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Thermodynamic instabilities in warm and dense

asymmetric nuclear matter and in compact stars

A Lavagno1,3, G Gervino2,3, D Pigato1,3

1Department of Applied Science and Technology, Politecnico di Torino, I-10129 Torino, Italy
2Dipartimento di Fisica, Università di Torino, I-10126 Torino, Italy
3INFN, Sezione di Torino, I-10125 Torino, Italy

Abstract. We investigate the possible thermodynamic instability in a warm and dense nuclear
medium where a phase transition from nucleonic matter to resonance-dominated ∆-matter
can take place. Such a phase transition is characterized by both mechanical instability
(fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on
the isospin concentration) in asymmetric nuclear matter. Similarly to the liquid-gas phase
transition, the nucleonic and the ∆-matter phase have a different isospin density in the mixed
phase. In the liquid-gas phase transition, the process of producing a larger neutron excess in
the gas phase is referred to as isospin fractionation. A similar effects can occur in the nucleon-∆
matter phase transition due essentially to a ∆− excess in the ∆-matter phase in asymmetric
nuclear matter. In this context we also discuss the relevance of ∆-isobar degrees of freedom in
the bulk properties and in the maximum mass of compact stars.

1. Introduction
One of the very interesting aspects in nuclear astrophysics and in the heavy-ion collisions
experiments is a detailed study of the thermodynamical properties of strongly interacting nuclear
matter away from the nuclear ground state.

The new accumulating data from x-ray satellites provide important information on the
structure and formation of compact stellar objects. Concerning the structure, these data are at
first sight difficult to interpret in a unique and selfconsistent theoretical scenario, since some of
the observations indicate rather small radii and other observations indicate large values for the
mass of the star.

On the other hand, the information coming from experiments with heavy ions in intermediate-
and high-energy collisions is that the EOS depends on the energy beam but also sensibly on
the electric charge fraction Z/A of the colliding nuclei, especially at not too high temperature
[1, 2, 3, 4]. Moreover, the study of nuclear matter with arbitrary electric charge fraction results
to be important in radioactive beam experiments and in the physics of compact stars.

In this article, we study a hadronic equation of state (EOS) at finite temperature and density
by means of a relativistic mean-field model with the inclusion ∆(1232)-isobars [5, 6, 7] and by
requiring the Gibbs conditions on the global conservation of baryon number and net electric
charge. Transport model calculations and experimental results indicate that an excited state
of baryonic matter is dominated by the ∆ resonance at the energies from the BNL Alternating
Gradien Synchrotron (AGS) to RHIC [8]. Moreover, in the framework of the nonlinear Walecka
model, it has been predicted that a phase transition from nucleonic matter to ∆-excited nuclear
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matter can take place and the occurrence of this transition sensibly depends on the ∆-meson
coupling constants [9, 10].

The main goal of this paper is to show that, for asymmetric warm and dense nuclear medium,
the possible ∆-matter phase transition is characterized by mechanical and chemical-diffusive
instabilities. Similarly to the liquid-gas phase transition [11], chemical instabilities play a crucial
role in the characterization of the phase transition and can imply a very different electric charge
fraction Z/A in the coexisting phases during the phase transition. In this context we also discuss
the relevance of ∆-isobar degrees of freedom in the bulk properties of compact stars.

2. Phase transition and stability conditions
We are dealing with the study of a multi-component system at finite temperature and density
with two conserved charges: baryon number and electric charge. For such a system, the
Helmholtz free energy density F can be written as

F (T, ρB, ρC) = −P (T, µB, µC) + µBρB + µCρC , (1)

with

µB =

(
∂F

∂ρB

)
T,ρC

, µC =

(
∂F

∂ρC

)
T,ρB

. (2)

In a system with N different particles, the particle chemical potentials are expressed as the
linear combination of the two independent chemical potentials µB and µC and, as a consequence,∑N

i=1 µiρi = µBρB + µCρC .
Assuming the presence of two phases (denoted as I and II, respectively), the system is stable

against the separation in two phases if the free energy of a single phase is lower than the free
energy in all two phases configuration. The phase coexistence is given by the Gibbs conditions

µI
B = µII

B , µI
C = µII

C , (3)

P I(T, µB, µC) = P II(T, µB, µC) . (4)

Therefore, at a given baryon density ρB and at a given net electric charge density ρC = y ρB
(with y = Z/A), the chemical potentials µB are µC are univocally determined. An important
feature of this conditions is that, unlike the case of a single conserved charge, the pressure
in the mixed phase is not constant and, although the total ρB and ρC are fixed, baryon and
charge densities can be different in the two phases. For such a system in thermal equilibrium,
the possible phase transition can be characterized by mechanical (fluctuations in the baryon
density) and chemical instabilities (fluctuations in the electric charge density). As usual the
condition of the mechanical stability implies

ρB

(
∂P

∂ρB

)
T, ρC

> 0 . (5)

By introducing the notation µi,j = (∂µi/∂ρj)T,P (with i, j = B,C), the chemical stability for
a process at constant P and T can be expressed with the following conditions [10]

ρB µB,B + ρC µC,B = 0 , (6)

ρB µB,C + ρC µC,C = 0 . (7)

Whenever the above stability conditions are not respected, the system becomes unstable and
the phase transition takes place. The coexistence line of a system with one conserved charge
becomes in this case a two dimensional surface in (T, P, y) space, enclosing the region where
mechanical and diffusive instabilities occur.
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By increasing the temperature and the baryon density during the high energy heavy ion
collisions (T ≈ 50 MeV and ρB ≥ ρ0), a multi-particle system with ∆-isobar and pion degrees
of freedom may take place.

In analogy with the liquid-gas case, we are going to investigate the existence of a possible
phase transition in the nuclear medium by studying the presence of instabilities (mechanical
and/or chemical) in the system. The chemical stability condition is satisfied if [10]

(
∂µC

∂y

)
T,P

> 0 or



(
∂µB

∂y

)
T,P

< 0 , if y > 0 ,

(
∂µB

∂y

)
T,P

> 0 , if y < 0 .

(8)

In the Fig. 1, we report the baryon and electric charge chemical potential isobars as a function
of y, at fixed temperature T = 50 MeV and xσ∆ ≡ gσ∆/gσN = 1.3 (the ratio related to the
scalar σ meson-∆ coupling constants) in the GM3 parameters set [5].

a
b

c
d

e

f

g

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
y

820

840

860

880

ΜB@MeVD

a
b

c

d

e

f

g

-0.6 -0.4 -0.2 0.0 0.2 0.4
y

-150

-100

-50

ΜC@MeVD

Figure 1. Baryon (right panel) and electric charge (left panel) chemical potential isobars as
a function of y at T = 50 MeV and xσ∆ = 1.3. The curves labeled a through g have pressure
P=9,7,6,5,4,3,2 MeV/fm3, respectively.

From the analysis of the above chemical potential isobars, we are able to construct the binodal
surface relative to the nucleon-∆ matter phase transition. In Fig. 2, we show the binodal section
at T = 50 MeV and xσ∆ = 1.3.

The right branch (at lower density) corresponds to the initial phase (I), where the dominant
component of the system is given by nucleons. The left branch (II) is related to the final phase
at higher densities, where the system is composed primarily by ∆-isobar degrees of freedom (∆-
dominant phase). In presence of ∆-isobars the phase coexistence region results very different
from what obtained in the liquid-gas case, in particular it extends up to regions of negative
electric charge fraction and the mixed phase region ends in a point of maximum asymmetry with
y = −1 (corresponding to a system with almost all ∆−-particles, being antiparticles and pions
contribution almost negligible in this regime). We analyze the phase evolution of the system
during the isothermal compression from an arbitrary initial point A, indicated in Fig. 2. In this
point the system becomes unstable and starts to be energetically favorable the separation into
two phases, therefore an infinitesimal ∆-dominant phase appears in B, at the same temperature
and pressure. Let us observe that, although in B the electric charge fraction is substantially
negative, the relative ∆− abundance must be weighed on the low volume fraction occupied
by the phase II near the point B. During the phase transition, each phase evolves towards
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Figure 2. Binodal section at T = 50
MeV and xσ∆ = 1.3.

a configuration with increasing y, in contrast to the liquid-gas case, where each phase evolves
through a configuration with a decreasing value of y (with the exception of the gas phase after
the maximum asymmetry point).

Finally, we investigate the relevance ∆-isobar degrees of freedom in the bulk properties of
compact star in the framework of the same equation of state discussed above but considering
β-stable and electric-charge neutral nuclear matter at T = 0.

In Fig. 3, we report the mass-radius relations in absence (no ∆) and in presence of ∆-isobars
with different scalar coupling ratios (xσ∆ = 1.0 and xσ∆ = 1.2). The presence of ∆-isobar
degrees of freedom smooths the equation of state and reduces the maximum gravitational mass.
On the other hand very compact object with smaller radii can be formed. This matter of fact
can be very relevant in the interpretation of recent astrophysical observations [12].
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Figure 3. Mass-radius relations in
absence (no ∆) and in presence of ∆-
isobars with different scalar coupling
ratios (xσ∆ = 1.0 and xσ∆ = 1.2).
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