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Passive macromodeling of one-port immittances via direct rational

fitting of spectral factors
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‡ Dept. Control and Computer Engineering, Politecnico di Torino, Torino, Italy

Abstract—In this paper, we propose an algorithm for the
generation of guaranteed passive state-space models of one-port
immittances from finite frequency response samples. Differently
from conventional approaches, which are based on a two-step
process that first fits a rational function to the samples, and only
in a second stage checks and enforces passivity via perturbation,
our approach provides directly a guaranteed passive model. This
is achieved by computing a stable rational approximation of
a spectral factor associated to the immittance function under
modeling. Several examples demonstrate the feasibility of the
proposed technique.

Index Terms—State-space modeling, Model Order Reduction,
Loewner interpolation, Passivity, Immittance.

I. INTRODUCTION

The construction of passive macromodels of linear time-

invariant systems starting from sampled frequency data is

now a common step in state-of-the-art electronic design

automation flows. The frequency data can come from direct

measurements or from numerical electromagnetic simulations.

In both cases, the sampled data are processed by an approxi-

mation, identification, or data-driven Model Order Reduction

(MOR) algorithm, in order to derive a compact, reduced-order

simulation model. Such model should be passive, in order to

guarantee stable transient analyses.

Several algorithms are available for data-driven MOR, the

most prominent being Vector Fitting [1] and Löwner inter-

polation [4], [6]. Both these techniques are however unable

to provide a guaranteed passive model, and usually a post-

processing model perturbation is required [3]. Most available

perturbation schemes [7] are based on approximate passivity

constraints, leading to iterative schemes that, although very

effective in most cases, may not converge or may lead to non-

optimal solutions. Alternatively, one can enforce algebraic

passivity constraints such as the KYP Lemma [2] during

model construction. The latter method suffers from high

computational cost and is not applicable for medium to large-

scale systems.

In this work, we show that, for the particular case of

scalar one-port immittance systems, it is possible to combine

a standard rational approximation method with a spectral

factorization process, in order to obtain an algorithm that

provides directly a passive state-space model. The proposed

technique is based on an alternative formulation and does not

require a post-processing passivity enforcement. The method

is demonstrated on a simple academic test case and on a real

package interconnect, for which the model is extracted from

full-wave solver data.

The proposed technique can be further used to improve

the accuracy of an already passive model, e.g. obtained by

a standard perturbation approach. The passive model is first

subjected to a spectral factorization, and the residues of

the resulting spectral factor are optimized. The formulation

guarantees that the resulting optimized model is passive

at each stage of the optimization process. An example is

provided to demonstrate this approach.

II. FORMULATION

Let us consider a one-port LTI system described by a finite

set of its immittance frequency samples {(ωk, Y̆k), k =
1, . . . ,K}. The main objective is to compute a state-space

(descriptor) model

Y (s) = C(sE−A)−1
B+D (1)

where all state-space matrices are real-valued, such that

Y (jωk) ≈ Y̆k. In addition, we require the state-space

model (1) to be passive, so that Y (s) is a positive real

function, i.e., subject to the following constraints [2], [3]

• Y (s) analytic for ℜ(s) > 0;

• Y (s∗) = Y ∗(s);
• Y (s) + Y (s)∗ ≥ 0 for ℜ(s) > 0;

where ∗ denotes complex conjugate. Since the inverse of

a positive real immittance is also positive real, the above

conditions imply that the real part of both poles and zeros

of Y (s) cannot be positive.

As a first step in this formulation, we determine a state-

space (descriptor) system, whose transfer function is

R(s) = Y (s) + Y (−s) . (2)

For s = jω, we see that R(jω) = 2ℜ(Y (jω)). This system can

be obtained from various different identification algorithms;

in this work we use the so-called Löwner method [4], [5],

[6], which provides directly real-valued descriptor matrices

{ER,AR,BR,CR} such that

R(s) = CR(sER −AR)
−1

BR . (3)

This descriptor form is obtained directly from a truncated

Singular Value Decomposition (SVD) applied to a matrix

collecting data samples {(ωk, R̆k), k = 1, . . . ,K}, where

R̆k = 2ℜ(Y̆k), see [4] for details. Note that we assume

R̆k ≥ 0 for all k, since the starting dataset is assumed to
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Fig. 1. Zeros (circles) and poles (crosses) of R(s) in the two situations
without (left) and with (right) purely imaginary spectral zeros.

comply with passivity conditions at discrete frequencies; if

R̆k < 0 for some k, it is redefined in the following as R̆k = 0.

A closer look at R(s) reveals that:

• due to (2), the set of zeros and poles of R(s) is

symmetric with respect to s = 0;

• due to realness of the descriptor matrices in (3), the set

of zeros and poles of R(s) is symmetric with respect

to the real axis (all singularities are either real or they

appear in complex conjugate pairs).

We conclude that the sets of zeros {zi} and poles {pi} of R(s)
are symmetric with respect to both real and imaginary axes.

The poles pi are found by computing the finite generalized

eigenvalues of the matrix pencil (AR,ER). Conversely, the

zeros zi are determined by first constructing a descriptor

realization associated to R(s)−1

R(s)−1 = C̃R(sẼR − ÃR)
−1

B̃R , (4)

where

ẼR =

[
ER 0

0
T 0

]
, ÃR =

[
AR BR

−CR 0

]
, (5)

C̃R = B̃
T

R = (0T, 1), and then by finding the finite

generalized eigenvalues of the matrix pencil (ÃR, ẼR). Two

situations may arise, as depicted in Fig. 1 and discussed

below.

A. Case of no purely imaginary spectral zeros

If there are no purely imaginary zeros, then it is possible

to split R(s) into a stable and an antistable part, which can

be assigned to Y (s) and Y (−s), according to (2). This is

achieved by computing a (generalized) eigendecomposition

(or an ordered QZ factorization) of pencil (AR,ER), and

by performing an additive decomposition into two descriptor

systems associated to the stable and antistable subspaces. In

this operation, special care must be taken in handling infinite

eigenvalues, whose “fast” subsystem is used to determine the

high-frequency direct coupling constant Y∞. We remark that,

due to passivity requirements, the real part of Y (s) must be

bounded at all frequencies, so that system (3) is at most index-

1. We omit the detailed derivations due to lack of space. As

a result, we obtain a descriptor realization

Y (s) = Cp(sEp −Ap)
−1

Bp + Y∞ + YI(s) , (6)

where the generalized eigenvalues of (Ap,Ep) coincide with

{p−i }. In (6), YI(s) is a (still unknown) lossless immittance

function characterized by purely imaginary poles (including

possibily s = 0 and s = ∞), for which the following Foster

representation holds

YI(s) =
K0

s
+

nim∑

ℓ=1

Kℓs

s2 + ω2

ℓ

+K∞s , (7)

where all coefficients K0, Kℓ and K∞ are real and nonnega-

tive. Note that the contribution from YI(s) disappears in R(s),
which is thus expected to have no purely imaginary poles.

In most applications YI(s) = 0. However, this part can

be identified by applying another Löwner interpolation to

the data samples Ĭk = 2jℑ(Y̆k). The resulting descriptor

system with matrices {EI ,AI ,BI ,CI} is then partitioned

into three subsystems corresponding to stable, antistable, and

purely imaginary eigenvalues by means of another general-

ized eigendecomposition (or ordered QZ factorization), and

the subsystem with purely imaginary eigenvalues (including

s = ∞) is extracted, leading to a descriptor representation of

YI(s). Combining this system with (6) leads to a descriptor

model that is guaranteed passive.

B. Handling purely imaginary spectral zeros

It may be the case (see Fig. 1, right panel) that R(s)
includes some zeros z0i that are purely imaginary. If this

happens, and if these zeros have odd multiplicity, there is no

way to split them into two symmetric and disjoint subsets,

to be assigned to the stable and antistable factors of R(s).
Such zeros in fact correspond to the crossover frequencies

z0i = jω0

i at which the real part of Y (jω) crosses the zero

baseline, leading to passivity violation bands [8]. Such zeros

must be eliminated in order to obtain a passive model Y (s).
To this end, we consider the following spectral factorization

R(s) = W (−s)W (s) , (8)

where the spectral factor W (s) is defined to be stable. We

seek for a rational model of the spectral factor W (s), which

is parameterized as

W (s) =
∑

i

ri

s− p−i
+W∞, (9)

with unknown residues ri and direct coupling constant W∞,

subject to the fitting condition

|W (jωk)|
2 ≈ R̆k, k = 1, . . . ,K. (10)

The evaluation of (9) for s = jωk leads to the compact

representation

W (jωk) = φT

kx , (11)

where vector x collects the residues ri of real poles,

real/imaginary parts of ri for complex pole pairs, and the

constant W∞. The vector φk is complex-valued, constant and

known. Using now (8)–(10), we obtain the following fitting

condition

|ξTkx|
2 ≈ b2k , ||ξk|| = 1, (12)
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Fig. 2. Synthetic test case: singular values of Löwner and shifted Löwner
matrices (top panel), the vertical dashed line indicates the detected model
order (of R(s), which is twice the order of the final model). A comparison
between model and data samples is depicted in the middle and bottom panels.

to be enforced for k = 1, . . . ,K , where ξk = φk/||φk|| and

b2k = R̆k/||φk||
2. Problem (12) simply amounts to finding

x by controlling the magnitude of its components along a

(possibly large) set of directions ξk.

Once all constants in (9) have been computed, a regular

state-space realization {AW ,BW ,CW ,DW } for W (s) is

constructed, following standard techniques. Then, the same

procedure of of Sec. II-A can be used to extract the stable

subsystem from the product R(s) = W (−s)W (s), possibly

complemented by the lossless submodel YI(s).

III. RESULTS

We start with a first academic test case, consisting of a

synthetic passive immittance system with randomly generated

poles and residues (order 40). The proposed approach was

applied to identify a descriptor model, starting from K = 500
linearly spaced frequency samples. The top panel in Fig. 2

shows how the model order is determined, by truncation of

the singular values of Löwner and shifted Löwner matrices.

Middle and bottom panels of Fig. 2 illustrate that the proposed

scheme is able to identify perfectly the original system. The

middle panel confirms that the model is passive, since the

real part is uniformly nonnegative throughout the frequency
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Fig. 3. Model vs. data comparison for a package interconnect.

axis. This was further confirmed by the Hamiltonian passivity

test [8].

The second example we consider is a package interconnect,

for which we determine a model of the driving point admit-

tance of a single wire terminated into a 500Ω impedance.

The starting frequency samples are obtained from a full-

wave electromagnetic simulation of a CAD model of the

structure. Using a truncation threshold 10−4 for the singular

values of the Löwner matrices leads to a very accurate

model (the resulting RMS relative error is 0.013), whose

frequency response is compared to the raw data in Fig. 3. We

remark that the model includes also a capacitive contribution

C∞ = 0.22157 pF, as resulting from the extraction of the

high-frequency leading linear term of the model at s = ∞.

IV. PASSIVE MODEL REFINEMENT

In this section, we show how the proposed technique can

be used to improve the accuracy of an original, already

passive model. If the model is already passive, the spectral

factorization problem (8) is guaranteed to be solvable (note

that the resulting spectral factor W (s) is not unique, since

multiplication by an arbitrary all-pass factor leads to the same

result for R(s)).
Let us consider a passive model in form (1), that for sim-

plicity we assume in a regular state-space form with E = I.

A state-space realization of the spectral factor W (s) is first

derived by solving an associated Algebraic Riccati Equation,

as discussed in [9]. A straightforward postprocessing is then

applied to extract a pole-residue representation of the spectral

factor as in (9). The poles p−i are then retained, and the

optimization framework discussed in Section (II-B) is applied

to obtain a new set of residues ri → r̂i and direct coupling

W∞ → Ŵ∞ by solving (10) or its normalized form (12).

Once the optimized spectral factor is available, reconstruction
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Fig. 4. Model vs. data (real part) comparison for a PCB interconnect.

of the full immittance model Y (s) is performed, as discussed

in Section II.

We illustrate the performance of the proposed passive

model refinement on a PCB interconnect example, known via

measured frequency responses (1500 samples up to 15 GHz).

We extract a passive model for the input admittance Y11(s),
whose extracted frequency samples from the measurements

are affected by localized passivity violations in the low

frequency band up to 500 MHz. Figure 4 compares the

real part of the input immittance model before and after

optimization to the corresponding original (non-passive) data.

The accuracy improvement of the model after optimization is

demonstrated in Fig. 5.

V. CONCLUSIONS

We proposed a new approach to compute a guaranteed

passive state-space (descriptor) model from a finite set of

frequency samples of a one-port immittance system. This is

achieved by a special formulation of the rational function

approximation problem, applied to a spectral factor of the

considered immittance. As formulated, the approach is ap-

plicable only for one-port systems. The generalization to the

multiport case is under way.
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Fig. 5. Model vs. data error for a PCB interconnect, before and after
optimization.
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