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Abstract—In this paper, we consider the problem of RSS-
fingerprinting localization in wireless sensor networks. In par-
ticular, inspired by the recent advances in sparse approximation
and compressive sensing theory, we propose a localization scheme
based on the dictionary design of block-sparse signals. We show
via numerical simulations and real experiments that the proposed
technique outperforms traditional fingerprinting methods.

I. INTRODUCTION

Localization has recently taken advantage of the devel-
opment of wireless sensor networks (WSNs), which are a
valuable alternative to satellite-based technologies in indoor
environments or in outdoor adverse conditions [1], [2], [3],
(4], [5].

The localization methods based on the measurement of the
received signal strength (RSS), i.e. the power transmitted by
the device to be localized, have been widely considered, in
particular combined with fingerprinting, which is a map-based
approach that creates a dictionary in order to represent the
physical space capturing possible variations. More precisely,
RSS measurements are collected off-line at some known
locations in the area and then stored in a dictionary; the
unknown location can then be obtained on-line from the
current RSS measurements which are compared with those
in the dictionary.

The drawback of RSS-fingerprinting is the large number
of data that have to be exchanged between the receiver and
the transmitter to achieve desired performance. This issue has
been recently addressed by recasting localization as a sparse
recovery problem [6], [7], [8]. The rationale is the following:
assuming that the physical space is discretized in a grid of D
cells, each of them associated with a prescribed position, the
device position can be represented by a vector of length D that
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has nonzero entries only where a device occupies that position.
Typically this vector is sparse, that is, has few nonzero entries,
provided that there are few devices with respect to the domain
dimensions. Localization can then be performed by searching
for the sparsest solution.

Studying localization is motivated by several safety and
monitoring tasks, such as detecting medical equipment or
products in hospitals or warehouses, or, more generally, tasks
like indoor guidance for example in huge shopping malls,
museums, or airports, where mobility is fundamental. In all
these cases, we are in a wide environment, which can be
discretized in many cells, and, if we want to find few targets
among all possible positions, then the vector is sparse.

In this paper, we present new methods, based on block-

sparsity, that aim at improving the localization accuracy.
Block-sparsity assumes that the nonzero entries of the sparse
signal to be reconstructed are concentrated in some patterns;
recent work [9], [10] provides theoretical guarantees for their
reconstruction in a compressed sensing framework. Leveraging
these general results, we explore RSS-fingerprinting methods
based on block-sparsity and we prove their efficiency.
In particular, we rearrange the blocks by exploiting intra-
block correlation of the dictionary, which improves recovery
performance. We evaluate the performance of the proposed
localization system through a number of simulations and
practical experiments, showing the accuracy in terms of lo-
calization distance error with respect to existing systems.

The paper is organized as follows. In Section II we introduce
the localization scenario, defining the setting of our model; in
Section III we explain the proposed algorithm based on block-
sparsity. Section IV is devote to numerical simulations, that
validate the choice of a kind of block and illustrate results
obtained in different noise settings. In Section V we present
results of on-field real experiments, both in outdoor and indoor
environments, and we compare our method to the related
literature ones. Finally, in Section VI we close with some



concluding remarks and future developments of our work.

II. MODEL SETTING

In this section, we introduce the localization scenario that
we consider throughout the paper. Let A C R? be a two-
dimensional region representing the area of interest where
a device to be localized is placed. We then consider a dis-
cretization of A by setting D € N reference points (RPs) in
A, whose coordinates are indicated by &, ¢ € {1,...,D},
and partitioning A into D subsets (or cells), each of them
containing a RP. For simplicity of exposition, in this work we
consider a rectangular 4 with a uniform grid of R rows and
C columns, and D = RC RPs.

The localization task consists in detecting the cell occupied
by the device. To this purpose, we set J base stations (BSs),
inside or outside A, which collect measurements from the RPs
and transmit information to a central unit that processes the
data and performs the localization task. In our model, the BSs
are assumed to acquire the RSS of the signals, which is a
measure of the received power. RSS methods are widely used
for localization as they are among the most inexpensive and
power saving [6], [11]. Taking into account the dissipation due
to the distance and obstacles between the transmitting device
and the receiver (e.g., walls, furniture, and people) the RSS at
distance d is modeled as follows [6]:

P,(d) = P, — PL(do) — 10nlog,,(d/do) — ns, (1)

where P; is the transmitting power, PL(d) is the average
path loss value at a reference distance dy = 1 m; n is an
attenuation parameter (generally 2 < n < 4), n, is a zero-
mean Gaussian noise with standard deviation o, that we denote
as 1, ~ N(0,0?).

A. Fingerprinting techniques

RSS-fingerprinting consists in creating a dictionary (or sig-
nature map) that represents the RPs of .4 and then comparing
RSS measurements with such fingerprints. More precisely, we
distinguish two phases, known as training (or off-line) phase
and runtime (or on-line) phase.

During the training phase, a dictionary is created as follows.
As depicted in Figure 1, a transmitting device is set in turn in
each RP and broadcasts a signal 7" > 1 times. Each BS, labeled
with j € {1,2,...,J}, stores the value wai representing the
t-th measure of RSS from ¢-th RP. Each BS is then associated
with a map W7 that can be written as the measurements matrix
Pl Yl 1.0
W= : e RT*D,

Uy Urs UT.p
Finally, each BS sends its own ¥; to the central unit, which
stores the global dictionary

U= (folT w2l \I/JT)T e RTIXD,

The localization is performed in the runtime phase. As
illustrated in Figure 2, for all j € {1,...,J}, the j-th BS
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Fig. 1. Tllustration of training phase: each RP transmits 7" times to the BSs,
which in turn send the data to the central unit, which collects the signature
map.

receives the RSS measurements z; € R”, and transmits them
to a central unit that collects them into the global measurement
vector.
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Fig. 2. Illustration of runtime phase: a device is placed in cell and transmits
to the BSs, which forward the information to the central unit, which tries to
localizes the device using the database.

At this point, given ¥ and z, the central unit estimates the
position of the device comparing z with W. Intuitively, if the
device is in the /-th cell, each BS j is expected to receive a
signal z; close to ¢/ ,, t = 1,...,T. Based on the notion
of distance that one considers, different algorithms can be
developed [12].

III. BLOCK-SPARSITY BASED LOCALIZATION

We now introduce some elements of spatial sparsity lo-
calization; further we introduce block-sparsity, which is the
theoretical basis of our novel approach to localization.

A. Localization via spatial sparsity

Localization via spatial sparsity builds on the key idea that
one or few devices positions can be represented with a sparse
vector, whose components represent the cells and are null at
empty cells. The mathematical problem [6], [13] consists in
finding the sparsest z € RP such that z = Wz + 7 where



n € RTY is a small error, subject to the constraint that just one
position is occupied by each device. A common formulation
to this problem is the following:

min ||z — Uz||o s. tjzllo < K 2

where ||z|lo = |{7 € {1,..., D}|z; # 0}] and k is the number
of devices to be localized.
B. Localization via block-sparse representations

Our block-sparsity approach refines the spatial sparsity
methods by grouping the cells and proposing a hierarchic
search of the device position.

Fig. 3. An example of block partitioning.

The idea is as follows. In the training phase some adjacent
cells, which form a partition of the ground floor, are grouped
into N macroblocks. The dictionary W is then rearranged
accordingly. For example, let us consider a 4 x 8 grid and
N = 8 macroblocks composed by 2 x 2 blocks of adjacent
cells as shown in Figure 3.

U has the following structure:

1 1 1 1
w%,l 1/’%,2 wi,3 1/1%,4
Va1 (| V2,2 || ¥2,3 || Y2,4
1 1 1 1
Y ||V || Y13 || ¥T,4
w11 w1)(2) w[2](1) ¥/[2](2) w/[1](3) w/[1](4)

where the different colors represent different blocks, composed
by the cells indicated in Figure 3, i.e. U’[{](j) represent the
RSS value from j-th cell of the i-th macroblock. Thus, VU is
then rearranged to form a new dictionary, denoted by

= W], w[2),..., V[N]|.

We also rearrange z € RP into a concatenation of N
blocks = = (z[1]T,z[2]T,...,2[N]T)T. For simplicity, let us
suppose that the k devices to be localized occupy k different
macroblocks. Thus, each of the k£ nonzero components of x
belongs to a different block and x has k nonzero blocks.
Therefore, we can see the k-sparse vector x as k-block sparse.
In the runtime phase, first, we can estimate the macroblocks

occupied by the devices by solving the optimization problem
min ||z — ¥z, s. t|z|l20 < K 3)

where ||z]l20 = [{# € {1,....,N} : ||z[i]|l2 > 0}|. The
problem (3) can be solved via a modification of the Orthogonal

Matching Pursuit for the sparse vectors [10]. Second, if z* is
the solution of (3) and ¢* the index such that z*[¢*] # 0,
the cell occupied by the device in the selected macroblock
is estimated by solving (2), reducing the dictionary to the
columns of W'[¢*] and applying the Orthogonal Matching
Pursuit (OMP) algorithm [14]. We choose OMP since it is
a greedy algorithm and it computes a number of iterations
depending on the sparsity and thus it is much faster than a
convex optimization routine, such as the interior point or the
simplex method [15].

C. Dictionary design via block-coherence

We now introduce the notion of block-coherence of a
dictionary, which we will use to provide theoretical guarantees
for our method.

The block-coherence pp of a dictionary © measures the
similarity between dictionary elements belonging to different
blocks, and is defined as

1
0) = — ol e

15(0) Tgyd[ﬂ D),
where p(©[i]"©O[j]) is the spectral norm of the matrix
O[i] T ©[j]. Conversely, the sub-coherence is a measure of the
correlation of the atoms belonging to the same block, and is
defined as

L . AT Ar-

v(0):= mlaxrjr;ig !9[1]]- 9[2]h| ,
where 6;[i] denotes the j-th column of the 7-th block. Theorem
3 in [10] provides a sufficient condition for successful recovery
in absence of noise. More precisely, let z € RW be a block
k-sparse vector (i.e., ||z, , < k) and y = Oz, where © €

RN *LW 1f the following inequality is satisfied
1 v(O) )
kL<< YL—(L-1 @
2 @) T Vo)

then = can be exactly recovered from y. In practice, this
condition requires a small correlation between the atoms
belonging to the same block (i.e., a small value of v(0)),
and a small correlation between the different blocks (i.e., a
small value of p5(0)).

In this paper, we are going to compare our approach with
the classical Nearest Neighbor [12], which can localize only
one device. Thus, from now on, we assume k = 1.

IV. SIMULATIONS

We now present the results of some numerical simulations,
which are useful to test the probability that a dictionary
satisfies the block-coherence condition and the behavior of
the theoretical model for different level of noise.

A. Probability of block-coherence condition

We performed a Monte Carlo simulation (over 10* runs) in
order to estimate the probability that a dictionary U’ verifies
the block-coherence condition in (4). We remark that the
block coherence condition for exact reconstruction holds only
in the noise-free case, and no guarantees are given for the
noisy case. However, we expect the estimation in (3) to be



robust against bounded noise (see [16]): small perturbations
in the observations should cause small perturbations in the
reconstruction.

We build ¥ exploiting the RSS model described in Section
IT and we compute a new dictionary obtained by reorganizing
the columns of the original matrix ¥, as described in Section
III. More precisely, we set an area of 30m x 15m, on which
we build a 12 x 6 grid, with square cells whose side is 250
cm. We deploy J = 8 BSs randomly in the grid and at each
BS we take 7" = 5 measurements. The dictionary VU is built
in a noise-free case, following the model (1), where we set
P, — PL = —50 and n = 2.5. We choose several partitions
of the ground floor, corresponding to different choices of the
block size. For each of these choices we evaluate the condition
in (4).
The estimated probability for our block-based approach is
reported in Table I.

2x1[2x2[3x2|3x3|4x3|6x3][6x6
1.00 ‘ 0.98 ‘ 0.80 ‘ 0.62 ‘ 0.46 ‘ 0.11 ‘ 0.05

TABLE I
EMPIRICAL PROBABILITY FOR VALIDITY OF (4)

We observe that the best probability is obtained for blocks
of size 2 x 1. This happens because the value of the sub-
coherence v increases as the block size increases, therefore the
best value of v is reached when the block size is the smallest
considered. This could suggest the choice of blocks of size
1, which leads to a v equal to 0. However, we expect that
a large block size increases the robustness to noise, since a
large number of atoms of the dictionary is exploited in the
approximation of the measurement vector z. Therefore, in the
designing of an optimal dictionary for localization we have to
find a good trade off between these two aspects.

B. Simulation varying the noise level

We now propose some numerical simulations to test our
algorithm, comparing it to WkKNN [12] and to existing sparse
methods [6].

We built the dictionary ¥ as in Section IV-A, then, for the
runtime phase we generate the real-time measurements using
100 different values of standard deviation o € (1073,10),
performing 200 experiments for each value of o.

The results are shown in Figure 4. Our block-based method
with blocks of 2 x 1 and 2 x 2 cells (green and red lines
respectively) performs better than classical methods such as
WKNN (black line) and spatial sparsity techniques (blue line):
it always recovers the exact position when o < 0.1. As
expected (see Table I), the cases with 2 x 1 and 2 x 2 block-size
cells outperforms the 3 x 2 case (orange line), which in turn
is better than the spatial sparsity method when the noise-level
is not too high.
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Fig. 4. Comparison of different approaches in a simulated case.

V. REAL EXPERIMENTS

In this section, we show the results of real experiments
performed in two different scenarios. The experiments are
carried out with SPIRIT1 evaluation boards (frequency band
915 MHz), produced by ST Microelectronics [17]. Optimized
for low-power operation [18], SPIRIT1 is a radio frequency
transceiver that provides digital output of the RSS for the last
received packet or sequence of symbols. The firmware running
on the devices has been developed from the Thingsquare [19]
open source code, taking advantage of its Contiki operating
system [20] core for the programming model and for the
networking support.

Experiment 1: Garden area in the university campus. We
consider a 4 x 6 grid with 3m-side cells in a 12m x 18m open
air area. We displace all J = 7 BSs as shown in Figure 5. At
each BS we collect T' = 3 samples of RSS both in the training
and in runtime phase.

T T Ggrden Are:

Outdoor scenario: 7 BSs in a 12m X 18m grid.

Fig. 5.

The results are shown in Figure 6, where we illustrate the
empirical cumulative distribution function (CDF(z) = P(X <
x)) of the localization error our block-sparsity method, the
spatial sparsity method [6], and the well-known WKNN [12].
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Fig. 6. CDFs in outdoor scenario: a localization error of Om corresponds

to exact localization, 3m means localization in an adjacent cell, 4.24m in a
diagonal cell, and so on.

On a sample of 48 experiments, we obtained a significant
reduction of the localization error with respect to WkNN and
spatial sparsity methods. In about 65% of experiments we
obtain perfect localization (i.e. exact identification of the cell
occupied by the device) for the 2 x 1 block-size case (green
line) and between 55% and 50% for 2 x 2 and 3 x 2 cases (red
and orange curves respectively), while only 30% and 10% for
CS-based approach [6] and WKNN, respectively.

Moreover for more than 85% (against 55% of CS-based
approach and 43% of WKNN) we have a localization error
lower than 3m, which means we have localized the device at
most in the adjacent cell.

Experiment 2: Household scenario. We now consider an
indoor household scenario. In Figure 7 we can see the house
plan (the walls dividing the rooms are emphasized by thicker
darkred lines). In each room we consider 4 cells and deploy
J = 7 BSs (blue dots) in the middle, except for hallway and
bathrooms. At each BS we take 7' = 3 measurements both in
training and runtime phases. We run 60 experiments.

As depicted in Figure 8, the proposed algorithm achieves
the best performance with 2x 1 and 2x 2 blocks (green and red
lines). In this case we have a better performance of 2 x 2 case
compared to the outdoor scenario, since the blocks correspond
to the rooms. These two cases recover the exact position in
over 60% of the experiments, while for competing algorithms
[6] (blue line) and [12] (black line) the percentage of success
is below 25%. Moreover, in the 80% of the experiments our
approach localizes the device in the right room.

Finally, for what concerns the computational time of the
runtime phase, we report the mean, maximum and minimum
values of 108 experiments for the considered recovery algo-
rithms in Table II. The tests are performed using MATLAB®
R2014a on a HP® 7230 Tower Workstation Intel® Xeon®
processor E3-1225 v3, 3.2GHz, with 4 cores and 32GB RAM.

Bedroom?2 Bathroon]1 Kitchen
® @
Bathroonj2
®
@ ® o
Bedroom|l Bedroom3 Living ropm
Fig. 7. Household scenario: 7 BSs in a 12.5m X 15m grid.
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Fig. 8. CDFs in household scenario: a localization error of Om corresponds
to exact localization, 2.5m means localization an adjacent cell, 3.53m in a
diagonal cell, and so on.

| Nearest Neighbor | Spatial Sparsity | Block Sparsity

mean 1.0587e-04 s 2.6059e-2 s 1.5421e-3 s

max 1.2000e-04 s 2.7455e-2 s 1.8580e-3 s

min 1.0100e-04 s 2.5830e-2 s 1.1960e-3 s
TABLE II

MEAN, MAXIMUM AND MINIMUM COMPUTATIONAL TIME OF 108 TESTS
FOR THE CONSIDERED APPROACHES USING MATLAB® R2014A ON A
HP® 7230 TOWER WORKSTATION INTEL® XEON® PROCESSOR E3-1225
v3, 3.2GHz, 4 CORES, 32GB RAM.

The results show that the fastest algorithm is the WkNN, which
computes a scalar product of the runtime measurements with
the columns of the training matrix. However, our method based
on block sparsity is also fast since the occupied position is
recovered in the order of milliseconds thanks to the greedy



algorithm involved, while the convex optimization of spatial
sparsity method [6] is 20 times slower.

VI. CONCLUDING REMARKS

In this paper, we have introduced a new methodology for
RSS-fingerprinting localization in wireless sensor networks
based on block-sparsity, and we have proved that it performs
better than state-of-the-art techniques through several numer-
ical simulations and real experiments, deploying sensors in
different indoor and outdoor scenarios. We achieve a precise
localization in 65% of the experiments, while only 30% and
10% are the percentage of success for the considered literature
methods.

As future work, we will investigate the mathematical proper-

ties of the dictionary ¥, which is a low-rank incoherent matrix,
and whether the position of BSs could influence the results.
Moreover, in this paper we have presented the localization
of one device, but this can be extended to k > 1 devices
[21]. Thus, we are going to set up both simulated and real
experiments localizing two or more devices simultaneously,
saving time and hopefully approaching WkNN computational
performance, since this method can localize only one device
at a time.
Finally, we will try to perform localization in a distributed way,
where the BSs exchange messages among them and recover
the occupied position without the need of a central unit [22],
[23], [24].
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