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Chapter 1

Introduction

1.1 Introduction

Subsurface fluid flow has applications in a wide range of fields, including e.g. oil/gas re-

covery, gas storage, pollutant percolation and water resources monitoring among others

[65] [34]. Underground fluid flow is a complex heterogeneous multi-scale phenomenon

that involves complicated geological configurations. The medium is approximated by a

Discrete Fracture Network (DFN): fractures are assumed to have a negligible thickness

with respect to the other dimensions, and are represented as planar polygons intersect-

ing each other in three dimensional space, with an equivalent bidimensional conductivity

obtained by averaging the tridimensional one along the negligible dimension. This set-

ting has been widely studied both from the modeling [1, 29, 35, 38, 62, 63] and from the

computational point of view [20–22, 39, 45, 62, 63, 66, 67], and it finds its application in

the field of evaluation of the properties of a fractured soil, where uncertainty quantifica-

tion analysis [19, 59] is used to obtain information about the soil, thus requiring a large

amount of simulations of the hydraulic head distribution. Typically, a DFN is obtained

stochastically using probabilistic data to determine a distribution of orientation, density,

size, aspect ratio, aperture and hydrological properties of the fractures [36], and it is a

viable alternative to conventional continuum models in sparse fracture networks.

DFN simulations are very demanding from a computational point of view and due

to the uncertainty of the statistical data, a great number of numerical simulations is

required. Furthermore, the resolution of each configuration requires vast computational

effort, increasing greatly with problem size.

In this work, we begin by focusing on the resolution of the steady-state flow in

large fracture networks. The quantity of interest is the hydraulic head in the whole

1



Chapter 1. Introduction 2

network, which is the sum of pressure and elevation and is evaluated by means of Darcy’s

law. Afterwards we explore the possibilities of solving more complicated problems. We

consider impervious rock matrix and fluid can only flow through fractures and traces

(intersections of fractures), but no longitudinal flow along the traces is allowed. We

introduce a transmissivity tensor for each fracture that depends on its aperture and its

resistance to flow. The hydraulic head is a continuous function, but with discontinuous

derivatives across the traces, which act as sources/sinks of flow. Matching conditions

need to be added in order to preserve continuity along traces and flux balance at fracture

intersections. More complex models for the flow in the fractures can be found in the

literature [57]. Other important issues concern the coupling between the DFN and the

surrounding rock matrix [39, 48].

The classical approach to DFN simulations consists in a finite element discretiza-

tion of the network and in the resolution of the resulting algebraic linear system. With

this approach, a great numerical obstacle to overcome is the need to provide on each

fracture a good quality mesh conforming not only to the traces within the fracture, but

also conforming to the other meshes on fractures sharing a trace.

Geometrical complexity is the greatest challenge when dealing with DFN-based

simulations. Since the fracture generation has a random component, many complex

situations arise that render the meshing process very complicated and sometimes im-

possible, e.g. very small angles, very close and almost parallel traces, high disparity of

traces lengths, etc. In order to use traditional finite elements, fracture grids have to

match in all the intersections between fractures, since these are discontinuity interfaces

for the first order derivatives of the solution. All the aforementioned geometrical configu-

rations complicate the meshing process and are the biggest obstacle in the discretization

of the problem because it becomes very computationally demanding to obtain a good

mesh from such a badly predisposed geometry. Furthermore, the meshing procedure

depends on the whole DFN and is not independent for each fracture. In large realistic

systems, which can count thousands, or even millions, of fractures, this mesh conformity

constraints might lead to the introduction of a very large number of elements, indepen-

dently of the accuracy required on the solution and possibly leading to over solving, if

we consider the level of accuracy of the physical model.

Therefore, the main problem to be addressed is the geometrical treatment of the

domain, in particular when the global or local conformity of the mesh is required [44].

Strategies are proposed in literature to ease the process of mesh generation and resolution

for DFNs of large size. Some authors, see e.g. [47, 71], propose a simplification of DFN

geometry to better handle the meshing procedure. In other cases, dimensional reduction

is explored as in [29] and [35], where a system of 1D pipes that connect traces with
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fractures has been used to simplify the problem. Mortar methods are used to relax the

conformity condition with fracture meshes, that are only required to be aligned along the

traces (see [66] and [67]). In [52], a BEM (Boundary Element Method) was applied that

aims to minimize core memory usage by defining and storing only a relation between

nodal fluxes and hydraulic head on traces for each fracture. The problem of obtaining a

good globally conforming mesh is the subject of ongoing research. In [54], an adaptive

mesh refinement method is described that aims for a high resolving mesh. In some works

[45, 60] this difficulty is overcome by modifying the nature of the DFN, notably reducing

the number of small angles between the intersections of fractures, which are responsible

for the generation of degenerate polygons. This approach, though, changes the global

statistical properties of the DFN; this is an issue, in the framework of stochastical

analysis. In [58], a mixed formulation and a mesh modifying procedure was used to

solve DFNs and reducing the number of elements for each fracture. Another mixed

formulation was used in [37], where local corrections of traces are applied in order to

obtain a globally conforming mesh. A novel approach was proposed in [20], [21], [22]

and [23] in which the problem was reformulated as a PDE-constrained optimization.

The minimization of a properly defined functional is adopted to enforce hydraulic head

continuity and flux conservation at fracture intersections. Traditional finite elements

(FEM) as well as extended finite elements (XFEM) were implemented to solve the

problem.

In this work we study applications of the Virtual Element Method (VEM) to our

problem. This is a very recent method whose origins are in the Mimetic Differences

framework, but has been re introduced as a generalization of standard Finite Elements

to meshes of arbitrary polygons. We explain the main characteristics of the method,

its advantages, and how to exploit them for our purposes. The most important profit

obtained form using Virtual Elements is without a doubt the possibility of fracture

independent meshing.

The work is structured as follows: in chapter 2, we describe the first of our proposed

techniques, which consist of a minimization of a certain quadratic functional that arises

when we introduce a control variable representing the value of the flux along traces.

Following that, in chapter 3 we suggest a globally conforming, as in many previous

works, while still retaining locally independent meshing. It can be regarded as a case of

domain decomposition. After that, we introduce in chapter 4 a Hybrid Mortar method

that weakly imposes continuity of the hydraulic head on traces by introducing a base

of Lagrange multipliers. In chapter 5 we set out to solve more complex problems on

DFNs using the techniques established in the previous chapters and we focus mainly on

solving the transport equation. Finally, chapter 6 presents an application of the mixed
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formulation for the VEM and we study its use for solving problems on DFNs. A final

conclusion and comparison of results is reserved for the final chapter of this thesis.



Chapter 2

An optimization approach

The contents of this chapter follow closely those found in the article ”The virtual element

method for discrete fracture network simulations” published in Computer Methods in

Applied Mechanics and Engineering , Volume 280, 1 October 2014, Pages 135–156.

2.1 Introduction

In the recent paper [20] and follow up works [21] and [22], the problem of flow in a DFN

is retooled as a PDE constrained optimization problem. The approach proposed in these

works completely drops the need for any kind of mesh conformity, regardless of trace

number and disposition; this goal is attained via the minimization of a given quadratic

functional, allowing to obtain the solution for any given mesh. In this framework, any

mesh independently generated on each fracture can be used. Since the solution may dis-

play a non-smooth behaviour along traces (namely, discontinuous normal derivatives),

FEM on meshes not conforming to traces would result in poor solutions in a neighbor-

hood of the traces.

The XFEM (eXtended Finite Element Method) is used in order to improve the

solution near traces through the introduction of additional non-smooth basis functions,

customized for the problem under consideration. The handling of these basis functions

requires special care in numerical integration, and might be source of ill-conditioning due

to the possible introduction of almost linearly dependent basis function (see, e.g., [41]

and the references therein). In the present work the newly conceived Virtual Element

Method is in charge for the space discretization on each fracture. Taking advantage

from the great flexibility of VEM in allowing the use of rather general polygonal mesh

elements, the aforementioned complexities related to XFEM enrichment functions can

5
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be avoided. Indeed, a suitable mesh for representing the solution can be easily obtained

starting from an arbitrary triangular mesh independently built on each fracture, and

independent of the trace disposition. Then, whenever a trace crosses a mesh element,

this can be split in two sub-elements obtaining a partial conformity.

All the steps needed for the use of the VEM in conjunction with the optimization

approach for DFNs simulations are inherently fracture oriented, and can be executed

in parallel. Numerical tests show that this approach leads to an efficient and reliable

method.

We remark that the polygonal mesh obtained for VEM discretization naturally

paves the way also for the use of a domain decomposition method or a Mortar approach.

These possibilities are explored in chapters 3 and 4. Nevertheless, our main target

here is to assess the viability of the optimization approach in conjunction with the

VEM. Furthermore, within the optimization method, mixing of different discretization

strategies (standard finite elements on meshes not necessarily conforming to traces,

extended finite elements and virtual elements of different orders) remains possible, thus

improving the flexibility to deal with any possible DFN configurations.

The present chapter is organized as follows: a description of the general problem

is provided in section 2.2, followed by a brief introduction to the application of virtual

element method to the problem at hand in section 2.3. Formulation and resolution of

the discrete problem are sketched in section 2.4. Some technical issues concerning VEM

implementation in this context as well as numerical results are given in section 2.5. We

end with some conclusions in section 2.6.

2.2 Problem description

In this section we briefly sketch the main ideas of the PDE optimization method for

discrete fracture network simulations introduced in [20–22].

Let us denote by Ω the DFN, composed by the union of planar open polygons

Fi, with i = 1, . . . , I, resembling the fractures in the network. Let us denote by ∂Fi

the boundary of Fi and by ∂Ω the set of all the fracture boundaries, ∂Ω = ∪Ii=1∂Fi.

We decompose ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, ΓD 6= ∅ being ΓD the Dirichlet

boundary and ΓN the Neumann boundary. The boundary of each fracture is divided

into a Dirichlet part ΓiD = ΓD ∩ ∂Fi and a Neumann part ΓiN = ΓN ∩ ∂Fi, hence

∂Fi = ΓiD ∪ΓiN , with ΓiD ∩ΓiN = ∅. An empty Dirichlet boundary, ΓiD = ∅ is allowed

on fractures such that ∂Fi∩ΓD = ∅. Functions HD
i ∈ H

1
2 (ΓiD) and GNi ∈ H−

1
2 (ΓiN ) are

given and prescribe Dirichlet and Neumann boundary conditions, respectively, on the
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boundary ∂Fi of each fracture. Intersections between fractures are called traces and are

denoted by Sm, m = 1, . . . ,M , while S denotes the set of all the traces of the system,

and Si, for i = 1, . . . , I, denotes the subset of S corresponding to the Mi traces belonging

to Fi. Each Sm uniquely identifies two indices ISm = {i, j}, such that Sm ⊆ F̄i ∩ F̄j .
Finally Ji collects all the indices {j} relative to the fractures Fj intersected by Fi, i.e.

j ∈ Ji ⇐⇒ F̄j ∩ F̄i 6= ∅.

The quantity of interest is the hydraulic head H that can be evaluated in Ω by

means of the Darcy law. This originates a system of equations on the fractures defined

as follows. Let us introduce for each fracture the following functional spaces:

Vi = H1
0(Fi) =

{
v ∈ H1(Fi) : v|ΓiD

= 0
}
,

and

V D
i = H1

D(Fi) =
{
v ∈ H1(Fi) : v|ΓiD

= HD
i

}
,

and let us denote by Hi the restriction of H on Fi. Furthermore, let Ki denote a

symmetric and uniformly positive definite tensor representing the fracture transmissivity.

Without loss of generality and for the sake of simplicity, we assume that all traces are

disjoint; this is not a restricting assumption as noted in [20]. Then Hi satisfies, for

i = 1, . . . , I, the following problem: find Hi ∈ V D
i such that ∀v ∈ Vi∫

Fi

Ki∇Hi∇vdΩ =

∫
Fi

qivdΩ + 〈GNi , v|ΓiN 〉H− 1
2 (ΓiN ),H

1
2 (ΓiN )

+
∑
S∈Si

〈
[[
∂Hi

∂ν̂iS

]]
S

, v|S〉H− 1
2 (S),H

1
2 (S)

, (2.2.1)

where qi ∈ L2(Fi) denotes a source term on Fi and the symbol ∂Hi
∂ν̂i

represents the

outward co-normal derivative of the hydraulic head:

∂Hi

∂ν̂i
= n̂Ti Ki∇Hi,

with n̂i outward normal to the boundary ΓiN , and
[[
∂Hi
∂ν̂iS

]]
S

denotes the jump of the co-

normal derivative along the unique normal n̂iS fixed for the trace S on Fi, and represents

the flux incoming into the fracture Fi through the trace S. The equations (2.2.1) for

i = 1, ..., I are coupled with the following matching conditions, ensuring hydraulic head

continuity and flux balance across the traces:

Hi|Sm −Hj |Sm = 0, for i, j ∈ ISm , ∀m = 1, . . . ,M, (2.2.2)[[
∂Hi

∂ν̂iSm

]]
Sm

+

[[
∂Hj

∂ν̂jSm

]]
Sm

= 0, for i, j ∈ ISm . (2.2.3)
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The simultaneous resolution of equations (2.2.1)-(2.2.3) might result infeasible for

practical applications, as previously discussed. In contrast, the approach developed in

[20–22] only requires the resolution of local problems on each fracture independently,

resorting to an optimization approach to enforce matching at the intersections. In order

to describe this strategy, let us introduce for each trace in each fracture the control

variables USi ∈ US = H−
1
2 (S), defined as USi = αHi|S +

[[
∂Hi
∂ν̂iS

]]
S

, where α is a fixed

positive parameter, and the quadratic functional

J(H,U) =
M∑
m=1

(∥∥∥Hi|Sm −Hj|Sm

∥∥∥2

H
1
2 (S)

(2.2.4)

+
∥∥∥USmi + USmj − α

(
Hi|Sm +Hj|Sm

)∥∥∥2

H−
1
2 (S)

)
.

Equations (2.2.1), prescribed on the fractures, are equivalently restated as:∫
Fi

Ki∇Hi∇vdΩ + α
∑
S∈Si

∫
S
Hi|Sv|SdΓ = (2.2.5)∫

Fi
qivdΩ + 〈GNi , v|ΓiN 〉H− 1

2 (ΓiN ),H
1
2 (ΓiN )

+
∑

S∈Si〈U
S
i , v|S〉US ,US ′ .

Let us define USi = H−
1
2 (Si ) and let Ri denote an operator providing lifting of

the Dirichlet boundary conditions on ΓiD, if not empty. We then introduce the following

linear bounded operators:

Ai ∈ L(Vi, V
′
i ), 〈Aiw, v〉V ′i ,Vi = (Ki∇w,∇v) + α

(
w|Si , v|Si

)
Si
,

BS
i ∈ L(US , V ′i ), 〈BS

i U
S
i , v〉V ′i ,Vi = 〈USi , v|S 〉US ,US ′ ,

Bi = Π
S∈Si

BS
i ∈ L(USi , V ′i ), 〈BiUi, v〉V ′i ,Vi = 〈Ui, v|Si 〉USi ,USi ′ ,

with w, v ∈ Vi, and Ui ∈ USi is the tuple of control variables USi for S ∈ Si. Analogously,

U ∈ US denotes the tuple of control variables Ui for i = 1, ..., I. The dual operator of Ai

is denoted by A∗i and B∗i denotes the dual of Bi. The operator BiN ∈ L(H−
1
2 (ΓiN ), V ′i )

imposing Neumann boundary conditions is defined such that

〈BiNGNi , v〉V ′i ,Vi = 〈GNi , v|ΓiN 〉H− 1
2 (ΓiN ),H

1
2 (ΓiN )

.

According to this functional setting and definitions, problems (2.2.5) are restated as:

∀i = 1, ..., I, find Hi ∈ V D
i , with Hi = H0

i +RiHD
i and H0

i ∈ Vi, such that

AiH
0
i = qi +BiUi +BiNG

N
i −ADi RiHD

i , in Fi, (2.2.6)
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where ADi is an operator defined similarly to Ai, but operating on elements in H1(Fi).

We remark that, if α > 0, for a given Ui, the solution Hi to (2.2.6) exists and is unique

for a non isolated fracture even if we set Neumann boundary conditions on the whole

∂Fi.

Following the arguments proposed in [22], it can be shown that the unique min-

imum of functional (2.2.4) is obtained for values of H and of the control functions U

that correspond to the fulfilment of conditions (2.2.2) and (2.2.3) on the traces. In other

words, the solution of the problem

min J subject to (2.2.6) (2.2.7)

corresponds to the solution of the coupled system of equations (2.2.1)-(2.2.3).

As shown in previous works (see e.g. [22]) this optimization problem can be tackled

with a gradient based method. Even if different approaches could also be employed,

gradient-based methods are particularly appealing since they allow to independently

solve problems on fractures and can be straightforwardly plugged in a parallel resolution

process.

In the continuous setting, the gradient based method is formally devised on the

following considerations: the optimal U ∈ U , solution to (2.2.7), satisfies the following

system of equations, corresponding to the Fréchet derivatives of J with respect to the

control variables: ∀i = 1, . . . , I

Bi
∗Pi + ΛUSi

(
Ui + Π

S∈Si
USj

)
− α Π

S∈Si

(
CSi Hi(Ui) + CSj Hj(Uj)

)
= 0, (2.2.8)

where the operators CSi = Bi
∗ are restriction operators on the traces, ΛUSi : USi → USi ′

is the Riesz isomorphism, and functions Pi ∈ Vi are the solution to

A∗iPi = Ci
∗Λ−1
USi

[
Π
S∈Si

(
CSi Hi(Ui)− CSj Hj(Uj)

)
+α2 Π

S∈Si

(
CSi Hi(Ui) + CSj Hj(Uj)

)]
− αCi∗

(
Ui + Π

S∈Si
USj

)
, in Fi,(2.2.9)

with homogeneous Neumann and Dirichlet boundary conditions. Then, we can set

∀i = 1, . . . , I

∇J(Ui) = Bi
∗Pi + ΛUSi Π

S∈Si
(USi + USj − αΛ−1

US (CSi Hi(Ui) + CSj Hj(Uj))), (2.2.10)

and

∇J(U) =
I

Π
i=1
∇J(Ui). (2.2.11)
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The gradient based algorithm for solving (2.2.7) is fully described in [22]. Here, we focus

on a first-discretize-then-optimize approach, and we move on by introducing, in the next

section, the space discretization.

2.3 The Virtual Element Method

The Virtual Element Method [2, 10, 11, 26] is a very recent technique for solving partial

differential equations on meshes of fairly general polygonal elements with an arbitrary

number of sides. This characteristic is very attractive for the application considered

herein. Indeed, on each fracture we solve equation (2.2.6), whose solution can have a

discontinuous gradient across the traces. In order to correctly reproduce this irregular

behaviour, we can take advantage of the flexibility of virtual elements by transforming,

on each fracture, a given triangulation (non conforming to traces) in a more general mesh,

conforming to traces, simply obtained by splitting the triangles along traces into more

general sub-polygons not crossed by traces. We remark that we do not require conformity

between the meshes of the two fractures intersecting at a trace. As a consequence of

the meshing process, a partial conformity (i.e. conformity to traces but no conformity

between the meshes of intersecting fractures) will result, but the meshing process is still

independent on each fracture and thus easy and reliable (see Figure 2.3.1).

Let us now describe the application of the VEM to the problem considered. For the

sake of simplicity, we consider in this section homogeneous conditions on the Dirichlet

boundary; furthermore, we consider in this work the case of virtual elements of order

k = 1 and we assume that the fracture transmissivity Ki is constant on each fracture,

but might vary from one fracture to another. We will focus on a generic fracture Fi ⊂ Ω,

since the process is independent on each fracture. Let {Ti,δ}δ be a family of meshes on

F1

F2

Figure 2.3.1: Example of the mesh for the VEM: elements shaded have been cut into
polygons to match the trace on the two fractures independently
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Fi, being δ the mesh parameter (corresponding to the square root of the largest element

size). Each mesh is built as previously sketched: we start with a given triangulation,

and whenever a trace crosses an element, the latter is split by the trace itself in two

sub-polygons. If the trace ends inside an element, it is prolonged up to the boundary of

the element. To note is that we obtain convex polygons, thus satisfying the assumptions

in [10]. Each Ti,δ is therefore made of open polygons {E} with an arbitrary number nE

of edges e, and we call Ni the total number of vertices. We define for each δ a space

Vi,δ ⊂ H1(Fi) as follows. Following the notation in [10], for a generic element E of the

mesh, let us introduce the space

B1(∂E) =
{
v ∈ C0(∂E) : v|e ∈ P1(e), ∀e ⊂ ∂E

}
.

Let V E,1 be the space of harmonic functions that are linear on the boundaries of

the element,

V E,1 =
{
v ∈ H1(E) : v|∂E ∈ B1(∂E),∆v|E = 0

}
.

We finally set

Vi,δ =
{
v ∈ H1

0(Fi) : v|E ∈ V E,1, ∀E ∈ Ti,δ
}
.

For each element, functions in V E,1 are uniquely identified by prescribing the polynomial

functions on ∂E, or, equivalently, specifying the values at the nE vertices of the polygon.

With this natural choice for the degrees of freedom, the C0 continuity of functions

in Vi,δ is easily enforced. The dimension of Vi,δ is Ni, and we introduce a Lagrange

basis {φ1, . . . , φNi}, defined by φj(xk) = δjk, where xk is the k-th vertex in the mesh.

Functions {φj} are in general not explicitly known inside the elements, but only on the

boundaries of the elements, and this is a key point of VEM. Further we observe that the

space of polynomials P1(E) ⊂ Vi,δ |E for each element E in Ti,δ.

On the space Vi,δ we define a symmetric bilinear form ai,δ : Vi,δ × Vi,δ 7→ R as the

discrete counterpart of the bilinear form ai : Vi × Vi 7→ R defined as

ai(Hi, v) = 〈AiHi, v〉V ′i ,Vi .

On each element E we introduce the bilinear form aEi,δ(·, ·) : Vi,δ |E × Vi,δ |E 7→ R:

aEi,δ(φ, ϕ) = (Ki∇PE φ,∇PE ϕ)E + α
(
φ|Si ∩∂E

, ϕ|Si ∩∂E

)
Si ∩∂E

+ SE(φ, ϕ), (2.3.1)

and for any two functions φ, ϕ ∈ Vi,δ we have

ai,δ(φ, ϕ) =
∑
E∈Ti,δ

aEi,δ(φ, ϕ). (2.3.2)
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In (2.3.1), the projection operator PE : Vi,δ |E 7→ P1(E) is defined for any function

φ ∈ Vi,δ |E by (Ki∇PE φ,∇p)E = (Ki∇φ,∇p)E ∀p ∈ P1(E)∑nE
k=1 P

E φ(xk) =
∑nE

k=1 φ(xk)
(2.3.3)

being {xk}k the coordinates of the vertices of element E, and SE : Vi,δ |E × Vi,δ |E 7→ R
is a properly designed functional that is non-zero on the kernel of PE .

Remark 2.1. Let us observe that the definition (2.3.1) for the bilinear form and (2.3.3)

for the projection operator slightly differ from the definitions introduced in [10]. In our

definition of the discrete bilinear form the projection operator does not affect the portion

of the operator defined on the traces, and consequently this term does not appear in

(2.3.3) or in the definition of the stability operator SE . According to [10], we assume

that there exist two positive constants c0 and c1 independent from the mesh element E

and of element diameter, such that:

c0(Ki∇ϕ,∇ϕ)E ≤ SE(ϕ,ϕ) ≤ c1(Ki∇ϕ,∇ϕ)E , ∀ϕ ∈ Vi,δ |E , with PE ϕ = 0. (2.3.4)

On each element E of the triangulation we have:

aEi (φ, ϕ) = aEi (PE φ,PE ϕ) + aEi (φ− PE φ, ϕ− PE ϕ)

+α
(
φ− PE φ,PE ϕ

)
Si ∩∂E

+ α
(
ϕ− PE ϕ,PE φ

)
Si ∩∂E

(2.3.5)

that replaces equation (4.22) of [10].

It is possible to show that the given definition of the bilinear form is consistent

and stable. Consistency easily follows from definition (2.3.1) and from (2.3.3): for all

E ∈ Ti,δ, ∀p ∈ P1(E), ∀φ ∈ Vi,δ |E we have:

aEi,δ(φ, p) =
(
Ki∇(φ− PE φ),∇p

)
E

+
(
Ki∇(PE φ),∇p

)
E

+ α (φ, p)Si ∩∂E

=
(
Ki∇(PE φ),∇p

)
E

+ α (φ, p)Si ∩∂E = aEi (φ, p),

being aEi (·, ·) the restriction to a mesh element of the continuous bilinear form. Stability

can be proved similarly to [10], using (2.3.4) and (2.3.5).

Assuming basic quality properties for the triangulation, functional SE can be

chosen as in [10], thus satisfying conditions (2.3.4): for all φ, ϕ ∈ Vi,δ |E we set

SE(φ, ϕ) =

nE∑
k=1

Ki(φ(xk)− (PE φ)(xk))(ϕ(xk)− (PE ϕ)(xk)). (2.3.6)
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Concerning the treatment of the source term qi at right hand side of equation (2.2.6),

it is shown in [11] that convergence rates are preserved by approximating qi with a

piecewise constant function on each element of the mesh.

Given the previous results and definitions, it is possible to use the convergence

theorem in [10] to prove that the discrete problems on the fractures are well posed and

convergence rates are equal to those of standard finite elements of the same order.

Even if functions in Vi,δ are only known on the edges of mesh elements, the knowl-

edge of the degrees of freedom allows us to compute the discrete bilinear forms. In fact,

in order to compute PE φ, for any φ ∈ Vi,δ |E and p ∈ P1(E) we evaluate:

(Ki∇φ,∇p)E =

∫
E

Ki∇φ∇p dE =

∫
E

Ki ∆p φ dE +

∫
∂E

Ki
∂p

∂n∂E
φ dγ

=

∫
∂E

Ki
∂p

∂n∂E
φ dγ

where n∂E is the outward unit normal vector to ∂E.

2.4 Formulation and resolution of the discrete problem

As shown in section 2.2, the problem has been reformulated as a PDE-constrained

optimization problem (see equation (2.2.7)) in which the quadratic functional J is to be

minimized subject to linear constraints. In this section, following a first-discretize-then-

optimize approach, we give some details about the discrete formulation of the problem

and the numerical approach for computing a solution to the problem. In the following,

we will use lower case letters for the finite dimensional approximations of functions H

and U .

2.4.1 Discrete formulation

As outlined in the previous section, we introduce a finite dimensional basis for each

fracture Fi, with a total number NF =
∑I

i=1Ni of DOFs on the fractures. Concerning

the functional space on the traces, in order to simplify the discussion, we consider

the following different numbering for the control functions uSi , induced by the trace

numbering. Being S = Sm a given trace, with ISm = {i, j} and assuming i < j, we denote

by u−m and by u+
m the control functions related to the m-th trace and corresponding

to fractures Fi and Fj , respectively. By overloading the notation, we use the same

symbol for the corresponding vector of DOFs. Let us introduce basis functions ψ−m,k,

k = 1, ..., N−m and ψ+
m,k, k = 1, ..., N+

m for the space of the control function u−m and



Chapter 2. An optimization approach 14

u+
m, respectively. Note that here we allow to use different spaces on the two “sides” of

each trace. Then we have, for m = 1, ...,M , ? = −,+, u?m =
∑N?

m
k=1 u

?
m,kψ

?
m,k. Setting

NT =
∑M

m=1(N−m +N+
m), we define u ∈ RNT

concatenating u−1 , u
+
1 , . . . , u

−
M , u

+
M .

Let us consider the functional J , whose expression is given in section 2.2 by equa-

tion (2.2.4), and let us write the discrete functional in terms of L2 norms instead of H−
1
2

and H
1
2 norms on the traces: its discrete counterpart is

J =
1

2

I∑
i=1

∑
S∈Si

∫
S

(

Ni∑
k=1

hi,kϕi,k |S −
Nj∑
k=1

hj,kϕj,k |S)2 dγ+ (2.4.1)

∫
S

(

N−m∑
k=1

u−m,kψ
−
m,k +

N+
m∑

k=1

u+
m,kψ

+
m,k − α

Ni∑
k=1

hi,kϕi,k |S − α
Nj∑
k=1

hj,kϕj,k |S)2 dγ

 .

Let us define for all Sm ∈ S, for p, q ∈ ISm (possibly p = q), the matrices

(CSmp,q )k,` =

∫
Sm

ϕp,k |Sm
ϕq,`|Sm

dγ, Cp,q =
∑

Sm∈Sp

CSmp,q .

Furthermore, for m = 1, ...,M and ? = −,+ define C?m ∈ RN?
m×N?

m , C±m ∈ RN−m×N+
m and

Cm as:

(C?m)k`=

∫
Sm

ψ?m,kψ
?
m,` dγ, (C±m)k`=

∫
Sm

ψ−m,kψ
+
m,` dγ, Cm=

(
C−m C±m

(C±m)T C+
m

)
,

and B?
i,m ∈ RNi×N?

m and B?
j,m ∈ RNj×N?

m as

(B?
i,m)k` =

∫
Sm

ψ?m,kϕi,`|Sm
dγ, (B?

j,m)k` =

∫
Sm

ψ?m,kϕj,`|Sm
dγ.

The functional J in (2.4.1) is therefore written, in algebraic form, as

J(h, u) =
1

2

I∑
i=1

∑
S∈Si

(1 + α2)hTi C
S
i,ihi + (1 + α2)hTj C

S
j,jhj − 2(1− α2)hTi C

S
i,jhj

+(u−m)T C−m u−m + (u+
m)T C+

m u
+
m + 2(u−m)T C±m u+

m − α(hTi B
+
i,mu

+
m)

−α(hTi B
−
i,mu

−
m)− α(hTj B

−
j,mu

−
m)− α(hTj B

+
j,mu

+
m)− α((u−m)T (B−i,m)Thi)

−α((u+
m)T (B+

i,m)Thi)− α((u−m)T (B−j,m)Thj)− α((u+
m)T (B+

j,m)Thj).

We now allow for a more compact form of J(h, u) by assembling previous matrices as

follows. We set

Bi,m = (B−i,m B+
i,m) ∈ RNi×(N−m+N+

m), um = (u−m, u
+
m).
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For each fixed i = 1, ..., I, matrices Bi,m, for m such that Sm ∈ Si, are then grouped

row-wise to form the matrix Bi ∈ RNi×NSi , with NSi =
∑

Sm∈Si(N
−
m + N+

m). Matrix

Bi acts on a column vector ui obtained extracting blocks um, for Sm ∈ Si, from u and

appending them in the same order used for Bi,m, as the action of a suitable operator

Ri : RNT 7→ RNSi such that ui = Riu. Finally, let B ∈ RNF×NT
be defined by

B =


B1R1

...

BIRI

 .

Let now Gh ∈ RNF×NF
be defined blockwise as follows: for i = 1, ..., I we set

Ghii = (1 + α2)Ci,i, Ghij = (α2 − 1)CSi,j if j ∈ Ji (0 elsewhere) ,

where, fixed Fi, Ji collects the indices j such that |F̄j ∩ F̄i| > 0. Since, obviously, j ∈ Ji
if and only if i ∈ Jj , and due to the straightforward property (Ghij)

T = Ghji, we have

that Gh is a symmetric matrix. Next, let us define the matrix Gu ∈ RNT×NT
blockwise

as Gu = diag(Cm,m = 1, ...,M). With these definitions at hand, the functional J is

rewritten

J(h, u) :=
1

2

(
hTGhh− αhTBu− αuTBTh+ uTGuu

)
being h ∈ RNF

obtained appending vectors hi, i = 1, ..., I.

We finally note that, setting

G =

(
Gh −αB
−αBT Gu

)

and w = (h, u), J can be simply written as J = 1
2w

TGw, with G straightforwardly

symmetric, due to previous considerations, and positive semidefinite by construction.

Constraints (2.2.6) are written as a unique linear system as follows: For all i =

1, ..., I define the matrix Ai ∈ RNi×Ni as

(Ai)k` =
∑
E∈Ti,δ

(∫
Fi

Ki∇PE φi,k∇PE φi,` dFi + SE(φi,k, φi,`)

)

+ α
∑
S∈Si

∫
S
φi,k |Sφi,`|S dγ, k, ` = 1, . . . , Ni

where the operators PE and SE are defined by (2.3.3) and (2.3.6), respectively.
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For each fracture Fi, we set N i
Si =

∑
Sm∈Si N

?
m as the number of DOFs on traces

of Fi on the Fi “side”, and we define matrices Bi ∈ RNi×N
i
Si grouping row-wise matrices

B?
i,m, with m spanning traces in Si, and setting for each m either ? = + or ? = −

according to which one of the two “sides” of trace Sm is on Fi. Matrices Bi act on a

column vector u′i containing all the N i
Si control DOFs corresponding to the traces of Fi,

obtained extracting blocks u?m, for Sm ∈ Si, from u and appending them in the same

order used in the definition of Bi. Again, this can be obtained as the action of a suitable

operator R′i : RNT 7→ RN
i
Si such that u′i = R′iu. In practice, R′i extracts only sub-vectors

u?m from u corresponding to control functions on the ”correct side” of the trace.

The algebraic formulation of the primal equations (2.2.6) is then

Aihi = q̃i + Bi u′i, i = 1, ..., I, (2.4.2)

where q̃i accounts for the term qi in (2.2.6) and for the boundary conditions on the

fracture Fi.

We set A = diag(Ai, i = 1, ..., I) ∈ RNF×NF
and define B ∈ RNF×NT

as

B =


B1R

′
1

...

BI R′I


Setting q = (q̃1, . . . , q̃I) ∈ RNF

, constraints (2.4.2) are then written Ah− B u = q.

The problem under consideration is therefore reformulated as the following equal-

ity constrained quadratic programming problem:

min J(h, u) =
1

2

(
hTGhh− αhTBu− αuTBTh+ uTGuu

)
(2.4.3)

s.t. Ah− B u = q. (2.4.4)

2.4.2 Solving the optimization problem

The first order optimality conditions for problem (2.4.3)-(2.4.4) are the following:
Gh −αB AT

−αBT Gu −BT

A −B 0




h

u

−p

 =


0

0

q

 (2.4.5)

being p the vector of Lagrange multipliers.
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The previous saddle point problem is, for real applications, a very large scale

problem, with highly sparse blocks, as A, Gu are block diagonal matrices, Gh, B and B
are block-sparse.

By (formally) using the linear constraint for eliminating the unknown h as

h = A−1(B u+ q), (2.4.6)

we obtain the following equivalent unconstrained problem :

min Ĵ(u) :=
1

2
uT (BT A−TGhA−1 B+Gu − αBT A−TB − αBTA−1 B)u

+qTA−T (GhA−1 B−αB)u.

For further convenience we rewrite Ĵ(u) = 1
2u

T Ĝu+ q̂Tu. A gradient-based method for

the minimization of the functional requires the computation of the gradient of Ĵ :

∇Ĵ(u) = (BT A−TGhA−1 B+Gu − α(BT A−TB +BTA−1 B))u+

(BT A−TGh − αBT )A−1q.

or, equivalently, ∇Ĵ(u) = Ĝu+ q̂.

The gradient can be written in terms of some auxiliary variables as follows. Re-

arranging previous expression, we obtain

∇Ĵ(u) = BT A−TGhA−1(B u+ q) +Guu− αBT A−TBu− αBTA−1(B u+ q)

and recalling (2.4.6), one has

∇Ĵ(u) = BT A−TGhh+Guu− αBT A−TBu− αBTh.

Now set p := A−T (Ghh− αBu), i.e. given h and u, p solves

AT p = Ghh− αBu. (2.4.7)

With these definitions, we may write

∇Ĵ(u) = BT p+Guu− αBTh. (2.4.8)

Note that setting to zero the previous expression for obtaining stationary points for

Ĵ(u), and collecting such equation together with (2.4.6) and (2.4.7), we obtain system

(2.4.5).
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Concerning the numerical solution of the optimization problem, we mention here

two possible approaches. The first one consists in solving the linear system (2.4.5). An

iterative solver is clearly a recommended choice, and symmlq [64] would be a suitable

choice; this approach has been used in [21]. Another approach consists in applying an

iterative solver to the minimization of Ĵ(u). We focus here on this second approach,

sketching the conjugate gradient method applied to the minimization of Ĵ(u). In the

algorithm, let us denote by gk the gradient ∇Ĵ(uk) at step k and by dk the descent

direction.

Conjugate gradient method

1. Choose an initial guess u0

2. Compute h0 and p0 solving (2.4.6) and (2.4.7) and g0 by (2.4.8)

3. Set d0 = −g0, k = 0

4. While gk 6= 0

4.1. Compute λk with a line search along dk

4.2. Compute uk+1 = uk + λkdk

4.3. Update gk+1 = gk + λkĜdk

4.4. Compute βk+1 =
gTk+1gk+1

gTk gk

4.5. Update dk+1 = −gk+1 + βk+1dk

4.6. k = k + 1

Due to linearity, Step 4.3 is equivalent to compute gk+1 = Ĝuk+1 + q̂. Indeed,

gk+1 = Ĝuk+1 + q̂ = Ĝ(uk + λkdk) + q̂ = Ĝuk + q̂ + λkĜdk = gk + λkĜdk.

Nonetheless, we remark that this step is clearly performed without forming matrix Ĝ,

but rather computing vector yk = Ĝdk through the following steps:

1. Solve At = B dk

2. Solve AT v = Ght− αBdk

3. Compute yk = BT v +Gudk − αBT t
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Furthermore, since Ĵ is quadratic, the stepsize λk in Step 4.1 can be computed via

an exact line search. Given a descent direction dk, we compute λk such that it minimizes

the function φ(λ) := Ĵ(uk + λdk). Straightforward computations show that one has

λk = −
dTk gk

dTk Ĝdk
. (2.4.9)

The stepsize λk is therefore computed without much effort, as quantity Ĝdk is the same

needed in Step 4.3.

We remark that the most expensive part of the method is given by the solution of

the linear systems with coefficient matrix A (which actually equals AT ). Nevertheless,

we recall that matrix A is actually symmetric positive definite, block diagonal with each

block defined on a fracture. The systems are therefore decomposed in as many small

“local” systems as the number of fractures. Right-hand-sides of the local systems gather

information both from the current fracture, and from the intersecting fractures, which

are typically small in number. Hence, these independent linear systems can be efficiently

solved on parallel computers.

2.5 VEM implementation and numerical results

In this section we address some implementation issues concerning the use of VEM in

conjunction with the optimization approach described in section 2.4. In addition, we

present some numerical results in order to show the viability of the VEM for the sim-

ulation of discrete fracture networks and to highlight the effectiveness of the overall

method in this context. Simpler test problems focused on particular implementation

issues anticipate some numerical results on more complex DFNs.

2.5.1 VEM for DFN

We start describing the procedure for obtaining the computing mesh on the fracture

network. Let us recall that each fracture in a DFN is represented by a 2D polygonal

domain and is intersected by other fractures of the network in a set of traces. As

a first step, triangular meshes are generated on each fracture independently, without

taking into account trace positions or conformity requirements of any kind. Next, we

proceed independently on each fracture and whenever a trace intersects one element

edge, a new node is created. New nodes are also created at trace tips. If the trace tip

falls in the interior of an element, the trace is prolonged up to the opposite mesh edge.

Intersected elements are then split into two new “sub-elements”, which become elements
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Figure 2.5.1: Mesh example. Left: original triangulation. Right: mesh for VEM
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Figure 2.5.2: Left: detail of a mesh around a trace intersection. Right: detail of a
mesh around a trace tip

in their own right, as shown in Figures 2.5.1 and 2.5.2 that represent the two phases of

the process described above. In these pictures, coloured elements are the new virtual

elements, whereas blank elements are the original triangular elements. Elements with

up to 6 edges are introduced in these examples. In the figures, each color corresponds

to a different number of edges in the element. The reader might refer to the PDF file to

zoom in the pictures for a more detailed view.

The polygonal mesh obtained with the procedure described is possibly improved

through the displacement of some nodes. Namely, when a node falls very close to a trace,

it can be moved onto the trace itself, and therefore reducing the number of element edges

and total degrees of freedom. The mesh improvement process is performed as detailed

in the following. The distance of each node of intersected elements from the nearest

trace is compared to a given mesh dependent tolerance. If the distance of the node to

the closest trace is below the tolerance, then the node is moved to its projection on the

trace. Vertices of the fractures always remain fixed and nodes in the border are only

moved provided that they remain on the same border in order to avoid changing the
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Figure 2.5.3: Left: example of VEM mesh without modification. Right: Same mesh
after modifications

shape of the fracture. This procedure is performed independently for every fracture,

and although not strictly necessary, it is advisable. The effect of this additional mesh

modification is shown in Figure 2.5.3.

Since VEM basis functions are not known in the interior of mesh elements in

general, we resort to the following mesh-dependent L2 and H1 norms commonly used in

the context of mimetic finite differences, and defined ∀u ∈ Vi,δ and for all i = 1, . . . , I,

respectively as:

||u||20,δ =
∑
E∈Ti,δ

(
|E|
∂E

∑
e⊂∂E

|e|
(
uh(vi) + uh(ve)

2

)2
)
,

||u||21,δ =
∑
E∈Ti,δ

(
|E|

∑
e⊂∂E

(
uh(vi)− uh(ve)

|e|

)2
)
,

where vi and ve are the initial and final point of the edge, respectively.

2.5.2 Test problems

We first propose two test problems aimed at evaluating VEM approximation capabilities

in the DFN context by means of applying them to very simple configurations represen-

tative of common situations in DFN simulations. In these test cases, a single problem

of the form (2.2.1) is solved, i.e. a single fracture F is considered, assigning u on the

traces. In the first case, two intersecting traces are present in F , completely crossing the

domain, while a single trace ending inside the domain is studied in the second problem.
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The proposed numerical results show very good approximation capabilities of virtual

elements in dealing with these geometrical configurations.

2.5.2.1 Problem 1

The first test problem, labeled P1, displays two traces intersecting each other inside the

domain. The domain is a single rectangular fracture F ⊂ R2 with two traces S1 and S2

defined by:

F =
{

(x, y) ∈ R2 : x ∈ (0, 3), y ∈ (0, 1)
}
,

S1 =
{

(x, y) ∈ R2 : x− y − 1 = 0
}
, S2 =

{
(x, y) ∈ R2 : 2− x− y = 0

}
.

The domain is shown in Figure 2.5.4 with a coarse mesh with parameter δmax = 0.2

along with a detail of trace intersection. Here and in the sequel δmax denotes the square

root of the maximum element area for the initial triangulation on each fracture. For

this mesh, the original triangular element containing trace intersection is split into four

new elements, two triangles and two quadrilaterals.

The problem is set as follows:

−∆H = −∆Hex Ω \ S,

H = 0 on ∂F,

U1 = fS1 =

[[
∂Hex

∂ν̂S1

]]
S

on S1,

U2 = fS2 =

[[
∂Hex

∂ν̂S2

]]
S

on S2,

with

Hex(x, y) =


xy(y − 1)(x− y − 1)(x+ y − 2)/7 in A1,

(1− y)(x− y − 1)(x+ y − 2) in A2,

y(x− y − 1)(x+ y − 2) in A3,

y(1− y)(x− 3)(x− y − 1)(x+ y − 2)/5 in A4,

where A1, A2, A3 and A4 denote the four regions in which F is divided by the traces,

as indicated in Figure 2.5.4. Values of fS1 and fS2 are

fS1(x, y) =


1/(7
√

2)(2− x− y) (7− x(6 + x) + 20y

+2x(1 + x)y − 5xy2 + y3
)

x+ y − 2 ≤ 0

1/(5
√

2)(2− x− y) (−8 + y(1 + y)(11 + y)

+x2(−1 + 2y)− x(1 + y(4 + 5y))
)

x+ y − 2 > 0,
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Figure 2.5.4: Problem P1. Left: Domain with coarse grid δmax = 0.2. Right: a detail
of trace intersection

and

fS2(x, y) =


1/(5
√

2)(−1 + x− y) (−16− (−10 + x)x+ 38y

+2(−7 + x)xy + 5(−3 + x)y2 + y3
)

y − x+ 1 ≤ 0

1/(7
√

2)(−1 + x− y)
(
−28 + x2(−1 + 2y)

+y(23 + (−3 + y)y) + x(9 + y(−8 + 5y))) y − x+ 1 > 0.

In Figure 2.5.5 the numerical solution obtained on a fine mesh with parameter

δmax = 0.05 is displayed. This problem has been solved using both the VEM and the

XFEM for the space discretization, as described in [20–22]. Figure 2.5.6 reports, for both

space discretizations, errors computed versus the number of DOFs. We remark that,

when applying the two approaches, we always start from the same triangular mesh. The

XFEM deals with irregularities in the solution along traces by adding suitable enrichment

functions (see [21, 22] and references therein), resulting the two methods in a different

number of DOFs, when the same mesh parameter is used. Computed convergence rates

are close to the expected ones both in the L2 and the H1 mesh-dependent norms, and

both for the VEM and for the XFEM: namely, L2 norm convergence rate is 1.03 for

the VEM and 0.99 for the XFEM, whereas the H1 norm convergence rate is 0.49 both

for the VEM and for the XFEM. The L2 norm of the error on the restriction of the

solution to the traces is also reported (label ’L2H on trace’ in the legend), and displays

a convergence rate of 1.0 for the VEM and 0.91 for the XFEM. As a whole, the two

space discretizations yield a comparable level of accuracy, and the intersection between

traces is easily handled by the VEM on a polygonal mesh with very good approximation

properties.
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Figure 2.5.5: Problem P1: Approximate solution on a mesh with δmax = 0.05
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Figure 2.5.6: Problem P1: Error behavior

2.5.2.2 Problem 2

Let us define the domain F for the second test problem P2 as

F =
{

(x, y) ∈ R3 : −1 < x < 1, −1 < y < 1, z = 0
}
,

with a single trace S =
{

(x, y) ∈ R2 : y = 0 and − 1 ≤ x ≤ 0
}

ending in the interior

of F . This test problem has also been considered in [21]. Here we set out to show

the behaviour of virtual elements in handling the non-smooth behaviour of the solution

around trace tips. Let us introduce the function Hex(x, y) in F as:

Hex(x, y) = (x2 − 1)(y2 − 1)(x2 + y2) cos

(
1

2
arctan2(x, y)

)
where arctan2(x, y) is the four-quadrant inverse tangent, giving the angle between the

positive x-axis and point (x, y), and differs from the usual one-argument inverse tangent
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Figure 2.5.7: Problem P2: Domain meshed with δmax = 0.1. Right: a detail of
elements near trace tip

arctan(·) for placing the angle in the correct quadrant.

The problem is defined by the system:

−∆H = −∆Hex on Ω \ S,

H = 0 on ∂F,

U = x− x3 on S,

where U is the prescribed value of the jump of fluxes across the trace S.

Figure 2.5.7 shows the VEM mesh and the resulting elements near the tip. In

this implementation of the method, the tip becomes a new node of the triangulation,

and three new four-sided elements are generated. Two of them are obtained from the

original triangle that contained the trace tip, while the third one appears when the node

given by the intersection between the prolonged trace and the opposite mesh element is

added to the corresponding neighbouring triangle that becomes a quadrilateral.

The approximate solution is shown in Figure 2.5.8. In Figure 2.5.9 we report errors

computed both with the L2 and with the H1 mesh dependent norms, both for the VEM

and for the XFEM. Computed convergence rates are, also for this test problem, quite

similar for the two space discretizations: 1.05 in the L2 norm, and 0.51 in the H1 norm

for the VEM; 1.02 in the L2 norm, and 0.47 in the H1 norm for the XFEM. The Figure

also reports the errors on the restriction of H to the trace S, computed in the L2 norm.

Computed convergence rate are in this case 0.85 for the VEM and 0.96 for the XFEM.

As for problem P1, the approximation properties of the two space discretizations are

therefore quite similar. As a whole, also this geometrical configuration including a trace
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Figure 2.5.8: Problem P2: Approximate solution with VEM obtained with a mesh
with δmax = 0.1
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Figure 2.5.9: Problem P2: Error behavior

tip is effectively handled by the VEM, thanks to the flexibility in using polygonal mesh,

without affecting the approximation capabilities if compared, e.g., with extend finite

elements.

2.5.3 DFN problems

In this section we deal with networks of fractures, addressing both simple DFN problems

and more complex and realistic problems. Computations are perfomed using the PDE-

constrained optimization approach described, in conjunction with virtual element space
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Figure 2.5.10: DFN2: spatial distribution of fractures and the obtained solution for
the hydraulic head

discretization. The general DFN problem is set as follows:

−∆H = q Ω \ S, (2.5.1)

H|ΓD = HD on ΓD,

∂H

∂ν̂
= GN on ΓN ,

with reference to the nomenclature introduced in section 2.2.

2.5.3.1 DFN2

Here we analyze a very simple DNF consisting of two identical fractures that intersect

each other orthogonally, as can be seen in Figure 2.5.10 where the domain Ω is depicted.

Fractures 1 and 2 and the trace S are defined as:

F1 =
{

(x, y, z) ∈ R3 : z ∈ (−1, 1), y ∈ (0, 1), x = 0
}
,

F2 =
{

(x, y, z) ∈ R3 : x ∈ (−1, 1), y ∈ (0, 1), z = 0
}
,

S =
{

(x, y, z) ∈ R3 : x = 0, y ∈ (0, 1), z = 0
}
.

Homogeneous Dirichlet boundary conditions are imposed on the edges correspond-

ing to z = 0 and z = 1 of F1 and to y = 0 and y = 1 of F2 . On the remaining edges
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Figure 2.5.11: DFN2: approximate solution for fracture 1 (left) and fracture 2 (right)
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Figure 2.5.12: DFN2: Left: comparison between exact and approximate flux. Right:
values of J versus number of iterations

we set homogeneous Neumann conditions for fracture F1, and a non-constant Neumann

boundary condition for fracture F2 given by GN = 16y(1− y)2on ΓN . With this defini-

tion of the problem, the exact solutions for the hydraulic head Hex and the trace flux

U are:

Hex
1 (x, y, z) =

{
4y(1− y)(z − 1)2 for z ≥ 0

4y(1− y)(z + 1)2 for z < 0

U ex1 (x, y, z) = 16y(1− y)

Hex
2 (x, y, z) =

{
4y(1− y)(x+ 1)2 for x ≥ 0

4y(1− y)(x− 1)2 for x < 0

U ex2 (x, y, z) = −16y(1− y).

In Figure 2.5.11 we present the results obtained for the hydraulic head on fracture

F1 (left) and F2 (right) using a mesh size δmax =
√

0.002. Figure 2.5.12 shows the

comparison of the obtained flux with the exact solution and the trend of the minimization

of functional J against iteration number. Here, we have performed a number of iterations

large enough to let J reach stagnation at its minimum. The computed flux relative to

the minimum of the functional approximates the exact solution well.

Error norms are computed for the solution on the fractures in terms of the mesh-

dependent L2 and H1 norms and are shown in Figure 2.5.13 against the number of degrees
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Figure 2.5.13: DFN2: error behaviour

of freedom. Errors for the flux on the trace and for the restriction of the solution h on the

trace are also evaluated and displayed on the same figure. Convergence rates are of 1.05

and of 0.51 for the solution error in the L2 and H1 mesh dependent norms respectively,

while a slope of 0.91 is shown for the L2 error norm relative to the flux and a slope

of 0.94 for the L2 error norm of h at the trace. The results obtained show very good

approximation properties of the VEM in conjunction with the proposed optimization

method. Effectiveness of the method in handling more complex configurations is shown

with the examples that follow.

2.5.3.2 DFN7

This problem consists of 7 fractures intersecting in 11 traces. The spatial distribution of

the fractures can be seen in Figure 2.5.14. The source term is q = 0 in equation (2.5.1).

The Dirichlet boundary ΓD is given by only two fracture edges: namely, constant

Dirichlet boundary condition HD = 3 is set on one edge of fracture F3 (see Figure 2.5.14)

and HD = 7 is set on one edge of fracture F7. On all the remaining boundaries of the

network we set homogeneous Neumann conditions.

Due to the disposition of the fractures and the boundary conditions, the exact

solution to this DFN problem is piecewise affine and displays a slope change at each

trace (the jump in the slope corresponding to flux exchange). In this problem we show

the capability of the VEM discretization, combined with the optimization approach, to

correctly catch the solution in the space of discrete functions.
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F7

F3

Figure 2.5.14: DFN7: spatial distribution of fractures and the obtained solution for
the hydraulic head
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Figure 2.5.15: DFN7: mesh on F6 with parameter δmax = 1.2 (left) and finer mesh
with δmax = 0.2 (right)
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Figure 2.5.16: DFN7: solutions obtained for fracture 6 with coarse (left) and fine
(right) mesh

Results are shown for a very coarse mesh (from 8 to 18 elements for each fracture)

and for a finer mesh with δmax = 0.2. See Figure 2.5.15 for a detail of the meshes for

fracture 3.

Table 2.5.1 details the flux exchange in fractures and traces for the solution on the

finer mesh. Rows correspond to traces and columns to fractures. The last row contains
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Table 2.5.1: Flux data for the DFN7 configuration with flux mismatches across traces
(last column) and flux balance on fractures (last row)

DFN7
F1 F2 F3 F4 F5 F6 F7

T1 -0.036 0.036 -9.8e-12
T2 -0.17 0.17 4.6e-12
T3 0.21 -0.21 -1.6e-12
T4 -0.24 0.24 -1.6e-12
T5 0.24 -0.24 -1.1e-11
T6 0.064 -0.064 -2.7e-12
T7 0.039 -0.039 -8.9e-12
T8 0.34 -0.34 1.1e-11
T9 0.31 -0.31 4.8e-12
T10 0.029 -0.029 8.3e-12
T11 0.039 -0.039 8.1e-13

-2.1e-14 4.4e-14 0.7505 1e-14 4.2e-16 -1.4e-14 -0.7505 -5.9e-12

the sum of all the incoming and outgoing flow for each fracture, while the last column

shows the balance in flux exchange between the two fractures that share a trace. An

almost perfect balancing of the fluxes can be seen, both within fractures and in trace

exchanges. Fracture F7 acts as a source that provides 0.7505 of flux to the system

(negative values represent flux leaving the fracture), which leaves the system at fracture

F3 with an approximately 0 unbalance reported in the bottom-right cell of the table. All

other fractures show a quasi non-existent net flow, which agrees with the homogeneous

Neumann boundary condition.

2.5.3.3 DFN36

We end the section with a realistic (though rather small) DFN consisting of 36 fractures

intersecting in 65 traces. The spatial distribution of the fractures can be seen in Fig-

ure 2.5.17. Assuming meters as unit of length, fracture size spans from 2.8 × 103m2 to

1.2× 104m2.

The Dirichlet boundary is composed by two edges of two fractures, namely ΓD is

composed by the borders of fracture F1 and F2 indicated in Figure 2.5.17, prescribing

constant value Dirichlet conditions, HD
1 = 100 and HD

2 = 0. Homogeneous Neumann

boundary conditions are set on all the remaining boundaries. With these boundary

conditions fracture F1 is a source of hydraulic head, F2 is a sink fracture and all other

fractures are insulated. Also in this case we set q = 0 in (2.5.1).

The problem is solved on several meshes, with 2m2 < δ2
max < 50m2. In Fig-

ure 2.5.18 the detail of a mesh with δ2
max = 30m2 on a selected fracture and the corre-

sponding obtained solution are shown.
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F1

F2

Figure 2.5.17: DFN36: Spatial distribution of fractures and the obtained solution for
the hydraulic head
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Figure 2.5.18: DFN36: Left: Mesh with maximum element size of 30m2 on a selected
fracture. Right: Solution on the same grid

The quality of the obtained solution can be evaluated in terms of two indicators,

representing the mismatch errors in the continuity condition and in the flux balance

condition on the traces per unit of trace length, defined respectively as:

∆cont =

√∑M
m=1 ‖hi|Sm − hj |Sm‖

2∑M
m=1 |Sm|

,

∆flux =

√∑M
m=1 ‖umi + umj − α(hi|Sm + hj |Sm

)‖2∑M
m=1 |Sm|

.

These mismatch errors are reported in Table 2.5.2 for different mesh sizes. Namely, we

report values obtained with both the VEM and the XFEM based space discretizations.

The table also reports the number of degrees of freedom in the two cases, corresponding

to each mesh parameter. We remark that the number of DOFs for u is the same in
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Table 2.5.2: DFN36: ∆cont and ∆flux for various mesh sizes

VEM XFEM

δ2
max u dof h dof ∆flux ∆cont h dof ∆flux ∆cont

50 776 4091 9.515e-04 9.432e-04 5772 1.039e-03 9.521e-04
30 942 6048 9.621e-04 8.394e-04 8106 1.147e-03 1.181e-03
12 1342 13967 6.736e-04 6.514e-04 16932 7.358e-04 8.189e-04
5 1885 30782 5.972e-04 6.083e-04 34958 5.930e-04 7.019e-04
2 2862 74107 4.847e-04 3.949e-04 80403 4.342e-04 4.664e-04

the two cases, as we use on the traces a finite element discretization which is induced

by the intersection points among the initial triangular mesh element edges (the same

for the two approaches) and the trace itself. On the other hand, the number of DOFs

for h is different for the two approaches here adopted, and is in general smaller for the

VEM. This is due to the fact that the XFEM deals with totally non-conforming meshes

through the introduction of suitable enrichment functions in triangles close to the traces,

thus yielding a bit larger number of DOFs. Note that this larger number of DOFs for

the XFEM is required for handling a total non-conforming mesh, but it does not yield

more accurate mismatch errors with respect to the VEM approach. As a whole, a good

accuracy is obtained with both approaches, and the mismatch errors reduce with mesh

refinement.

2.6 Conclusions

The very recent Virtual Element Method is coupled with the optimization based algo-

rithm presented in [20–22] for the numerical simulation of DFNs on large scales. The

flexibility of virtual elements in handling meshes with elements of fairly general polyg-

onal shape allows an easy mesh generation process, reliable and independent on each

fracture, suitable for the optimization approach used. The resulting method is robust

as can approach any DFN with arbitrary fracture density, and efficient, since it provides

an easy parallel approach to the simulation of large networks. The numerical results

reported show the viability and effectiveness of the VEM for the simulation of DFNs.



Chapter 3

A globally conforming method

The contents of this chapter follow closely those found in the article ”A globally con-

forming method for solving flow in discrete fracture networks using the Virtual Element

Method” published in Finite Elements in Analysis and Design, Volume 109, February

2016, Pages 23–36.

3.1 Introduction

In this chapter, we aim to provide an easy, natural way for generating conforming meshes

for complex DFN problems using the VEM. The proposed approach is a generalization

of traditional conforming finite elements, keeping the method as simple and streamlined

as possible. Some of the ideas presented here where present in the previous chapter, that

introduced Virtual Elements (VEM) to DFNs. There, the VEM is used on locally con-

forming meshes and an optimization approach is adopted to handle the non-conformity

of the global mesh. Here both local and global conformity is enforced, and classical

approaches, borrowed from the domain decomposition methods, can be used to solve

the problem. We make absolutely no assumptions on the meshing procedure, which is

done independently for each fracture and without any consideration of the position of

the traces. Traces are not modified in any way, and using some of the features of the

VEM, local and global conformity for the mesh is obtained by means of splitting the

original elements of the meshes independently generated on each fracture into polygons

of an arbitrary number of vertices.

Using Lagrange multipliers we obtain a hybrid system that can be solved with

different methods, including FETI algorithms for domain decomposition.

34
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Section 3.2 provides the formulation of the DFN problem in the present context,

whereas a brief summary of the VEM is reported in section 3.3, and in section 3.4 the

proposed method is described in detail. Numerical results are presented in section 3.5,

where some convergence results are given and the applicability of the method to DFNs

is discussed.

3.2 The continuous problem

Let us consider a set of open convex planar polygonal fractures Fi ⊂ R3 with i = 1, ..., N ,

with boundary ∂F . Our DFN is Ω =
⋃
i Fi, with boundary ∂Ω. Even though the

fractures are planar, their orientations in space are arbitrary, such that Ω is a 3D set.

The set ΓD ⊂ ∂Ω is where Dirichlet boundary conditions are imposed, and we assume

ΓD 6= ∅, whereas ΓN = ∂Ω\ΓD, is the portion of the boundary with Neumann boundary

conditions. Dirichlet and Neumann boundary conditions are prescribed by the functions

hD ∈ H
1
2 (ΓD) and gN ∈ H−

1
2 (ΓN ) on the Dirichlet and Neumann part of the boundary,

respectively. We further set ΓiD = ΓD ∩ ∂Fi, ΓiN = ΓN ∩ ∂Fi, and hDi = hD |ΓiD and

gNi = gN |ΓiN . The set T collects all the traces, i.e. the intersections between fractures,

and each trace T ∈ T is given by the intersection of exactly two fractures, T = F̄i ∩ F̄j ,
such that there is a one to one relationship between a trace T and a couple of fracture

indexes {i, j} = I(T ). We will also denote by Ti the set of traces belonging to fracture

Fi.

Subsurface flow is governed by the gradient of the hydraulic head H = P +ζ,

where P = p/(%g) is the pressure head, p is the fluid pressure, g is the gravitational

acceleration constant, % is the fluid density and ζ is the elevation.

We define the following functional spaces:

Vi = H1
0(Fi) =

{
v ∈ H1(Fi) : v|ΓiD

= 0
}
,

V D
i = H1

D(Fi) =
{
v ∈ H1(Fi) : v|ΓiD

= hDi

}
,

and

V =
{
v : v|Fi ∈ Vi, ∀i = 1, . . . , N, γT (v|Fi) = γT (v|Fj ), ∀T ∈ Ti, {i, j} = I(T )

}
,

where γT is the trace operator onto T. It is then possible to formulate the DFN problem,

given by the Darcy’s law in its weak form on the fractures with additional constraints of

continuity of the hydraulic head across the traces: for i = 1, . . . , N , find Hi ∈ V D
i such
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that ∀v ∈ V

N∑
i=1

∫
Fi

Ki∇Hi∇v|FidFi =
N∑
i=1

(∫
Fi

fiv|FidFi + 〈gNi , v|ΓNi
〉
H−

1
2 (ΓNi ),H

1
2 (ΓNi )

)
,

γT (Hi) = γT (Hj), ∀T ∈ T , {i, j} = I(T )

where Ki is the fracture transmissivity tensor, that we assume is constant on each

fracture. The second equation represents the continuity of the hydraulic head across

traces. On each fracture of the DFN the following bilinear form ai : Vi × Vi 7→ R is

defined as:

ai(Hi, v|Fi) =

∫
Fi

Ki∇Hi∇v|FidFi. (3.2.1)

3.3 The Virtual Element Method

This section provides a quick overview of the VEM, recalling the main features useful

in the present context. We refer the reader to the original paper [10] for a proper

introduction and to [12] for a guide on implementation. Further developments can

be found in [2], [32], [15] and [14]. The VEM has also been applied to problems in

elasticity [11], plate bending [26], the Stokes problem [3] and has sparked interest in

other applications as well.

Borrowing ideas from the Mimetic Finite Difference method [9, 55], the VEM can

be regarded as a generalization of regular finite elements to meshes made up by polygonal

elements of any number of edges. The discrete functional space on each element has,

in general, not only polynomial functions but also other functions that are only known

at a certain set of degrees of freedom. Given a bilinear form to be approximated with

the VEM, our goal is to build a discrete bilinear form that coincides with the exact

one when at least one of the arguments is a polynomial. For the other cases, a rough

approximation that scales in a desired way is enough to obtain the desired convergence

qualities of the method.

Given a domain F ⊂ R2, a mesh τh on F , made of polygons {E} with mesh

parameter h (i.e. the square root of the maximum element area), and the space of

the polynomials of maximum order k, Pk, let us define the local space V E
k,h for a given

polynomial degree k as:

V E
k,h =

{
vh ∈ H1(E) : vh|∂E ∈ C0(∂E), vh|e ∈ Pk(e) ∀e ⊂ ∂E, ∆vh ∈ Pk−2(E)

}
where ∂E is the border of E, and e an edge.
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From the above definition it is clear that the space Pk(E) is a subset of V E
k,h. We

define the following degrees of freedom for each element E:

• The value of vh at the vertices of E;

• The value of vh at k − 1 internal points on each edge of E;

• The moments 1
|E|
∫
E vhmα for |α| 6 k − 2,

where mα, with α = (α1, α2), represent scaled monomials of the type

mα = (
x− xc
hE

)α1(
y − yc
hE

)α2 ,

and (xc, yc) and hE are the centroid and the diameter of the element E respectively.

Different choices for the second type of degree of freedom is possible instead of point

values, e.g. edge moments. We have chosen point values on Gauss-Lobatto nodes on

edges for numerical integration purposes. The selected set of degrees of freedom is

unisolvent [10], and therefore, given an element E with nv vertices, we have that the

dimension of V E
k,h is #V E

k,h = nvk + k(k−1)
2 . We finally choose a basis for V E

k,h, made of

functions φi with i = 1, ...,#V E
k,h, such that, calling dofj(v), for j = 1, . . . ,#V E

k,h the

j-th degree of freedom applied to v, we have dofj(φi) = δij , being δij the Kronecker

delta. The global virtual element space is:

Vk,h =
{
vh ∈ H1(F ) : vh|E ∈ V E

k,h ∀E ∈ τh
}
,

and we can easily check that the chosen degrees of freedom on the edges of each element

allow to easily enforce continuity of any function vh ∈ Vk,h on the internal edges of the

partition τh.

Let us now consider the restriction of the bilinear form (3.2.1) to a mesh element

E, aEi (., .). We aim at building a discrete bilinear form aEi,h : V E
k,h×V E

k,h 7→ R having the

previously stated polynomial consistency, i.e. the discrete bilinear form has to coincide

with the exact one when at least one of the arguments is a polynomial of maximum

degree k. To this end let us consider the projector operator of order k on E:

Π∇E,k : V E
k,h −→ Pk(E)

such that

Π∇E,kqk = qk for all qk ∈ Pk(E),
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defined by the equations∫
E
∇qk · ∇vh =

∫
E
∇qk · ∇Π∇E,kvh for all qk ∈ Pk(E),∫

E
Π∇E,kvh =

∫
E
vh.

The projection Π∇E,kvh can be uniquely defined starting from the degrees of freedom

of vh using integration by parts [12] and represents an orthogonality condition in the

H1 inner product. The first equation defines the projection up to a constant, which is

defined by the second equation. Other options for the second equation exist [14]. For

order k = 1, it can be taken as

1

Nv

Nv∑
i=1

Π∇E,kvh(Vi) =
1

Nv

Nv∑
i=1

vh(Vi)

where Vi are the vertices of the element and Nv its number.

Remark 3.1. In the case of a more complex equation than the Laplacian (or even the

Laplacian with non-constant coefficients), other projectors have to be considered [14].

Let us now take any symmetric, positive definite bilinear form SEi,h : V E
k,h×V E

k,h 7→
R, such that there exist c0 and c1 positive constants, independent of the element E and

its diameter, that verify

c0a
E(vh, vh) ≤ SEi,h(vh, vh) ≤ c1a

E(vh, vh) ∀vh ∈ V E
k,h with Π∇E,kvh = 0.

This implies that SEi,h scales like aEi (vh, vh), and then the local discrete bilinear form

aEi,h is set as

aEi,h(uh, vh) = aEi (Π∇E,kuh,Π
∇
E,kvh) +

SEi,h(uh −Π∇E,kuh, vh −Π∇E,kvh) ∀uh, vh ∈ V E
k,h.

The first terms ensures the consistency and the second one the stability of the form.

Finally, the complete discrete bilinear form becomes

ai,h(uh, vh) =
∑
E∈τh

aEi,h(uh, vh) ∀uh, vh ∈ Vk,h.

A possible choice for the bilinear form SEi,h is the usual Euclidean product in R#V Ek,h×#V Ek,h

between two vectors whose components are the values of the functions at the degrees of

freedom. A stiffness matrix Ki is associated to the discrete bilinear form ai,h, defined
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as :

(Ki)pq = ai,h(φq, φp), for p, q = 1, ...,#Vk,h.

In general it is not true that the VEM stiffness matrix approximates the exact stiffness

matrix as if it were computed numerically.

For the right hand side with load term f , it is enough for optimal convergence [12]

to consider

(f, vh) =
∑
E∈τh

∫
E
fΠ0

E,k−1vh for order k = 1, 2,

(f, vh) =
∑
E∈τh

∫
E
fΠ0

E,k−2vh for order k ≥ 3,

where Π0
E,k is the the full L2 projection on the polynomials of degree k.

3.4 Problem implementation

3.4.1 Mesh generation

Mesh generation is done independently for each fracture regardless of traces and their

positions. The process of mesh generation consists of three steps: the first task is

the generation of a baseline triangulation of each fracture, not necessarily conforming to

trace disposition, and independent on each fracture; the second step is the generation of a

fracture-local conforming mesh, splitting the triangles of the baseline mesh into polygons

conforming to the traces; finally on each fracture Fi, nodes are added on the traces T ∈ Ti
corresponding to the nodes of the intersecting fracture Fj with {i, j} = I(T ), ∀T ∈ Ti,
thus gaining global conformity. The three steps are depicted in Figure 3.4.1, and, the

second and third steps are further described in full details in the next paragraphs.

3.4.1.1 Local conformity

Local conformity is obtained as in the previous work [17]. Every time a trace intersects

an edge of the triangulation, a new node is created there. Nodes are also created at trace

tips. If a trace tip is inside a triangular element, we extend the geometrical segment

coinciding with the trace up to the nearest edge of the triangulation, thereby creating
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a new edge and a new node. The trace is not modified, being now a subset of the

extended segment. By doing this, we split the original elements of the triangulation into

new convex “sub-elements”, which are elements of the mesh in their own right. The end

result is a mesh of polygonal elements for which all traces are covered by element edges,

see Figures 3.1(a) and 3.1(b), where element colouring indicates the number of edges.

A careful inspection of those Figures reveals all of the situations described above.

Remark 3.2. An optional mesh modification has been implemented that rearranges some

of the nodes of the baseline triangulation before the splitting process, so as to make

them coincide with nearby traces, trace tips and trace intersections. This leads to

better shaped elements and fewer DOFs for the final mesh and it is not computationally

demanding.

3.4.1.2 Global conformity

After obtaining the locally conforming mesh the subsequent step is to ensure that all the

nodes on the traces are included in the meshes of both fractures that share the trace.

These nodes are the ones shared by more than one fracture. This is the most important

feature of the method we are proposing and takes full advantage of VEM versatility.

Given a trace T shared by fractures Fi and Fj , we define UFiT as the set of all nodes on

the trace T in fracture Fi and analogously U
Fj
T for Fj . The procedure used to obtain

the global conforming mesh guarantees that both trace tips are included and that the

discretization includes all nodes on the traces and covers it precisely. The complete

trace discretization is then UT = UFiT ∪ U
Fj
T . What remains now is to simply add the

set of nodes UT \ UFiT on the corresponding elements of fracture Fi and analogously for

fracture Fj . This can be done since the VEM allows for elements of arbitrary number

of edges and 180◦ angles between them. The final globally conforming mesh is shown in

Figure 3.1(c) and is identical to the previous mesh except for the new added nodes on

the traces and a change in element colouring that is an indication of the increment in

the number of edges and DOFs.

3.4.2 Imposing matching conditions

For every fracture Fi, with i = 1, ..., N , we call ndofi the number of DOFs of fracture Fi

and we assemble the stiffness matrix Ki ∈ Rndofi×ndofi following the procedure described

in section 3.3. Then we construct the column vectors fi ∈ Rndofi as the vector of load

values (including terms arising from non-homogeneous boundary conditions) and hi as

the vector of nodal values of the discrete solution. We note that the matrix Ki is singular

for fractures with pure Neumann boundary conditions. For the complete DFN we have:
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(c) Globally conforming

Figure 3.4.1: Original mesh, VEM mesh and final globally conforming mesh

K =


K1 0 · · · 0

0 K2 · · ·
...

...
...

. . .
...

0 · · · · · · KN

 , f =


f1

...

...

fN

 and h =


h1

...

...

hN

.

In order to obtain the saddle point linear system for the complete DFN we have

to impose matching conditions for the nodes on the traces that guarantee the continuity

condition of the hydraulic head. We do that by means of Lagrange multipliers λt, for

t = 1, ..., ndoft . They are introduced for each node on the traces in a non-redundant way

(see [50]) which means that in the case of two intersecting traces, i.e. three fractures

sharing a single point in space (as in the example of section 3.5.1.2), only two multipliers

are added. To each index t = 1, . . . , ndoft corresponds a node on a trace T that is shared

by fractures Fi and Fj , and we denote by dofi(t) the corresponding global DOF for node
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t on Fi and analogously by dofj(t) the DOF on Fj . We define Nh =
∑N

i=1 ndofi , and

the row vector Lt ∈ RNh
as:

Lt =
( dofi dofj

0 · · · 0 1 0 · · · 0 −1 0 · · · 0

)
. (3.4.1)

Finally, we set L ∈ Rndoft×Nh
as the matrix:

L =


L1

...

...

Lndoft

 .

The final linear system is: [
K LT

L 0

][
h

λ

]
=

[
f

0

]
. (3.4.2)

This saddle point problem has a unique solution as it can be easily proven resorting

to classical results of quadratic programming [61].

When the dimensions of the system 3.4.2 are large, the use of an iterative method

and of a preconditioner is advised. We briefly recall the one-level FETI method for

domain decomposition as described in [49] here implemented. In this method the primal

variables are determined in terms of the Lagrange multipliers. More precisely, we define

a block diagonal matrix R as

R =


R1 0 · · · 0

0 R2 · · ·
...

...
...

. . .
...

0 · · · · · · RN



where each sub-matrix Ri, for i = 1, . . . , N is such that its columns form a basis

of the kernel of Ki, ker(Ki), so that ker(K) = range(R). In the case of the Laplacian

operator, Ri corresponds to constant solutions for the subdomains with pure Neumann

boundary conditions. Subdomains with Dirichlet boundary conditions have a unique

solution and therefore have no contribution for R. It can be shown that

h = K∗(f − LTλ) +Rα
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where K∗ is the pseudoinverse of K and the vector α depends on λ but not on the primal

variables h. This means that if we solve a system for λ, this completely determines the

solution. In order to solve this system for λ, a choice of several preconditioners is

possible.

We give a brief outline of the procedure to obtain the Dirichlet preconditioner

for the one-level FETI, denoted M−1. Let us define Kt as the sum of transmissivity

values of the fractures that share the node associated with the degree of freedom t.

We first multiply the coefficient (L)t,dofi(t) by Ki/Kt and the coefficient (L)t,dofj(t) by

Kj/Kt. This takes into account the relative weight of the transmissivity coefficient of

each fracture with respect to the sum of the transmissivity coefficients of the fractures

associated with that node. We collect then the new coefficients in a matrix LD. Then,

for each fracture we denote by τ the set of fracture DOFs corresponding to nodes placed

on the traces, and by ζ the set of the remaining DOFs and we can rearrange matrices

Ki to obtain:

K̃i =

[
K

(ζζ)
i K

(τζ)T
i

K
(τζ)
i K

(ττ)
i

]
.

The local Schur complement Si is defined as:

Si = K
(ττ)
i −K(τζ)

i (K
(ζζ)
i )−1K

(τζ)T
i .

If we call S the block diagonal Schur complement matrix of the whole system, the

Dirichlet preconditioner for the one-level FETI is:

M−1 = LDSL
T
D.

This is called Dirichlet preconditioner as a consequence of the fact that for each appli-

cation of the preconditioner a local Dirichlet problem has to be solved. The lumped

preconditioner is defined similarly as:

M−1 = LDK
(ττ)LTD,

where K(ττ) is the block diagonal matrix made up by the local K
(ττ)
i . We note that in

order to define inner products for the Preconditioned Conjugate Gradient (PCG) FETI

algorithm, a symmetric, positive definite matrix Q is used [49]. In our experiments we

have considered Q = M−1.
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3.5 Numerical results

In this section we present some numerical results, beginning with convergence results for

benchmark problems and VEM spaces of various orders. We also compare the results

obtained with this approach to the results of a validated XFEM based method on a

medium size DFN [22, 23]. We conclude showing some examples of numerical instabilities

arising mainly with the higher order VEM approximation spaces for certain particularly

adverse geometrical configurations. All of the results were obtained using a constant

transmissivity tensor K = 1 for all fractures.

3.5.1 Convergence results

The error norms used for the convergence curves are the usual L2 and H1 norms. The

error is computed by taking the projection of the discrete solution on the space of

polynomials, since the values of the discrete solution are only known at the DOFs and

are not explicitly known inside the elements (see [14]):

Err2
L2 =

∑
E∈Tδ

||H −Π∇E,khE ||2L2(E),

Err2
H1 =

∑
E∈Tδ

||H −Π∇E,khE ||2H1(E)

where Π∇E,k is the projection operator of order k as defined in section 3.3, H is the exact

solution and hE is the discrete solution restricted to element E.

The flux incoming in a fracture through the traces is computed as the jump of

the conormal derivative of the discrete solution across the traces. For every trace we

fix a tangential orientation and a normal unit vector obtained by clockwise rotating by

90◦ the tangent vector of the trace in the fracture plane. For every mesh edge e ⊂ T ,

i.e. an edge included in trace T , we consider a unique normal vector ne,i in Fi with

an orientation given by the normal vector fixed for the trace, and we define the flux

incoming in the fracture Fi through the edge e, named ue,i, as follows:

uleft,e,i = ∇Π∇El,khE,i · ne,i,

uright,e,i = −∇Π∇Er,khE,i · ne,i,

ue,i = uleft,e,i + uright,e,i,

where El and Er are the elements to the left and to the right of the trace that share the

edge e, respectively.
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F1

F2

Figure 3.5.1: Spatial distribution of fractures for benchmark problem 1

The flux entering in the fracture Fi through trace T is then obtained by repeating

this procedure over all the mesh edges in Fi belonging to T :

uT,i =
∑
e⊂T

ue,i.

The L2 error of the flux on the trace is then:

ErrU2
L2 = ||UT,i − uT,i||2L2(T ),

where UT,i is the exact incoming flux in Fi through trace T .

3.5.1.1 Benchmark problem 1

This first problem has been considered before in the context of the XFEM (eXtended

finite elements) [21] and of the VEM in chapter 2 as a single-fracture problem. Never-

theless, it remains interesting for the fact that it includes a trace tip inside the domain

and the exact solution is known. In this work the problem is considered as a 2-fracture

DFN, as shown in Figure 3.5.1 and the error calculations and convergence curves are

shown for the first fracture, F1.



Chapter 3. A globally conforming method 46

Area Parameter

10
-3

10
-2

E
rr

o
r

10
-3

10
-2

10
-1

L2

H1

L2 on trace

Slope = 0.5

Slope = 1

(a) Order 1

Area Parameter

10
-3

10
-2

E
rr

o
r

10
-5

10
-4

10
-3

10
-2

10
-1

L2

H1

L2 on trace

Slope = 1

Slope = 1.5

(b) Order 2

Area Parameter

10
-3

10
-2

E
rr

o
r

10
-6

10
-5

10
-4

10
-3

10
-2

L2

H1

L2 on trace

Slope = 1.5

Slope = 2

(c) Order 3

Area Parameter

10
-3

10
-2

E
rr

o
r

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

L2

H1

L2 on trace

Slope = 2

Slope = 2.5

(d) Order 4

Figure 3.5.2: Convergence curves for benchmark problem 1 - Fracture 1
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Figure 3.5.3: Solutions for benchmark problem 1 - Fracture 1
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Let us define the domains F1 and F2 as

F1 =
{

(x, y, z) ∈ R3 : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, z = 0
}
,

F2 =
{

(x, y, z) ∈ R3 : −1 ≤ x ≤ 0, −1 ≤ z ≤ 1, y = 0
}
,

with a single trace T =
{

(x, y) ∈ R3 : y = 0, z = 0 and − 1 ≤ x ≤ 0
}

ending in the in-

terior of F1 (Figure 3.5.1).

Exact solutions for F1 and F2 are given by Hex
1 (x, y) and Hex

2 (x, y):

Hex
1 (x, y, z) = − cos

(
1

2
arctan2(x, y)

)
(x2 − 1)(y2 − 1)(x2 + y2)

Hex
2 (x, y, z) = − cos

(
1

2
arctan2(x, y)

)
(z2 − 1)(x2 − 1)(z2 + x2)

where arctan2(x, y) is the arc-tangent function with 2 arguments, that returns the

appropriate quadrant of the computed angle.

The problem is then:

−∆H = −∆Hex
1 on F1 \ T,

H = 0 on ∂F1,

−∆H = −∆Hex
2 on F2 \ T,

H = (z2 − z4) cos(π/4) on ∂FD2

H = 0 on ∂F2 \ ∂FD2 .

where ∂FD2 =
{

(x, y, z) ∈ R3 : x = 0, y = 0,−1 ≤ z ≤ 1
}

is the boundary of F2

with non-homogeneous Dirichlet boundary conditions.

Convergence curves for the VEM of orders from 1 to 4 are shown in Figure 3.5.2.

The expected rates of convergence are obtained for orders 1 and 2, whereas a slower

rate of convergence for orders 3 and 4 was obtained as a consequence of the insufficient

regularity of the exact solution in the sense of Sobolev spaces.

Numerical solutions for the hydraulic head H1 with the VEM of orders 1 and 2

are shown in Figure 3.5.3 a) and b). In Figure 3.5.3 c) and d), we present a comparison

between the exact solution and the approximate solution of the flux incoming in F1, as

well as its left and right components. Note how the approximation of the trace flux U

is piecewise constant for order 1 VEM and piecewise linear for order 2 VEM, and the
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Figure 3.5.4: Spatial distribution of fractures for benchmark problem 2
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Figure 3.5.5: Convergence curves for benchmark problem 2 - Fracture 1

approximation of the exact flux (dashed line) with the VEM of second order is greatly

improved.
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Figure 3.5.6: Solutions for benchmark problem 2 - Fracture 1 and trace 1

3.5.1.2 Benchmark problem 2

This problem shows the performance of the proposed approach in presence of trace

intersections. The considered system consists of 3 fractures and 3 traces as shown in

Figure 3.5.4:

F1 =
{

(x, y, z) ∈ R3 : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, z = 0
}
,

F2 =
{

(x, y, z) ∈ R3 : −1 ≤ y ≤ 1, −1 ≤ z ≤ 1, x = 0
}
,

F3 =
{

(x, y, z) ∈ R3 : −1 ≤ z ≤ 1, −1 ≤ x ≤ 1, y = 0
}
,

T1 =
{

(x, y, z) ∈ R3 : −1 ≤ x ≤ 1, y = 0, z = 0
}
,

T2 =
{

(x, y, z) ∈ R3 : −1 ≤ y ≤ 1, z = 0, x = 0
}
,

T3 =
{

(x, y, z) ∈ R3 : −1 ≤ z ≤ 1, x = 0, y = 0
}
.

Note that all of the three traces intersect in a single point P = (0, 0, 0) in space

(as it is always the case for the intersection of 3 planar fractures).

Exact solutions are known for all fractures:
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Hex
1 (x, y) = |x|(1 + x)(1− x)y(1 + y)(1− y),

Hex
2 (y, z) = y(1 + y)(1− y)|z|(1 + z)(1− z),

Hex
3 (z, x) = z(1 + z)(1− z)x(1 + x)(1− x).

Note that Hex
1 and Hex

2 are not C1 in the whole fracture, but, for each of the 4

subdomains defined by the traces in each fracture, they are polynomials of degree 6.

The problem is then:

−∆H = 6|x|y(x2 + y2 − 2) on F1 \ T1,

−∆H = 6|y|z(y2 + z2 − 2) on F2 \ T2,

−∆H = 6zx(z2 + y2 − 2) on F3 \ T3,

H = 0 on ∂F1 ∪ ∂F2 ∪ ∂F3.

Convergence curves for the VEM of orders from 1 to 4 are shown in Figure 3.5.5

and solutions for order 1 and 2 are reported in Figure 3.5.6. In contrast with benchmark

problem 1, the expected convergence speed is achieved for all orders, since now the exact

solution has C∞ regularity on each of the subdomains defined by the traces and the mesh

for the numerical solution is conforming to the traces. This is a sufficient condition for

optimal convergence rates, [42, 72]. The error in the discrete solution for VEM of order

6 is ||H−h||2L2 = 3.53e−19, ||∂x(H−h)||2L2 = 5.09e−18 and ||∂y(H−h)||2L2 = 5.85e−18,

being then of the same order of the round-off error in double precision. This confirms

that the discrete solution coincides numerically with the exact solution.

3.5.2 DFN - 27 fractures

Let us consider the DFN shown in Figure 3.5.7 consisting of 27 fractures. A sink frac-

ture F1 and a source fracture F2 are defined, both having a non homogeneous Dirichlet

boundary conditions on one edge of their boundary and homogeneous Neumann bound-

ary conditions on the remaining edges. All other fractures have homogeneous Neumann

boundary conditions and are therefore insulated on their boundaries. In absence of an

exact solution, the difference ∆ between the flux entering the system from F2 (the source

fracture), “So”, and the flux leaving it from F1 (sink fracture), “Si”, is considered for

assessing the quality of the obtained numerical approximation.
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Figure 3.5.7: DFN27: spatial distribution of fractures for a DFN with 27 fractures

Table 3.5.1: DFN27: net flux in source (So) and sink (Si) fractures and flux mismatch
∆ for various mesh sizes and VEM orders

mesh 150 mesh 120
Method Si So ∆ Si So ∆

VEM-1 8.75 -8.22 0.53 8.70 -7.92 0.78
VEM-2 11.23 -9.78 1.45 11.16 -10.05 1.09
VEM-3 11.60 -10.36 1.23 11.64 -10.60 1.04
VEM-4 11.88 -10.76 1.12 11.89 -10.92 0.98

mesh 90 mesh 60
Method Si So ∆ Si So ∆

VEM-1 9.01 -7.75 1.26 9.73 -8.32 1.42
VEM-2 11.18 -10.03 1.08 11.40 -10.26 1.14
VEM-3 11.64 -10.73 0.91 11.80 -10.89 0.9
VEM-4 11.91 -10.99 0.92 12.03 -11.17 0.86

mesh 30 mesh 15
Method Si So ∆ Si So ∆

VEM-1 10.56 -8.51 2.05 10.71 -9.49 1.23
VEM-2 11.83 -10.77 1.06 11.91 -11.00 0.91
VEM-3 12.11 -11.25 0.86 12.13 -11.53 0.59
VEM-4 12.26 -11.48 0.78 10.21 -13.01 -2.81

mesh 10 mesh 5
Method Si So ∆ Si So ∆

VEM-1 10.98 -9.18 1.81 11.36 -10.26 1.12
VEM-2 12.00 -11.09 0.90 12.12 -11.65 0.47
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It should be noted that the methodology presented in this work does not guarantee

nor aims to have local mass conservation in each fracture, since this is not explicitly

imposed on any fracture. This means that the global mass conservation is well described,

but the “local” flux balances (i.e., on each individual fracture) can be somewhat less

accurate. On the other hand, these fracture flux balances are expected to improve with

finer meshes as the method is converging to the solution. On the whole, the method can

be seen as basically solving the DFN problem in one very complex 3D domain in space,

that may however still be thought as a set of bidimensional domains.

Table 3.5.1 shows the net flux in the source and sink fractures, Si and So, respec-

tively, as well as the difference ∆ for mesh parameters (area of the largest element of

the mesh) ranging from 5 to 150 and orders of the VEM space from 1 to 4. Only orders

1 and 2 are considered on the two finer meshes.

After extensive numerical experiments a trend emerged in the results; for order 1,

convergence can be quite slow in the flux variable on these coarse meshes and displays

oscillations, this can be attributed to the fact that the approximation of the flux is only

piecewise constant and the projection of the VEM space functions for each element is

onto a polynomial space of degree one, regardless of the number of edges of the element.

Moving to higher order discretization spaces, the approximation of the flux improves. A

marked improvement is obtained with second order VEM with respect to the first order,

probably due to the piecewise linear structure of U . Further increasing the VEM order

has a less noticeable effect, with practically no gain in moving to a third or fourth order

approximation. In addition, higher order discretizations might suffer from numerical

instabilities due to very badly shaped elements. This is for example the case for the

fourth order approximation on the mesh size 15, where instabilities cause a degenerate

discrete solution as shown by the parameter ∆ reported in Table 3.5.1. Further details

on possible causes of instabilities are discussed later in Paragraph 3.5.4.

Remark 3.3. When tackling a new DFN, a good practice would be to run it the first

time with a coarse mesh and first order elements. The values of h and of u already

provide a reliable indication of the order of magnitude of the correct solution, and using

the flux values on each fracture one can establish a rule for selecting the fractures for

which a mesh refinement is advisable. Fractures with less important contribution to the

total flux through the DFN do not require a finer mesh. Afterwards, a new simulation

can be launched with second order elements and the new adapted mesh.
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Figure 3.5.8: DFN116: spatial distribution of fractures for a DFN with 116 fractures
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Figure 3.5.9: DFN116: large DFN comparison
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Table 3.5.2: Comparison of iterations for different choices of Q and preconditioner
M−1

CG Lumped Dirichlet

Method/Area Total DOF Trace DOF Iter Iter Iter

VEM-1/150 7209 2047 137 106 72
VEM-1/90 9220 2524 152 118 77
VEM-1/30 19116 4182 29891 138 80
VEM-1/5 75672 9833 NC 238 113

VEM-2/150 25028 3869 181 259 77
VEM-2/90 34038 4823 4537 286 74
VEM-2/30 79736 8139 NC 357 112

3.5.3 DFN - 116 fractures

We now consider a DFN consisting of 116 fractures, as shown in Figure 3.5.8. Dirichlet

boundary conditions are imposed on a source and sink fracture whereas all other frac-

tures have homogeneous Neumann boundary conditions. In Figure 3.5.9 we plot the

solution for the sink fracture and for a selected fracture with insulated boundaries. As

a comparison, results are shown for both the VEM approach of order 2 depicted in the

present work and for the XFEM based optimization approach described in [22], starting

from the same baseline mesh. A very good agreement between the solutions can be

appreciated in the figure. Good agreement was also obtained for VEM of orders 1 and

3.

In Table 3.5.2, we report the behaviour of 2 preconditioning techniques. Different

mesh parameters and VEM of order 1 and 2 are considered. The table displays the

number of iterations required by the conjugate gradient (CG) routine compared to the

performances of the preconditioned algorithm with the Lumped and Dirichlet precon-

ditioners. For the non preconditioned CG algorithm, a rapid increase in the iteration

number with mesh refinement can be appreciated for both orders 1 and 2. As expected,

the increase in iterations with a preconditioner is much smaller, with the Dirichlet pre-

conditioner performing better than the Lumped preconditioner.

The notable improvement renders almost imperative the use of a preconditioner,

since the reduction in iteration number far outweighs the extra computational cost that

arises from the computation of the preconditioner. Cases marked with NC stand for no

convergence after 1 million iterations.
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Figure 3.5.10: DFN116: detail of two very close and almost parallel traces

-20

0

20

40

60

80

100

120120

100

80

60

40

20

0

2

4

6

8

10

12

14

16

18

20

0

(a) Order 1

-20

0

20

40

60

80

100

120120

100

80

60

40

20

0

2

4

6

8

10

12

14

16

18

20

0

(b) Order 2

-20

0

20

40

60

80

100

120120

100

80

60

40

20

20

18

16

8

14

12

10

0

4

0

6

2

(c) Order 3

-20

0

20

40

60

80

100

120120

100

80

60

40

20

1

2

3

4

5

6

-1

0

0

(d) Order 4

Figure 3.5.11: DFN116: comparison of results for problematic situations

3.5.4 A survey of troublesome situations

In this subsection we describe some situations that arose in the simulations that have

proven to be difficult to handle numerically. The monomial basis for the space of polyno-

mials is notoriously bad conditioned, and the situation worsens with increasing orders.

We believe that this is the cause of the issues we are presenting in this section, and they

appear in elements with unsuitable shapes. Some of these issues can be prevented if a

mesh modifying procedure as mentioned in Remark 3.2 is used.
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(a) Mesh (b) Detail

Figure 3.5.12: DFN27: detail of an unfortunate disposition of a mesh edge and a
trace
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Figure 3.5.13: DFN27: comparison of results for problematic situations

A first example is related to the DFN with 116 fractures, where a fracture has

two traces that are almost parallel and very close to each other, as in Figure 3.5.10.

This inevitably leads to elements with a bad aspect ratio, since any attempt to obtain

an adequate mesh would require a very large number of small elements to fill the space

between the two traces. The solution is stable up to VEM of order 3, while when using a

fourth order approximation the obtained solution drastically changes (see Figure 3.5.11),

and even falls below zero, which is not compatible with the imposed boundary condi-

tions, necessarily leading to a solution bounded between 0 and 100. As a reference, one

particularly problematic mesh element has an almost rectangular shape and an area of

0.58, with a length of 10.26 in one direction and 0.058 in the other (a 177 ratio). This is

a degenerate octagon and for order 4 it has 38 DOFs (Figure 3.5.10). We remark that

this particular configuration can be successfully dealt with VEM of orders from 1 to 3,

and problems only appear with order 4 and higher.
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Figure 3.5.14: DFN130: spatial distribution of fractures for a DFN with 130 fractures

A second documented problematic configuration, occurring on the DFN 27 prob-

lem, concerns badly shaped elements due not to the geometry of the DFN but to an

unfortunate starting mesh, and is such that it may not be present with either a finer or

a coarser mesh. This situation could be prevented applying the mesh smoothing process

described in Remark 3.2. The situation is depicted in Figure 3.5.12, where we can see

that the edge of an element is very close to a trace and has originated elements much

more stretched in one direction than in the other. Furthermore, a very small element

was generated next to the stretched element. The solution for VEM of order 5 becomes

numerically unstable in this case, as shown by Figure 3.5.13. We remark that the major

source of instability in this case is again the elongated element and not the neighboring

small element.

Finally, we present the last case that is part of a medium size DFN with 130

fractures, shown in Figure 3.5.14, that includes parallel traces very close to each other,

large disparity between trace lengths, highly heterogeneous element areas, element angles

of less than 1 degree and complex trace intersections among other complications. More

precisely, we have for the whole DFN that: minimum angle = 0.41◦, maximum trace

length ≈ 45, minimum trace length ≈ 0.01 and largest number of traces in a fracture

= 24. An adequate globally conforming triangular mesh for this system would be quite

difficult to obtain, if not impossible. With our approach, meshing can be done as usual

(Figure 3.5.15) although it may lead to elements with undesirable shapes. It can be



Chapter 3. A globally conforming method 58

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

(a) Mesh

30 31 32 33 34 35

6

6.5

7

7.5

8

8.5

9

9.5

10

(b) Detail

Figure 3.5.15: DFN130: detail of two traces meeting at a very small angle
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(b) Order 4

Figure 3.5.16: DFN130: comparison of results for problematic situations

seen that irregularities in the solution were present only starting from VEM of order 4

approximations, again at a very elongated element between two traces meeting at a very

small angle (Figure 3.5.16). The solution shows an uneven and rough behaviour that is

further propagated to other fractures that have traces in common, and was not present

in the solution obtained with the VEM of order 3.

3.6 Conclusions

In this work we have presented a novel method that constitutes a natural generalization

of conforming Finite Elements for Discrete Fracture Network flow simulations. Local

and global conformity is obtained using some of the features of the Virtual Element

Method, and most importantly, global conformity is achieved without any constraints in

the initial meshing process, that is performed independently for each fracture, nor any

modification of DFN geometry. Convergence curves were presented as well as results for
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DFNs of small and medium scale, and the method has been shown to be robust enough

to handle complex geometrical situations that arise in randomly generated DFNs.

After extensive numerical experiments, the following patterns were noticed: in

general, all methods give a good approximation for the hydraulic head H, and due to

how the problem was implemented, continuity of H for the whole DFN is guaranteed.

Even with VEM of order 1 the solutions are reliable for this variable, and this is due to

the fact that we are using the primal formulation of the problem and the local conformity

of the mesh allows for a more accurate representation of the jump of the derivative of

H along the traces. In the case of the flux exchanged at the traces, U , the situation is

different; only starting with a somewhat fine mesh can acceptable results be obtained for

order 1. Order 2 on the other hand, shows a marked improvement that can be attributed

to the larger number of DOF but also to the improved approximation of the gradient of

H and consequently of U . We remark that U is not obtained directly, but deriving the

projection onto a polynomial space of the computed primal variable H.

Concerning the use of discretizations with increasing polynomial accuracy, for

this application, we discourage going beyond order 2 based on the obtained results.

Higher orders are not only less stable numerically on strongly distorted meshes, but

also much more computationally expensive, and the improvement in accuracy is often

not considerable. In fact, the exact solution of a DFN does not have in general high

regularity and a cubic approximation of H and a quadratic approximation for U might

be excessive. As we have seen however, whenever regularity is guaranteed, convergence

for higher orders is as good as expected.

Simple FETI algorithms for domain decomposition were successfully implemented

and show promise for possible parallelization of the resulting linear system. They prove

to be nearly indispensable if a large system is to be solved due to the achievable reduction

in the number of iterations required to solve the system.

Finally, much of the work done here in obtaining the globally conforming meshes

as well as the idea for imposing matching conditions between corresponding degrees of

freedom can be readily applied with few alterations to an implementation of a mixed

formulation of the original problem using mixed Virtual Elements and will the subject

of future work.


