposed meta-heuristic is an
appropriate and efficient solver for this class of formulations.

The paper is organized as follows. Section 2 details the logistics capacity planning
problem we address in this paper. Section 3 briefly reviews the relevant literature. Sec-
tion 4 presents the formulation of the problem. A lower bound and the meta-heuristic
solution method are introduced in Sections 5 and 6, respectively. Section 7 presents the
experimental plan and analyzes the computational results. Section 8 provides concluding
remarks.

2 Logistics Capacity Planning

The tactical capacity planning problem we address is relevant in many contexts, e.g.,
manufacturing firms desiring to secure transportation capacity to bring in their resources
or to distribute their products, wholesalers and retailers planning for transportation and
storage capacity to support their procurement and sales processes, and logistics service
providers securing capacity contracts with carriers for long-distance, regular shipments.
Manufacturing and whole/retail distribution firms may negotiate directly with carriers
and owners/managers of storage space but, very often, they do business with a logistic
service provider. Consequently, in order to simplify the presentation, but without loss
of generality, we describe the problem within the context of the process of contract
procurement between a major retail firm and a third-party logistics (capacity) service
provider (3PL).

In the contemporary economic and business environment, firms are engaged in a con-
tinuous procurement process (Aissaoui et al., 2007; Rizk et al., 2008), and engage in
various collaborations with its supply-chain partners. Such inter-firm alliances yield sev-
eral benefits, including a reduction in inefficiencies, total cost, and financial risks. The
greatest advantages result from the outsourcing of logistics activities to a 3PL (Marasco,
2008). The overall supply-chain process may then be summarized as follows. The firm
regularly orders products from suppliers in a given geographical region, according to
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current inventories, short-term forecast demand, estimated lead times, and specific pro-
curement and inventory policies (Bertazzi and Speranza, 2005; Bertazzi et al., 2007).
The suppliers are instructed to deliver their goods to a consolidation center (Crainic
and Kim, 2007; Bertazzi and Speranza, 2012). The 3PL then consolidates the goods
into containers and ensures their shipping by consolidating these containers with those
of other customers into the slots it secured on long-haul carriers, e.g., ships and trains
(Chen et al., 2001; Crainic et al., 2013a), which generally operate according to a fixed
schedule, e.g., twice a week.

A key factor in this process is the procurement of sufficient supply capacity, which
we express in the following in terms of bins, at different locations in the network and for
varying periods of time, to satisfy the demand. This entails negotiations with the 3PL
to book the necessary capacity a priori, before operations start, at the best rate (Ford,
2001). The results of these negotiations often take the form of medium-term contracts
specifying both the capacity to be used, the quantity and the type of bins, and the
additional services to be performed (storage, transportation, bin operations, etc.) for a
given planning horizon, e.g., a semester or a year. These contracts guarantee a regular
volume of business to the 3PL (e.g., a fixed number of containers to ship every week for
the next semester), which ensures a cost-effective service to the firm.

We refer to the costs of bins selected in advance as fixed costs because they are
fixed by the contract and thus represent the specific rates offered by the 3PL for bins
of different sizes. The values of the fixed costs are, in practice, influenced by several
factors, including bin size, bin type (e.g., thermal or refrigerated containers), physical
handling operations required, the time period for which the bin is to be used, and the
economic characteristics of the departure location (e.g., access rules and costs). The
result of negotiations, and the scope of the capacity planning problem, is then a tactical
plan defining these quantities for the firm at each location, given the proposed bin types
and costs and an estimation of the demand over the planning horizon. The plan thus
specifies the set of bins of particular volumes and fixed costs to be made available at each
location to ship the estimated items.

Given the time lag that usually exists between the signing of the contracts and the
logistics operations, the negotiations are performed under uncertainty, without all the
necessary information concerning the actual demand to be serviced at each occurrence
of the plan.

Demand is defined as a number of items of variable sizes to be packed into the avail-
able bins for shipment or storage. This disaggregated demand representation makes the
problem harder to tackle, but contributes to its relevance as it models the fact that
item-to-bin assignment decisions have to be taken to ensure the feasibility of the load-
ing/shipment plan (i.e., the technological restriction due to the bin capacity). Then,
variations in demand occurring at each application of the plan generally yield numbers
and sizes of items that differ from the estimations used during negotiations, requiring ex-
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tra capacity (additional bins) to be secured when the planned capacity is not sufficient.
The additional capacity is to be obtained through the spot market, from the original
3PL or other sources, and it generally comes at a much higher cost than the fare negoti-
ated initially. Moreover, while the 3PL generally ensures the planned capacity, the extra
capacity may not be available when needed, and “penalty” costs are incurred due to
either the corresponding shipping delay or the decision to ship using the more expensive
less-than-container-load (LCL) mode. The availability and cost of the bins providing the
extra capacity is thus considered stochastic as well.

The Stochastic Variable Cost and Size Bin Packing Problem thus consists in deter-
mining the most cost-effective tactical plan, including the costs of the bins secured within
the negotiations and the possible cost of updating the plan and securing extra capacity
when the actual item demand and the spot-market bin availability and costs become
known.

3 Literature Review

We present a brief review of the packing and stochastic programming literature directly
related to the problem at hand. Notice that, generally, the packing literature focuses on
operations, and that only recently has research started to address tactical and strategic
problems (Perboli et al., 2014a). Research on stochastic packing is even less present in
the literature.

The problem we address belongs to a class of rich packing problems motivated by the
planning and management of modern logistics and transportation systems, and provid-
ing the means to consider additional loading constraints in multi-dimensional problems
(Crainic et al., 2012) and the presence of multiple attributes (Crainic et al., 2011b; Baldi
et al., 2012). The VCSBPP (Crainic et al., 2011b) generalized the classical Bin Packing
problem (Martello and Toth, 1990) by considering unrestricted variations in the costs
and dimension of both items and bins. Baldi et al. (2012) later proposed the Generalized
Bin Packing Problem, encompassing the VCSBPP and the simple and multiple knapsack
problems.

All the above formulations are deterministic, however. Traditionally, the literature
on stochastic packing focused on the so-called on-line packing problem, where the uncer-
tainty affects the arrival time of items (Seiden, 2002). Only recently were contributions
proposed addressing packing problem settings found in strategic and tactical applications.

The Multi-Handler Knapsack Problem under Uncertainty (Perboli et al., 2014b) is
a stochastic version of the knapsack problem, where the item profit depends on the
handler managing. The authors proposed a two-stage formulation and a deterministic
approximation based on multinomial Login model. A similar approach was used for
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the Stochastic Generalized Bin Packing Problem (Perboli et al., 2012), which considered
profit oscillations due to the handling operations associated to bin loading.

Crainic et al. (2014a) proposed a stochastic extension of the VCSBPP (Crainic et al.,
2011b) considering variations in the renting cost of the different bins, and in the size and
number of items to be loaded. A state-of-the-art commercial solver was used to solve 360
instances. Results underlined the importance of the stochastic parameters on the solution
structure and the limitation of this approach when the number of variables involved in
the two-stage stochastic model increases. The Stochastic Variable Cost and Size Bin
Packing problem defined in this paper generalizes the previous work. We introduce, in
particular, the explicit representation of the uncertainty on the availability (existence
and number) of bins of various characteristics.

The problems reviewed above were formulated as two-stage integer stochastic pro-
grams with recourse (Birge and Louveaux, 1997). We propose in Section 4 such a for-
mulation for the SVCSBPP, where the first stage concerns the selection of bins, and the
second (integer) stage concerns the acquisition of extra bins and the assignment of items
to available bins, once the demand information is revealed.

Two-stage integer stochastic formulations separate the a priori planning decisions,
taken under uncertainty before the activity cycle starts, and the adjustments performed
at each period of operations once information becomes available. The former makes
up the first stage of the model, while the recourse actions, defining the admissible ad-
justments to the plan, make up the second stage. Discretization methods are usually
applied to approximate the probability distribution of the random parameters using a
finite-dimension scenario tree (Mayer, 1998). Using the scenario tree approximation, one
can reduce two-stage integer stochastic programs to deterministic linear programs, with
integer decision variables, of generally very large dimensions, beyond the reach of exact
methods. Indeed, Crainic et al. (2011a) and Crainic et al. (2014b) have shown that a
state-of-the-art mix-integer programming solver struggles to solve even small instances
of stochastic VCSBPP formulations. Meta-heuristics are thus required to successfully
address larger problems.

The Progressive Hedging (PH ) algorithm, initially proposed by Rockafellar and Wets
(1991) for stochastic convex programs, has emerged as an effective meta-heuristic for com-
binatorial stochastic optimization models (e.g., Crainic et al., 2011a; Carpentier et al.,
2013; Crainic et al., 2014b; Veliz et al., 2014). It mitigates the computational difficulty
associated with large problem instances by using augmented Lagrangian relaxation to
decompose the stochastic program by scenario. It then iteratively solves penalized ver-
sions of the subproblems, gradually enforcing the consensus relative to the first-stage
decision variables. PH enables the use of specialized heuristic methods for the subprob-
lems, fast and accurate methods being crucial to the overall efficiency of the method, as
subproblems are repeatedly solved. We enhance the basic PH algorithm with a number
of features to exploit the structure of the SVCSBPP. This very efficient meta-heuristic is
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detailed in Section 6.

4 The SVCSBPP Model

Let T be the finite set of bin types, each type being defined by the volume and fixed
cost associated with its bins. Let V τ and f τ respectively be the volume and fixed cost
associated with bins of type τ ∈ T . We define J τ to be the set of available bins of type
τ and J = ∪τJ τ to be the set of available bins at the first stage.

Let set Ω be the sample space of the random event, where ω ∈ Ω defines a particular
realization. Let vector ξ contain the stochastic parameters defined in the model, and
ξ(ω) be a given realization of this random vector. Let the first-stage variables be yτj = 1
if bin j ∈ J τ is selected and 0 otherwise. The two-stage model of the SVCSBPP may
then be formulated as

min
y

∑
τ∈T

∑
j∈J τ

f τyτj + Eξ[Q(y, ξ(ω)] (4.1)

s.t. yτj ∈ {0, 1}, ∀τ ∈ T , j ∈ J τ , (4.2)

where Eξ represents the expected value of Q(y, ξ(ω)), the cost paid to adjust the plan
at the second stage once information on demand and available supply becomes available,
given the tactical capacity plan y and the vector ξ(ω). The objective function (4.1) then
minimizes the sum of the total fixed cost of the tactical capacity plan and the expected
cost associated with the plan adjustment, while constraints (4.2) impose the integrality
requirements on y.

We consider several stochastic parameters in ξ(ω), in formulating Q(y, ξ(ω)), repre-
senting the information revealed at the second stage that conditions the possible plan-
adjustment decisions. On the demand side, let I(ω) be the set of items to be packed,
with vi(ω), i ∈ I(ω), the associated stochastic item volumes. Two actions have to be
considered on the supply side to represent the two situations regarding the availability
of extra capacity. The first concerns the possibility to acquire extra bins when needed,
where Kτ (ω) stands for the set of available bins of type τ at the second stage, gτ (ω),
k ∈ Kτ (ω) represent the associated stochastic costs, and K(ω) = ∪τKτ (ω). The second
focuses on the case when the extra bins available in the second stage are insufficient to
pack all the items, and additional capacity has to be secured by delaying the shipment
or using a LCL mode. We model this situation through a set of virtual bins K̄(I(ω)),
with |K̄(I(ω))| = |I(ω)|, where each bin k ∈ K̄(I(ω)) corresponds to item k ∈ I(ω) and
may be used to load it, i.e., its volume V k = vk(ω), k ∈ I(ω), at a cost gk(ω), K̄(I(ω)).

The second-stage variables then are zτk(ω) = 1 if bin k ∈ Kτ (ω)∪K̄(I(ω)) is selected,
0 otherwise; xij(ω) = 1 if item i ∈ I(ω) is packed into bin j ∈ J , 0 otherwise; and
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xik(ω) = 1 if item i ∈ I(ω) is packed into bin k ∈ K(ω) ∪ K̄(I(ω)), 0 otherwise. The
Q(y, ξ(ω)) formulation then becomes

Q(y, ξ(ω)) = min
y,z,x

∑
τ∈T

∑
k∈Kτ (ω)∪K̄(I(ω)

gτ (ω)zτk(ω) (4.3)

s.t.
∑
j∈J

xij(ω) +
∑

k∈K(ω)∪K̄(I(ω)

xik(ω) = 1, ∀i ∈ I(ω), (4.4)

∑
i∈I(ω)

vi(ω)xij(ω) ≤ V τyτj , ∀τ ∈ T , j ∈ J τ , (4.5)

∑
i∈I(ω)

vi(ω)xik(ω) ≤ V τzτk(ω), ∀τ ∈ T , k ∈ Kτ (ω), (4.6)

xij(ω) ∈ {0, 1}, ∀i ∈ I(ω), j ∈ J , (4.7)

xik(ω) ∈ {0, 1}, ∀i ∈ I(ω), k ∈ Kτ (ω) ∪ K̄(I(ω),
(4.8)

zτk(ω) ∈ {0, 1}, ∀τ ∈ T , k ∈ Kτ (ω) ∪ K̄(I(ω).
(4.9)

The objective function (4.3) minimizes the cost associated with the extra bins, actual
and virtual, selected at the second stage. Constraints (4.4) ensure that each item is
packed into a single bin. Constraints (4.5) and (4.6) ensure that the total volume of
items packed into each bin does not exceed the bin volume (such constraints are not
required for the virtual bins as each holds exactly the corresponding item). Constraints
(4.7) to (4.9) impose the integrality requirements on all second-stage variables.

5 A Lower Bound for the SVCSBPP

We present in this section a lower bound for the SVCSBPP formulation (4.1)–(4.9), which
provides a way to measure the quality of the heuristic proposed in Section 6.

The lower bound is obtained by removing the item-to-bin assignment constraints
(4.4), dropping the LCL option when an insufficient number of bins are available in the
second stage, and aggregating the resulting individual bin feasibility constraints (4.5) and
(4.6). The resulting LB formulation, (5.1)–(5.4), is a two-stage stochastic model with
fixed recourse, which yields an optimal set of bins that includes those in the first-stage
capacity plan and the second-stage extra bins, with a total capacity sufficient for the
items considered:
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min
y,z

∑
τ∈T

∑
j∈J τ

f τj y
τ
j + Eξ[

∑
τ∈T

∑
k∈Kτ (ω)

gτk(ω)zτk(ω)] (5.1)

s.t.
∑
τ∈T

∑
j∈J τ

V τ
j y

τ
j +

∑
τ∈T

∑
k∈Kτ (ω)

V τ
k z

τ
k(ω) ≥

∑
i∈I(ω)

vi(ω),∀ω ∈ Ω, (5.2)

yτj ∈ {0, 1} ∀τ ∈ T , j ∈ J τ , (5.3)

zτk(ω) ∈ {0, 1} ∀τ ∈ T , k ∈ Kτ (ω),∀ω ∈ Ω. (5.4)

Note that, an optimal solution for LB does not guarantee feasibility for the problem
(4.1)–(4.9) with respect to the loading of items into individual bins, even when sufficient
capacity is available in the second stage. On the other hand, computing the lower bound
for a given realization of the random event will signal, by returning an “unfeasible”
solution, that insufficient bin capacity is available in the second stage and the penalty
related to the LCL option will have to be paid.

Note also that, the LB formulation is independent of the number of items. This
reduces the number of variables in the model and makes it possible to find the optimal
solution of LB in reasonable computing times (e.g., by using commercial MIP solvers).
Moreover, computational results show (Section 7) that the lower bound obtained by
solving the LB formulation is far better (tighter) than the solutions obtained by solving
the continuous relaxation of the model (4.1)–(4.9).

6 Progressive Hedging-based Meta-heuristic

We propose a meta-heuristic inspired by the PH algorithm (Rockafellar and Wets, 1991)
for the SVCSBPP formulation described in the previous section. The main algorithmic
structure is known (e.g., Crainic et al., 2011a; Perboli et al., 2015). We enhanced it
significantly, however, in a number of important algorithmic components, including the
treatment of symmetry in the search for consensus, a bundle-fixing mechanisms to guide
the search, a second phase to identify the final solution when consensus is not achieved
during the initial search, and a parallel implementation of the algorithm solving the
subproblems concurrently on multiple processors. We focus on these enhancements in
the rest of the section, including structure of the parallel version of the meta-heuristic
(Section 6.3).

As summarized in Algorithm 1, the proposed (sequential) meta-heuristic for the
VCSBP first applies scenario decomposition, then proceeds in two phases. Phase 1 aims
to induce consensus among the scenario subproblems, while Phase 2 computes the final
solution when consensus is not reached within the prescribed computational conditions.
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Sampling is first applied to obtain a set of representative scenarios, namely the set S,
and these are used to approximate the expected cost associated with the second stage.
Let ps be the probability of each scenario s ∈ S, and let the superscript s associate the
decision variables of the previous section to each particular scenario s ∈ S. Define Is,
the set of items to pack under scenario s ∈ S, and Ks = ∪τKτs ∪ K̄(Is), where Kτs and
K̄(Is) are the sets of extra bins of type τ ∈ T and of virtual bins corresponding to items
to pack in scenario s ∈ S, respectively. The SVCSBPP formulation (4.1)–(4.9) can then
be approximated by the following deterministic model:

min
y,z,x

∑
s∈S

ps

[∑
τ∈T

∑
j∈J τ

f τyτsj +
∑
τ∈T

∑
k∈Kτs

gτszτsk

]
(6.1)

s.t.
∑
j∈J

xsij +
∑
k∈Ks

xsik = 1 ∀i ∈ Is, s ∈ S, (6.2)∑
i∈Is

vsix
s
ij ≤ V τyτsj ∀τ ∈ T , j ∈ J τ , s ∈ S, (6.3)∑

i∈Is
vsix

s
ik ≤ V τzτsk ∀τ ∈ T , k ∈ Kτs, s ∈ S, (6.4)

yτsj = yτtj ∀τ ∈ T , j ∈ J τ , s, t ∈ S, (6.5)

yτsj ∈ {0, 1} ∀τ ∈ T , j ∈ J τ , s ∈ S, (6.6)

zτsk ∈ {0, 1} ∀τ ∈ T , k ∈ Kτs, s ∈ S, (6.7)

xsij ∈ {0, 1} ∀i ∈ Is, j ∈ J , s ∈ S, (6.8)

xsik ∈ {0, 1} ∀i ∈ Is, k ∈ Ks, s ∈ S. (6.9)

Constraints (6.5) are referred to as the nonanticipativity constraints, forcing all sce-
narios to yield the same first-stage decisions. They link the first- and second-stage vari-
ables and make the model not separable. Let ȳτj ∈ {0, 1}, ∀τ ∈ T , j ∈ J τ , be the global
capacity plan, also identified as the temporary global solution, i.e., the set of bins currently
selected at the first stage. Then, constraints (6.10) - (6.11) are equivalent to (6.5).

ȳτj = yτsj τ ∈ T , j ∈ J τ , s ∈ S, (6.10)

ȳτj ∈ {0, 1} τ ∈ T , j ∈ J τ . (6.11)

The model is now separable and, following the decomposition scheme proposed by
Rockafellar and Wets (1991), we relax the nonanticipativity constraints (6.10) using an
augmented Lagrangian strategy with Lagrangian multipliers λsj , ∀j ∈ J and ∀s ∈ S,
for the relaxed constraints, and a penalty ratio ρτj associated with bin j ∈ J τ of type
τ ∈ T . This decomposition yields |S| deterministic VCSBPP scenario subproblems with
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modified fixed costs:

min
y,x

∑
τ∈T

∑
b∈Bτs

f τb y
τ
b (6.12)

s.t.
∑
τ∈T

∑
b∈Bτs

xsib = 1 ∀i ∈ Is, s ∈ S, (6.13)∑
i∈Is

vsix
s
ib ≤ V τyτb ∀τ ∈ T ,∀b ∈ Bτs, s ∈ S, (6.14)

yτb ∈ {0, 1} ∀τ ∈ T ,∀b ∈ Bτs, s ∈ S, (6.15)

xsib ∈ {0, 1} ∀τ ∈ T , ∀b ∈ Bτs,∀i ∈ Is, s ∈ S, (6.16)

where Bτs = J τ ∪Kτs is the set of available bins of type τ in the subproblem of scenario
s ∈ S, the associated decision variable yτb = 1 if bin b ∈ Bτs of type τ ∈ T is selected, 0
otherwise, and f τb defines the fixed cost associated with bin b ∈ Bτs

f τb =

{
f τ + λsj − ρτj ȳτj +

ρτj
2

τ ∈ T , b, j ∈ J τ ,

gτs τ ∈ T , b ∈ Kτs,
(6.17)

the values of the multipliers λsj and ρτj being determined at each iteration exogenously
with respect to the subproblem. Hence, the Lagrangian multipliers are used to penalize
a lack of implementability due to differences in the first-stage variable values among
scenario subproblems.

6.1 Phase 1 - Searching for consensus among subproblems

Phase 1 aims to obtain “consensus” among the subproblems, defined as scenario solutions
being similar with regard to the first-stage decisions with the overall capacity plan and,
thus, being similar among themselves.

At each iteration, the subproblems are first addressed separately by applying a heuris-
tic. Indeed, it is time-consuming to solve a large VCSBPP to optimality, even using a
state-of-the-art commercial MIP solver (Correia et al., 2008), and VCSBPP subproblems
must be solved multiple times in the PH-based meta-heuristic. Among the effective algo-
rithms developed for the VCSBPP (Crainic et al., 2007; Baldi et al., 2014; Crainic et al.,
2011b), we choose the heuristic of Crainic et al. (2011b), because of its proved efficiency
on instances with up to 1000 items. The heuristic implements an adapted best-first de-
creasing strategy that sorts items and bins by nonincreasing order of volume and unit
cost, respectively. The heuristic then sequentially assigns each item to the best bin, i.e.,
the bin with the maximum free space once the item is assigned.

Compute temporary global solution. The subproblem solutions are used to build a
temporary global solution, the overall capacity plan. We developed a particular strategy
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for this step of the meta-heuristic to address the symmetry challenge of the bin packing
formulation.

Let ν be the iteration counter in the PH meta-heuristic, and yτsνj , ∀s ∈ S, ∀τ ∈ T , and
∀j ∈ J τ , the local solutions of the scenario subproblems. Two temporary global solutions
are computed. The first is based on the usage of the individual bins and computation of
the classical expectation yielding

ȳτνj =
∑
s∈S

psy
τsν
j , ∀τ ∈ T ,∀j ∈ J τ . (6.18)

This definition does not take into account the strong symmetry in the solution space
typical of packing problems (Baldi et al., 2012), where two solutions are considered
symmetric (and equivalent) when they involve the same set of bins in different orders.
As Equation (6.18) considers consensus with respect to the use of each specific bin j ∈ J τ ,
the computation of yτsνj is strongly dependent on the order of the bins in the solution.

To address this issue, we define a second overall solution based on the number of bins
in the capacity plan. Let δτsν =

∑
j∈T τ y

τsν
j be the total number of bins of type τ ∈ T

in the capacity plan for scenario subproblem s ∈ S at iteration ν. We then define the
overall capacity plan for each bin type τ ∈ T as

δ̄τν =
∑
s∈S

psδ
τsν =

∑
s∈S

ps
∑
j∈J τ

yτsνj =
∑
j∈J τ

∑
s∈S

psy
τsν
j =

∑
j∈J τ

ȳτνj . (6.19)

Equation (6.19) breaks the symmetry of the solutions (the order of the bins in the solution
does not change the value of δτsν) and can be used to define the stopping criterion. Thus,
we consider consensus to be achieved when the values of δτsν , ∀s ∈ S, are equal to δ̄τν .

The two measures yielded by Equations (6.18) and (6.19) are used as reference solu-
tions for penalty adjustments with the goal of helping the search identify bins for which
consensus is possible. Equation ((6.19)) is also used in the bounding strategy described
below.

Penalty adjustment strategies. To induce consensus among the scenario subprob-
lems, we adjust the penalties in the objective function at each iteration to penalize
dissimilarity between local solutions and the overall solution. We propose two different
strategies for these adjustments, both working at the local level in the sense that they
affect every scenario subproblem separately.

The first strategy (Rockafellar and Wets, 1991) operates on the fixed costs by changing
the Lagrangian multipliers using information on the individual bin selection (variables
yτsνj ). At each iteration ν, we update the values of the multipliers λsνj and ρτνj , ∀j ∈ J ,
∀s ∈ S, (defining variable-specific ρτνj multipliers enhances the convergence behavior of
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the method, Watson and Woodruff, 2011):

λsνj = λ
s(ν−1)
j + ρ

τ(ν−1)
j (yτsνj − ȳτνj ) (6.20)

ρτνj ← αρ
τ(ν−1)
j , (6.21)

where λs0j = 0, s ∈ S, α > 1 is a given constant, and ρτ0
j = max(1, f τ/10), ∀j ∈ J τ ,

∀τ ∈ T , is set proportional to the fixed cost associated with the bin-selection variable,
ensuring ρτνj →∞ as the number of iterations ν increases.

When the overall solution is close to consensus, the small differences between the
subproblem solutions and the overall solution often make the adjustments (6.20) and
(6.21) less effective, resulting in an increase in the number of iterations needed to reach
consensus. The heuristic strategy of the second penalty adjustment aims to address this
issue and accelerate the search by directly tuning the fixed costs of bins of the same
type. Thus, when at least σ% of the variables have reached consensus, we perturb every
subproblem s ∈ S by changing f τsν , the fixed cost of bin j ∈ J τ of type τ ∈ T for
scenario s ∈ S at iteration ν:

f τsν =


f τs(ν−1) ·M if δτs(ν−1) > δ̄τ(ν−1)

f τs(ν−1) · 1
M

if δτs(ν−1) < δ̄τ(ν−1)

f τs(ν−1) otherwise,

(6.22)

where, f τs0 = f τ , M is a constant greater than 1, and σ% is a constant such that
0.5 ≤ σ% ≤ 1 (σ% = 0.75 and M = 1.1 in the current implementation). We thus
discourage (penalize their selection costs) the use of bins of type τ in scenario s at
iteration ν when, at the previous iteration, δτs(ν−1), the total number of bins of that
type, was larger than the number of bins of the same type in the corresponding reference
solution δ̄τ(ν−1). Symmetrically, the use of bins of type τ is promoted (selection fixed
cost reduction) in the opposite case.

Bundle fixing. We introduce a variable-fixing strategy, called bundle fixing, to guide
the search process. Indeed, because there are multiple equivalent solutions, it is not
efficient to fix a single bin-selection variable ȳτνj . We instead restrict, through lower and
upper bounds, the number of bins of each type that can be used.

Let δ̄τνm and δ̄τνM be the minimum and maximum number of bins of type τ involved in
the overall solution at iteration ν:

δ̄τνm ← min
s∈S

δτsν , (6.23)

δ̄τνM ← max
s∈S

δτsν . (6.24)

The bundle strategy applies the two bounds to reduce the number of decision variables
in the subproblems. The lower bound δ̄τνm determines the set of compulsory bins that must
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be used in each subproblem by setting the decision variables y
τs(ν+1)
j = 1 for j = 1, ..., δ̄τνm .

The upper bound δ̄τνM is an estimate of the maximum number of bins of type τ available

in the next iteration. This is performed by setting decision variables y
τs(ν+1)
j = 0 for

j = δ̄τνM + 1, ..., ‖J τ‖.

6.2 Termination criteria and Phase 2

We implement two stopping criteria for the search phase of the proposed meta-heuristic,
based on the level of consensus reached and the number of iterations.

Recall that, the level of consensus is measured through equations (6.23) and (6.24),
and consensus is reached when δ̄τνm = δ̄τνM , ∀τ ∈ T . To speed up the algorithm, we stop
the search, and proceed to Phase 2, either when consensus is achieved for all bin types
except one, type τ ′ for which δ̄τ

′
m < δ̄τ

′
M , or when consensus is not achieved within a given

maximum number of iterations (200 in our experiments).

In the first case, given the efficiency of the item-to-bin heuristic, Phase 2 computes
the final solution by iteratively examining the possible number of bins for τ ′ (a consensus
solution is always possible because δ̄τ

′
M is feasible in all scenarios):

For all δ ∈
[
δ̄τ

′
m, δ̄

τ ′
M

]
do

Set the number of bins of type τ ′ to δ;

Solve all the scenario subproblems with the VCSBPP heuristic;

Check the feasibility of the solutions;

Update the overall solution if a better solution has been found;

Produce the consensus solution.

Consensus is less close when Phase 2 is invoked because the maximum number of
iterations is reached. Phase 2 of the meta-heuristic then builds a restricted version of the
formulation (6.1)–(6.9) by fixing the bin-selection first-stage variables for which consensus
has been achieved, together with the associated item-to-bin assignment variables. The
range of the bin types not in consensus is reduced through bundle fixing, and the resulting
MIP is solved exactly.

6.3 Parallel implementation

We developed a synchronous master–slave implementation for the proposed meta-heuristic.
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Algorithm 1 PH-based meta-heuristic for the SVCSBPP

Scenario decomposition
Generate a set of scenarios S;
Decompose the resulting deterministic model (6.1)–(6.9) by scenario using augmented
Lagrangian relaxation;

Phase 1
ν ← 0; λτsνj ← 0; ρτνj ← f τ/10;
while Termination criteria not met do

For all s ∈ S, solve the corresponding Variable Cost and Size Bin Packing subprob-
lem → yτsνj ;
Compute temporary global solution

ȳτνj ←
∑
s∈S

psy
τsν
j

δ̄τν ←
∑
S∈S

psδ
τsν

Penalty adjustment
λτsνj = λτsν−1

j + ρ
τ(ν−1)
j (yτsνj − yτνj )

ρτνj ← αρ
τ(ν−1)
j

if consensus is at least σ% then
Adjust the fixed costs f τsν according to (6.22);

Bundle fixing
δ̄τνm ← min

s∈S
δτsν

δ̄τνM ← max
s∈S

δτsν

Apply variable fixing;
ν ← ν + 1

Phase 2
if consensus not met for a single bin type τ ′ (δ̄τ

′
m < δ̄τ

′
M) then

Identify the consensus number of bins δ of type τ ′ by enumerating δ ∈
[
δ̄τ

′
m, δ̄

τ ′
M

]
(and

variable fixing)
else

Fix consensus variables in model (6.1)–(6.9);
Solve restricted (6.1)–(6.9) model using a MIP solver.
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The master implements the meta-heuristic, assigning the tasks of solving the subprob-
lems to a number of slave processors. (Note that the master may reassign subproblems
among slaves when the workload of some appears larger than that of the others.) The
master thus sends the overall solution and multiplier values to the slaves, and later col-
lects their solutions, waiting until all the scenario subproblems have been solved. It then
proceeds to calculate the new overall solution, update penalties and, if consensus is not
reached, either starts a new iteration or proceeds to the second phase.

The parallelization reduces the computational time for each iteration and thus speeds
up the algorithm. The quality of the solutions is not affected by the parallel execution,
as the search process follows the same dynamics as in the sequential case.

7 Computational Results

We performed an extensive set of experiments. The goals of the experimental campaign
were to 1) analyze the performance of the proposed PH-based meta-heuristic by compar-
ing it to a state-of-the-art commercial MIP solver; 2) measure the impact of uncertainty
and determine whether building a stochastic programming model is really useful, and 3)
explore the potential of the proposed model and algorithm by performing a number of
analyses of the structure, sensitivity and robustness of the logistics capacity plan under
various problem settings.

We start by introducing the test instances generated for the numerical experiments
(Section 7.1), and by studying the stability of stochastic solutions (Section 7.2). We
then proceed, Section 7.3, to analyze the performance of the proposed meta-heuristic
by comparing its results (objective values and computational times), those of the direct
solution of the multi-scenario deterministic problem (called RP in the following) (6.1)–
(6.9), and the lower bound (LB) (5.1)–(5.4). We also analyze the efficiency of the parallel
implementation by studying the scalability to 16 threads. Section 7.4 explores the benefits
of using a two-stage model with recourse by computing the classical measures of the
expected value of perfect information, EVPI, and value of the stochastic solution VSS
(Birge, 1982; Maggioni and Wallace, 2012).

The potential of the proposed model and solution method is explored in three steps.
Section 7.5 studies the structure of the capacity plan with respect to the attributes of
the problem setting (bin-type usage and bin fill ratios). The sensitivity of the capacity
planning to lower and upper limits on the number bins within each type one may use is
analyzed in Section 7.6. Finally, we examine in Section 7.7 the robustness and reliability
of the capacity planning decisions, through a Monte Carlo simulation under variations in
the economic conditions (e.g., higher or lower demand).

The RP and LB formulations were solved using CPLEX version 12.5 (ILOG Inc.,
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2012) with maximum running time of 24 h. The PH-based meta-heuristic was codded in
C++. It was stopped either on reaching consensus or reaching 200 iterations. Phase 2
solves the restricted MIP using CPLEX with a time limit of one hour. Experiments were
performed on a computer with 16 AMD Bulldozer cores at 2.3 GHz and 64 GB of RAM,
at the high-performance computing cluster of Politecnico di Torino (DAUIN, 2014) .

7.1 Instances

We generated a new set of instances, denoted T, starting from existing instances for
different bin packing problem variants (Monaci, 2002; Crainic et al., 2007, 2011b, 2014a).
The goal of the generation process was to allow exploring the structure of the capacity
planning solutions for different configurations of bin types and items, as well as measuring
the effect of different levels of uncertainty in the demand and the extra capacity. Instances
are characterized by the number of bin types, the availability and the cost of the bins in
the first and second stages, and the number and volume of the items:

� Number of bin types. We consider instances with 3 (T3), 5 (T5), and 10 (T10)
bin types. The bin volumes are:

– 50, 100, 150 for T3;

– 50, 80, 100, 120, 150 for T5;

– 50, 60, 70, 80, 100, 110, 120, 130, 140, 150 for T10.

� Availability of bins. The number of bins of type τ ∈ T available in the first
stage, ‖J τ‖, is the minimum number of bins of volume V τ needed to pack all items
in the worst-case scenario (the scenario with the most items). This number is

‖J τ‖ =

⌈
1

V τ
max
s∈S

∑
i∈Is

vsi

⌉
. (7.1)

To ensure a large variability at the second stage, ‖Kτs‖, the number of bins of type
τ ∈ T in scenario s ∈ S, is uniformly distributed in the range [0, ‖J τ‖]. These
rules mean that the worst-case scenario may involve a limited number of extra bins.

� Fixed cost of bins. For the set of bins available in the first stage the fixed cost is

f τ = V τ (1 + γ), (7.2)

where γ is uniformly distributed in the range [-0.3, 0.3]. According to Correia et al.
(2008) this range replicates realistic situations. The fixed cost for extra bins gτs

at the second stage is the original fixed cost f τ multiplied by a factor (1 + αsτ ),
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inversely proportional to the availability of extra bins of type τ in scenario s ∈ S,
where

αsτ = 1− ‖Kτs‖∑
τ∈T
‖Kτs‖

· β, (7.3)

and β ∈ U [0, 0.5]. Thus, the maximum increase in the fixed cost is 50%.

� Number of items at the second stage is uniformly distributed in the range [25, 100]
for T3 and T5, [100, 500] for T10.

� Volume of items. An item is defined as:

– Small (S): volume in the range [5, 10];

– Medium (M): volume in the range [15, 25];

– Big (B): volume in the range [20, 40].

These categories are then combined into four volume-spread classes reflecting dif-
ferent realistic settings:

– SP1: high percentage of small items (S=60%, M=20%, B=20%);

– SP2: high percentage of medium items (S=20%, M=60%, B=20%);

– SP3: high percentage of big items (S=20%, M=20%, B=60%);

– SP4: no restrictions on the maximum number of items in each category.

We generated (sampling) ten instances for each combination of the parameters defined
above, yielding a total of 120 instances. A total of s = 1, . . . , 100 scenarios were used in
the experiments, which satisfies the stability conditions (Kaut et al., 2007) as shown in
the next subsection.

7.2 Analysis of the size of the scenario tree

We performed in-sample and out-of-sample analyses (Kaut et al., 2007; Kaut and Wallace,
2007) in order to select the dimension of the scenario tree to use in the experiments
described later in the section. The analysis was conducted on a subset of twenty-four
instances, eight for each size T3, T5 and T10, considering different combination of the
parameters mentioned in Section 7.1.

Ten scenario trees were generated for each instance and each cardinality |S| = 10,
25, 50, 100, 150, 200. Tables 1 and 2 display the aggregated results, by problem size
(rows) and scenario-tree cardinality (columns), of the application of the meta-heuristic
to these instances. Table 1 displays the average objective-function values for the solutions
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S = 10 S = 25 S = 50 S = 75 S = 100 S = 150 S = 200
T3 652.58 645.98 639.23 635.97 634.373 632.89 631.9
T5 799.27 790.83 780.24 776.98 774.547 772.01 771.34
T10 4798.58 4666.21 4620.45 4590.14 4570.03 4546.54 4550.73

Table 1: Average solution value for varying instance size and number of scenarios

S = 10 S = 25 S = 50 S = 75 S = 100 S = 150 S = 200
T3 4.61% 3.49% 1.28% 1.01% 0.73% 0.41% 0.16%
T5 5.14% 3.35% 2.74% 1.34% 0.93% 0.52% 0.34%
T10 4.93% 3.30% 1.63% 1.39% 1.09% 0.55% 0.32%

Table 2: Standard deviation of solution values for varying instance size and number of
scenarios

obtained through this experimentation, while Table 2 shows the corresponding standard
deviations.

It is interesting to note out of this in-sample analysis that the standard deviation
does not appear to be influenced by the size of the instance measured in number of bins
(e.g., from three bins for T3 to ten bins for T10) of instances. This points to a stability
within each scenario-tree dimension. Overall, increasing the number of scenarios appears
beneficial. We adopted a compromise dimension of 100 scenarios providing in-sample
stability of some 1% with respect to the standard deviation of the objective-function
value.

For the out-of-sample analysis, we performed ten times the following procedure for
each of the twenty-four instances (using the same scenario trees generated above): 1)
solve a 200-scenario problem; 2) solve the instance with scenario trees of cardinality
|S| = 10, 25, 50, 100, 150; 3) evaluate each of the solutions obtained at step 2 within the
200-scenario context, by fixing their first-stage decision variables and solving the second
stage, the recourse, of the 200 scenarios problem with the fixed first-stage variables; 4)
compute the relative gap of the objective-function value of this solution relative to that of
the 200-scenario problem (step 1). The results are displayed in Figure 1, where cardinality
of the scenario tree makes up the horizontal axis, while the vertical one displays the
average values of these relative gap (in percentage) over 10 runs for all instances.

We observe fundamentally the same phenomena for the out-of-sample stability analy-
sis as previously for the in-sample one. According to the numerical results, both in-sample
and out-of-sample stability are thus achieved with a sufficiently accurate precision (under
1% of standard deviation and relative gap, respectively) with a 100 scenario tree. We
used this tree dimension in the rest of the experimental campaign.
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Figure 1: Out-of-sample stability with respect to the size of the scenario tree

7.3 Meta-heuristic performance analysis

We started by examining the computational performance of the MIP solver of CPLEX
for the problem at hand. Initial experiments on the T3 and T5 instance sets showed a
relative optimality gap (comparing the best solution and the lower bound computed by
the solver) over 10% after 24 hours of execution. This underlined the difficulty of even
very good commercial MIP solvers, such as CPLEX, to solve even limited-size problem
instances. The high degree of symmetry inherent to the problem contributes to this
difficulty. We therefore used CPLEX in parallel mode. The gap decreases rapidly as the
number of threads increases. With 16 parallel threads, CPLEX has an average optimality
gap below 6% after 24 hours of wall-clock computing time. We therefore used these results
in the comparisons of this section where, unless stated otherwise, all references to CPLEX
and the PH-based meta-heuristic mean their parallel versions on 16 threads.

Table 3 details the comparison of CPLEX and the PH meta-heuristic, in their parallel
version on 16 threads, for the T3 and T5 instances. We report, for each combination of
instance set (Column 1) and item spread class (Column 2), the average optimality gaps
∆CP and average wall-clock running times tCP of parallel CPLEX (Columns 3 and 4,
respectively), the average gaps ∆PH

UB = (UBPH − UBCP )/UBCP ∗ 100 and average wall-
clock running times of the parallel meta-heuristic (Columns 5 and 6, respectively), where
UBCP and UBPH are the objective values of the two methods, respectively. Note that
the value of ∆PH

UB may be positive or negative. When ∆PH
UB is negative, the meta-heuristic

solution is better than that of CPLEX.
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CPLEX PH
Set Spread ∆CP tCP [s] ∆PH

UB tPH [s]

T3

SP1 5.38 86400 -1.19 0.30
SP2 5.74 86400 -1.39 0.59
SP3 6.38 86400 -1.06 0.10
SP4 5.77 86400 -0.86 0.12

T5

SP1 4.99 86400 -1.17 0.50
SP2 5.23 86400 -1.38 0.18
SP3 6.44 86400 -1.98 0.15
SP4 5.20 86400 -1.36 0.65

Table 3: Comparison of parallel CPLEX and PH-based meta-heuristic

The results show that CPLEX cannot solve the SVCSBPP to optimality within a
reasonable time limit for any instance considered. The average optimality gap after 24
hours for T3 and T5 instances is always greater than 5%, with a maximum value of
6.44%. Performance is worst as the problem size increases. Moreover, CPLEX was not
able to identify in 24 h of wall-clock computing time a good feasible solution for T10
instances, which may easily involve more than 10 million variables. Memory (e.g., more
than 64 GB of memory already occupied after 2 h of computations) rapidly becomes a
bottleneck.

The PH meta-heuristic is accurate and effective on all T3 and T5 instances. It always
converges quickly to better solutions than those obtained by parallel CPLEX. The gap
∆PH
UB is negative for all instances with an average improvement in the solution values

between 0.86% and 1.98%. The PH meta-heuristic always reaches a consensus solution
in less than 3 s. This performance is directly related to the efficiency of the heuristic
solver for the VCSBPP, which is able to solve deterministic subproblems in negligible
computational times.

Because CPLEX results were not available for T10 instances, we compare the results
of the meta-heuristic and those obtained by solving the lower bound (5.1)–(5.4) (using
parallelCPLEX as well). Recall that the lower bound does not consider item-to-bin
assignments, which drastically reduces the number of variables in the model. The reduced
model can thus be solved to optimality by CPLEX with a limited computational effort.
The time depends on the number of bins involved, so CPLEX required only a few seconds
to compute the bound for sets T3, andT5, and at most 120 s for set T10.

Table 4 reports, for each instance set (Column 1) and item spread class (Column
2), the relative gap (in percentage) ∆PH

LB between the objective function value obtained
by the PH meta-heuristic and the lower bound (Column 3), as well as the average and
maximum percentage increase in the objective function value (Columns 4 and 5) resulting
from the use of the lower-bound solutions as the capacity plan. On average, the gaps
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Set Spread ∆PH
LB CLB CLB

max

T3

SP1 0.88 0.21 1.45
SP2 0.72 0.22 1.79
SP3 0.68 0.05 0.45
SP4 1.21 0.00 0.00

T5

SP1 1.57 0.09 0.63
SP2 1.45 0.00 0.00
SP3 1.03 0.06 0.47
SP4 2.03 0.10 0.77

T10

SP1 0.81 0.04 0.31
SP2 0.79 0.03 0.18
SP3 0.76 0.02 0.19
SP4 0.86 0.01 0.06

Table 4: Comparison of LB and PH solutions

are smaller than 2%, underlining the accuracy of the PH meta-heuristic. We further
qualified this accuracy by evaluating the quality of the lower bound solutions by fixing
the bin selections defined by the bound and computing the recourse cost. For instances
T3, T5 and T10, the average increase in the objective function was smaller than 0.25%.
No increase, CLB = 0, was observed in a number of cases, signaling that the capacity
plans defined by the lower bound and the PH meta-heuristic match exactly.

We conclude this section with a short analysis of the computational efficiency of the
sequential meta-heuristic and the scalability of the parallel the meta-heuristic (the results
are displayed in the Appendix). We analyzed the computational wall-clock times for each
instance set and item spread class for 1, 2 , 4, 8, and 16 threads.

Sequential computational times are negligible for T3 and T5 instances (i.e., maximum
of 2.36 wall-clock seconds), while becoming more significant for the larger instances, the
computational effort increasing with the number of items and especially with the number
of bin types (instances in T10). Yet, the maximum sequential time of the meta-heuristic,
of the order of 600 wall-clock seconds, is still several orders of magnitude smaller than
the time required by CPLEX.

The scaling of the master-slave parallel implementation is quite linear. The speedups
are of the order of 4 with 16 parallel threads for T3 and T5 instances, while they reach
almost 14 (80% of the linear speedup) for T10 instances. Recalling that the VCSBPP
heuristic is very fast on all instances (which results in a balanced workload for slaves), the
results indicate that parallel computation is not really required for the small instances
(and certainly not 16 threads; 4 are already giving a 50% speedup), most time being
spent on exchanging information between the master and the slaves. Parallel computing
becomes appropriate as dimensions grow, which indicates that large problem instances
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can be addressed efficiently with the proposed methodology.

7.4 Benefit of modeling the uncertainty

The question addressed in this section is whether modeling the uncertainly explicitly
through the SVCSBPP two-stage model with recourse is warranted compared to solving
some deterministic variant of the problem. We address this question by comparing the
results of the stochastic formulation RP, to those of the wait and see, WS, and expected
value, EV, problems, respectively.

We use the well-known stochastic programming measures, the expected value of perfect
information, EVPI, and the value of the stochastic solution, VSS (Birge, 1982; Maggioni
and Wallace, 2012). The EV PI = RP − WS is defined as the difference between
the objective values of the stochastic solution and that of the wait-and-see problem
defined assuming the realizations of all the random parameters are known at the first
stage. The V SS = EEV − RP indicates the expected gain from solving the stochastic
model rather than its deterministic counterpart, with EEV denoting the solution value
of the stochastic model with the first-stage decision variables fixed at the optimal values
obtained by solving the deterministic problem with the random parameters fixed at their
expected values..

Table 5 displays aggregated results grouped by instance set (Column 1) and spread
class (Column 2). The table reports, the average and maximum EVPI percentages
(Columns 3 and 4), computed as EV PI/RP ∗ 100, and the average and maximum VSS
percentages (Columns 5 and 6) computed as V SS/RP ∗ 100.

Set Spread EV PI [%] EV PImax [%] V SS [%] V SSmax [%]

T3

SP1 5.66 6.97 5.63 6.89
SP2 4.35 7.08 5.28 7.66
SP3 5.42 7.10 4.21 6.94
SP4 6.18 6.67 8.10 11.25

T5

SP1 5.72 7.01 5.98 6.92
SP2 6.28 7.29 4.18 6.07
SP3 5.51 7.38 4.47 5.76
SP4 5.35 8.10 12.34 14.17

T10

SP1 11.73 14.52 8.09 15.95
SP2 11.52 12.62 6.66 9.37
SP3 10.87 12.51 7.25 12.00
SP4 11.17 15.20 9.67 17.70

Table 5: EVPI and VSS comparison
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Both measures emphasize the interest of addressing the stochastic formulation rather
than a deterministic approximation. The EVPI percentage is around 10%, increasing
with with the problem dimensions to a maximum value above 15%. This underlines the
benefit of having information about the future in advance. The average and maximum
values of VSS also increase as the instance size increases, the gap between the expected-
value solution and the stochastic solution being significant for all sets considered. Even for
small instances, the maximum VSS reaches 11%, emphasizing the potential loss incurred
by following the capacity plan of the deterministic solution. The most critical item
spread class is SP4, representing the case when no information is available about the
category distribution of the items to be shipped. It is therefore the most representative
instance class for shipping freight over long distances, and it displays a maximum EVPI
of 15.20%, with a maximum VSS always greater than 7% and reaching 17.70%. We
therefore conclude that using the stochastic model is appropriate and beneficial.

We complete this analysis with a comments on the increasing trend of the EV PI
and V SS. It is indeed common to see these measures increasing with the problem size
(when they are meaningful). What is particular about the problem we address is that
there are two sources of uncertainty, the item number and volumes, on one hand, and
the availability and cost of the extra bins, on the other hand, which combine to make
uncertainty a core characteristic of the problem. One thus notices that the relative gap
to the optimal solution is sensitive to both the potential number of bin types and the
number of items to be packed, moving from 5% for instances with 3 bin types to a mean
of 11% for the 10-bin-types instances. One also notices on examining the structure of EV
formulations that they yield different first-stage decision, generally overestimating the
the future demand to be loaded (in terms of total item volume) and the availability of
extra bins (a larger set of bins is assumed available for the recourse action). This yields
a more expensive plan in many cases (by about 17.70%), and very large LCL costs in
about 2% of the cases. This behavior strongly suggests that the usage of mean values is a
bad estimator of the uncertainty. On the other hand, the gaps are sufficiently large from
an economic point of view to justify the usage of the full stochastic recourse problem
(Perboli et al., 2014a, 2011).

7.5 Solution analysis

We focus on the structure of the capacity-planning solutions and in particular on the
use of bins in the plan. Table 6 reports, for each combination of instance set (Column
1) and item spread class (Column 2), the average number of bin types NT used in the
capacity plan (Column 3), the percentage of the objective function value achieved in the
first stage ObjFS (Column 4), and the average fill level of the bins (as a percentage of
capacity) at the two stages, fFS and fSS respectively (Columns 5 and 6).

It is noticeable that only a few bin types are used in the plan. The number is close
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Set Spread NT ObjFS [%] fFS [%] fSS [%]

T3

SP1 1.4 80.59 91.94 86.28
SP2 1.2 78.10 93.25 87.27
SP3 1 81.91 94.47 79.47
SP4 1.3 86.02 95.68 85.78

T5

SP1 2 77.10 95.38 87.29
SP2 1.8 80.57 97.34 85.35
SP3 1.5 82.00 95.64 81.46
SP4 2.1 81.60 94.66 85.68

T10

SP1 2.5 80.99 94.76 83.32
SP2 2.1 79.88 94.23 84.35
SP3 2 78.90 95.58 84.62
SP4 2.3 81.63 95.17 82.49

Table 6: Structure of solutions

to 1 for T3 instances, and it is between 2 and 3 for instances in sets T5 and T10, which
have five and ten bin types, respectively. Furthermore, the number of bins is not evenly
distributed among the types. Almost all of the bins included in the capacity plan are
of the same type; only one or two bins are of different types. Concerning the spread
classes, it is interesting to note that, when the stochastic problem considers a demand
with a high percentage of small items (classes SP1 and SP4), NT is maximum. In fact,
small items may be loaded into any bins (large items cannot be placed into bins with
limited capacities), and they are usually used to fill near-empty bins. Thus, it becomes
attractive for the model to mix bin types.

The percentage of the objective function coming from the first stage planning decisions
is of the order of 80%. This indicates interest for tactical decisions to be conservative: the
company should book sufficient capacity in advance to limit the adjustments necessary
when the actual demand becomes known. This also indicates that 10%-20% of plan
adjustment (recourse) is a good compromise between cost reduction and uncertainty
management.

Finally, the fill levels of the bins selected during the first and second stages are over
than 90% and 70%, respectively. This indicates the effectiveness of the capacity plan,
which uses the contracted bins at almost full capacity and requires only limited adjust-
ments at the second stage.
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7.6 Sensitivity analysis

We now turn to the sensitivity of the problem, and the proposed logistics capacity plan,
to limits on the availability of bins coming, e.g., from contractual policies imposed by
the 3PL. We analyze the issue through two policies. The first policy (P1 ) imposes a
minimum number of bins for each bin type τ included in the capacity plan. The second
policy (P2 ) reduces the number of available bins of each type, which requires the plan
to combine different types of bins in the most efficient way.

Set NT Policy m (%) N ′T ∆′Obj

T3 1.2

P1 10 1.2 0.90
P1 20 1.2 1.46
P1 30 1.2 2.35
P2 50 1.2 0.83
P2 75 1.2 0.00
P2 90 1.2 0.00

T5 1.8

P1 10 1.8 0.18
P1 20 1.8 0.21
P1 30 1.8 0.34
P2 50 2.0 0.86
P2 75 1.8 0.00
P2 90 1.8 0.00

T10 2.2

P1 10 2.0 0.14
P1 20 1.8 0.25
P1 30 1.5 0.37
P2 50 2.2 0.00
P2 75 2.2 0.00
P2 90 2.2 0.00

Table 7: Sensitivity of capacity planning to bin availability

Let uτ = ‖J τ‖ be the number of bins of type τ that can be selected for the capacity
plan. We define the minimum number of bins to be m · uτ , with m = {10%, 20%, 30%}.
Similarly, the maximum availability is reduced to m · uτ with m = {0.50, 0.75, 0.80}. To
impose these policies, we introduce into the formulation the additional constraints (7.4)
for the first policy, and (7.5) for the second policy:∑

j∈J τ
yτsj ≥ m · uτ ∀τ ∈ T , s ∈ S (7.4)

∑
j∈J τ

yτsj ≤ m · uτ ∀τ ∈ T , s ∈ S. (7.5)
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We compare the results of the PH meta-heuristic for the two policies and those of the
original formulation. Table 7 reports the average results of the sensitivity analysis for
each set of instances (Column 1), the original number of bin types used in the plan NT
(Column 2), the policy type (Column 3), and the associated value of factor m (Column
4). For each policy, we show the changes in the solutions with respect to the number of
bin types used (N ′T , Column 5) and the extra cost for the policy (∆′Obj, Column 6).

We note that the instances with a limited availability of bin types (T3) are more
sensitive to policy P1. For these sets, P1 penalizes combinations of bin types, causing an
increase in the cost of the first-stage capacity plan or in the recourse action contracting
more bins. This cost increases as the number of bin types available decreases, e.g., it is
approximately 2% for instances T3. Similarly, P1 tends to penalize the use of bin types
for T5 and T10, but the impact on the objective function is limited. The wide choice of
bins that characterizes these instances allows them to efficiently implement the policy,
reducing the cost associated with the second stage.

P2 reduces the set of bins available at planning time. Thus, it is necessary to combine
the available bins for each type (replacing the large bins that cannot be selected with a
larger number of smaller bins). The policy becomes significant only in extreme cases in
which the original availability of the bins is halved (e.g., m = 50%). The solutions then
include more bins, resulting in a higher fixed cost. The effect of this policy is very limited,
however, with an increase in objective function of 0.86%. In the worst case, when the
plan does not meet the demand, the recourse selects extra capacity at a premium cost.

7.7 Long-term behavior of capacity plan

The goal of this analysis is to evaluate the robustness and reliability of the capacity
planning decisions when the demand moves significantly away from the distribution and
the estimation (reflected in the set of scenarios S). This situation can be observed when
economic conditions change significantly resulting in higher or lower demands.

We performed Monte Carlo simulations (on a 10% subset of the instances) for a
relatively long period (10 years) for four demand situations:

1. High demand (Figure 2a illustrates the range of the demand in this situation
relative to the initial one): The average demand is higher than the demand of the
scenarios in S. This case aims to measure the cost of overusing the spot market to
obtain extra capacity.

2. Low demand (Figure 2b): The average demand is lower than the demand of the
scenarios in S. This case focuses on the cost of not using part of the planned
capacity.
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3. Economic crisis (Figure 2c): The demand decreases rapidly to a value below the
estimated demand. It then stabilizes below the average demand of the scenarios in
S.

4. Economic recovery (Figure 2d): The demand is initially below the average esti-
mated demand, but it increases rapidly to a peak above the maximum estimation.
It then stabilizes.

The overall simulation process for a given demand situation was:

� Given an instance and the associated set of scenarios S, find the capacity-planning
solution using the PH-based meta-heuristic.

� Create a new set of scenarios S ′, with |S ′| = 365:

– Identify the maximum and minimum demand in S and compute the difference
∆ between them.

– ComputeK∆ for the current demand situation, whereK = {10, 20, 30, 40, 50}%
is an offset factor that defines how far the demand distribution has to be from
that estimated in set S (Figure 2).

– Generate (same generation procedure used previously) 365 new scenarios re-
specting the trends of the demand in the current situation and the character-
istics of the instance (number of bin types and spread class of items).

� For each scenario s ∈ S ′, build a VCSBPP with the bin set formed by the bins
included in the capacity-planning solution and the bins at premium cost defined
in the scenario, and the demand in terms of the items to be loaded. The resulting
VCSBPP is then solved by the meta-heuristic.

� Given the solution, compute the expected value of the total cost and statistics
related to the use of the planned bins and of the extra capacity required to cover
higher demand, and the corresponding cost.

� Repeat 10 times and compute statistical measures of the results.

We are thus using a 3650-scenario sample for the Monte-Carlo simulation for each de-
mand situation, that is, we simulate 10 years (repetitions) with 365 days (scenarios) each.
We performed a number of tests varying the size of the sample and these strengthened
our confidence that the sample size is sufficient to be representative.

Figure 3 shows the results of the Monte Carlo simulation for an illustrative instance
from set T10 (the other instances produced similar results). The figure reports, for each
demand scenario, the usage percentage of the logistics capacity plan, defined as the ratio
of the number of planned (selected in the first stage) bins actually used in the solution to
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Figure 2: Demand situations for the Monte Carlo simulation
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Figure 3: Monte Carlo simulation results for an illustrative T10 instance
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the total number of bins selected in the plan (Figure 3a), the percentage of extra bins in
the solution defined as the ratio of the number of extra bins to the total number of bins
in the solution (Figure 3b), and the percentage of the objective function value associated
with the capacity plan (Figure 3c), with respect to the offset factor K.

Despite the high variability of the stochastic parameters in instances T10, the capacity-
planning decisions appear valid. Increasing the offset factor K increases or decreases the
percentage of the planned capacity actually used according to the demand trend in differ-
ent demand scenarios. Thus, for the LOW and CRISIS scenarios, the use of the planned
bins decreases, to an average of 77% for T10 instances in the worst case. In contrast,
for the HIGH and GROWTH scenarios, the number of planned bins actually used in the
solution is always greater than 90%. The reduction in the planned capacity used in the
LOW and CRISIS scenarios parallels a decrease in the need for extra capacity. This is
particularly evident for T10 instances, for which no extra capacity is needed when the
demand is minimum (LOW scenario and K = 50%). Conversely, when the demand is
underestimated, it may be necessary to purchase additional capacity; more than 20% for
the HIGH scenario (some 7 bins for T10 instances) and between 10% and 15% for the
GROWTH scenario (some 4 bins for T10 instances). This limited use of the spot market
further supports the claim of validity of the solutions found.

The limited use of the spot market is also indicated by the objective function value
related to the capacity plan, corresponding to the total fixed cost of the bins that are
selected in the plan (first stage). This cost increases as demand decreases in the demand
scenarios. Indeed, when the demand is overestimated (scenarios LOW and CRISIS) the
capacity plan is generally adequate, and only a few adjustments are required for a small
set of scenarios. This means that most of the cost is due to the capacity plan. For the
instances considered, the relative weight of the first-stage cost ranges between 75% and
100%. These values emphasize the robustness of the solution even when the estimation
errors are considerable.

The fill level of the planned and extra bins is always between 99% and 80% even for
the LOW and CRISIS scenarios. This result emphasizes the robustness of the capacity-
planning decisions that need limited and targeted adjustments, through the spot market,
to meet the demand.

To conclude the sensitivity analysis of the methodology to the various demand scenar-
ios considered, we note that the GROWTH scenario has a limited impact on the results
with variations of a few percentage points, while the most significant impacts follow from
the “extreme” scenarios LOW and HIGH. Moreover, it is interesting to note that the
CRISIS and LOW scenarios exchange roles for values of K greater than 30%. For small
values of K, CRISIS is the worst-case scenario because of the decrease in the demand.
For high values of K, LOW has the most significant impact because of the error in the
estimation of the demand, which is constant over time (for each scenario in S ′).
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8 Conclusions and Future Directions

We considered the logistics capacity planning problem arising in the context of supply-
chain management. We focused, in particular, on the relation between a firm and its
logistics capacity provider, and the tactical-planning problem of determining the quantity
of capacity units - the bins - of different types to secure for the next period of activity,
given the uncertainty on future needs in terms of demand for items to be moved or stored,
and the availability and costs of capacity for these movements or storage activities.

We proposed a modeling framework for this problem introducing a new class of bin
packing problems, namely the Stochastic Variable Cost and Size Bin Packing Problem
(SVCSBPP). The model takes the form of a two-stage stochastic formulation with re-
course that assigns to the first stage the tactical capacity-planning decisions of selecting
bins (capacity units) of various types, while the second stage models the subsequent
adjustments to the plan performed each time the plan is applied and new information
becomes known. The adjustment secures, when needed, the extra units of capacity re-
quired to pack all the received items.

We also proposed an effective and accurate meta-heuristic based on progressive hedg-
ing ideas and several advanced strategies to accelerate the search and efficiently address
the symmetry inherent to packing problems and strongly present in the SVCSBPP due
to the presence of several equivalent bins of each type. Extensive computational results
for a large set of instances support the claim of validity for the model and efficiency for
the solution method proposed. The capacity-planning solutions account efficiently for
the uncertainty in supply and demand, with high filling rates of the bins and relatively
little utilization of capacity acquired on the spot market. Solutions are high quality,
when compared to the optimum solution (when available) or a good lower bound, and
robust with respect to changes in the demand distribution. The proposed stochastic
model and PH-based meta-heuristic have thus been shown to deliver significant perfor-
mance in terms of computational efficiency, solution economic value (cost reduction), and
operations management (prediction of the capacity needed by the firm).

Future work will focus on different policies arising in contract procurement (e.g.,
accounting for future loss of planned capacity units during operations due, for example,
to delivery delays and damage) and their impact on the methodology and the capacity-
planning solutions. In the longer term, the problem will be generalized to address,
e.g., the selection of a limited set of service providers among several proposing different
contracts, and the network-wide logistics capacity planning issues.
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A Behavior of the Parallel Meta-heuristic

We present results with respect to the the scalability of the parallel implementation of
the meta-heuristic with up to 16 threads.

The wall-clock times tPH for each instance set (Column 1) and item spread class
(Column 2) are reported in Table 8 for 1, 2 , 4, 8 and 16 threads. The average speedups
for the three instance sets, defined as the ratio of the sequential running time to the
parallel running time, are displayed in Figure 4.

Set Spread tPH1 tPH2 tPH4 tPH8 tPH16

T3

SP1 1.21 0.87 0.73 0.50 0.30
SP2 2.36 1.73 1.41 0.97 0.59
SP3 0.41 0.29 0.25 0.17 0.10
SP4 0.49 0.35 0.29 0.20 0.12

T5

SP1 2.08 1.48 1.15 0.83 0.50
SP2 0.75 0.53 0.42 0.30 0.18
SP3 0.62 0.44 0.35 0.25 0.15
SP4 2.70 1.93 1.50 1.08 0.65

T10

SP1 625.17 350.10 187.08 89.02 45.62
SP2 580.59 325.52 174.53 85.05 42.56
SP3 432.48 241.24 122.87 74.25 31.52
SP4 524.87 293.35 155.24 75.85 38.47

Table 8: Average computational times for the meta-heuristic with different numbers of
threads
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Figure 4: Speed-up of PH algorithm for different numbers of parallel threads
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