
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Predictive graph construction for image compression / Fracastoro, Giulia; Magli, Enrico. - ELETTRONICO. - (2015), pp.
2204-2208. (Intervento presentato al convegno 2015 IEEE International Conference on Image Processing nel Sept.
2015) [10.1109/ICIP.2015.7351192].

Original

Predictive graph construction for image compression

Publisher:

Published
DOI:10.1109/ICIP.2015.7351192

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2638700 since: 2016-04-01T12:24:28Z

IEEE

PREDICTIVE GRAPH CONSTRUCTION FOR IMAGE COMPRESSION

Giulia Fracastoro, Enrico Magli

Dept. of Electronics and Telecommunications, Politecnico di Torino, Italy

ABSTRACT

In this work, we propose a new method of graph construction
for graph-based image compression. In particular, because of
the overhead incurred by graph transmission to the receiver,
we focus our attention to develop an efficient method to con-
struct and to code the graph representation of the image. The
proposed method employs innovative edge metrics, quantiza-
tion and prediction techniques, leading to a compact yet high-
quality graph, corresponding to a very efficient transform that
performs very well on natural as well as piece-wise smooth
images. We have tested our method on different images and,
compared to the standard DCT, it provides an average quality
gain of 1.6 dB.

Index Terms— graph signal processing, graph Fourier
transform, image compression

1. INTRODUCTION

The Discrete Cosine Transform (DCT) is the most common
transform used for block-based image and video compression
([1]). One of the main drawbacks of the DCT is that it be-
comes inefficient when a block contains edges that are not
horizontal or vertical. In this case, the resulting transform co-
efficients are not sparse and the high-frequency coefficients
can have large magnitude. This leads to higher bitrate or vis-
ible artifacts around the edges.

To solve this problem, different solutions have been pro-
posed. Variations of the DCT have been studied, such as
directional DCT ([2]), shape-adaptive DCT ([3]) or adap-
tive block-size transform ([4]), in which the block shape is
adapted to the edge location or the transform follows the
edge direction. Wavelet approaches have also been proposed.
In order to avoid filtering across edges, researchers have
developed different wavelet filterbanks based on the image
geometry, such as bandelets ([5]), curvelets ([6]) and direc-
tionlets ([7]). However, all these methods produce an efficient
edge representation only when edges are straight lines and
become inefficient with more complex edges.

Recently, the graph-based approach has been proposed,
according to which high-dimensional data naturally reside on
the vertices of graphs and they can be visualized as a finite

This work was supported by Sisvel Technology.

collection of samples defined as graph signals, with one sam-
ple at each vertex of the graph [8]. In the last years, re-
searchers have studied how to apply classical signal process-
ing techniques in the graph domain. Techniques for filtering,
translation, modulation and downsampling in the graph do-
main have been developed. Several graph transforms have
also been proposed, such as the graph Fourier transform ([9]),
spectral graph wavelets ([10]) and wavelet filterbanks ([11]).

Graphs have emerged has a useful representation also
for processing and analysis of images. Indeed, images can
be viewed as a graph, where each pixel represents a node
of the graph and arc weights describe connectivity relations.
In recent years, researchers have made some attempts for
performing image and video compression using graph signal
processing techniques. The authors in [12, 13] proposed an
efficient compression method for depth map using the graph
Fourier transform, but they reported unsatisfactory results
on natural images that are not piecewise smooth. Instead,
in [14] a method for image compression using graph-based
wavelet transform is presented; also in this case satisfactory
results are achieved only with piecewise smooth images.
Another method for graph-based compression of piecewise
smooth images is proposed in [15], where the graph is se-
lected among a large space of possible ones to minimize the
total signal representation cost. In [16] a method for image
representation using multiscale graph transform is presented,
achieving good compression performance, at the expense of
using a very complex graph whose coding cost is neglected.

In general, while graph-transforms have been shown to be
more efficient than conventional transforms, the overhead of
graph transmission may easily outweigh the coding efficiency
benefits. Therefore, it is very important to design graph rep-
resentations and corresponding graph transforms that are effi-
cient also when graph has to be transmitted to a decoder.

In this paper we propose a new method of graph construc-
tion for graph-based image compression, obtaining a graph
that at the same time gives an efficient image representation
and is not too complex. We introduce a new technique for
defining the edge weights of the graph and efficiently coding
them. One of the main novelty of our work is the develop-
ment of a technique for edge prediction that nearly halves the
cost for graph transmission. With the proposed method, we
outperform existing techniques achieving an average gain of
2 dB in PSNR compared to the DCT transform.

2. GRAPH FOURIER TRANSFORM

A graph can be denoted as G = (V,E), where V is the set of
vertices (or nodes) with |V | = N andE ⊂ V ×V is the set of
edges. It is possible to represent a graph by its weighted adja-
cency matrix W ∈ RN×N , where wij represents the weight
of the edge between node i and j and wij = 0 if there is
no edge between i and j. The graph Laplacian is defined as
L = D −W , where D is a diagonal matrix whose ith diago-
nal element di is equal to the sum of the weights of all edges
incident to node i.

We can define a signal f on the vertices of the graph and
it can be represented as a vector f ∈ RN , where the ith com-
ponent of f represents the signal value at the ith vertex in V .

In the graph domain, it is possible to define an equiva-
lent of the Fourier transform, i.e. the graph Fourier transform
([8]). The graph Fourier transform f̂ of any signal f ∈ RN is
defined as

f̂ = U f ,

where U is the matrix whose rows are the eigenvectors of the
graph Laplacian L. The inverse graph Fourier transform is
then given by

f = UT f̂ .

3. PROPOSED GRAPH CONSTRUCTION
TECHNIQUE

We now describe the proposed technique used to construct the
weighted graph of an image. One of the main drawbacks of
any graph compression technique is that the graph itself has
to be transmitted to the decoder. For this reason, the cost of
transmitting the graph should be as small as possible. In our
work, we pay particular attention to develop techniques that
simplify as much as possible the graph structure without a
significant decrease in the compression performance.

3.1. Graph weight metric

The graph structure used is a square grid where each pixel
is a vertex of the graph and is connected to each of its 4-
connected neighbors. We have chosen this structure because
it has been proved that, when the graph is a 4-connected grid
and all edges have the same weight, the 2D DCT basis func-
tions are eigenvectors of the graph Laplacian, and thus the
transform matrix U can be the 2D DCT matrix ([17]).

The edge weights of the graph represent the similar-
ity between the two pixels connected by the edge. Several
weighting functions have been used to determine the edge
weights in image processing applications, two of the most
commonly used are the Cauchy function and the Gaussian
function ([18]), that are defined as follows:

Cauchy function: wij =
1

1 + (
dij
α)2

,

Gaussian function: wij = e−
d2ij

σ2 ,

where dij is the Euclidean distance between pixel i and j
(dij = |fi − fj |) and α and σ are defined as in [19].

Most of the graph-based image compression methods
present in the literature use an unweighted graph, even if in
some case a weighted graph with Gaussian weights is used, as
in [16]. Conversely, we propose to employ a Cauchy function
to determine the weights. In Section 4.2 we show that this
choice outperforms the Gaussian weights.

To reduce the influence of noise, we do not compute the
edge weights using the original image, but first we smooth
the image. It is important to use smoothing techniques that
do not modify the edges present in the image, in our tests we
used anisotropic diffusion [20].

3.2. Quantization

If we use a graph defined as in the previous section, the infor-
mation we need to encode are only the edge weights, whereas
the graph topology is fixed and there is no need to transmit
it. Given an image block of n2 pixels, its grid graph has
2n(n−1) edges, i.e. almost twice the number of pixels, which
explains why it is extremely important to study techniques for
reducing this overhead.

First, we decrease the number of possible edge weight
values for each edge in the graph, to do this we quantize
the argument of the weight function, i.e the distances dij .
We have seen that their probability distribution can be ap-
proximated with a Laplacian, therefore, we use an uniform-
threshold quantizer for Laplacian source ([21]) with an over-
load region.

Using this method, we can arbitrarily reduce the number
of edge weight values down to two. In term of compression
performance, the case with only two possible values is the
most interesting because it has the best ratio between quality
gain and cost for the graph transmission.

The graph obtained using only binary weight values is
similar to an unweighted graph (i.e. with weights in {0,1})
such as the one used in [12, 13], with the important differ-
ence that, with the quantized weights, the graph cannot be
disconnected. Indeed, if the graph is disconnected, the graph
transform does not perform well, in particular when there are
connected components with a small number of nodes.

In the following sections, we will focus on this binary
case, developing an optimized graph compression scheme.

3.3. Graph edge prediction method

When we have only two possible edge weight values, the ma-
jority of the edges in the graph will typically have the higher
edge weight, meaning that the two pixels that it connects are
similar, instead only a small number of edges will have the
lower edge weight, indicating that there is a discontinuity be-
tween the two pixels connected by the edge. Every node is

connected to four pixels. In order to structure our prediction
mechanism, we consider nodes in raster order and, for each
node, we consider two edges, namely the one that connects
the pixel to the nearest one in the next column, and the one
that connects the pixel to the bottom one in the next row. We
label each pixel of the image as “edge” or “non-edge” pixel.
Specifically, a pixel is labeled as an edge pixel if at least one
of the corresponding edges has the lower edge weight, other-
wise it is labeled as a non-edge pixel.

In order to obtain a more compact representation of the
graph structure, we have developed a method of edge predic-
tion that reconstructs the graph edges starting from a binary
image that specify if each pixel has an edge or non-edge label.
Analysing the labels of neighboring pixels, the encoder can
predict whether the discontinuity is horizontal, vertical or di-
agonal, as shown in Figure 1. Then it constructs a new graph,
setting the edge weights in accordance with the predicted dis-
continuities. The graph generation algorithm is explained in
detail in Algorithm 1. The binary image containing the labels
is compressed using JBIG [22] and transmitted to the decoder.
Starting from the received labels, the decoder runs the graph
construction algorithm and recovers the same graph used at
the encoder.

As will be shown in Section 4.2, the graph provided by
Algorithm 1 defines a graph Fourier transform with very high
coding efficiency.

Algorithm 1 Prediction-based Graph Construction Algo-
rithm. Ib: binary image, M : higher edge weight, m: lower
edge weight

Set all edge weights equal to M ;
for every edge pixel in Ib do
Nhor= number of horizontal neighbors that are edge
pixel;
Nver= number of vertical neighbors that are edge pixel;
if Nhor > 0 then

Set the vertical edge to m;
end if
if Nver > 0 then

Set the horizontal edge to m;
end if
if Nhor = 0 and Nver = 0 then

Set the vertical edge to m;
Set the horizontal edge to m;

end if
end for

3.4. Deletion of isolated edges

In order to obtain a smoother binary image and to remove
small discontinuities, we delete the connected components
present in the binary image whose dimension is smaller than
a threshold value.

Fig. 1: Prediction-based graph construction method. The nodes rep-
resent the binary image transmitted to the decoder: the black ones
are the edge pixels, the white ones the non-edge pixels. The dotted
lines represent the predicted image discontinuity, the figure repre-
sents the three possible situations. The edges are set in accordance
with the discontinuities: the ones with a thicker line have the higher
weight, the ones with a thinner line have the lower weight.

(a) Clock (b) Cameraman (c) Airplane

Fig. 2: Original images.

4. EXPERIMENTAL RESULTS

To test the proposed method, we have subdivided the images
in 32×32 blocks and we constructed the graph of each image
block with the techniques discussed in the previous section.
After having obtained the graph, we computed the adjacency
matrix W and the Laplacian matrix L. We used as transform
matrix the matrix U of the eigenvectors of the Laplacian, as
defined in Section 2.

To code the transform coefficients we used a bit plane cod-
ing on each block and we estimated the bit rate computing the
entropy of each bitplane.

We have applied our method to some standard images,
three of which are shown in Figure 2. We have chosen dif-
ferent image types, some having very sharp edges, such as
airplane, while others are more natural, such as cameraman.

4.1. Edge weight metric evaluation

We have compared the performance of the two weighting
functions showed in Section 3.1 by computing the percent-
age of signal energy in function of the number of retained
coefficients. We have found that the Cauchy function has
better compression performance than the Gaussian function,
as shown in Figure 3. For this reason, in our tests we used the
Cauchy weighting function.

number of retained coefficients
0 200 400 600 800 1000

%
 o

f e
ne

rg
y

0.92

0.94

0.96

0.98

1

1.02

Gaussian function
Cauchy function
DCT

Fig. 3: Percentage of energy in function of the number of retained
coefficients.

number of retained coefficients
50 100 150 200 250 300

%
 o

f e
ne

rg
y

0.95

0.96

0.97

0.98

0.99

1

1.01

unquantized weights
quantized weights (two weight values)
quantized weights (two values) and edge prediction
DCT
quantized weights (eight weight values)

Fig. 4: Percentage of energy in function of the number of retained
coefficients.

4.2. Graph compression

We have compared the performance of the graph transform
using a graph with unquantized weights, with quantized
weights and with the predicted weights. We computed the
percentage of signal energy in function of the number of re-
tained coefficients. The results are shown in Figure 4. We can
see that using a small number of edge weight values reduces
the performance but not in a significant way. Moreover, it is
important to note that the edge prediction method produces a
graph that is a very good approximation of the original one
and the results obtained are nearly the same, but it nearly
halves the size of the graph overhead, resulting in a high
increase in the performance.

4.3. Image compression performance

To evaluate the performance of the proposed Predictive Graph
Transform (PGT), we computed the PSNR of each image as
a function of the bitrate. We compared the proposed PGT
with the standard DCT and with the edge-adaptive transform
(EAT) proposed by Shen et al. in [12]. In order to have a
fair comparison, we used the same block dimension and the
same method for coding the transform coefficients. For the
EAT and our proposed transform, the bitrate also takes into
account the cost of transmitting the graph. Figures 5 shows
the results obtained. We can see that our method outperforms
both the standard DCT and the EAT, with an average gain of

Bit rate (bpp)
0 0.5 1 1.5 2 2.5

P
S

N
R

 (
dB

)

26

28

30

32

34

36

38

40

42

44

46
Clock

PGT
DCT
EAT

Bit rate (bpp)
0 0.5 1 1.5 2 2.5 3 3.5 4

P
S

N
R

 (
dB

)

20

25

30

35

40

45

50
Cameraman

PGT
DCT
EAT

Bit rate (bpp)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

P
S

N
R

 (
dB

)

28

30

32

34

36

38

40

42

44

46
Airplane

PGT
DCT
EAT

Fig. 5: RD curve comparison between our proposed method, DCT
and EAT.

approximately 1.6 dB over the DCT and a maximum gain of
3 dB.

5. CONCLUSION AND FUTURE WORK

We have developed a new method of graph construction for
image compression, investigating the best edge weight metric
for our purpose, and defining a new technique to reduce the
complexity of the graph without a significant decrease in the
performance. Moreover, we have introduced an edge predic-
tive technique that enable us to significantly reduce the over-
head due to the graph transmission. The proposed method
outperforms the standard DCT and other graph transforms
present in the literature.

As future work, we will study an efficient way to code
a graph with continuous edge weight values, and investigate
the application of this method to the prediction error in video
coding.

6. REFERENCES

[1] K. Sayood, Introduction to data compression, Newnes, 2012.

[2] B. Zeng and J. Fu, “Directional discrete cosine transforms-a
new framework for image coding,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 18, no. 3, pp.
305–313, 2008.

[3] T. Sikora and B. Makai, “Shape-adaptive dct for generic coding
of video,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 5, no. 1, pp. 59–62, 1995.

[4] M. Wien, “Variable block-size transforms for h. 264/avc,” Cir-
cuits and Systems for Video Technology, IEEE Transactions on,
vol. 13, no. 7, pp. 604–613, 2003.

[5] E. Le Pennec and S. Mallat, “Sparse geometric image represen-
tations with bandelets,” Image Processing, IEEE Transactions
on, vol. 14, no. 4, pp. 423–438, 2005.

[6] E.J. Candes and D.L. Donoho, “Curvelets: A surprisingly
effective nonadaptive representation for objects with edges,”
Tech. Rep., DTIC Document, 2000.

[7] V. Velisavljevic, B. Beferull-Lozano, M. Vetterli, and P.L.
Dragotti, “Directionlets: anisotropic multidirectional repre-
sentation with separable filtering,” Image Processing, IEEE
Transactions on, vol. 15, no. 7, pp. 1916–1933, 2006.

[8] D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks
and other irregular domains,” Signal Processing Magazine,
IEEE, vol. 30, no. 3, pp. 83–98, 2013.

[9] G. Taubin, “A signal processing approach to fair surface de-
sign,” in Proceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques. ACM, 1995, pp.
351–358.

[10] D.K. Hammond, P. Vandergheynst, and R. Gribonval,
“Wavelets on graphs via spectral graph theory,” Applied and
Computational Harmonic Analysis, vol. 30, no. 2, pp. 129–
150, 2011.

[11] S.K. Narang and A. Ortega, “Perfect reconstruction two-
channel wavelet filter banks for graph structured data,” Signal
Processing, IEEE Transactions on, vol. 60, no. 6, pp. 2786–
2799, 2012.

[12] G. Shen, W.S. Kim, S.K. Narang, A. Ortega, J. Lee, and
H. Wey, “Edge-adaptive transforms for efficient depth map
coding,” IEEE, 2010, pp. 2808–2811.

[13] W.S. Kim, S.K. Narang, and A. Ortega, “Graph based trans-
forms for depth video coding,” in Acoustics, Speech and Signal
Processing (ICASSP), 2012 IEEE International Conference on.
IEEE, 2012, pp. 813–816.

[14] S.K. Narang, Y.H. Chao, and A. Ortega, “Critically sampled
graph-based wavelet transforms for image coding,” in Signal
and Information Processing Association Annual Summit and
Conference (APSIPA), 2013 Asia-Pacific. IEEE, 2013, pp. 1–4.

[15] W. Hu, G. Cheung, A. Ortega, and O.C. Au, “Multi-resolution
graph fourier transform for compression of piecewise smooth
images,” Image Processing, IEEE Transactions on, vol. 24, no.
1, pp. 419–433, 2015.

[16] M. Hidane, O. Lezoray, and A. Elmoataz, “Lifting scheme
on graphs with application to image representation,” in Signal
and Information Processing (GlobalSIP), 2013 IEEE Global
Conference on. IEEE, 2013, pp. 431–434.

[17] C. Zhang and D. Florêncio, “Analyzing the optimality of pre-
dictive transform coding using graph-based models,” Signal
Processing Letters, IEEE, vol. 20, no. 1, pp. 106–109, 2013.

[18] L.J. Grady and J.R. Polimeni, Discrete calculus: Applied anal-
ysis on graphs for computational science, Springer, 2010.

[19] M.J. Black, G. Sapiro, D.H. Marimont, and D. Heeger, “Robust
anisotropic diffusion,” Image Processing, IEEE Transactions
on, vol. 7, no. 3, pp. 421–432, 1998.

[20] P. Perona and J. Malik, “Scale-space and edge detection us-
ing anisotropic diffusion,” Pattern Analysis and Machine In-
telligence, IEEE Transactions on, vol. 12, no. 7, pp. 629–639,
1990.

[21] G.J. Sullivan, “Decoder inference of optimal reconstruction
values for dz+utq quantization of laplacian source random vari-
ables,” in 16 th JVT meeting, JVT-P111, Poznan, Poland, 2005.

[22] ITUT CCITT, “Rec. t. 82 & iso/iec 11544: 1993,” Informa-
tion Technology–Coded Representation of Picture and Audio
Information–Progressive Bi-Level Image Comp, 1993.

