
Chapter 4

A hybrid mortar method

The contents of this chapter follow closely those found in the article ”A hybrid mor-

tar virtual element method for discrete fracture network simulations” published in the

Journal of Computational Physics, Volume 306, 1 February 2016, Pages 148–166.

4.1 Introduction

In the present chapter, the use of VEM in the DFN framework proposed in chapter 2 is

coupled with the well established Mortar Method [18]. A major advantage of this new

coupling with respect to previous works that also make use of the primal formulation

of the problem is that the flux entering/exiting each fracture from its intersections is

directly obtained as part of the solution of the discrete problem and not through a

post-processing of the results.

The chapter is organized as follows: in section 4.2 we state the problem setting; in

section 4.3 we briefly recall the main features of the VEM needed for the description of

our method; section 4.4 is devoted to the description of the hybrid method obtained from

coupling the VEM with the mortar method; section 4.5 addresses some implementation

issues related to the generation of the locally conforming mesh; finally, section 4.6 reports

some numerical results assessing the behavior of the method.

4.2 Problem formulation

A DFN, Ω, is a set of N open planar polygons Fi, i = 1, . . . , N , representing the

fractures in the medium. In the sequel, we will identify the fractures with the polygons.

Fractures intersect each other along segments called traces. We assume throughout the
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paper that traces are given by the intersection of exactly two fractures. Whenever two

traces intersect each other, we split both traces into two sub-traces. The set of all traces

and sub-traces will be denoted by S. For the sake of simplicity, in the sequel we will

refer to all elements in S as traces. For each S ∈ S, it is convenient to identify the set

IS = {i, j} of the indices of the two fractures intersecting at S. For any function or

set defined on the whole DFN, its restriction to fracture Fi will be denoted using the

subscript i.

On the domain Ω, we consider the Darcy’s law as a model for the equilibrium of the

hydraulic head H = P + ζ, where P = p/(ρ g) is the fluid pressure, g is the gravitational

constant, ρ the fluid density and ζ its elevation. We introduce on each fracture the

transmissivity Ki, which is assumed, for the sake of simplicity, to be a scalar function

of the local tangential coordinates system on Fi. Let ΓD be a non-empty portion of ∂Ω

on which the Dirichlet boundary condition HD is imposed, and let us set ΓDi = ΓD ∩Fi.
Note that ΓDi is allowed to be empty for some i. Let us assume that HD

i ∈ H
1
2 (ΓDi ) for

all i ∈ {1, . . . , N}. Furthermore, let ΓNi = ∂Fi \ ΓDi be the local Neumann boundary

and let HN
i ∈ H−

1
2 (ΓNi ) be the Neumann boundary condition imposed therein.

Let us define the following functional spaces:

Vi =
{
v ∈ H1(Fi) : γ

ΓDi

(v) = 0
}
∀i = 1, . . . , N ,

V D
i =

{
v ∈ H1(Fi) : γ

ΓDi

(v) = HD
i

}
∀i = 1, . . . , N ,

V D =

N∏
i=1

V D
i , V =

N∏
i=1

Vi ,

where γΓDi
: H1(Fi) 7→ H

1
2 (ΓDi ) is the trace operator on ΓDi .

The problem of interest is to find H ∈ V D such that H = H0 + RD where

RDi = RD
∣∣
Fi

is a lifting of HD
i on H1(Fi) and H0 ∈ V satisfies, for any given v ∈ V and

any i = 1, . . . , N ,

(Ki∇H0,i,∇vi)Fi −
∑
S∈S

〈s
Ki
∂Hi

∂niS

{

S

, vi

〉
± 1

2
,S

= (fi, vi)Fi +
〈
HN
i , vi

〉
± 1

2
,ΓNi

−
(
Ki∇RDi ,∇vi

)
Fi

(4.2.1)

where 〈·, ·〉±α,ω is the duality product between H−α(ω) and Hα(ω), niS is the unit vector

normal to trace S on fracture Fi, and the symbol
r
Ki

∂Hi
∂niS

z

S
denotes the jump of the

co-normal derivative of Hi across S on Fi. The equations on each fracture are coupled
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by the balance of fluxes on traces:

∀S ∈ S, if IS = {i, j},
s
Ki
∂Hi

∂niS

{

S

+

t

Kj
∂Hj

∂njS

|

S

= 0 , (4.2.2)

and by the continuity of the solution across traces, that can be written as:

∀S ∈ S, ∀ψ ∈ H−
1
2 (S) =

(
H

1
2
00(S)

)′
, 〈JHKS , ψ〉± 1

2
,S = 0 . (4.2.3)

We introduce

∀S ∈ S, ∀ψ ∈ H−
1
2 (S), bS (v, ψ) = 〈JvKS , ψ〉± 1

2
,S , (4.2.4)

and rewrite (4.2.3) as

∀S ∈ S, ∀ψ ∈ H−
1
2 (S), bS (H,ψ) = 0 . (4.2.5)

For the sake of convenience in rewriting the jump of a function on a trace S, let us fix

the following sign convention: for each S ∈ S, with IS = {i, j}, let us introduce the

function mS : IS → {0, 1} as follows:

mS(k) =

1 if k = min{i, j}

0 otherwhise
.

Hence, we may write

∀v ∈ V,∀S ∈ S, JvKS =
∑
i∈IS

(−1)mS(i) γS (vi) . (4.2.6)

We introduce the space M =
∏
S∈S H−

1
2 (S) and set

∀vi ∈ Vi, ∀ψ ∈M, bi (vi, ψ) =
∑
S∈Si

(−1)mS(i)〈γS (vi), ψS〉± 1
2
,S . (4.2.7)

With these definitions at hand, we define Λ ∈M such that, ∀S ∈ S,

ΛS =

s
Ki
∂Hi

∂niS

{

S

,

where i is such that mS(i) = 1. Then, defining ai : Vi × Vi 7→ R as

ai (ui, vi) = (Ki∇ui,∇vi)Fi ∀i = 1, . . . , N , (4.2.8)
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equation (4.2.1) can be written as

ai (H0i, vi) + bi (vi,Λ) = (fi, vi)Fi +
〈
HN
i , vi

〉
± 1

2
,ΓNi
− ai

(
RDi , vi

)
∀v ∈ V . (4.2.9)

In view of a global formulation of the problem, we define

a (u, v) =
N∑
i=1

ai (ui, vi) ∀u, v ∈ V , (4.2.10)

b (v, ψ) =
N∑
i=1

bi (vi, ψ) ∀v ∈ V, ψ ∈M . (4.2.11)

Note that due to (4.2.4), (4.2.7) and (4.2.5) we have b (H,ψ) =
∑

S∈S bS (H,ψ) = 0.

Summing up (4.2.9) over all the fractures we obtain:a (H0, v) + b (v,Λ) = (f, v) +
〈
HN , v

〉
± 1

2
,ΓN
− a

(
RD, v

)
∀v ∈ V,

b (H0, ψ) = −b
(
RD, ψ

)
∀ψ ∈M.

(4.2.12)

Let us endow V D and V with the norm

‖ v ‖V =

(
N∑
i=1

‖ vi ‖2L2(Fi)
+ai (vi, vi)

) 1
2

. (4.2.13)

Well-posedness of problem (4.2.12) follows observing that, introducing the Hilbert space

W =
{
v ∈ V : ∀S ∈ S, ∀ψ ∈ H−

1
2 (S), 〈JvKS , ψ〉± 1

2
,S = 0

}
= ker(b) ,

problem (4.2.12) is equivalent to: find H0 ∈W such that

a (H0, v) = (f, v) +
〈
HN , v

〉
± 1

2
,ΓN
− a

(
RD, v

)
∀v ∈W .

4.3 The Virtual Element Method

In this section we briefly recall the main features of the conforming VEM which are

useful for the description of the approach proposed in the following sections. The reader

is referred to the seminal papers [10, 12] for a thorough description and to [2, 6, 14, 15, 32]

for further developments of the method.

The VEM is a generalization of the standard finite element method to polygonal

meshes, and it includes some of the ideas present in the mimetic difference method [9, 55].

The peculiarity of the method is that the discrete functional space contains more general

functions in addition to standard piecewise polynomials, namely, it contains functions
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whose restrictions to element edges are polynomials, whereas in the interior only infor-

mation of the function for certain degrees of freedom is known. When computing the

stiffness matrix or the right hand side of the problem, the integrals will be computed

exactly only if at least one of the two factors is a polynomial, whereas in other cases they

will be substituted by operations on the degrees of freedom suitably defined to maintain

the right order of convergence.

Let us consider a given fracture Fi ⊂ R2, a mesh τδ,i on Fi with mesh parameter δ,

representing the maximum element size, and consisting of a finite number of polygons E,

convex in the following, with an arbitrary number of edges. We denote by k the desired

order of accuracy of the method and by Pk the space of the polynomials of maximum

order k, with P−1 = {0}. The local virtual element space Vk,δ(E) is defined as

Vk,δ(E) =
{
vδ ∈ H1(E) : vδ|∂E ∈ C0(∂E), vδ|e ∈ Pk(e), ∀e ⊂ ∂E,

∆vδ ∈ Pk−2(E)}

where ∂E is the boundary of E, and e is an edge. Note that from the definition it clearly

follows that Pk(E) ⊆ Vk,δ(E); the latter set may also include other non-polynomial

functions.

Following [10], for each element E the following set of DOFs is introduced:

• the value of vδ at the vertices of E;

• the value of vδ at k − 1 internal points on each edge of E;

• the scaled moments 1
|E|
∫
E vδmα for |α| ≤ k − 2,

where mα, with α = (α1, α2), denotes the scaled monomial

mα(x, y) =

(
x− xc
hE

)α1
(
y − yc
hE

)α2

,

being (xc, yc) and hE the centroid and the diameter of the element E, respectively. Edge

moments can also be chosen as degrees of freedom instead of internal edge point values;

in general, any set of DOFs that completely defines vδ|e for all edges of the element is

a valid choice. Note that for k = 1 the set of DOFs is given by the values of vδ at the

vertices of E. The selected set of degrees of freedom is unisolvent [10] and therefore,

given an element E with nv vertices, we have that the dimension of Vk,δ(E) is

dimVk,δ(E) = nvk + k(k − 1)/2 .
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We can define basis functions φ` with ` = 1, ...,dimVk,δ(E) in Vk,δ(E) in such a way

that dof`(φm) = δ`m where dof`(v) := value of v at `-th degree of freedom. The global

virtual element space on Fi is:

Vk,δ(Fi) = {vδ : vδ|E ∈ Vk,δ(E) for all E ∈ τδ,i} ⊂ H1(Fi) .

Inclusion in H1(Fi) is a consequence of the choice of edges and vertices as DOFs, that

guarantees continuity of any function vδ ∈ Vk,δ(Fi) on internal edges of the mesh.

Let us assume for the sake of simplicity that the fracture transmissivity Ki, i =

1, . . . , N , is constant on Fi, and let us introduce, on each element E of Fi, the bilinear

form

aE(u, v) = Ki(∇u,∇v)E ∀u, v ∈ Vk,δ(E) .

For k ≥ 1, let us introduce a projection operator on E:

Π∇E,k : Vk,δ(E) −→ Pk(E) ,

defined by ∫
E
∇pk · (∇vδ −∇Π∇E,kvδ) = 0 ∀pk ∈ Pk(E) , (4.3.1)
∫
E

Π∇E,kvδ =

∫
E
vδ k > 1,

nv∑
i=1

Π∇E,kvδ(Vi) =

nv∑
i=1

vδ(Vi) k = 1,
(4.3.2)

where Vi are the vertices of the element.

Note that

Π∇E,kpk = pk for all pk ∈ Pk(E) .

The projection represents an orthogonality condition in the scalar product induced by

the bilinear form a. Thanks to integration by parts, the computation of Π∇E,kvδ can be

performed just by exploiting the knowledge of vδ in the degrees of freedom [12]. Equation

(4.3.1) completely determines the gradient of the projection, while (4.3.2) takes care of

the constant part. Other options for (4.3.2) exist [10, 14].

Remark 4.1. The assumption of Ki being constant on each fracture is made here for the

ease of description. In case of problems presenting non-constant coefficients or a more

general second order differential equation including lower order terms, other projectors

have to be used in order to retain optimal convergence [14].
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Let us now introduce the discrete bilinear form on the element E as:

aEδ (uδ, vδ) = aE
(
Π∇E,kuδ,Π

∇
E,kvδ

)
+ SEδ

(
uδ −Π∇E,kuδ, vδ −Π∇E,kvδ

)
, ∀uδ, vδ ∈ Vk,δ(E) , (4.3.3)

where SEδ is any symmetric, positive definite bilinear form that verifies

C0a
E(vδ, vδ) ≤ SEδ (vδ, vδ) ≤ C1a

E(vδ, vδ) ∀vδ ∈ ker(Π∇E,k) ,

for constants C0, C1 > 0 independent of E. This means that SEδ (v, v) scales like aE(v, v)

on the kernel of Π∇E,k. A possible choice for SEδ is the Euclidean product in R#V Ek,δ×#V Ek,δ

between vectors whose components are the values of the functions at the degrees of

freedom. Note that the first term of (4.3.3) ensures the consistency of the form, and the

second one has in charge its stability. In particular, we have

aEδ (vδ, pk) = aE (vδ, pk) ∀vδ ∈ Vδ, ∀pk ∈ Pk(E) . (4.3.4)

Going back to the whole DFN, the global discrete bilinear form is defined as

aδ(hδ, vδ) =
N∑
i=1

∑
E∈τδ,i

aEδ (hδ, vδ) ∀hδ, vδ ∈ Vk,δ =
N∏
i=1

Vk,δ(Fi) . (4.3.5)

Under proper regularity assumptions, it can be proved [10] that aδ is equivalent to a, i.e.

that there exist two positive constants α∗ and α∗, independent of δ and N , such that

α∗ a (vδ, vδ) ≤ aδ (vδ, vδ) ≤ α∗ a (vδ, vδ) ∀vδ ∈ Vk,δ . (4.3.6)

For the right hand side with load term f , it is enough for optimal convergence [12]

to consider the following discrete scalar products:

(f, vδ)δ =
∑
E∈τδ

∫
E
fΠ0

E,kvδ (4.3.7)

where ∀E ∈ Th, Π0
E,k is computed as in [12, sections 5.3–6.1], i.e. it is the polyno-

mial function such that, ∀v ∈ Vk,δ(E),

(
Π0
E,kv, p

)
E

= (v, p)E ∀p ∈ Pk−2 (E) ,(
Π0
E,kv, p

)
E

=
(
Π∇E,kv, p

)
E
∀p ∈ Pk (E) \ Pk−2 (E) .
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4.4 Mortar formulation of the problem

In this section we introduce a Mortar formulation for problem (4.2.12), in conjunction

with the VEM for the finite dimensional approximation of V .

From now on, let us consider the VEM of order k and let us introduce the spaces

Vδ =
{
vδ ∈ Vk,δ : γ

ΓDi

(vδ) = 0 ∀i = 1, . . . , N
}
, (4.4.1)

V D
δ =

{
vδ ∈ Vk,δ : γ

ΓDi

(vδ) = Π0
k,ΓD(HD) ∀i = 1, . . . , N

}
, (4.4.2)

where Π0
k,ΓD

is the piecewise L2(e) projection on polynomials of degree ≤ k for all

edges e such that e ∩ ΓD 6= ∅. We equip both spaces with the same norm as V . The

Mortar Method [18] consists in weakening the continuity of the solution on each trace

S ∈ S, replacing it by suitable orthogonality conditions with respect to a proper finite

dimensional subspace of H−
1
2 (S), which will be denoted by Mδ,S ⊂ L2(S). Going back

to equation (4.2.9), let h and λ denote the discrete counterpart of H and Λ, respectively;

the discrete version of (4.2.9) is written as: find h ∈ V D
δ such that, for i = 1, . . . , N

aδi (hi, vδi) + bi (vδi, λ) = (fi, vδi)δ +
(
HN , vδi

)
ΓNi

∀vδ ∈ Vδ . (4.4.3)

Following the mortar terminology, for each S ∈ S, S = F̄i ∩ F̄j , we call mortar fracture

the one whose index i is such that mS(i) = 0, while the other fracture intersecting at S

will be denoted as non-mortar. In the present context, λS = λ|S will approximate the

jump of the co-normal derivative of the solution on the non-mortar fracture, while the

jump on the mortar fracture will be approximated by −λS .

Considering again a lifting RDδ of Π0
k,ΓD

(HD) and summing up (4.4.3) over all

fractures, the global form aδ defined by (4.3.5) arises and the problem can be rewritten

as: find h = h0 +RDδ , with h0 ∈ Vδ, and λ ∈Mδ such thataδ (h0, vδ) + b (vδ, λ) = (f, vδ)δ +
(
HN , vδ

)
ΓN
− aδ

(
RDδ , vδ

)
∀vδ ∈ Vδ,

b (h0, ψδ) = −b
(
RDδ , ψδ

)
∀ψδ ∈Mδ,

(4.4.4)

being

Mδ =
∏
S∈S

Mδ,S , (4.4.5)

and b(vδ, ψδ) computed as an integral in L2(S).
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4.4.1 Well-posedness of the discrete problem

Following [25, Corollary 2.1], the well-posedness of problem (4.4.4) is guaranteed if aδ is

coercive on

Wδ = {vδ ∈ Vδ : b(vδ, ψδ) = 0 ∀ψδ ∈Mδ} , (4.4.6)

and an inf-sup condition holds:

∃β > 0: inf
ψδ∈Mδ

sup
vδ∈Vδ

b (vδ, ψδ)

‖ vδ ‖V ‖ψδ ‖M
≥ β . (4.4.7)

The existence of a constant β independent of δ satisfying (4.4.7) was proved in [16]

making use of [68, Lemma 10] in the case of a polynomial Finite Element approximation

on a regular triangulation. The same proof applies here under the following assumption.

Assumption 1. There exists a constant σ > 0 independent of δ such that, for each

E ∈ τδ,i, for i = 1, . . . , N , the distance between any two vertices of E is larger then or

equal to σhE , where hE is the diameter of E.

Under this assumption, consider a trace S and a segment e belonging to the

discretization of S. Let E be one of the two polygons sharing e. By Assumption 1, we

can construct in the interior of E a triangle Te,E having e as one of its edges and having

a shape regularity which depends uniquely on σ (for example, for convex elements, by

connecting the extrema of e with the barycenter of E). The area of such a triangle scales

as the area of E divided by the number of edges of E. We are thus led to make the

following assumption.

Assumption 2. The number of edges of the elements of τδ is limited independently of δ.

With this last assumption, the area of Te,E scales like the area of E and thus, the

norm of any function belonging to the finite dimensional space on Te,E is equivalent to

the one on E. From [68, Lemma 10], we obtain the existence of an inf-sup constant

independent of δ for Te,E and thus prove the existence of such a constant for E by the

equivalence of the norms.

To prove the coercivity of aδ on Wδ, we first prove the coercivity of a on such

space and then use the equivalence (4.3.6). The key result needed is the following.

Proposition 4.4.1. Assume that Mδ contains the functions which are constant on each

trace. Then, the functional vδ 7→ ||| vδ ||| is a norm over Wδ.

Proof. It is enough to verify that ||| vδ ||| = 0 only if vδ = 0. Let vδ ∈ Wδ be such that

||| vδ ||| = 0. Then it must be constant on each fracture, since its gradient on each fracture
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is null. Furthermore, vδ clearly vanishes on all fractures such that ΓDi 6= ∅. It is now easy

to prove that vδ vanishes on all fractures. Indeed, let S be a trace shared by fractures

Fi and Fj , with γS (vδi) = 0; thanks to the mortar condition one has

(JvδKS , 1)S = |S| JvδKS = 0⇒ γS (vδj) = γS (vδi) = 0

and since vδi and vδj are constant, it follows that vδj = 0. Thanks to the network

connectivity, this ensures that vδ vanishes on all the fractures.

From now on, Mδ is required to satisfy the assumption of Proposition 4.4.1. It

follows that a is coercive with coercivity constant 1 on Wδ. By (4.3.6), aδ is coercive

with coercivity constant α∗.

4.4.2 A priori error estimates

We are now able to derive an a priori error estimate. To this aim, we introduce the

operators F ,Fδ ∈ V ′ defined such that

〈F , v〉±1,Ω = (f, v)Ω, 〈Fδ, v〉±1,Ω = (f, v)δ.

Furthermore, define

WD
δ =

{
v ∈ V D

δ : b(v, ψ) = 0, ∀ψ ∈Mδ

}
, (4.4.8)

PDk (Ω) =
{
p ∈ V D

δ : p ∈ Pk(E), ∀E ∈ τδ
}
. (4.4.9)

The main result concerning the a priori error estimate is stated in the following Theorem.

The proof is reported in 4.8.

Theorem 4.2. Let Vδ, Mδ, Wδ, W
D
δ and PDk (Ω) be defined as in (4.4.1), (4.4.5), (4.4.6),

(4.4.8) and (4.4.9), respectively. Then, the solution (h, λ) to problem (4.4.4) and the

solution (H,Λ) to problem (4.2.9) satisfy

|||H − h ||| ≤
(

1 +
α∗

α∗

)
inf

vδ∈WD
δ

|||H − vδ |||+
1 + α∗

α∗
inf

pk∈PDk (Ω)
|||H − pk |||

+
1

α∗

(
inf

ψδ∈Mδ

sup
vδ∈Wδ

b (vδ,Λ− ψδ)
||| vδ |||

)
+

1 + CΩ

α∗
‖F −Fδ ‖V ′ .

(4.4.10)



Chapter 4. A hybrid mortar method 70

Moreover, assume (4.4.7) is satisfied. Then,

‖Λ− λ ‖M ≤
(

1 +
1

β

)
inf

ψδ∈Mδ

‖Λ− ψδ ‖M +

√
α∗

β
|||H − h |||

+
1 +
√
α∗

β
inf

pk∈PDk (Ω)
|||H − pk |||+

1

β
‖F −Fδ ‖V ′ .

(4.4.11)

4.5 Implementation

We describe in this section some details concerning the practical implementation of the

method.

4.5.1 Mesh generation and trace management

Following closely the ideas in [17], we start by independently introducing a good quality

triangular mesh on each fracture, disregarding trace positions. Such triangulation will be

called base mesh. On each fracture, the base mesh is then modified in such a way that a

new polygonal mesh is obtained, that is locally conforming to the traces of the fractures.

This means that traces will be covered by edges of the new polygonal elements, though we

remark that elements on meshes from different fractures induce a different discretization

of the same trace. This new mesh will be suitable for the application of the method

described in the previous sections and it will be called VEM mesh. The procedure for

obtaining the VEM mesh is the following. Whenever a trace intersects an edge of the

triangulation, a new node is created at the intersection. Each trace tip defines a new

node and the trace segment is prolonged up to the nearest edge of the triangulation,

thereby creating a new edge and a new node. When two traces intersect each other, they

are split into two sub-traces and in their intersection a new node is created. Whenever

an element of the mesh is cut by a (possibly prolonged) trace segment, it is split into

two parts which become new elements of the polygonal mesh in their own right. Finally,

traces without internal nodes receive the addition of a new node in its midpoint, which

is necessary to define the discrete Mortar space for the trace. The overall procedure thus

results in a polygonal mesh whose elements are convex polygons made of an arbitrary

number of edges.

Figure 4.5.1 is illustrative for such procedure. Focusing on a single fracture, we

depict on the left the base mesh introduced, and the local traces present on the fracture,

denoted by LT and with a fracture-local numbering from 1 to 15. On the right, the

VEM mesh obtained is represented. Note that new traces are introduced by splitting

the original traces into sub-traces. Note, as well, the generation of new nodes and
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Figure 4.5.1: Mesh examples. Left: base mesh; right: VEM mesh

elements obtained via trace segment prolongation and the addition of one internal node

(see, e.g., the original local trace 3 on the top of the fracture). To better highlight the

number of edges in the elements, a different coloring is used for elements with a different

number of edges.

Remark 4.3. In order to verify Assumption 1, a mesh smoothing process can be designed,

in order to improve the quality of the VEM mesh, reduce the number of DOFs and

prevent irregular elements in the discretization. Let us introduce for each vertex a

quantity rm called moving radius, defined as a fixed rate of the smallest edge connected

to that vertex. Correspondingly, we define a moving ball as a ball with center the vertex

and radius rm. Then:

1. if a trace tip lies within a moving ball of a vertex, the vertex is moved on the tip

(see Figure 4.2(a));

2. if the intersection between two traces is within the moving ball of a vertex not

previously moved to a tip, the latter is moved on the intersection (see Figure

4.2(b));

3. if a vertex not previously moved is closer to a trace than the moving radius, it is

moved orthogonally onto the trace (see Figure 4.2(c)).

This procedure does not cover the case in which two traces intersect each other with a

very small angle or very small traces, but from the numerical results (see, in particular,

section 4.6.2) we can say that the method is sufficiently robust to deal with this kind of

issues.

Remark 4.4. Assumption 2 is satisfied by the VEM mesh. Indeed, the triangles of the

base mesh are only split when a trace cuts them. Thus, the number of edges of the
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(b) Traces intersecting close to a vertex
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(c) Trace very close to a vertex

Figure 4.5.2: Mesh smoothing process. Left: before mesh smoothing; right: after
mesh smoothing

new polygonal elements is limited by the number of traces cutting the element (that is

bounded by the number of traces on the fracture), plus 3.

4.5.2 Matrix Formulation of the problem

On the discretization of S induced by the triangulation on the non-mortar fracture,

we introduce a finite dimensional subspace of dimension NS , containing the constant

functions (this is required for well-posedness, see Proposition 4.4.1). Let Nh and Nλ be

the total number of degrees of freedom for h and λ, respectively, and set Ndof = Nh+Nλ;

let us denote by φk, k = 1, . . . , Nh, and ψl, l = 1, . . . , Nλ, the basis functions for h and

λ, respectively. Finally, let ND be the number of basis functions φDj used to define the

lifting RD of the Dirichlet boundary condition. Then, problem (4.4.4) can be written as

Nh∑
j=1

aδ (φj , φk)hj +

Nλ∑
l=1

b (φk, ψl)λl = (f, φk)δ+
(
HN , φk

)
ΓN
−
ND∑
j=1

aδ
(
φDj , φk

)
hDj

Nh∑
j=1

b (φj , ψm)hj = −
ND∑
j=1

b
(
φDj , ψm

)
hDj
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∀k = 1, . . . , Nh and ∀m = 1, . . . , Nλ, where hDj is the value of Π0
k,ΓD

(HD) at the bound-

ary node corresponding to φDj . Summarizing, we have to solve the system

(
A ∈ RNh,Nh B ∈ RNh,Nλ

Bᵀ ∈ RNλ,Nh O ∈ RNλ,Nλ

)(
h

λ

)
=

(
F

Ψ

)
, (4.5.1)

where

Akj = aδ (φk, φj) , Bjl = b (φj , ψl)

Fk = (f, φk)δ+
(
HN , φk

)
ΓN
−
ND∑
j=1

aδ
(
φDj , φk

)
hDj , Ψm = −

ND∑
j=1

b
(
φDj , ψm

)
hDj .

For the practical construction of the VEM stiffness matrix and right hand side

vector, we refer the reader to [12]. We remark that the construction of the matrix B can

be done by standard quadrature formulas, since the analytical expression of the basis

functions on the edges of each element is known.

4.5.3 Bases for the discrete Lagrange multipliers

In this subsection we give details about the choice adopted for the space Mδ,S , for each

S ∈ S. For a thorough description of the possible choices of Mortar bases, we refer the

reader to [73].

In this work we have used three bases: the basis M0, composed by piecewise

constant functions; the basis M1, given by continuous piecewise linear functions, except

for the first and last intervals on which the functions are taken constant; the basis M2,

given by discontinuous piecewise quadratic functions, except for the first and last interval

where the functions are linear. These bases are depicted in Figure 4.5.3.
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Figure 4.5.3: Lagrange multiplier basis

4.6 Numerical results

We present in this section some numerical results aimed at assessing the practical be-

havior of the method. The results are obtained on two classes of problems: firstly, we

present a benchmark problem for which the exact solution is known, with some conver-

gence results; secondly, we analyse the performance of the method on larger DFNs that

introduce several geometrical complexities. All the numerical results here reported are

obtained without any kind of mesh smoothing (see Remark 4.3), in order to test the

robustness of the method.

4.6.1 Benchmark problem

The benchmark DFN consists of 3 fractures as shown in Figure 4.6.1. Despite being a

simple network, it presents two geometrical features (a trace intersection and a trace

tip) which make it worthwhile to analyse the behavior of the method at tackling them.

The computational domain Ω = F1 ∪ F2 ∪ F3 is defined by

F1 =
{

(x, y, z) ∈ R3 : −1 ≤ x ≤ 1/2, −1 ≤ y ≤ 1, z = 0
}
,

F2 =
{

(x, y, z) ∈ R3 : −1 ≤ x ≤ 0, y = 0, −1 ≤ z ≤ 1
}
,

F3 =
{

(x, y, z) ∈ R3 : x = −1/2, −1 ≤ y ≤ 1, −1 ≤ z ≤ 1
}
,
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Figure 4.6.1: Benchmark problem: geometry of the network

with traces

S1 = F1 ∩ F2 =
{

(x, y, z) ∈ R3 : −1 ≤ x ≤ 1/2, y = 0, z = 0
}
,

S2 = F1 ∩ F3 =
{

(x, y, z) ∈ R3 : x = −1/2, −1 ≤ y ≤ 1, z = 0
}
,

S3 = F2 ∩ F3 =
{

(x, y, z) ∈ R3 : x = −1/2, y = 0, −1 ≤ z ≤ 1
}
.

The problem is defined setting non-homogeneous Dirichlet boundary conditions

on the whole boundary ∂Ω, and a load term on each fracture in such a way that the

exact solution is given by:

H1(x, y) =
1

10

(
−x− 1

2

)(
8xy

(
x2 + y2

)
arctan2(y, x) + x3

)
,

H2(x, z) =
1

10

(
−x− 1

2

)
x3 − 4

5
π

(
−x− 1

2

)
x3 |z| ,

H3(y, z) = (y − 1)y(y + 1)(z − 1)z,

where arctan2(y, x) is the four quadrant inverse tangent function with 2 arguments,

that returns the appropriate quadrant of the computed angle y/x. Note that since

H1, H2 /∈ C1, a net flux is expected between F1 and F2.

The computed solutions obtained for the hydraulic head on such fractures are

shown in Figure 4.6.2. Fluxes exchanged between F1 and F2, computed with all three

considered choices for the mortar bases are shown in Figure 4.6.3, where they are com-

pared with the exact one.
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Figure 4.6.2: Benchmark problem: computed hydraulic head on fractures F1 (left)
and F2 (right)

Figure 4.6.3: Benchmark problem: computed and exact fluxes

In order to present convergence results, we remark that since the values of the

discrete solution are not explicitly known inside the elements but only on the set of

DOFs, the errors are computed by projecting the discrete solution on the space of

polynomials of degree k, as is the usual procedure with the VEM [14]:

(
ErrHL2

)2
=
∑
E∈Tδ

‖H −Π∇E,khE‖2L2(E) ,(
ErrHH1

)2
=
∑
E∈Tδ

‖H −Π∇E,khE‖2H1(E) ,

where Π∇E,k is the projection operator of order k as defined in section 4.3, H is the exact

solution and hE is the discrete solution restricted to element E. Regarding the errors of

approximation of Λ, we measure them on each trace both in L2(S) and H−
1
2 (S) norm;

for practical computational issues, we approximate this latter norm with a weighted
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h λ on S1

VEM order Mortar basis L2 Norm H1 Norm L2 Norm H−
1
2 Norm

1 M0 1.00 (1) 0.50 (0.5) 1.19 1.79
1 M1 1.00 (1) 0.50 (0.5) 1.26 1.87
2 M0 1.38 (1.5) 0.91 (1) 0.98 1.54
2 M1 1.50 (1.5) 1.01 (1) 1.54 2.05
2 M2 1.51 (1.5) 1.01 (1) 2.45 3.02

Table 4.6.1: Benchmark problem: convergence rates for several VEM orders and
Mortar bases. The numbers in parentheses indicate the expected rates

L2(S) norm: (
ErrΛ

L2

)2
=
∑
S∈S

∑
e⊂S
‖Λ− λ‖2e ,

(
ErrΛ

H−
1
2

)2
=
∑
S∈S

∑
e⊂S
|e| ‖Λ− λ‖2e .

In Figure 4.6.4, focusing on fracture F1, we present the convergence curves for

different combinations of the order k for the VEM space and of the type of Mortar

basis. Namely, in the left column we report the behavior of the errors ErrHL2 and ErrHH1

(labeled by L2 and H1, respectively); the errors are plot versus the total number of

h-DOFs on the fracture. In the right column we report the errors ErrΛ
L2 and ErrΛ

H−
1
2

(labeled by L2 and H−1/2, respectively); here, the errors are plot versus the number of

λ-DOFs on the traces of F1.

Finally, Table 4.6.1 reports, for all the analysed cases, the computed convergence

rates with respect to the number of DOFs. Namely, we report the computed rates of

convergence for h with respect to the h-DOFs (the expected values being reported in

parentheses); note the very good agreement between the computed and the expected

rates, except for the case k = 2 and M0, in which the low order of the mortar basis slows

down the rate of convergence for the hydraulic head. Focusing on trace S1, we also

report the computed rates of convergence for λ with respect to the number of λ-DOFs.

The rates of convergence for the λ-errors with respect to the number of h-DOFs, not

listed here, are approximately one half of the reported values; this is in agreement with

the fact that the number of λ-DOFs scales as the square root of the number of h-DOFs.

4.6.2 Complex networks

In this section we present results obtained on more complex networks. The first one,

DFN36, consists of 36 fractures. The geometry of the DFN is depicted in Figure 4.6.6,

from which the geometrical complexity of the domain can be seen. A non-homogeneous

constant Neumann boundary condition (HN = 100) has been set on one fracture (called
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source fracture), and a homogeneous Dirichlet boundary condition has been set on an-

other fracture (sink fracture). Homogeneous Neumann boundary conditions on the

remaining part of the boundary isolate all the other fractures from the surrounding

medium.

The plots in Figure 4.6.5 report the computed total net fluxes exchanged by the

source and sink fracture versus the number of DOFs on traces (logaritmic x-scale), for

VEM of order k = 1, 2 and 3, and mortar bases M0, M1 and M2. The value ∆ reported

is the difference between the two curves and is an indication of the global conservation

state of the method in the whole DFN. Results show the tendency to approximate the

expected values and we note that, interestingly, almost no difference in flux values is

appreciated for different choices of mortar bases.

As a further quality indicator for the obtained solution, we introduce a measure

of the error of the jump of the hydraulic head on traces. Namely, we set

Eh =
∑
S∈S
‖ JhKS ‖

2
L2(S) .

The computed values are shown in Figure 4.6.7 for VEM of order k = 1, 2 and 3, using

the basis M1. For all orders, a decrease in this parameter was observed with increasing

number of DOFs as expected, but interestingly, with a similar rate. Since the defined

quantity does not constitute a norm, no further conclusions about convergence can be

drawn.

As a second example, a 134 fracture network is proposed (DFN134, Figure 4.6.8).

As far as geometrical complexities are concerned, this DFN is far more challenging

than DFN36, as it exhibits several critical features: very small angles at trace inter-

sections (thus challenging the shape regularity of the elements stated by Assumption

1 and discussed in Remark 4.3), almost parallel traces, large variation of trace lengths

and fracture sizes. Three fractures were chosen as source fractures by imposing non-

homogeneous Neumann boundary conditions. A fourth fracture was set as sink fracture,

and on one of its edges a homogeneous Dirichlet boundary conditions was set. Ho-

mogeneous Neumann conditions were imposed on all the remaining components of the

boundary. In Figure 4.6.9 we report some data for a particularly intricate fracture,

where the problem has been solved using VEM of order k = 2 and the M1 basis. The

VEM mesh is presented, as well as the affine interpolation of the computed hydraulic

head solution and the corresponding velocity field obtained from the gradients of the

computed hydraulic head. From the detail reported in the bottom right figure, it can

be seen how elements of order 2 allow for a better representation of the change in slope

between close traces thanks to the added DOFs in the midpoints of each of the edges.
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Figure 4.6.4: Benchmark problem: convergence curves measured on fracture F1
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(a) k = 1

(b) k = 2

(c) k = 3

Figure 4.6.5: DFN36: flux results
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Figure 4.6.6: DFN36: geometry of the network and computed hydraulic head (as a
scale of colours)
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Figure 4.6.7: DFN36: error in the jump of the hydraulic head on traces
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Figure 4.6.8: DFN134: geometry of the network and computed hydraulic head (as a
scale of colors)
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Figure 4.6.9: DFN134: a selected fracture
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4.7 Conclusions

We have introduced a new approach for flow simulations in Discrete Fracture Networks.

The key feature is given by its capability to work with arbitrary (good quality) meshes

generated on the fractures. Taking advantage of the versatility of the Virtual Element

Method in handling polygonal meshes, each arbitrary mesh is easily modified in such

a way that local conformity of the meshes is obtained for almost any trace disposition.

Using the hybrid formulation of the Mortar method, only “weak” continuity is required

for the hydraulic head along the intersections between fractures.

The main advantage of the approach presented here, with respect to the method

proposed in chapter 3, is that, besides the computation of the hydraulic head, the present

approach allows for a direct approximation of the flux on each trace, whereas before the

flux exchange is derived from the values of the hydraulic head.

The validity of the approach proposed is supported by numerical experiments,

showing optimal convergence for the primal variable; furthermore, the behaviour of the

method is quite satisfactory also when it is applied to DFNs with complex geometry.

Future developments include the extension to more complex flow models and in

particular to the case of non-constant transmissivity values. Furthermore, we aim at

investigating a possible parallel implementation, which is recommended for tackling

large scale DFNs for realistic underground flow simulations.

4.8 Proof of Theorem 4.2

This section is devoted to the proof of Theorem 4.2. The proof follows the lines of the

proofs of [68, Theorem 3] and [10, Theorem 3.1]. We first prove the following preliminary

result, which extends Poincaré’s inequality to a DFN.

Lemma 4.5. Let W̃ =
{
v ∈ V :

∫
S JvK = 0 ∀S ∈ S

}
. Then

∃CΩ > 0: ∀w ∈ W̃

(
N∑
i=1

‖w‖2L2(Fi)

) 1
2

≤ CΩ |||w ||| (4.8.1)

Proof. First, notice that ||| · ||| is a norm on W̃ (see Proposition 4.4.1), thus the right hand

side of (4.8.1) does not vanish, unless w is identically zero. By contradiction, suppose

∀C > 0, ∃wC ∈ W̃ : ‖wC ‖Ω :=

(
N∑
i=1

‖wC‖2L2(Fi)

) 1
2

> C |||wC ||| ,
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then it is possible to build a sequence wk ∈ W̃ , k ∈ N, of functions such that ‖wk ‖Ω >

k |||wk ||| and, without loss of generality, suppose that ‖wk ‖Ω = 1 for all k. Then, since

‖wk ‖H1(Fi)
is limited for all i = 1, . . . , N , wk converges weakly in V to a function w?

up to sub-sequences. Clearly, ∇wk converges to ∇w? weakly. Then, since

0 ≤ ‖∇wk −∇w?‖L2(Fi) = ‖∇wk‖2L2(Fi)
− 2(∇wk,∇w?)L2(Fi)

+ ‖∇w?‖2L2(Fi)
,

and ‖∇wk ‖L2(Fi)
< 1

k , taking the limit for k → ∞, it follows that ‖∇w? ‖L2(Fi)
= 0.

Then, w? is constant on each fracture. By the same arguments used in the proof of

Proposition 4.4.1, it follows that w? must be the null function. Moreover, since H1(Fi)

is compactly embedded in L2(Fi), wk converges strongly to w? in L2(Fi), for all i =

1, . . . , N . Since ‖wk ‖L2(Fi)
k→∞−→ ‖w? ‖L2(Fi)

for all i = 1, . . . , N , we obtain ‖w? ‖Ω = 1,

which is a contradiction.

We can now prove the a priori error estimate.

Proof of Theorem 4.2. Let hl ∈ WD
δ be the a-orthogonal projection of H ∈ V D over

WD
δ , such that

∀vδ ∈WD
δ , a (H − hl, vδ) = 0 .

Exploiting the properties of the projection, we have

|||H − h |||2 = |||H − hl |||2 + |||hl − h |||2 =

(
inf

vδ∈WD
δ

|||H − vδ |||

)2

+ |||hl − h |||2 .

As far as the second term is concerned, recalling (4.3.6) we have

α∗ |||hl − h |||2 = α∗a(hl − h, hl − h) ≤ aδ(hl − h, hl − h) .

By using the problem definitions (4.2.12) and (4.4.4), and introducing an arbitrary

p ∈ PDk , for which (4.3.4) holds, we have

aδ (hl − h, hl − h) = aδ (hl − p, hl − h) + aδ (p, hl − h)− aδ (h, hl − h)

= aδ (hl − p, hl − h) + a(p, hl − h)− (f, hl − h)δ

+ b (hl − h, λ)−
(
HN , hl − h

)
ΓN

= aδ (hl − p, hl − h) + a(p−H,hl − h) + a(H,hl − h)

− (f, hl − h)δ + b (hl − h, λ)−
(
HN , hl − h

)
ΓN

= aδ (hl − p, hl − h) + a(p−H,hl − h)

− (f, hl − h)δ + (f, hl − h) − b (hl − h,Λ) ,
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where we have used that b (hl − h, λ) = 0 because hl − h ∈Wδ. Introducing F , Fδ and

a generical ψδ ∈Mδ, since b (hl − h, ψδ) = 0 we have

aδ (hl − h, hl − h) = aδ (hl − p, hl − h) + a(p−H,hl − h)− b (hl − h,Λ)

+ V ′〈F −Fδ, hl − h〉V

≤
(
α∗ |||hl − p |||+ |||H − p |||+

b (hl − h,Λ− ψδ)
|||hl − h |||

)
|||hl − h |||

+ ‖F −Fδ ‖V ′ ‖hl − h ‖V

≤
(
α∗ |||hl − p |||+ |||H − p |||+

b (hl − h,Λ− ψδ)
|||hl − h |||

+ (1 + CΩ) ‖F −Fδ ‖V ′
)
|||hl − h ||| ,

where in the last step inequality (4.8.1) has been used (see (4.2.13) for the definition of

the V -norm). The proof of (4.4.10) is thus completed using the triangle inequality and

suitably taking the supremums and infimums.

In order to prove (4.4.11), let us consider an arbitrary ψδ ∈ Mδ. By applying

(4.4.7), (4.2.12) and (4.4.4) we get:

β ‖ψδ − λ ‖M ≤ sup
vδ∈Vδ

b (vδ, ψδ − λ)

‖ vδ ‖V
= sup

vδ∈Vδ

b (vδ,Λ− λ) + b (vδ, ψδ − Λ)

‖ vδ ‖V

= sup
vδ∈Vδ

aδ (h, vδ)− (f, vδ)δ − a (H, vδ) + (f, vδ) + b (vδ, ψδ − Λ)

‖ vδ ‖V
.

Next, introducing an arbitrary p ∈ PDk (Ω), by (4.3.4) we get

β ‖ψδ − λ ‖M ≤ sup
vδ∈Vδ

‖ vδ ‖V
−1
[
aδ (h− p, vδ) + a (p−H, vδ)

+V ′〈F −Fδ, vδ〉V + b (vδ, ψδ − Λ)]

≤ sup
vδ∈Vδ

‖ vδ ‖V
−1
[√

aδ (h− p, h− p)
√
aδ (vδ, vδ)

]
+ |||H − p |||

+ ‖F −Fδ ‖V ′ + ‖Λ− ψδ ‖M
≤
√
α∗ |||h− p |||+ |||H − p |||+ ‖F −Fδ ‖V ′ + ‖Λ− ψδ ‖M

≤
√
α∗ |||H − h |||+(1 +

√
α∗) |||H − p |||+ ‖F −Fδ ‖V ′ +

+ ‖Λ− ψδ ‖M .

The proof is concluded by the triangle inequality and taking the infimum over PDk (Ω).



Chapter 5

Time dependent problems and

the transport equation

5.1 Introduction

In chapters 2, 3 and 4 we have presented a family of methods and applications of the

Virtual Element Method (VEM) to solve the problem of solving Darcy’s flow in Discrete

Fracture Networks (DFN), and we have used those results to obtain the pressure head

and the velocity field in the network. In this chapter we aim to improve the approaches

that we have developed and study the behavior of the Virtual Element Method applied to

solving the transient diffusion-convection-reaction equation in DFNs with SUPG stabi-

lization. This more ambitious goal has many useful potential applications like pollutant

transport, fluid transport, particle tracing, etc. We give a brief review of the choice in

VEM formulations followed by benchmark results and an application to DFNs.

5.2 Problem description

5.2.1 The reaction–diffusion–advection equation

This equation is used to model the concentration of some chemical substance under the

processes of diffusion, transportation of mass due to the movement of the underlying

medium and undergoing reaction. In its most general form, the time dependent equation

is written as
∂u

∂t
+∇ · (βu− ν∇u) + γu = f, (5.2.1)

86
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where u represents the concentration, ν is the diffusion coefficient, β is the flow velocity,

γ is a source parameter and f is the source function that models the changes in concen-

tration due to reactions. This equation is obtained from the conservation of mass in a

continuum model and there may be nonlinearities present in the coefficients. When some

of the coefficients are null, the equation reduces to special cases. In particular, when no

reaction term is present (γ = 0) it simplifies to the advection–diffusion (also known as

convection-diffusion) equation, which is of particular interest in transport problems and

in our study of DFNs. The steady state equation is obtained by putting ∂c
∂t = 0.

5.2.2 Numerical treatment of the equation

It is well known that this formulation of the problem (5.2.1) is not viable when the

convective term is dominant with respect to the diffusive term. The classical Galerkin

scheme for finite elements becomes very unstable in these situations and a stabilized

form of the numerical scheme is required in order to prevent spurious oscillations that

can render the numerical solution completely erroneous. Many stabilization techniques

have been proposed in the literature. We refer the reader to [40] and [24] for an overview

and results on stabilized finite elements.

More precisely, let us consider the classic weak formulation of the steady state

problem with homogeneous Dirichlet boundary conditions. We denote (, ) as the stan-

dard L2 inner product, Ω a domain and define B : H1
0(Ω)×H1

0(Ω)→ R and F : H1
0(Ω)→

R such that

B(u, v) = (ν∇u,∇v) + (β · ∇u, v) + (γu, v) ∀u, v ∈ H1
0(Ω), (5.2.2)

and

F (v) = (f, v) ∀v ∈ H1
0(Ω) .

We arrive at the formulation, find u ∈ H1
0(Ω) such that

B(u, v) = F (v) ∀v ∈ H1
0(Ω) . (5.2.3)

This formulation can be adjusted to more general boundary conditions without prob-

lems. The Streamline Upwind Petrov Galerkin (SUPG) stabilization approach redefines

problem (5.2.3) as

Bsupg(u, v) = Fsupg(v) ∀v ∈ H1
0(Ω), (5.2.4)
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where

Bsupg(u, v) = (ν∇u,∇v) + (β · ∇u, v) + (γu, v)

+
∑
E∈Th

τE(−νE∆u+ β · ∇u+ γu, β · ∇v)E , ∀u ∈ H1
0(Ω)∩H2 and v ∈ H1

0(Ω)

and

Fsupg(v) = (f, v) +
∑
E∈Th

τE(f, β · ∇v)E ∀v ∈ H1
0(Ω) .

The subscript E stands for the elements of the triangulation Th, and νE is a constant

approximation of the trace of the diffusion coefficient for each element E. The stability

parameter τE on E of the triangulation is classically defined by

PeE = mE
k

||β||phE
2νEmax

,

τE =
hE

2||β||P
min {PeE , 1} =

mE
k

h2
E

4νEmax
, 0 ≤ PeE < 1

hE
2||β||p , 1 ≤ PeE

mE
k = min

{
1

3
, 2C̃Ek

}
,

C̃Ek h
2
E ||∇ ·

√
νE∇vk||20,E ≤ ||

√
νE∇vk||20,E∀vk ∈ Pk (E) ,

(5.2.5)

where hE is the diameter of E, Pk (E) is the space of polynomials of degree k on E,

and ||β||p = ‖ |β|p ‖E,inf , i.e. ||β||p is the infinity norm on E of the p-norm of the vector

β. Peh is called the mesh Péclet number for E. The value for mE
k changes according to

the polynomial degree of the finite element approximation and is related to the inverse

inequalities for the mesh elements. Note that the proposed stabilization introduces a

term that is consistent (it is zero if it is computed with the exact solution), or tends to

zero when it is computed with functions that approximate the exact solution.

For the numerical experiments in this chapter, both the complete as well as a

reduced form of the SUPG stabilization were used, the latter based on the one proposed

by Brezzi and Pitkäranta in [27] (see also [53], [51]). Unfortunately, we cannot hope to

retain optimum convergence with this stabilization due to the fact that we are introduc-

ing a non consistent stabilization term (i.e., a term that does not go to zero as we make

the mesh parameter decrease).

The formulation of the reduced stabilization used for the numerical experiments

in this chapter is

Bbp(u, v) = Fbp(v) ∀v ∈ H1
0(Ω), (5.2.6)
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where

Bbp(u, v) = (ν∇u,∇v) + (β · ∇u, v) + (γu, v)

+
∑
E∈Th

τE(β · ∇u+ γu, β · ∇v)E , ∀u, v ∈ H1
0(Ω)

and

Fbp(v) = (f, v) +
∑
E∈Th

τE(f, β · ∇v)E ∀v ∈ H1
0(Ω) .

The difference lies in the fact that in (5.2.6), the Laplacian term is removed. For linear

elements, the Laplacian is zero and therefore they both coincide. Starting from the sec-

ond order, the Laplacian is no longer zero and the formulations are effectively different.

The reason for this alternative comes from the difficulties of obtaining information about

the Laplacian of a basis function of the local Virtual Element space based on the degrees

of freedom in all but the most simple cases.

To solve the time dependent equations, we first discretize in space and then in

time. Solutions of the initial value problem for the degrees of freedom are computed

using the classical second order Crank-Nicholson scheme (see for example [46]). Explicit

and Implicit Euler methods can also be used, with some stability restrictions on the size

of the time steps for the explicit case.

5.3 Virtual Element formulation

A very thorough work on conforming and non conforming Virtual Elements for second

order elliptic equations can be found in [33] with convergence results and guidelines on

the implementation. In [56], a comprehensive presentation of the different possibilities

for the VEM formulation is put forward. For other works on the VEM we refer the

reader to the citations provided in previous chapters.

Unlike in other applications of the VEM to DFNs, we will now tackle the full

second order equation with non constant coefficients. We have chosen the external

VEM formulation in favor of the internal one, since we consider the implementation

more straightforward and uses the same ideas of an L2 projector, first described in [2],

and whose implementation does not depend on whether the coefficients are constant or

not. The internal formulation defines the projection operators differently, according to

whether the coefficients of the differential equation are constant or can vary. Further-

more, in the external formulation, we directly compute a certain polynomial projection

of the derivatives of VEM basis functions, while in the internal formulation first the
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polynomial projection is obtained which we then differentiate (for example, to compute

its gradient).

For our purposes, we briefly recall here the external formulation for the Virtual

Element framework used for our experiments, as it differs from the internal formulation

described in previous chapters. We use the conforming variety for our numerical experi-

ments, although the conforming and non conforming VEM have been shown to perform

very similarly [33].

The construction of the local Virtual Element space V E
k,h, the choice in degrees of

freedom as well as the global space were defined in 3.3. We recall the main ideas here:

given a domain F covered with a triangulation τh, for a desired order of accuracy k and

with the space Pk of the polynomials of maximum degree k, let us define the local space

V E
k,h as:

V E
k,h =

{
vh ∈ H1(E) : vh|∂E ∈ C0(∂E), vh|e ∈ Pk(e) ∀e ⊂ ∂E, ∆vh ∈ Pk−2(E)

}
where h is a mesh parameter, E is an element of the triangulation, ∂E is its border and

e an edge. The global virtual element space is:

Vk,h =
{
vh ∈ H1(F ) : vh|E ∈ V E

k,h ∀E ∈ τh
}
.

Recalling Equation 5.2.2, let us define its terms as:

a(u, v) = (ν∇u,∇v)F ,

b(u, v) = (β · ∇u, v)F ,

c(u, v) = (γu, v)F ,

and their local element counterparts as

aE(u, v) = (ν∇u,∇v)E ,

bE(u, v) = (β · ∇u, v)E ,

cE(u, v) = (γu, v)E .

The main idea in the VEM is to approximate these bilinear forms without explicitly

knowing the shape functions in V E
k,h so as to retain optimal convergence of the error.

In order to do so, we will consider a basis for Pk given by the polynomials pα with

α = 1, ..., dim(Pk). We will use φi to denote the shape functions in V E
k,h. The following

projection operators are introduced: Π0
k : V E

k,h → Pk is the solution of an L2 projection
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problem given by

(pα,Π
0
kφi)E = (pα, φi)E ∀α = 1, ..., dim(Pk).

The second projector that we need is Π0
k−1 : V E

k,h → (Pk−1(E))2 given by L2 projection

of ∇φi such that

(pα,Π
0
k−1∇φi)E = (pα,∇φi)E ∀α = 1, ..., dim(Pk−1).

Note that only the basis for the space Pk−1 is needed in this case, since the projection

of the gradient is a polynomial of degree k − 1. We obtain the following decomposition

of the shape functions φi:

φi = Π0
kφi + (I −Π0

k)φi,

φi = Π0
k−1∇φi + (I −Π0

k−1)∇φi,

where I is the identity operator. Both projection operators can be computed only from

the knowledge of the degrees of freedom. Finally, given vh and uh ∈ V E
k,h we can obtain

the discrete bilinear forms as

aEh (uh, vh) = (νΠ0
k−1∇uh,Π0

k−1∇vh)E + SEa ((I −Π0
k−1)∇uh, (I −Π0

k−1)∇vh),

bEh (uh, vh) = (β ·Π0
k−1∇uh,Π0

kvh)E ,

cEh (uh, vh) = (γΠ0
kuh,Π

0
kvh)E ,

where SEa (uh, vh) is a symmetric bilinear form that scales in a desired way in order to

account for the neglected contributions involving products with (I−Π0
k) and (I−Π0

k−1).

It is called the stabilization term, and for aEh it is approximated by

SEa
(
(I −Π0

k−1)∇uh, (I −Π0
k−1)∇vh)

)
≈

νE
NDOF∑
n=1

χn((I −Π0
k−1)∇uh)χn((I −Π0

k−1)∇vh),

where NDOF is the number of degrees of freedom of the shape functions in V E
k,h and χn

is the functional that evaluates the function at its nth DOF. Other stabilization terms

exist for bEh and cEh , but they scale like hE and h2
E respectively and are not needed for

convergence purposes if the stabilization for aEh is present (which scales like 1). Since

the discrete bilinear forms provide exact results when either uh or vh are polynomials,

we say that it is consistent. The stabilization is then provided by SEa and it was proven

that optimal convergence is preserved [33].
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For the terms in the SUPG stabilization, we again approximate the local bilinear

forms using the projection operators defined above.

(−νE∆uh, β · ∇vh)E ≈ (νE∇ ·Π0
k−1∇uh, β ·Π0

k−1∇vh)E

(β · ∇uh, β · ∇vh)E ≈ (β ·Π0
k−1∇uh, β ·Π0

k−1∇vh)E+

SEβ (β · (I −Π0
k−1)∇uh, β · (I −Π0

k−1)∇vh),

(γuh, β · ∇vh)E ≈ (γΠ0
kuh, β ·Π0

k−1∇vh)E ,

(f, β · ∇vh)E ≈ (f, β ·Π0
k−1∇vh)E ,

(5.3.1)

where SEβ is the stabilization of the stabilization term, and takes into account the ne-

glected terms of the form (I −Π0
k−1). In particular, we approximate it with:

SEβ (β · (I −Π0
k−1)∇uh, β·(I −Π0

k−1)∇vh) ≈

|βE |2
NDOF∑
n=1

χn((I −Π0
k−1)∇uh)χn((I −Π0

k−1)∇vh),

where βE is a constant approximation of β on E. Note that when computing for the

Laplacian term of the SUPG stabilization (first equation in (5.3.1)) we must compute

the divergence of the projection of a shape function, since there is so far no known way

of directly obtaining the projection of the Laplacian of a VEM shape function using only

the information of the DOF.

Regarding the discretization in time, some results for parabolic equations using

Virtual Elements can be found in [70], as well as a detailed description of the framework.

We briefly recall the Crank-Nicholson scheme used in our context.

Let φi, with 1 ≤ i ≤ N , be a numbering of the base functions in the global

VEM space Vk,h. We want to find our discrete solution u : [0, T ] → RN , defined by

u(t) = (ui(t))1≤i≤N in the interval [0, T ], with initial condition u0 = (u0i)1≤i≤N and

load term f : [0, T ]→ RN defined as f(t) = (fi(t))1≤i≤N . We will denote K ∈ RN×N as

the stiffness matrix obtained from the Virtual Element discretization in space of problem

(5.2.6), and M ∈ RN×N as the mass matrix. We will compute M using the projector

Π0
k, by M[i, j] = (φi, φj) ≈ (Π0

kφi,Π
0
kφj). We are neglecting the stabilization term for

this matrix since we have used the ”reduced” form of the mass matrix as defined in [70],

that was shown to perform similarly as the stabilized version. We arrive at the initial

value problem: M∂u
∂t + Ku = f ,

u(0) = u0.
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The second order Crank-Nicholson scheme for a given time discretization ∆t, at the step

k with k ≥ 0 is:(
M +

∆t

2
K

)
uk+1 =

(
M− ∆t

2
K

)
uk +

∆t

2
(f(tk) + tk+1) .

5.4 Numerical Results

In this chapter we apply the same meshing techniques as in 3.4 and 4.5 and we refer

the reader to those sections. An error convergence analysis was done on two benchmark

problems to obtain results on convergence rates for the stabilized application of the

method. Convergence results in a diffusion dominated regimes were presented in [33].

Random polygonal meshes were obtained using the PolyMesher algorithm [69].

The full second order equation to solve is:

−∇ · (a(x,y)∇u(x,y)) + b(x,y) · u(x,y) + c(x,y)u(x,y) = f(x,y). (5.4.1)

For our application to DFNs, we are mostly interested in the advection-diffusion

problem and we will consider the case with no reaction term. A non zero load term will

be considered in the benchmark problem while in DFNs the forcing term will arise from

non-homogeneous Dirichlet boundary conditions.

5.4.1 Benchmark problems

In this section we will consider two benchmark problems on a single fracture in the

domain

Ω =
{

(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
}
,

and where ν will be a parameter that allows to change the relative importance of the

advection term in the equation. The load term f(x,y) is such that the exact solution of

(5.4.1) is known and chosen beforehand. The error was obtained by comparing the exact

solution to the projections of the discrete solutions, as in previous chapters (VEM shape

functions are not explicitly known inside the elements). The maximum and minimum

mesh Péclet (Peh) numbers were added for each mesh size considered.
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5.4.1.1 Benchmark problem 1

The first problem is defined with constant coefficients and the range of mesh sizes cover

convection-dominant and diffusion-dominant situations. The idea is to assess the method

for problems with low Péclet numbers and using both definitions of the stability param-

eter τ (5.2.5). In a real DFN, Peh is expected to have a wide range of variation, since

the underlying velocity field can have areas of both high and low values. The coefficients

are

a(x,y) =ν

(
1 0

0 1

)
,

b(x,y) =
(

1/2 −1/3
)
,

c(x,y) = 0,

with ν = 10−3. The exact solution is given by

H(x,y) = (65536/729)x3(1− x)y3(1− y).

We present the convergence curves for orders of accuracy 1 to 3 (Figure 5.4.1). This

problem has a Peh that is around 1, which is the threshold for the change in the sta-

bilization parameter. For all orders, a perfect convergence was found for the complete

stabilization. Even though the reduced stabilization shows a small absolute error, con-

vergence is limited by the non-conformity of the stabilization scheme, and is therefore

much slower than in the complete case. Nevertheless, due to its faster computation time

and acceptable error values, it can be a viable alternative for solving problems with a

coarse mesh.

5.4.1.2 Benchmark problem 2

We now study a problem with non constant coefficients and a high prevalence of the

convection term. The complete (5.2.4) and the reduced (5.2.6) formulations of the SUPG

stabilization show similar results due to the reduced importance of the diffusion term,

and therefore we will present results for two different mesh types (regular triangles and
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Figure 5.4.1: Convergence curves for Benchmark problem 1

random polygons). The input data is

a(x,y) =ν

(
1 + x2 xy

xy 1 + y2

)
,

b(x,y) =
(

(1/3) + 10y(x+ y2)4 (−1/2)− 5(x+ y2)4
)
,

c(x,y) = 0,

with ν = 10−7 and ∇ · b = 0. The exact solution is given by

H(x,y) = 600 xy(1− x)(1− y)(x− 1/5)(y − 2/5)(y − 3/5).

Figure 5.4.2 shows a comparison between the unstabilized solution and the one

obtained using the SUPG stabilization for second order VEM, which shows a very good
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Figure 5.4.2: Benchmark problem 2: Sample mesh, exact, unstabilized and stabilized
solutions

agreement with the exact solution for a given polynomial mesh. As usual, element

coloring indicates number of edges. In this case we have elements with a number of

edges ranging from 4 to 8.

Convergence curves were obtained for VEM formulations of orders of accuracy 1 to

3 (Figure 5.4.3). Note that for all orders and meshes, this problem is always convection-

dominant (Peh > 1). For both types of meshes convergence was as expected and the

absolute error were in the same range. This shows that the formulation is well suited for

working in situations with a high Peh while retaining optimum convergence properties,

and that the introduction of polygonal meshes does not affect the results significantly.

5.4.2 DFN problems

In the following, we present results obtained from applying the proposed method to

DFNs. The analysis consist of two steps: We first solve the Darcy problem in the

network to obtain the pressure head, as well as the velocity field. For the second step, this

velocities will serve as input data for the convection term in the full transient transport

equation. We will assume that we are solving the problem of the concentration of a

certain solute in its medium.

Remark 5.1. At this point it would be reasonable to ask how will the problem be solved

when we are dealing with a DFN and not a single fracture. In this case, any of the
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Figure 5.4.3: Convergence curves for Benchmark problem 2

developed schemes from the previous chapters (see 2.4, 3.4.2 and 4.4) will work for solving

the problem on the DFN, since they only act by establishing ”links” and relationships

between the degrees of freedom on fractures sharing a trace and do not at all depend

on how the stiffness matrices are constructed or from which type of equation they come

from. The information about the DOF of the VEM space basis functions is all that is

needed for the proposed schemes to work. In this chapter, all experiments were done

using the conforming method (see chapter 3) for its simplicity and to avoid introducing

unnecessary complications that can muddle the analysis.

5.4.2.1 7 fractures

This network consisting of 7 fractures (Figure 5.4.4a), similar to one studied before in

chapter 2, proves useful for the fact that the exact solution for the pressure head is made

up by a union of planes and can be explicitly known. For this reason, we were able to
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compare the solution by prescribing the exact velocity field and using the one obtained

by solving the flow problem and experiments showed that the solutions coincided. The

network has 11 traces and all of them go through the entire domain, so no trace tips

are present. We prescribe an incoming unit flow in the source fracture so as to have a

velocity field with speed in the range of 0 to 1. Homogeneous Dirichlet condition were

imposed on an edge in the sink fracture, and for all remaining borders isolated boundaries

were assigned (homogeneous Neumann). We present these results in sequence of Figures

5.4.4. With this input data for the advection term, we now solve the transient problem

up with constant diffusion term ν = 1.10−5 and 0 ≤ ||β||∞ ≤ 1. The problem is clearly

advection-dominant, and we solve it using linear elements. Results are shown in Figure

5.4.5. The network begins with concentration equal to 1 on the Dirichlet boundary of

the source fracture and zero everywhere else.

5.4.2.2 6 fractures

We now turn our attention to a smaller albeit more complicated network, that is made up

of 6 fractures and 6 fractures (Figure 5.4.6). It contains trace tips and trace intersections,

but since the fractures intersect perpendicularly, the angles between traces are always

straight. The exact solution is not known, but due to its relative simplicity it is possible

to predict a reasonable behavior of the solution. We will again solve the Darcy flow

problem with a prescribed unitary Neumann condition in the source fracture, as well as

one border with homogeneous Dirichlet condition. The rest of the network is isolated

(homogeneous Neumann). The result is a velocity field with norm in the range of 0 to

2 (more results for the flux problem can be found in the next chapter, section 6.5.1, in

the context of mixed Virtual Elements). After obtaining information for the velocity

field, we impose a unitary concentration in the source fracture and solve the transient

problem with and without advection terms with ν = 1.10−5 for the diffusivity constant.

We solve the problem using quadratic elements for solving the flow problem and linear

elements for the transient transport equation. We present the results for hydraulic head

in Figure 5.4.6, followed by a comparison between the solutions with (Figure 5.4.7) and

without convection term (Figure 5.4.8), with all other parameters equal.

It can be clearly seen how much the convection dominates the problem from the

different scales of time for the evolution of the network. Without the exact solution

or physical models, it is difficult to judge the accuracy and consistency of the results.

However, the results seem intuitively reasonable since the value of concentration tends

to follow the the direction of the underlying velocity field.
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(a) Network geometry with pressure head values
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Figure 5.4.4: DFN7: solutions for source and sink fractures
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Figure 5.4.5: DFN7: evolution of the transient advection-diffusion problem
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Figure 5.4.6: DFN6: spatial geometry with source and sink fracture
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(a) t = 0

(b) t = 0.6.106 (c) t = 1.8.106 (d) t = 2.4.106

(e) t = 3.6.106 (f) t = 4.2.106 (g) t = 5.4.106

(h) t = 6.0.106

Figure 5.4.7: DFN6: evolution of the transient diffusion problem
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(a) t = 0

(b) t = 6 (c) t = 18 (d) t = 24

(e) t = 36 (f) t = 42 (g) t = 54

(h) t = 60

Figure 5.4.8: DFN6: evolution of the transient advection-diffusion problem
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5.5 Conclusions

After having put forward several methods for solving flow in DFNs in the previous

chapters, it was natural to approach a more generalized problem. With the flow velocity

field information as input data for the advection-diffusion equation, we were able to

obtain a solution for the problem of the transient advection-diffusion equation in DFNs

applying some of the techniques explained previously. This can be seen seen as a very

promising first step towards many useful applications and provides further validation

and increases the usefulness of the proposed techniques, whose target was solving flow

in DFNs but show other possible uses.

Many open problems still remain. For example, how to obtain the full SUPG

stabilization by finding a way to approximate the Laplacian of a VEM shape function.

Also, to explore other types of stabilizations as well as to develop a procedure to render

a problem dimentionless and thus being able to introduce real physical quantities in the

analysis and assess the accuracy of the model.



Chapter 6

The Mixed Virtual Element

Method for Discrete Fracture

Networks

6.1 Introduction

In the mixed formulation for the Finite Element Method, an extra variable is introduced

for the discretization of the partial differential equation. Some ill-posed problems are

better tackled using this approach. A classical book on the subject is [75], and for an

introduction-level article we refer the reader to [5].

Inspired by the ideas for the globally conforming method presented in chapter

3, we aim to solve the Darcy flow in a Discrete Fracture Network (DFN). We will use

a modified version of the techniques explained in that chapter to enforce flux balance

along traces.

One of the advantages of using the mixed formulation is the fact that we have an

explicit discretization of the Darcy velocity for the fluxes. This means that unlike in

the primal formulation, we can obtain an approximation of the velocity field without

using the results for the pressure head. In this way, depending on what information we

want to obtain from our problem, the mixed formulation is a good alternative when our

main interest is the velocity variable. Another way in which methods can complement

themselves is by solving the flow problem on a DFN and obtaining results of the velocity

field that will then work as input data for solving the transient transport equation

(chapter 5). In any case, being a completely different approach to solving our DFN

problem, the mixed formulation can also serve as a comparison parameter to evaluate the

105
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accuracy of the other methods developed so far. We begin section 6.2 with a description

of the continuous problem that we want to study, followed by the discretization with

mixed Virtual Elements in section 6.3. Some notes on the implementation is given in

section 6.4 and finally some numerical experiments in section 6.5.

6.2 Problem formulation

We begin by defining our domain Ω ⊂ R2, such that ∂Ω = ΓD ∪ ΓN , that represent

Dirichlet and Neumann boundaries respectively. We have a smooth positive definite

symmetric tensor a ≥ a0 > 0, a smooth vector valued function b and a smooth real

valued function c. We want to solve: find P ∈ C2(Ω) ∩ C(Ω) such that

∇ · (−a(x)∇P (x) + b(x)P (x)) + γ(x)P (x) = f(x) ∀x ∈ Ω,

P (x) = g(x) ∀x ∈ ΓD,

a ∂P (x)/∂n = h(x) ∀x ∈ ΓN ,

(6.2.1)

where f(x) ∈ C(Ω), g(x) ∈ C(ΓD) and h(x) ∈ C(ΓN ).

We now define:

H(div,Ω) := {v ∈ L2(Ω)× L2(Ω) : ∇ · v ∈ L2(Ω)}

HΓN,h(div,Ω) := {v ∈ H(div,Ω) : v · n|ΓN = h}

HΓN,0(div,Ω) := {v ∈ H(div,Ω) : v · n|ΓN = 0},

where n represents the outward unitary normal vector of ΓD and the values on ΓN

of functions in H(div,Ω) are defined using density arguments of the trace operator

defined on test functions, to obtain the continuous normal component trace mapping

η : H(div,Ω)→ H−1/2(ΓN ). In order to deal with non homogeneous Neumann boundary

conditions, we define u = û + u0 with û ∈ HΓN,h and u0 ∈ HΓN,0 . By setting ν := a−1,

β := νb and introducing the new variable u := −a∇P + bP we can rewrite (6.2.1) in

the classical variational form:

Find u0 ∈ HΓN,0(div,Ω) and P ∈ L2(Ω) such that

(νu0,v)Ω − (P,∇ · v)Ω − (β · v, P )Ω = −(v · n, g)ΓD − (νû,v)Ω ∀v ∈ HΓN,0(div,Ω),

(∇ · u0, Q)Ω + (γP,Q)Ω = (f,Q)Ω − (∇ · û, Q)Ω ∀Q ∈ L2(Ω),

(6.2.2)

where f(x) ∈ L2(Ω), g(x) ∈ L2(ΓD) and h(x) ∈ L2(ΓN ). A problem with pure Neu-

mann boundary conditions requires a compatibility condition for well-posedness and the

solution is only defined up to a constant for the pressure variable (if no reaction term is
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present). In any case, generalizations to other boundary conditions are straightforward.

Classical results for this problem hold, in the sense that for sufficiently regular data and

geometry, the variational problem (6.2.2) is well posed.

6.3 Mixed Virtual Element Method

The mixed formulation for the Virtual Element Method (VEM) has been recently pre-

sented in [28], with a followup work generalizing the method in [13]. Throughout this

chapter we will always refer the reader to these works as a reference for clarifications,

theoretical results of error estimation and well-posedness of the problem. Due to its

recent introduction, the only works regarding its application at the time of writing are

[31] and [30], which deal with Stokes flow.

We first begin with a triangulation τh with mesh parameter h of a domain F ,

satisfying basic conditions of regularity [28]. The non negative integer k stands for

the chosen degree of polynomial accuracy of our discretization. In broad terms, we

will define a local VEM space that will be comprised by shape functions whose exact

values are not known. They will be determined from a set of DOF, but using suitable

projection operators it will be possible to define approximate discrete bilinear forms that

will nevertheless provide the same rate of convergence as standard Finite Elements. The

local VEM space for the velocity variable in an element E ∈ τh is

V E
k,h = {vh ∈ H(div, E) : vh · n|e ∈ Pk(e) ∀e ∈ ∂E, (6.3.1)

div(vh) ∈ Pk(E), and rot(vh) ∈ Pk−1(E)},

and the global space is

Vk,h :=
{
vh ∈ H(div, F ) : vh|E ∈ V E

k,h ∀E ∈ τh
}
.

The condition on the rot is mainly to fix the dimension of V E
k,h and will not play any role

in our implementation since our problem is concerned with normal components of shape

functions (”face elements” in the space H(div)) and not tangential components (”edge

elements” in H(rot)) [8]. The global VEM space for the pressure variable is simply

Qk,h :=
{
Qh ∈ L2(F ) : Qh|E ∈ Pk(E) ∀E ∈ τh

}
.

Note that we have made no requirements of continuity for this space. There are many

possibilities for the choice of degrees of freedom (besides the main references, see also

[8]). Let us first recall Pk(E) as the local polynomial space of order k, with dimension



Chapter 6. Mixed VEM formulation 108

Table 6.3.1: Dimensions for various polynomial spaces for different orders of accuracy

k 0 1 2 3

dim(∇PEk ) 0 2 5 9
dim(∇PEk+1) 2 5 9 14

dim
(
∇PEk+1

)⊥
0 1 3 6

dim(Pk(E)) 1 3 6 10
dim(Pk(E))2 2 6 12 20

nk. For the pressure space, we can trivially define the set of DOF as for example k + 1

point values, the nk moments with respect to the monomial basis of order k or in general

any equivalent way of univocally determining a polynomial of two variables of order k.

We have chosen the second option.

We then define the space

∇PEk+1 :=
{

m ∈ (Pk(E))2 such that m = ∇m̂ for some m̂ ∈ Pk+1(E)
}
. (6.3.2)

This space has dimension nk − 1. For k = 0 we have that ∇P1 = {0}. For k = 1,

∇P2 = 〈[1 0], [0 1]〉. In the case of k = 2, a generic polynomial of degree k can be

written as m̂ = a+bx+cy+dx2 +exy+fy2 and so ∇P2 = 〈[1 0], [0 1], [x 0], [0 y], [y x]〉.

For the degrees of freedom in V E
k,h we choose

i. The value of vh · n|e at k+1 points on e ∀e ∈ ∂E

ii.

∫
E

vh ·m dx ∀m ∈ (∇PEk )

iii.

∫
E

vh · ∇m⊥ dx ∀m ∈
(
∇PEk+1

)⊥
.

(6.3.3)

where
(
∇PEk+1

)⊥
is the L2 orthogonal complement of

(
∇PEk+1

)
in (Pk(E))2 so that

(Pk(E))2 =
(
∇PEk+1

)
⊕
(
∇PEk+1

)⊥
. A proof of unisolvence can be seen in [28]. The

first set of DOF can be replaced by any other way to fix a polynomial of degree k on an

edge. In table 6.3.1 we present the dimensions of some of the polynomial spaces involved

in the definition of the DOF. From this we can deduce that the degrees of freedom of a

polygonal element of nv vertices (or edges) is: nv for k = 0, 2nv + 2 + 1 for k = 1 and

3nv + 5 + 3 for k = 2. For our purposes we will very rarely go beyond the second order,

since it has been noticed before (see section 3.5) that higher orders greatly increase the

number of DOF and the computational demand that is not completely justified by an

increase in accuracy of the solution in the context of DFNs. As in the case of the primal

VEM formulation, the shape functions in the local VEM space are not explicitly known

except on its DOF. Following the same philosophy as before, we will define a projection
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operator that will allow us to compute approximate discrete bilinear forms that will be

stable, consistent and will retain the rate of convergence of standard finite elements.

The projection operator Π0
k : V E

k,h → (Pk(E))2 will be defined as:∫
E

Π0
kvh ·m dx =

∫
E

vh ·m dx ∀m ∈ (Pk(E))2 (6.3.4)

It was suggested in [28] that another projector can be defined so as to work with less

DOF. Not only that, but in definition (6.3.1) of the local VEM space, different integers

ke, kd and kr can be chosen to define vh ·n|e ∈ Pke(e), div(vh) ∈ Pkd(E) and rot(vh) ∈
Pkr(E) so that a new method can be developed, with some restrictions to guarantee that

it retains the desired convergence properties. One possible choice would be to define the

projector operator by testing it only against polynomials in ∇PEk+1 and not the whole

(Pk(E))2, therefore obtaining a projection into a smaller dimensional space that can still

result in a consistent and stable method.

We will now show that the knowledge of the DOF is enough to compute the

projector. The left hand side of (6.3.4) is an integral between polynomials in two di-

mensions and can be computed. The right side however, requires more work. Since

(Pk(E))2 =
(
∇PEk+1

)
⊕
(
∇PEk+1

)⊥
, we can find m̃ ∈

(
∇PEk+1

)
and m⊥ ∈

(
∇PEk+1

)⊥
such

that m = m̃ + m⊥. Thus,∫
E

vh ·m dx =

∫
E

vh · m̃ dx +

∫
E

vh ·m⊥ dx .

The second term on the right side can be obtained directly from third set of DOF. For

the other term, we have that there is m̂ ∈ Pk+1(E) such that ∇m̂ = m̃ so that applying

integration by parts we obtain∫
E

vh · m̃ dx =

∫
E

vh · ∇m̂ dx = −
∫
E

div(vh)m̂ dx +

∫
∂E

vh · n|em̂ ds.

The second term is again computable from the DOF. If we had an explicit expression

for div(vh) ∈ Pk we could also compute the remaining term. In order to do so, we recall

that div(vh) ∈ Pk(E) so we can solve the following problem that uniquely determines

div(vh):∫
E

div(vh)q dx = −
∫
E

vh · ∇q dx +

∫
∂E

vh · n|eq ds ∀q ∈ Pk(E). (6.3.5)

Note that using the first and second set of DOF, the right side term of (6.3.5) can be

explicitly computed. Finally, we arrive at our discrete local bilinear form, defined as

aEh (uh,vh) := (νΠ0
kuh,Π

0
kuh)E + SE(uh −Π0

kuh,vh −Π0
kvh).
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where SE stands for any symmetric and definite positive bilinear form that scales like

aE(u,v) := (νu,v). More precisely, there exist two positive constants α∗ and α∗ inde-

pendent of the mesh parameter such that α∗a
E(u,v) ≤ SE(u,v) ≤ α∗aE(u,v) (SE is

usually taken as the standard Euclidean product). The discrete formulation of problem

(6.2.2) becomes:

Find uh ∈ Vk,h(F ) and Ph ∈ Qk,h(F ) such that

aEh (uh,vh)− (Ph,∇ · vh)− (β ·Π0
kvh, Ph) = 0 ∀vh ∈ Vk,h(F ),

(∇ · uh, Qh) + (γPh, Qh) = (f,Qh) ∀Qh ∈ Qk,h(F ).

(6.3.6)

6.4 Implementation of mixed VEM on DFNs

6.4.1 Meshing and Degrees of Freedom

The meshing process is done independently for each fracture. Local and global confor-

mity are imposed to obtain the final VEM mesh. The procedure is exactly as explained

in section 3.4. The main difference here comes from the definition of the degrees of

freedom in edges that belong to a trace. Along those edges, there is an exchange of net

flux between the two fractures whose intersection defines the trace. This means that

fracture-wise, there is a jump in the normal component of the velocity field across such

edges. For this reason, it would be a mistake to define only one set of DOF per edge it

those cases. Therefore we propose to define two sets of DOF for every edge that belongs

to a trace. In this way, two elements sharing such an edge will be able to represent a

jump in the normal value of the velocity. This idea can be interpreted as having those

edges on traces considered as part of the border of the domain and will be linked with

their corresponding counterparts with the use of Lagrange multipliers, as explained in

the following.

We show in Figure 6.4.1 some example meshes for mixed VEM of orders 0 to 2.

The domain consists of a rectangular fracture split in the middle by a vertical trace. We

show DOF on non-trace edges in red with an x, as well as internal DOF corresponding

to the second set of DOF from (6.3.3) also in red with a dot. For the third set of DOF,

a green with a dot is used. Note that on the edge covering the trace, there is twice as

many edge DOF, represented in black with an

x. We also incorporate notation for the DOF of the pressure space, represented in blue

with a dot. Finally, the arrows stand for the global orientation of each edge. An edge is

positively orientated for an element if the arrow points outwards.
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Figure 6.4.1: Degrees of freedom for mixed Virtual Elements
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6.4.2 Imposing conditions on the Degrees of Freedom

In section 3.4.2 the conforming approach to imposing conditions for solving flow on a

DFN was explained for the primal formulation. The case for the mixed formulation

follows closely. For every fracture Fi, with i = 1, ..., N , we call Udofi the number of

DOFs for the velocity space and Pdofi the number of DOFs for the pressure space of

fracture Fi. We define ndofi := Udofi + Pdofi , so we can assemble the stiffness matrix

Ki ∈ Rndofi×ndofi that arises from (6.3.6) following the procedure described in section

6.3. The structure of this matrix is

Ki =

[
Ai −Bi −Di

DT
i Ci

]
. (6.4.1)

where Ai, Bi, Ci and Di stand for matrices arising from the contributions of the differ-

ent terms in the variational form (6.3.6). Namely, Ai[j, k] = aEh (uh,j ,uh,k), Bi[j, l] =

(β · Π0
kuh,j , Qh,l), Ci[l,m] = (γQh,l, Qh,m) and Di[j, k] = (∇ · uh,j , Qh,l), with 1 ≤

j, k ≤ Udofi , 1 ≤ l,m ≤ Pdofi where uh,j and Qh,l are the basis functions of the finite-

dimensional global discrete spaces for the velocity and the pressure variable respectively.

Then we construct the column vectors fi ∈ Rndofi as the vector of load values (including

terms arising from non-homogeneous boundary conditions) and hi := (ui, Qi) as the

vector of values of the discrete solution for the velocity variable and the pressure vari-

able. We note that the matrix Ki is singular for fractures with pure Neumann boundary

conditions whenever γ = 0 (no reaction term). For the complete DFN we have:

K =


K1 0 · · · 0

0 K2 · · ·
...

...
...

. . .
...

0 · · · · · · KN

 , f =


f1

...

...

fN

 and h =


h1

...

...

hN

.

In order to obtain the linear system for the complete DFN we have to impose

matching conditions for the DOF on the traces that guarantee flux/mass balance on the

traces. In chapter 3, we introduced Lagrange multipliers to enforce equality between

DOFs on nodes on the same trace but on different fractures that occupy the same point

in space. In the current scenario and for an order of polynomial accuracy k, the DOF

on traces represent the pointwise values of the VEM shape functions in the direction of

the normal vector of the edge, i.e., uh ·ne ∈ Pk(e) where ne is the normal of the edge e.

All DOF on traces were assigned an orientation pointing from inside the element and in

the direction of the trace, so as to have, by definition, flux leaving a trace for a positive

value of the DOF. In this way we also have that for all DOF on the same edge and for

both fractures sharing that trace, outgoing flux will have the same sign.
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Given a numbering of all the edges on traces (et) indexed by t = 1, ..., . . . , T where

T is the total number of edges on traces, we have that for each t, we can define the only

two indices i(t), j(t) such that et ∈ Fi(t) and et ∈ Fj(t). The edge et will have 2(k + 1)

DOF on fracture Fi(t) and the same for fracture Fj(t), because edges on trace have twice

as many DOF as internal edges as explained in the previous section. We will call the

former Dt,i and the latter Dt,j , and #Dt,i = #Dt,i = 2(k+ 1). We can split these set of

DOF, using the criteria of the relative position with respect to the edge et. Since each

edge has a fixed global orientation, we can define Dt,i = Lt,i∪Rt,i (analogously for Dt,j),

which collect the DOF to the left and to the right of the trace respectively. We have that

#Lt,i = #Rt,i = k + 1. Therefore, for each edge we will establish k + 1 conditions that

will link the pointwise values of the DOF from Fi(t) and Fj(t) using Lagrange multipliers.

Then, for each t, we define the row vectors Ltq ∈ R1×
∑
i ndofi as:

Ltq :=
( Lt,i(q) Rt,i(q) Lt,j(q) Rt,j(q)

0 · · · 1 · · · 1 · · · 1 · · · 1 · · · 0

)
,

with q = 1, ..., k + 1, and Lt,i(q) is the qth DOF on edge et in fracture Fi(t) located to

the left of the trace (analogously for the others). The sets of DOF are numbered in such

a way that for the same q, Lt,i(q), Rt,i(q), Lt,j(q) and Rt,j(q) all represent pointwise

values on the same point on the trace (albeit on two different fractures).

Finally, we set L ∈ RT (k+1)×
∑
i ndofi as the matrix:

L =



L11

...

L1k+1

L21

...

LTk+1


.

The final linear system is:[
K LT

L 0

][
h

λ

]
=

[
f

0

]
. (6.4.2)

This type of system falls into the study of domain decomposition methods for

mixed finite elements. We refer the reader to [4, 7, 43, 74].
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6.5 Numerical Results

Convergence results for single domain problems were presented in [13]. The purpose of

this section is to study flux conservation and distribution, so we will again consider the

problem as described before in section 3.2, i.e., we will only solve the with the Poisson

problem and not include neither convection nor reaction terms.

6.5.1 DFN6

For the first DFN that we are studying, we will revisit a 6 fracture and 6 trace network,

as in section 5.4.2.2. The spatial geometry is shown again, with new references, in

Figure 6.5.1. We will impose a unitary incoming flow in Fracture F1 over an edge of

approximate length 5.3174, which means that the network should have a total flux of

corresponding to that value. F5 will be the sink fracture, with homogeneous Dirichlet

boundary conditions on one edge. All other borders will be taken as isolated. We show

results for mixed Virtual Element from orders 0 to 2 in Figures 6.5.2 and 6.5.3. The

visualization for the velocity field was practically equal for different orders, so only one

is shown. Note that pressure head values are also quite similar and it is interesting

to note that even though there is no condition for pressure head continuity imposed

on the formulation, the solutions for orders 1 and 2 nevertheless exhibit a practically

continuous solution. This is a good indication, since the solution of the problem outside

of traces is a harmonic function (and therefore smooth). In Figure 6.5.4 we present the

results for the flux along trace T4 and a comparison between different orders. In all

cases, the approximation is very good. As expected, second order elements are able to

better reproduce details in the flux function, but it is a remarkable result that in all

cases the same flux is obtained when integrating the complete profile.

Table 6.5.1 details the flux exchange in fractures and traces where rows correspond

to traces and columns to fractures. The last row contains the sum of all the incoming

and outgoing flux for each fracture, while the last column shows the balance in flux

exchange between the two fractures that share a trace. An almost exact balancing

of fluxes was obtained, both within fractures and in trace exchanges, for all orders of

accuracy. The incoming flux from fracture F1 is perfectly balanced with the outgoing

flux in F5. Fracture F1 acts as a source that provides 5.3174 of flux to the system from its

Neumann edge (negative values represent flux leaving the fracture through the traces),

which leaves the system at fracture F5 with a 0 unbalance reported in the bottom-right

cell of the table. All other fractures show a quasi non-existent net flow, which agrees

with the homogeneous Neumann boundary condition. On a more curious note, the flux

exchange in trace T3 is almost zero, because fracture F4 is neither a source nor a sink
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Figure 6.5.1: DFN6: spatial geometry with source and sink fracture
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Figure 6.5.2: DFN6: pressure head solutions for fracture F2
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Figure 6.5.3: DFN6: pressure head solutions for fracture F3
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Table 6.5.1: Flux data for the DFN6 configuration with flux mismatches across traces
(last column) and flux balance on fractures (last row) for order 0

DFN6
F1 F2 F3 F4 F5 F6 Balance

T1 -5.3174 5.3174 0 0 0 0 0
T2 0 -3.4147 3.4147 0 0 0 0
T3 0 1.7509e-11 0 -1.7509e-11 0 0 0
T4 0 -1.9026 0 0 0 1.9026 0
T5 0 0 -5.3174 0 5.3174 0 0
T6 0 0 1.9026 0 0 -1.9026 0

Balance -5.3174 -2.66e-15 -2.05e-13 -1.75e-11 5.3174 -7.8e-14 0

fracture, and since it has an intersection with only one other fracture (F2), any incoming

flux must leave the fracture so as to preserve the balance. This means that there should

not be any ”net flux”, but it does not mean however that the value of the flux is pointwise

zero. We show the value of the flux on trace T3 in Figure 6.5.6.

From this results, we can conclude that the mixed formulation showed a very high

accuracy when computing flux exchange between fractures. The flux balance is almost

exact for any order of accuracy, which is reminiscent of the precision of the continuity

of the hydraulic head of the conforming method for the primal formulation in chapter 3.

Low order elements also show a very good performance with much less computational

demand.

6.5.2 DFN116

We will study a bigger network consisting of 116 fractures and 256 traces (Figure 6.5.7

and section 3.5.3). It has a wider range of fracture sizes and they intersect at various

different angles. As before, we prescribe the same boundary conditions and the unitary

incoming flux on the source fracture gives rise to a total of 53.1736 of prescribed incoming

flux.

In Figures 6.5.8 and 6.5.9 we show results for orders 0 and 2 for the source and

sink fractures respectively. The number of DOF was 68178 for order 0 and 433433 for

order 2. Using only one sixth of the DOF, we can see that the results for order 0 is

qualitatively very similar to the second order results. The flux balance results for both

orders again show a perfect match between incoming and outgoing flow in the source

and sink fractures, with a mismatch of machine-error size for all trace balances and

fracture balances. When comparing specific flux exchanges, even though the sum of all

fluxes on a fracture do not change by changing the order of the approximation, some of

the individual fluxes do show some differences. In Table 6.5.2 we present the results for

flux balance on traces belonging to the sink and source fracture. As mentioned before,
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Figure 6.5.5: DFN6: velocity field on fracture F4
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Figure 6.5.6: DFN6: flux on trace T3 for orders 0 to 2

the balance is always preserved but some differences were appreciated, which is to be

expected since we are using piecewise constant approximations for the flux for one case,

and piecewise quadratic for the other. Nevertheless, the absolute difference (∆) is small

and of course in both cases it is expected to converge to the exact solution for finer

meshes.
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Figure 6.5.7: DFN116: spatial geometry
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Figure 6.5.8: DFN116: solutions for source fracture
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Figure 6.5.9: DFN116: solutions for sink fracture

Table 6.5.2: Flux data for the DFN116 configuration with flux exchange across traces
and comparison between solutions of different orders

Order 0 Order 2 ∆
Source Sink Source Sink

T1 7.379 7.288 0.0913
T2 5.868 5.419 0.449
T3 33.683 33.983 -0.300
T4 6.243 6.484 -0.240
T5 -5.773e-15 -7.225e-13 7.168e-13
T6 -15.918 -15.486 -0.432
T7 -1.316 -1.591 0.275
T8 -9.351 -9.835 0.484
T9 -12.450 -12.877 0.427
T10 -14.139 -13.384 -0.754

Balance -53.174 53.174 -53.174 53.174 -3.470e-09
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6.6 Conclusions

In this chapter we presented results for the application of the mixed formulation of

the Virtual Element Method. All of the advantages of locally independent meshing are

preserved. The solution of the problem in DFNs was obtained with a modified version of

the procedure of domain decomposition from a globally conforming mesh, as introduced

in the primal conforming case. The independent computation of the velocity variable

allows for a more accurate discretization, is a good complement to the primal formulation

and can serve as a way of providing accurate velocity fields without recomputing the mesh

from one problem to the other. Flux balnaces are preserved almost exactly, far more

accurate than any of the methods used for the primal formulation. This implementation

may be the best choice from all the ones we have covered when solving flow in a DFN and

our interest is computing flux exchanges. Pressure head results are also very satisfying.

It is quite remarkable that the lowest order implementation already provides a very

good approximation of the desired results with very few DOF per element, which is

a very good prospect if much bigger networks are to be solved. We have shown in a

medium sized DFN how flux balance is always preserved and the similarity between

results obtained using elements of different orders. Preliminary experiments suggest

that for future developments a mortar base could be introduced along traces which, in

a dual way with respect to the primal formulation, will provide and approximation of

the pressure head on the traces.



Chapter 7

Final remarks

At the beginning of this work we set out to develop an application of the very recent

Virtual Element Method (VEM) for solving the pressure head problem on a system

of discrete planar fractures. The main obstacle when dealing with Discrete Fracture

Networks (DFNs) is their geometrical complexity. Since they are generated randomly,

there is no way to predict how the fractures will intersect each other, how many traces

there will be nor the angle between them. For this reason, we have developed a number

of different techniques whose common factor is always the advantage of being able to

perform a fracture-local meshing. This means that we can effectively tackle the biggest

difficulty of our problem right away. Based on this premise, we have put forward several

choices for solving problems on DFNs.

The first one (chapter 2) is an optimization approach, in which we defined a

control variable that represented the flux on traces to solve a quadratic functional using

iterative methods. It was an idea that was implemented before with eXtended Finite

Elements (XFEM), which have the advantage of added base functions that allow for

an accurate representation of jumps in derivatives of the solution. We showed one the

earliest applications of the VEM as we profited from the easily obtained local conformity

to avoid the use of XFEM, while still preserving the ability to represent the change in

the conormal derivative of the pressure head along traces.

Afterwards, chapter 3 was dedicated to generalizing the classical approach for

solving DFNs with standard finite elements, which is through global conformity. It was

described in detail how we can obtain a globally conforming mesh without sacrificing

the biggest advantage provided by the VEM, which is fracture-independent meshing.

Convergence results were presented for different orders of accuracy and sample DFNs

were solved. We also hinted at some of the issues that affect high order implementations,
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as well as giving an idea on the use of FETI domain decomposition methods to speed

up the implementation.

We introduce a new approach in chapter 4 using the well kwown Mortar method.

We proposed a hybrid method that only imposes weak continuity of pressure head along

traces, and therefore it is enough to work with local conformity. The results for pressure

head were very similar to those of the conforming method, but the added degrees of

freedom represented by the Lagrange multiplier provided a direct computation of the

flow variable on traces.

With all these possibilities at hand, in chapter 5 we took the first steps into tackling

more complicated problems of DFNs, namely the full second order elliptic equation. In

particular, we presented some results for solving the transport equation on a DFN and

the numerical experiments show that the proposed techniques developed in this work

can be applied to this case. While many details still remain unresolved, the feasibility of

expanding the approaches for solving DFNs to more complex problems was established.

We took a different approach in chapter 6, by introducing the mixed Virtual El-

ement Formulation. Borrowing ideas from the globally conforming method, local and

global conformity allowed us to discretize and solve the problem of Darcy flow on a DFN.

It can prove to be an appealing complement for the primal formulation in some situa-

tions; for example, when we want an accurate description of the velocity field or some

problems that are inherently better conditioned to be solved with the added velocity

variable of the mixed formulation. Flux results were shown to be quite reliable, which is

a clear advantage over primal formulation methods. Despite its very recent introduction

creation in the literature, it already appears as a very viable possibility in the future,

once more theoretical results become available. In particular, more background regard-

ing time dependent problems and numerical schemes for stability in convection-dominant

problems could open the door to many interesting applications.

One possible path for future work is to add a compatibility feature that will allow

for the interaction of the proposed methods for solving the same DFN. That is, the

prospect of taking a network and separating it into different subnetworks according to

the information we want to obtain from its analysis. Each subnetwork can then be solved

with any method of our choosing, that will then interact to provide the final solution.

This has many potential uses; for instance, using the mixed formulation for subnetworks

where flux balance is more important, and using the primal globally conforming formu-

lation on areas of the network where pressure head continuity on traces must absolutely

be preserved (and a rough approximation of the velocity variable is considered accept-

able). The Mortar method can be applied for parts where only the velocity variable on

traces is needed, and a good approximation of the pressure head is required. Finally,
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with the optimization method all these subresults can interact to provide the complete

solution of the complete problem.

In summary, our intention was to introduce the VEM to solving DFNs. We have

shown how the new capabilities that this new method offers lend themselves perfectly for

the resolution of DFNs by greatly simplifying the meshing requirements. It also shows a

lot of promise for further developments: to acknowledge the surrounding rock matrix in

terms of the physical and numerical models, optimization of the implementation through

the use of parallel solvers, the introduction of stochastic and probabilistic components

inherent to the uncertainties of DFNs and to calibrate our computation with real physical

data. It was our hope that this work could serve as an entrance to a new framework for

studying these types of problems.
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