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Abstract—The research of affine scale space is to create
a more general approach to the affine invariant image scale
representation by modifying the corresponding Gaussian filters
in order to cope with the specific change of view point. It has the
purpose to retain a linear relationship with the transiting of the
view point. With this linear relationship, the affine scale space
could be established as a more general approach for the affine
invariant image retrieval, including affine feature detection and
affine feature descriptor. The scope of this paper is to discuss
the accessible to the affine scale space, its performance and a
practical implementation to construct it in order to cope with
the high complexity brought in by the scale space and the affine
adaptation.

I. INTRODUCTION

The proliferation of digital cameras in the smartphone and
consumer-level products is producing an explosion of media
data, including videos and images. In front of these massive
amounts of visual data, it is necessary to develop some
efficient visual search techniques for multimedia browsing,
searching and retrieval. Most traditional and common methods
of visual search utilize metadata such as captioning, keywords,
or descriptions of the media so that retrieval can be per-
formed over the annotation words. Manual annotation is time-
consuming, laborious and expensive; to relieve the conflict
between low efficient media annotation and rapid increasing
of media data, a large effort has been made to automatically
annotate the visual data by analysing its content, leading to
the content-based visual search techniques [1].

Content-based means that the retrieval is based on the
contents rather than the metadata such as keywords, or tags
associated with the images or videos. Content of the visual
data can refer to colours, shapes, textures, edges, or any other
inherent feature of the image. A valid and robust visual search
system should based on features that are stable and robust
enough to the fluctuation of the scene, including the effect of
illumination, exposure, partial occlusion and scale.

The most commonly applied scale invariant feature detec-
tors are generally based on Laplacian of Gaussian (LoG) [2],
which detects the local extrema on LoG filtered images.
Usually, LoG results in strong positive responses for dark
blobs and strong negative responses for bright blobs. In order

to automatically capture blobs in the image domain, where the
specific scale is not known in advance, a multi-scale approach
is therefore necessary, which inspires the creation of scale
space.

A scale space can be defined as a collection of several
pre-smoothed images by different sized Gaussian kernels. In
general, scale space theory is a framework for multi-scale
signal representation for handling image structures at different
scales, by employing a one-parameter family of smoothed im-
ages. This framework provides a scale-invariant representation,
which is necessary for dealing with the size variations that may
occur in image data. Indeed, real-world objects, in contrast to
idealized mathematical entities, may appear in different ways
depending on the scale of observation [3].

A highly useful property of scale space is that feature
detection can be made scale invariant, by performing automatic
scale selection based on normalized derivatives. Based on this
multi-scale image representation, several visual search tech-
niques have been proposed, including Scale Invariant Feature
Transform (SIFT) [4] and A Low-dimensional Polynomial
detector (ALP) [5].

On the other hand, robustness to different view points is
also an important criterion to evaluate the performance of a
visual search technique. Compared to some other visual search
techniques, SIFT is partially robust to affine transformation,
but not enough to be able to match images taken from very
different view-points.

The performance evaluation by Mikolajczyk and Schmid [6]
presents a comparison of different visual search techniques in
terms of their robustness to view point changes. It showed
that SIFT has just a little above 50% correct matching ratio
under large viewpoint changes, which is rather low referring
to typical image matching precision.The evaluation reveals a
very important issue, which has not been properly addressed in
the existing literature, namely the robustness of visual search
algorithms to view-point changes. In the real world, a scene
may be acquired from several different view points, resulting
in a large number of images with quite different perspectives
for the same content. Without invariance or robustness to
affine transformations, the application of content-based visual



search will be seriously limited. In addition, some practical
applications such as 3D object reconstruction, object recogni-
tion and architecture retrieval rely on accurate visual search
of multiplexed planar objects. Without an accurate and fully
viewpoint invariant image retrieval system, such application
can not be carried out.

In order to address this problem, in this paper we propose
an affine scale space as a more general approach to the scale-
invariant image representation in order to compensate for
the non-linear relationship brought in by the change of view
point. The affine scale space can be generated by steering
the Gaussian filters to the specific affine transformations if
the change of view point is previous known. In this paper, we
also propose a practical structure for real time implementation.
The affine scale space is a forward model, which can be used
to predict what will happen to an image under a different
view point. The performance of this affine scale space will be
evaluated by calibrating its feature detection precision based
on the affine scale space in an affine invariant way.

II. SCALE SPACE AND ITS IMPLEMENTATION

Scale space is the fundamental theory of multi-scale sig-
nal representations, handling image structures at different
scales by representing an image as a one-parameter fam-
ily of smoothed images. The scale-space representation,
parametrized by the size of the smoothing kernel, is used for
suppressing fine scale structures [7].

(a) σ = 0, original image. (b) σ = 1.6.

(c) σ = 1.6× 2. (d) σ = 1.6× 2
√
2.

Fig. 1. A typical scale space, including the images smoothed with different
size of Gaussian filter.

For a given image I(x, y), its scale-space representation is
given by a family of images L(x, y, σ), smoothed by two
dimensional Gaussian kernels, whose parameter is defined
according to the kernel size:

g(x, y;σ) =
1

2πσ2
e−

x2+y2

2σ2 , (1)

such that
L(x, y;σ) = g(x, y;σ) ∗ I(x, y) (2)

The scale parameter σ is the standard deviation of the
Gaussian filter. Figure 1 represents a typical scale space.
Increasing σ, the corresponding image in the scale space is
smoothed with a larger Gaussian kernel and hence it contains
fewer details.

The scale space representation contains interesting image
structures at all the scales. In order to capture the structure
at the corresponding scale, an appropriate metric should be
found. The local extrema in the scale space are a good choice
for this metric. Thus, it can apply the Laplacian operator to
detect the local maximum or minimum by means of normal-
ized derivative on each smoothed image in the scale space.
With this Laplacian operator, the automatic feature detection
can easily be implemented in the framework of scale space.

The Laplacian operator is defined as,

∇2L = Lxx + Lyy (3)

A practical implementation of scale space relies on the
pyramid structure, which allows to obtain a computationally
efficient approximation to scale space. There are mainly two
types of structure: Gaussian pyramid and Laplacian pyramid.

In the pyramid, the images blurred by different Gaussian
kernels will be divided into small groups termed as octave.
Between each octave, the image will be sub-sampled as the
input image for the next octave in order to reduce the exponen-
tially increased Gaussian kernel. In this way, the processing
can be greatly accelerated.

The common procedures to construct the Gaussian pyramid
is as follows: the original image will be convolved with a
low-pass Gaussian filter as the first blurred image in the
scale space. This blurred image is repeatedly convolved with
different size of Gaussian filters until all the blurred images in
the first octave have been created. Then, one of these images
will be sub-sampled as the initial image for the next octave.
The images of the next octave will also be created by the
same series of low-passed Gaussian filters. This smooth-sub-
sampling will be recursively operated to create the whole scale
space.

Fig. 2. ALP pyramid structure.



Figure 2 presents a typical pyramid structure which has been
used in ALP. We can notice that only three Gaussian filters
have been recursively applied to construct the whole Gaussian
pyramid.

III. AFFINE SCALE SPACE

Most works on multi-scale representations focus on the
definition of isotropic scale space, characterized by equal
behaviour in all directions [7]. But that kind of scale space is
not compatible with non-isotropic image structures generated
by a perspective affine transformation, which models well an
image taken from a different view point. Our proposed solution
to this issue is a new scale space that accounts for linear
geometric transformations. This new scale space is termed
”affine scale space”.

Assume that two images I1 and I2 have been taken from
different view point, which can be modelled as an affine
transformation:

I1(ξ) = I2(η), where η = Aξ.

Thus, I1(ξ) = I2(Aξ).
(4)

Both ξ and η are two dimensional vectors and A is a 2 × 2
matrix. The traditional Gaussian scale space can be defined as

L(x, y, σ) = g(x, y, σ) ∗ I(x, y). (5)

It can also be expressed in the form of vector by defining
ξ = (x, y),

L(ξ, σ) = g(ξ, σ) ∗ I(ξ). (6)

Thus,

L1(ξ;σ) =g(ξ;σ) ∗ I1(ξ) = g(ξ;σ) ∗ I2(Aξ)

L2(η;σ) =g(η;σ) ∗ I2(η)
(7)

It is clear that
g(ξ;σ) ∗ I2(Aξ) 6=g(ξ;σ) ∗ I2(ξ)

L1(ξ;σ) 6=L2(ξ;σ)
(8)

Equivalently,

g(ξ;σ) ∗ I2(Aξ) 6=g(Aξ;σ) ∗ I2(Aξ)

g(ξ;σ) ∗ I1(ξ) 6=g(η;σ) ∗ I2(η)

L1(ξ;σ) 6=L2(η;σ)

(9)

This equation shows that geometric linear relationship will no
longer exist between the classical scale spaces of the images
taken under different view points.

A reasonable approach to handle this deformed structure is
to generate the corresponding scale space also by a deformed
Gaussian kernel. A classical Gaussian kernel can be expressed
as

g(ξ;σ) = 1
2πσ2 e

− ξ
T ξ

2σ2 . (10)

Since η = Aξ, then we have

ξ =A−1η

g(ξ;σ) = 1
2πσ2 e

−
(A−1η)T (A−1η)

2σ2

g(η;σ)af = 1
2πσ2 e

−
ηT (AAT )−1η

2σ2

(11)

With the definition of covariance matrices Σs = Aσ2AT we
obtain

g(η; Σs)af = 1
2π
√
detΣs

e−
ηTΣ−1

s η
2 . (12)

If A =

[
1 0
0 1

]
, the linear scale space becomes a special

case of affine scale space.
This is the affine Gaussian kernel extended from its classical

Gaussian version. Employing this type of filter, the corre-
sponding affine Gaussian scale space can be constructed.

As we have discussed, local feature extraction can be
achieved by means of differential derivation on the set of
scale space. Under an affine transformation, the derivative
of the affine Gaussian scale space can also be obtained
by adapting the corresponding Laplacian operation for the
affine transformation. In practice, Laplacian operator is usually
simplified as a 3×3 Laplacian filter, which is rather difficult to
be further affine transformed. Thus it is reasonable to employ
the Laplacian of Gaussian (LoG) for the affine adaptation.

The two dimensional Laplacian operator is given by

∆f =
∂2f

∂x2
+
∂2f

∂y2
. (13)

The expression of LoG can be derived as:

L∆(x, y, σ) =∇2g(x, y, σ)

=
∂2g(x, y, σ)

∂x2
+
∂2g(x, y, σ)

∂y2

=− 1

πσ4

(
1− x2 + y2

2σ2

)
e−

x2+y2

2σ2

(14)

Another equivalent expression is given in the vector form,

L∆(ξ;σ) = − 1

πσ4

(
1− ξT ξ

2σ2

)
e−

ξT ξ

2σ2 , (15)

ξ =

(
x
y

)
.

The affine LoG filter can also be derived like affine Gaussian
filter. Suppose an image transformation is

I1(ξ) = I2(η), where η = Aξ. (16)

Since η = Aξ, then
ξ = A−1η (17)

L∆(η;σ) =− 1

πσ4

(
1− (A−1η)T (A−1η)

2σ2

)
e−

(A−1η)T (A−1η)

2σ2

=− 1

πσ4

(
1− ηT (AAT )−1η

2σ2

)
e−

ηT (AAT )−1η

2σ2

(18)

and with the definition of covariance matrices Σs = Aσ2AT

we have

L∆(η;σ) = − 1

πσ4

(
1− ηTΣ−1

s η

2

)
e−

ηTΣ−1
s η

2 . (19)

This is how we derive the affine LoG kernel, which can be
used to build the affine LoG scale space.



IV. A FEASIBLE STRUCTURE TO BUILD THE AFFINE SCALE
SPACE

In practice, constructing a scale space is computationally
complex and time consuming. It will be quite appealing if
some efficient structure, similar to a pyramid, can be applied
to build both the affine Gaussian scale space and affine LoG
scale space. In the following, we will propose such a feasible
structure.

The fundamental of pyramid structure are two Gaussian
axiom properties: semi-group and sub-sampling. The semi-
group property of Gaussian axiom can be mathematically
expressed as:

g(ξ, σ2
1) ∗ g(ξ, σ2

2) = g(ξ, σ2
1 + σ2

2)

with ξ =

(
x
y

)
(20)

Consider an affine transformation which can be mathemat-
ically expressed as η = Aξ. Then,

ξ = A−1η

g(A−1η, σ2
1) ∗ g(A−1η, σ2

2) =g(A−1η, σ2
1 + σ2

2)
(21)

So, affine Gaussian scale space also owns the semi-group
property.

In the same way, it can be derived that:

L∆(A−1η, σ2
1) ∗ g(A−1η, σ2

2) = L∆(A−1η, σ2
1 + σ2

2) (22)

where L∆ stands for a LoG filter.
This is a cascade implementation of LoG simply switching

one of the Gaussian filter to LoG filter in the framework of
semi-group property, which provides a feasible implementa-
tion for the affine adapted LoG scale space. This cascade
implementation of LoG has not been properly addressed
before. In practice, a LoG scale space can be easily calculated
by a Laplacian operation on the corresponding Gaussian scale
space. While the Laplacian operation does not provide a feasi-
ble way for the affine adaptation, this cascade implementation,
based on affine LoG filter, is quite simple and can be used in
a straightforward way to construct the affine LoG.

Consider an image in the scale space which can be sub-
sampled as

L(x, y, σ2) =I(x, y) ∗ g(x, y, σ2)

=I(x, y) ∗ 1

2πσ2
e−

x2+y2

2σ2
(23)

by sub-sampling,

L(2x, 2y, σ2) =4I(2x, 2y) ∗ g(2x, 2y, σ2)

=4I(2x, 2y) ∗ 1

2πσ2
e−

4x2+4y2

2σ2

=4I(2x, 2y) ∗
1
4

2π σ
2

4

e
− x

2+y2

2σ
2
4

=I(2x, 2y) ∗ g(x, y,
(σ

2

)2

)

(24)

or
L(2x, 2y, (2σ)2) =I(2x, 2y) ∗ g(x, y, σ2)

L(4x, 4y, (4σ)2) =I(4x, 4y) ∗ g(x, y, σ2)
(25)

...

In this way, the scale space can be constructed without
increasing the size of Gaussian kernels, which would cause
increase of computation.

Let ξ =

(
x
y

)
, then we have,

L(ξ, σ2) =I(ξ) ∗ g(ξ, σ2)

L(2ξ, (2σ)2) =I(2ξ) ∗ g(ξ, σ2)

η = Aξ so ξ = A−1η

L1(A−12η, (2σ)2) =I1(A−12η) ∗ g(A−1η, σ2)

L2(2η, (2σ)2) =I2(2η) ∗ gaf (η, σ2)

(26)

where gaf is the affine Gaussian filter g under the affine
transformation given by A. In this way, the affine scale space
can also be sub-sampled to prevent an increasing size of the
convolution kernels.

Based on the properties above, we propose our implemen-
tation for the affine scale space and affine LoG. Since the
properties which the pyramid is based on are also satisfied by
affine scale space, theoretically, the same pyramid structure
can be completely inherited by the affine scale space. In prac-
tice, we can construct the affine scale space by the traditional
pyramid structure if we ignore the LoG scale space. In the
traditional scale space, the construction of LoG has never
been addressed, since the LoG can easily be obtained by the
Laplacian matrix applied on the corresponding Gaussian scale
space. But in the affine scale space, the corresponding LoG
can not be generated by a simple affine Laplacian operation.
Thus it is necessary to design an implementation specific for
the affine LoG construction.

Image

Gaussian image

Gaussian filter

Sub-sample

LoG filter

LoG image

Fig. 3. The structure to implement the affine LoG.

Figure 3 presents the implementation structure we propose
for the affine LoG construction. It is based on the properties of



affine Gaussian and affine LoG. This structure can be divided
into two parts, Gaussian and LoG. The separation is illustrated
by a blue dotted line in Figure 3. In this structure, the initial
image in each octave is generated by a Gaussian pyramid,
which is composed by a recursive smoothing and sampling
operation. In this part, just one Gaussian filter is recursively
applied with the scale

√
3σ0 to create all the initial images for

the LoG. Thanks to the sub-sampling property, this pyramid
structure can help to generate the Gaussian blurred images
with the scales σ0, 2σ0, · · · . Three other filters, including two
affine Gaussian filters and one LoG filer, are used to generate
the rest of LoG images for each octave. Because of the
cascade implementation, the LoG filter will be first applied,
guaranteeing that all the other generated images are all LoG
filtered. Thanks to the Gaussian pyramid, the whole LoG scale
space can be generated as efficiently and accurately as the
classical pyramid structure.

It should be noted that we cannot generate a Gaussian
scale space in this pyramid at the same time. If it is also
required to obtain a Gaussian scale space, which may be used
for generating the gradient descriptor, the LoG filter shall be
changed to a Gaussian filter to generate the corresponding
Gaussian scale space, for which the structure only differs on
the LoG filter. For a normal application, only 5 steps are
required to generate the whole LoG scale space or Gaussian
scale space by our proposed implementation structure. So
if the application only requires an automatic extraction of
features from the derivative of scale space, our proposed
implementation structure will be very useful. If a Gaussian
scale space is also required for some other applications, a
change from a LoG filter to a Gaussian filter can easily provide
this.

V. EXPERIMENTS AND RESULT

The performance of the affine scale space implementation
can be evaluated by applying the feature detection to the
images acquired under different view points. A typical feature
detection on images with different view point is illustrated in
Figure 4. In the figure, (a) shows the feature detection on the
original image and (b) shows the feature detection on an affine
transformed image, where the affine transform is employed
to simulate the images with different view point. In figure
(a), a classical scale space will be generated to detect the
features from the ordinary view point and in figure (b), the
detection will be based on an affine transformed scale space
for an affine transformed view point. The performance of our
proposed affine scale space implementation will be evaluated
by comparing the extracted features from these two images
respectively, given knowledge of the applied transformation.

In particular, we count how many of the detected features
are still retained by employing the affine scale space to
compensate for the affine transformation. To compare the
detected features from the different perspectives of the image,
the features detected from the affine transformed image are
back-projected to the original one. In the figures 5, the blue
circles depict the features detected from the original image,
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Fig. 4. Detection performance evaluation on the affine transformed images
(a) Feature detection on the original image. (b) Feature detection on the affine
transformed image.
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Fig. 5. Implementation performance evaluation by comparing feature
detection (a) Feature detection by employing affine scale space. (b) Feature
detection by classical scale space. The blue circles depict the features detected
from the original image, red ones are the back-projected features detected from
the affine transformed image. The radius of the circle represents its scale and
the yellow box depict the correctly detected features. The correct detection
by affine scale space is 0.6416, while for the conventional scale space it is
only 0.2425.

red ones are the back-projected features detected from the
affine transformed image. The radius of a circle represents the
corresponding scale and the yellow box depicts the features
that have been correctly detected by both the affine scale space
and classical scale space. For the figures in Figure 5, the affine

transformation is
[
1.0000 0.0050
0.6000 1.0000

]
. In figure 5, the correct

detection by affine scale space is 0.6416 but for the classical
scale space it is just 0.2425.

Tilting Citywall Castle Carton
affine general affine general affine general

0.6 0.6416 0.2425 0.6541 0.2707 0.6133 0.2178
0.7 0.6202 0.2060 0.6016 0.1855 0.5711 0.1666
0.8 0.5923 0.1159 0.5841 0.1654 0.5224 0.1400
0.9 0.5494 0.1009 0.5689 0.1203 0.4659 0.1133
1.0 0.5773 0.0944 0.5689 0.1103 0.4756 0.1044
1.1 0.5516 0.0575 0.5213 0.0526 0.4867 0.0667
1.2 0.5343 0.0429 0.5414 0.0526 0.4579 0.0489

TABLE I

The correct detection rates for several other images are
reported in the table I. As can be seen, the affine scale
space consistently enables the correct match of a high number
of keypoints, whereas the conventional system fails as most



keypoints are not correctly matched after the affine transfor-
mation. Figure 6 also illustrates this correct matching ratios
respectively by employing affine scale space and classical
scale space. In this figure, we can see following the increase
of view point difference, both the correct matching ratios
of affine scale space and classical scale space will slightly
decrease. However, the feature detection based on affine scale
space always maintains a better performance than on the
classical scale space specific to the view point invariant feature
detection.

In our experiment, it takes 2.63 seconds to extract the
features by employing the implementation we have proposed.
The experiments are implemented on the computer with the
CPU Inter Xeon(R) 5130 @ 2.00 GHz, RAM 4 GB and
operating system 64 bit windows 7.
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Fig. 6. Comparison of feature detection by employing affine scale space.

By this evaluation, it has been proved that the affine scale
space can be successfully employed to improve the feature
detection for the images under different view point, especially
when the tilting angle is large.

Overall speaking, the affine scale space can guarantee that at
least 30% of features will be retained without being affected by
the affine transformation, whereas for the conventional scale
space, only 1% of the features will be detected when the view
point change is larger than 70◦.

VI. CONCLUSION

The purpose of the affine scale space is to create a more
general approach to the scale-invariant image representation
providing invariance to affine transforms, by steering the
Gaussian filters to the specific affine transformations.

In this paper, we have introduced the affine scale space to
detect the features in an affine invariant way. We have also
proposed a practical implementation structure, which is based
on the properties of Gaussian axioms, to achieve real time
operation. The affine scale space is a forward model, allowing
to predict what will happen to an image under a different view
point.

By the experiments, the affine scale space has been proved
to have a better performance than the classical scale space

especially when the difference of view point is large which
can guarantee that at least 30% of features will be retained
without being strongly affected by the change of view point.
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