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Abstract

This thesis deals with the formulation of pure and matter coupled supergravity theories

in three and four dimensions. Different supergravity Lagrangians are constructed in geo-

metrical terms, by using the useful properties of the abelian semigroup expansion method.

Furthermore, a supergravity model with partial breaking of N = 2 to N = 1 supersymmetry

which, in the low energy limit, gives rise to a rigid supersymmetric theory, is presented.

In Chapter 1, we briefly review General Relativity in both, Einstein and Cartan formal-

ism. It is also revised a natural extension of Einstein theory to D-dimensions, namely the

Lanczos-Lovelock theory. Then, we study the Maxwell type algebras, and we show that

standard General Relativity can be obtained in a certain limit of Chern-Simons and Born-

Infeld theories, invariant under these algebras. Chapter 2 deals with the supersymmetric

extension of gravity. We mainly study the MacDowell-Mansouri supergravity and the AdS

Chern-Simons supergravity.

In Chapters 3, 4, 5, 6 and 7, we present our main results, which are based on five

articles written during the doctoral research. First, we present supersymmetric extensions

of the Maxwell type algebras. We show that considering different choices of semigroups,

inequivalent Maxwell superalgebras are obtained, when using the S-expansion procedure.

Then, we construct the N = 1 supergravity action à la MacDowell-Mansouri from the

minimal Maxwell superalgebra. Interestingly, the action describes pure supergravity. Based

on the AdS-Lorentz superalgebra, we also build the minimal D = 4 supergravity action

which includes a generalized supersymmetric cosmological constant term. The construction

of the Chern-Simons supergravity action from a generalized minimal Maxwell superalgebra

is also presented.

Eventually, in Chapter 7 we present the multi-vector generalization of a rigid, partially

broken N = 2 supersymmetric theory as a rigid limit of a gauged N = 2 supergravity with

electric and magnetic charges.
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Introduction

”Learn from yesterday, live for today, hope for tomorrow.

The important thing is not to stop questioning”

Albert Einstein

This year marks an outstanding milestone in the history of physics with the one-hundredth

anniversary of Einstein’s Theory of General Relativity. The theory of General Relativity

explains all gravitational phenomena we know, and it has been survived to various tests sup-

porting its validity. However, this theory requires extensions since it has certain shortcom-

ings; for instance, the failure to unify gravity with the other three fundamentals interactions

of nature, which are described consistently by the Standard Model (SM) through Yang-Mills

(YM) quantum theories. The SM is based on the gauge group SU(3)× SU(2)× U(1) and

defines a consistent quantum theory free of anomalies and widely verified experimentally.

Gravity is described by General Relativity as a dynamic manifestation of the geometric

properties of space-time. Thus, the possibility of unifying gravity with the other interac-

tions in a same geometric framework would require to incorporate internal and space-time

symmetries in a same group. A possible way to achieve this task is supersymmetry (SUSY),

a kind of symmetry against which we shall demand the laws of nature be invariant, at least

at a certain level. The idea that SUSY is actually an underlying symmetry of Nature is sup-

ported by various phenomenological arguments. For instance, the presence of this symmetry

makes field theories better behaved in the ultraviolet (UV) by virtue of the cancellation of

fermionic and bosonic contributions to divergent loop integrals. This is a very interesting

property from the point of view of a quantum gravity theory.

Supersymmetry is a symmetry that relates bosonic and fermionic particles. From a

theoretical point of view, SUSY has a most interesting aspect since it unifies bosonic space-

time symmetries with other internal bosonic symmetries (like the SU(3) × SU(2) × U(1)

invariance of the standard model), giving the possibility of unify gravity with the other

x



interactions in a same geometric framework. Indeed, the group containing supersymmetry

transformations generalizes the Poincaré group, and in addition to the Lorentz generators Jab

and the space-time translations Pa, we have also supersymmetry generators Q and internal

generators Bi. Then, the corresponding algebra is called the super-Poincaré algebra.

The supersymmetric extension of General Relativity is known as Supergravity (SUGRA)

and it is a theory of local supersymmetry. In SUGRA, the gravitational field is coupled

to its super-partners and possibly to other supermultiplets containing matter multiplets. In

its simplest version Supergravity can be viewed as the ”gauge” theory of the super-Poincaré

group whose action is given by the Einstein-Hilbert term representing the graviton, plus a

Rarita-Schwinger kinetic term describing the gravitino ψ, a spin-3/2 particle.

There are several different supersymmetric theories, which differ in the space-time di-

mension D and in the number N of supersymmetry charges. N supersymmetry generators

define an N -extended supersymmetry. SUGRA theories of particular relevance are defined

in D = 10 and D = 11 since they describe the low-energy dynamics of superstring theory

and M-theory, on at space-time, respectively. In supergravity, the limit on the amount N of

supersymmetry comes from the possibility of a consistent coupling to gravity, which restricts

the maximum spin of the fields to be two, thus implying N ≤ 8.

On the other hand, the successful AdS/CFT (Anti-de-Sitter/Conformal Field Theory)

correspondence, that is the conjectured equivalence between superstring theory realized on

an anti-de Sitter space-time and the conformal field theory on its boundary at infinity, made

supergravity a useful tool for studying non-perturbative properties of gauge theories.

Global and local supersymmetric theories exhibit deep geometrical structures inherent

to the non-linear interactions of matter multiplets. In the D = 4, N = 2 case, the geomet-

rical structure is described by the Special Kähler geometry and the Hypergeometry, when

vector multiplets and hypermultiplets are present. When matter is added, the underlying

geometrical structure is much richer since N = 2 matter hypermultiplets are associated with

quaternionic geometry.

The purpose of this thesis is to study different pure and matter coupled supergravity

theories in three and four dimensions. First, we will present a supersymmetric extension of

the Maxwell type algebras. Using the properties of the Abelian semigroup expansion method

(S-expansion), we will show that inequivalent Maxwell superalgebras can be obtained when

different semigroups are chosen. Thus, we will obtain a family of Maxwell superalgebras

having the Maxwell type algebras as subalgebras. TheN -extended cases will be also studied.

Then, we will construct different supergravity Lagrangians in three and four dimensions

xi



following a geometrical approach and using the useful properties of the S-expansion. In four

dimensions, we will construct the N = 1 supergravity action à la MacDowell-Mansouri from

the minimal Maxwell superalgebra. Based on the AdS-Lorentz superalgebra, we will also

build the minimal supergravity action which includes a generalized supersymmetric cosmo-

logical constant term. In three dimensions, the construction of a Chern-Simons supergravity

action from a minimal Maxwell superalgebra will be a further result of this work.

Finally, we will construct an appropriate dyonic gauging of an N = 2 supergravity

coupled to n vector multiplets and to one hypermultiplet allowing for a well-defined rigid

limit to a multi-vector APT model. This will clarify the supergravity origin of the multifield

Born Infeld (BI) and, in particular, to understand the origin of the dyonic Fayet Iliopoulus

(FI) terms as deriving from electric and magnetic charges in the supergravity gauged model.

Furthermore, we will give a general proof of the Ward identity for generic dyonic gaugings.
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Chapter 1

General Relativity and Maxwell type

algebras

1.1 Introduction

One hundred years ago Albert Einstein wrote down the field equations of General Rel-

ativity, his masterwork describing gravity as the curvature of the space-time. The theory of

General Relativity explains all gravitational phenomena we know, such as falling apples and

orbiting planets, and it has been survived to various tests supporting its validity. For in-

stance, some experimental evidences are the gravitational lensing, the changes in the orbit of

Mercury, gravitational redshift of light, the deflection of light by the sun and frame-dragging

of space-time around rotating bodies.

General Relativity describes gravity as a dynamic manifestation of the space-time geom-

etry, and its main underlying assumptions are the requirements of general covariance and

second order field equations for the metric. On the other hand, the possibility that space-

time may have more than four dimensions is a standard assumption in high-energy physics.

Although many different approaches have been followed, most of them assume the simplest

generalization of General Relativity to higher dimensions, namely the Einstein-Hilbert ac-

tion. Based on the same principles of General Relativity, the most general metric theory of

gravity is the Lanczos-Lovelock gravity theory (LL) [1], [2]. This theory refers to a family

parametrized by a set of real coefficients αp, which are not fixed from first principles. In [5],

these parameters were fixed in terms of the gravitational and the cosmological constants.

As a consequence, the action in odd dimensions can be formulated as a Chern-Simons (CS)

1



theory of the AdS group, while in even dimensions the action has a Born-Infeld (BI) form

invariant only under local Lorentz rotations.

If CS and BI theories are the appropriate gauge theories to describe the gravitational

interaction, then these theories must satisfy the correspondence principle, namely they must

be related to General Relativity.

In this chapter, we shall show that standard odd-and even-dimensional General Relativ-

ity can be obtained from Chern-Simons and Born-Infeld like theories, invariant under the

Maxwell type algebras, when certain conditions are imposed [12], [17], [19]. These Maxwell

type algebras are obtained from the AdS algebra and a particular choice of the semigroup

by means of the S-expansion procedure. Furthermore, we present the Einstein-Lovelock-

Cartan Lagrangian leading to General Relativity in a certain limit of the coupling constant,

both in odd and even dimensions [20].

Before introducing the Maxwell type algebras and its applications to gravity, let us briefly

review the first order formalism of gravity and the Lanczos-Lovelock theory.

1.2 First order formulation of gravity

General Relativity describes gravity as a dynamic manifestation of the space-time geom-

etry. This idea is encoded in the metric tensor gµν(x), which provides the notion of distance

between the two nearby spacetime points xµ and xµ + dxµ

ds2 = gµνdx
µdxν . (1.1)

Another important concept in the understanding of the space-time geometry is parallelism,

which is encoded in the affine connection Γαβγ(x): a vector ξα‖ is said to be parallel to the

vector ξα, if their components are related by “parallel transport”

ξα‖ (x+ dx;x) = ξα (x+ dx) + dxµΓαµβξ
β (x)

= ξα (x) + dx
[
∂µξ

α + Γαµβξ
β (x)

]
. (1.2)

The expression ∂µξ
α + Γαµβξ

β (x) corresponds to the covariant derivative of ξα, and we will

denote it by

Dµξ
α ≡ ∂µξ

α + Γαµβξ
β. (1.3)

In General Relativity, the affine connection is required to be symmetric in the lower index,

i.e,

Γαµβ = Γαβµ. (1.4)

2



This equation expresses the vanishing of the torsion tensor,

Tαµβ ≡ Γαµβ − Γαβµ. (1.5)

The affine connection Γαβγ satisfying (1.4) is known as the connection or the Christoffel

symbol, and becomes a function of the metric

Γαµβ =
1

2
gαλ (∂µgλβ + ∂βgλµ − ∂λgµβ) . (1.6)

Using the definition (1.3), we can compute the commutator of two covariant derivatives

acting on a vector ξα,

[Dµ, Dν ] ξ
α = Rα

βµνξ
β − T λµνDλξ

α (1.7)

where T λµν is the torsion, and Rα
βµν is the Riemann tensor defined by

Rα
βµν ≡ ∂µΓανβ − ∂νΓαµβ + ΓαµλΓ

λ
νβ − ΓανλΓ

λ
µβ (1.8)

Besides, we define the Ricci tensor Rµν ≡ Rα
µαν and the curvature scalar R ≡ gµνRµν . We

use these ingredients to construct the Einstein-Hilbert (EH) action

S
(4)
EH =

∫
d4x
√
−gR, (1.9)

where g = det(gµν) < 0. The variation of the action leads to the Einstein field equations

(in the vacumm),

Rµν −
1

2
gµνR = 0. (1.10)

So far, we have reviewed the formulation of General Relativity considering that the met-

ric and affine properties are not independent. For this, it was necessary to introduce a

constraint: the torsion tensor was assumed to be zero. However, these properties can

be considered as independent notions. The formulation of General Relativity considering

the metricity and parallelism as independent properties is known as Cartan gravity (in the

differential forms formulation) or Palatini formalism (in the tensorial formulation).

Let us consider the mapping between the space-time D-dimensional manifold M and a

flat Minkowski tangent space Tx, which is a good approximation of the manifold on an open

set in the neighborhood of x. The relation between M and the collection {Tx} is given by

an isomorphism represented by means of a linear map e,

eai =
∂za

∂xi
, (1.11)

3



where the matrices eai = eaµ(x) (a = 1, ..., D = dimM) are called the vielbein, and define a

local orthonormal frame on M . Thus the infinitesimal dxµ(x) = dxi on M is mapped to

corresponding separation dza in Tx,

dza = eaidx
i. (1.12)

Furthermore, the Lorentzian metric defined in Minkowski space can be used to induce a

metric on M through the isomorphism eai. In fact, from a given tetrad

eai = ηabejbgij, (1.13)

one can find the metric on M,

gij = eaie
b
jηab. (1.14)

The definition (1.11) implies that eai transforms as a covariant vector under diffeomor-

phisms on M , and as a contravariant vector under local Lorentz rotations of Tx, SO(D−1, 1).

In fact, under Lorentz transformation the vielbein are transformed as follows

eai → e
′a
i = Λa

b (x) ebi, (1.15)

where Λ (x) ∈ SO(D − 1, 1). By definition of the Lorentz group, the matrices Λ (x) leave

the metric in the tangent space unchanged

Λa
c (x) Λb

d (x) ηab = ηcd. (1.16)

We define now the vielbein 1-form

ea ≡ eaµdx
µ, (1.17)

and its covariant derivative

Dea ≡ dea + ωabe
a, (1.18)

where ωab = ωabµ dx
µ is called the spin connection 1-form and it is transformed as

ωab → ω′ab = Λa
c (x) Λ d

b (x)ωcd + Λa
c (x) dΛ c

b (x) . (1.19)

This object plays the role of the gauge potential and defines the curvature two-form

Ra
b ≡ dωab + ωacω

c
b. (1.20)

In addition, we introduce the torsion two-form

4



T a ≡ Dea = dea + ωabe
b, (1.21)

which involves both the vielbein and the connection.

The equations (1.20) and (1.21) are called structure equations because they describe

the geometrical structure of the manifold M . These 2-forms satisfy the following Bianchi

identities

DT a = Ra
be
b, (1.22)

DRa
b = 0. (1.23)

In the Cartan formalism the Einstein-Hilbert action is given by

S
(4)
EH =

∫
M

εabcdR
abeced, (1.24)

where Rab = dωab + ωacω
cb is the two-form curvature and ea is the vierbein. Moreover, we

have used that κ = 1, with κ the gravitational coupling constant. The action (1.11) is

equivalent to the EH action in the tensorial formalism (1.9).

Considering the variation of the action (1.11), we have that δS
(4)
EH = 0 leads us to

− 2

∫
εabcdδω

abT ced + 2

∫
εabcdR

ab (δec) ed = 0. (1.25)

Because the variations δωab and δec are arbitrary, we have

εabcdR
abec = 0, (1.26)

εabcdT
ced = 0. (1.27)

The first equation is equivalent to the Einstein field equations (1.10), while the second one

expresses the vanishing of the torsion

T a = dea + ωabe
b = 0. (1.28)

This equation can be solved for the spin connection ωab, allowing to express it in terms of

the vielbein and its derivatives.

By construction, the action (1.24) is invariant under general coordinate transformations

and under (local) Lorentz transformations, but is not invariant under Poincaré local trans-

lations1. In fact, a gauge theory for the Poincaré group should be based on the one-form

1The invariance of the action requires to impose de condition T a = 0. However, this constraint is not

invariant under Poincaré local translations, because δT a 6= 0, for δea = Dρa, δωab = 0.
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connection A = eaPa + ωabJab, with {Jab, Pc} the generators of the group. Since there is no

Poincaré-invariant 4-form that can be constructed with this field, then no Poincaré-invariant

gravity action can be constructed in D = 4 dimensions. An alternative approach could

be consider another group G containing the Lorentz transformations as a subgroup. The

smallest nontrivial choices for G are the de Sitter (dS) and the anti-de Sitter (AdS) groups.

These are semisimple groups, and the Poincaré group can be obtained as a contraction of

them. This property could mean that these groups are better candidates in order to become

physically relevant for gravity.

Nevertheless, so far it is not possible to describe gravity as a gauge theory for the dS

or AdS groups. The Einstein-Hilbert action (1.24) is basically the only action for gravity

D = 4, but many more options exist in higher dimensions. As we will see next, in D = 2n−1

dimensions, gravity can be expressed as a gauge theory of the groups SO(D, 1), SO(D−1, 2),

or ISO(D − 1, 1). This will not be the same for even dimensions, D = 2n.

1.3 Lanczos-Lovelock theory

So far, the possibility that space-time may have more than four dimensions is a standard

assumption in High-energy physics. Nevertheless, if we want to extend the space-time di-

mension to dimensions greater than four, the reformulation of the structure of the equations

for the gravitational field is required, and we have to critically examine the minimal require-

ments for a consistent theory of gravity in any dimension, including both general covariance

and second order field equations for the metric.

Although many different approaches have been followed, most of them assume the sim-

plest generalization of General Relativity to higher dimensions, namely the Einstein-Hilbert

action. Based on the same principles of General Relativity, the most general metric the-

ory of gravity satisfying the criteria of general covariance and leading to second-order field

equations is a polynomial of degree [D/2] in the curvature known as the Lanczos-Lovelock

gravity theory (LL) [1], [2]. The Lovelock action can be written as the most general D-form

invariant under local Lorentz transformations, constructed with the spin connection, the

vielbein and their exterior derivatives, without the Hodge dual [3, 4]

SG =

∫ [D/2]∑
p=0

αpL
(p), (1.29)
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where

L(p) = εa1···aDR
a1a2 · · ·Ra2p−1a2pea2p+1 · · · eaD . (1.30)

Here Rab is the curvature two-form defined in (1.20), ea corresponds to the one-form vielbein

and the coefficients αp, p = 0, 1, ..., [D/2], are arbitrary constants. The LL theories allow

to construct the most general gravity theory in D-dimensions as a natural extension of

the Einstein theory, and thus they have the same degrees of freedom (D(D − 3)/2) as the

Einstein-Hilbert Lagrangian in each dimension.

The Lanczos-Lovelock theory refers to a family parametrized by a set of real coefficients

αp, which are not fixed from first principles. In [5], R. Troncoso and J. Zanelli showed

that these parameters are fixed in terms of the gravitational and the cosmological constants,

through the requirement that the theory possess the largest possible number of degrees of

freedom. As a consequence, the action in odd dimensions can be formulated as a Chern-

Simons (CS) theory of the AdS group, while in even dimensions the action has a Born-Infeld

(BI) form invariant only under local Lorentz rotations, in the same way as the Einstein–

Hilbert action [5], [6], [7], [8]. Let us briefly review the approach developed in [5].

Consider the LL action (1.29), as a functional of the spin connection and the vielbein,

SG = SG
[
ωab, ea

]
. Varying with respect to these fields, the following field equations are

obtained

δea → εa = 0, δωab → εab = 0, (1.31)

where we have defined

εa =

[(D−1)/2]∑
p=0

αp (D − 2p) εpa, (1.32)

εab =

[(D−1)/2]∑
p=1

αpp (D − 2p) εpab, (1.33)

and

εpa ≡ εab1···bd−1
Rb1b2 · · ·Rb2p−1b2eb2p+1 · · · ebD−1 , (1.34)

εpab ≡ εaba3···adR
a3a4 · · ·Ra2p−1apT a2p+1ea2p+2 · · · eaD . (1.35)

Since the (D − 1)-forms εa and εab are independent Lorentz tensors they vanish indepen-

dently, which means that the metric and the affine properties are independent. If there were

algebraic relations among these tensors, then the fields ωab and ea would be relate and as a

con sequence, some components of the torsion tensor must vanish freezing out some degrees
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of freedom in the theory. On the other hand, considering the Bianchi identities (1.22) and

(1.23), we have the following equations

Dεa =

[(D+1)/2]∑
p=1

αp−1 (D − 2p+ 2) (D − 2p+ 1) ebεpba, (1.36)

which by consistency with εa = 0 must also vanish. Furthermore, the exterior product of

εabwith eb gives us

ebεba =

[(D−1)/2]∑
p=1

αpp (D − 2p) ebεpba, (1.37)

which also vanish by virtue of εab = 0. If the coefficients αp were generic, then the equations

(1.31) would imply in general additional restrictions of the form ebεpba = 0 for some p′s. Thus,

different choices of αp correspond, in general, to theories with different numbers of physical

degrees of freedom depending on how many additional off-shell constraints are imposed on

the geometry. As shown in [5] among all the possible choices for the αp, there is a special one

which occurs only in odd dimensions, and where non additional constraints are imposed. In

fact, equations (1.36) and (1.37) are proportional to each other term by term for D = 2n−1

but for D = 2n, both equations have different number of terms.

1.3.1 D = 2n− 1: Local (A)dS Chern-Simons Gravity

As we said before, equations (1.36) and (1.37) have the same number of terms for odd

dimensions. Thus, the two series must be proportional term by term, leading to the following

recursion relation

γ
αp−1

αp
=

p (D − 2p)

(D − 2p+ 2) (D − 2p+ 1)
(1.38)

where 0 ≤ p ≤ n, and γ is an arbitrary constant of dimension [length2]. The solution to

this equation reads

αp = α0
(2n− 1) (2γ)p

(2n− 2p− 1)

(
n− 1

p

)
, (1.39)

where

α0 =
κ

lD−1D
, γ = −sign (Λ)

l2

2
. (1.40)

Here κ is the gravitational constant, Λ is the cosmological constant and l is a length param-

eter.
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With this choice of the αp parameters, the LL action is not only invariant under local

Lorentz rotations, but also under AdS boost

δea = −Dλa,

δωab =
1

l2
(
λaeb − λbea

)
.

Thus the LL Lagrangian in (1.29) with the coefficients (1.39), corresponds to the Euler-

Chern-Simons form for the AdS group [9],[10], [11],

L
(2n−1)
AdS = κεa1···a2n−1

n∑
k=0

ck
l2(n−k)−1

Ra1a2 · · ·Ra2k−1a2kea2k+1 · · · ea2n−1 , (1.41)

where

ck =
1

2 (n− k)− 1

(
n− 1

k

)
. (1.42)

In this case, the vielbein and the spin connection can be seen as the different components

of an (A)dS connection, so that the local symmetry is extended from Lorentz to (A)dS, or

Poincaré when Λ→ 0. In fact, in the limit l →∞ we obtain Chern-Simons gravity for the

Poincaré group,

L(2n−1) = κεa1···a2n−1R
a1a2 · · ·Ra2n−3a2n−2ea2n−1 .

1.3.2 D = 2n: Born-Infeld-Like Gravity

For even dimensions, equations (1.36) and (1.37) are not proportional term by term,

and the procedure is a little bit longer. In this case it was shown that the solution which

allows the maximum number of degrees of freedom leads to the following recursion relation

for the αp’s:

2γ (n− p+ 1)αp−1 = pαp, (1.43)

for some fixed γ. The solution to this equation is

αp = α0 (2γ)p
(
n

p

)
, (1.44)

with 0 ≤ p ≤ n − 1. This formula can be extended to p = n, adding the Euler density to

the Lagrangian with the weight αn = α0 (2γ)n.

As in the odd dimensional case, the action depends only on the gravitational and the

cosmological constants. The choice of coefficients (1.44) implies that the LL Lagrangian

takes the form

L =
κ

2n
εa1···a2nR̄

a1a2 · · · R̄a2n−1a2n , (1.45)
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where R̄ab = Rab + 1
l2
eaeb, and can be written as the Born-Infeld like form [6],

L = 2n−1 (n− 1)!κ

√
det

(
Rab +

1

l2
eaeb

)
. (1.46)

In four dimensions (1.45) reduces to a particular linear combination of the Einstein-Hilbert

action, the cosmological constant and the Euler density:

L
(4)
BI =

κ

4
εabcd

(
RabRcd +

2

l2
Rabeced +

1

l4
eaebeced

)
. (1.47)

Although the first term does not contribute to the field equations (it is a boundary term), it

plays a fundamental role in the definition od conserved charges for gravity theories in 2n ≥ 4

dimensions [13], [14], [15].

It is important to note that in even dimensions, the Lagrangian (1.45) is invariant only

under local Lorentz transformations and not under the AdS group. In contrast, as shown

above, in odd dimensions it is possible to construct gauge invariant theories of gravity under

the full (A)dS group (or Poincaré).

1.4 Chern-Simons gravity and Maxwell type algebras

As seen before, the Chern-Simons forms can be used to construct gauge invariant actions.

In odd dimensions the LL action corresponds to a Chern-Simons form, when the coefficients

are chosen in a particular way. In this case the action is invariant not only under local Lorentz

rotations, but also under AdS boost. If CS theories are the appropriate gauge theories to

describe the gravitational interaction, then these theories must satisfy the correspondence

principle, namely they must be related to General Relativity.

In ref. [12] it was shown that the standard, odd-dimensional General Relativity can

be obtained from a Chern–Simons gravity theory for a certain Bm Lie algebra, which was

called generalized Poincaré algebra (where the particular case B4 corresponds to the so-

called Maxwell algebra [16]). The generalized Poincaré algebras can be obtained by a

resonant reduced S-expansion 2 of the AdS Lie algebra using S
(N)
E = {λα}N+1

α=0 as a semigroup.

Subsequently, in Ref.[17] it was found that standard odd-dimensional General Relativity

emerges as a weak coupling constant limit of a (2p+1)-dimensional Chern-Simons Lagrangian

2See appendix A for a review of the S-expansion method
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invariant under B2m+1, if and only if m ≥ p. Let us briefly review here the results obtained

in [12] and [17].

Let us consider the S-expansion of the AdS Lie algebra, so(2n, 2), using as a semigroup

S
(2n−1)
E = {λ0, λ1, · · · , λ2n}, endowed with the multiplication law

λαλβ =

{
λα+β, when α + β ≤ 2n,

λ2n, when α + β > 2n.
(1.48)

The AdS generators
{
J̃ab, P̃c

}
satisfy the following commutation relations[

P̃a, P̃b

]
= J̃ab,[

J̃ab, P̃c

]
= ηbcP̃a − ηacP̃b, (1.49)[

J̃ab,J̃cd

]
= ηcbJ̃ad − ηcaJ̃bd + ηdbJ̃ca − ηdaJ̃cb.

Let us consider the following subset decomposition S
(2n−1)
E = S0 ∪ S1, with

S0 = {λ2m, with m = 0, 1 . . . , n− 1} ∪ {λ2n} , (1.50)

S1 = {λ2m+1, with m = 0, 1 . . . , n− 1} ∪ {λ2n} , (1.51)

where λ2n corresponds to the zero element of the semigroup (λ2n = 0S). After extracting

a resonant subalgebra and performing its 0S-reduction, one finds the generalized Poincaré

algebra B2n+1, whose generators defined by

J(ab,2k) = λ2k ⊗ J̃ab, (1.52)

P(a,2k+1) = λ2k+1 ⊗ P̃a, (1.53)

with k = 0, · · ··, n− 1,satisfy the following commutation relations
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[Pa, Pb] = Z
(1)
ab , [Jab, Pc] = ηbcPa − ηacPb (1.54)

[Jab,Jcd] = ηcbJad − ηcaJbd + ηdbJca − ηdaJcb (1.55)[
Jab, Z

(i)
c

]
= ηbcZ

(i)
a − ηacZ

(i)
b , (1.56)[

Z
(i)
ab , Pc

]
= ηbcZ

(i)
a − ηacZ

(i)
b , (1.57)[

Z
(i)
ab , Z

(j)
c

]
= ηbcZ

(i+j)
a − ηacZ(i+j)

b (1.58)[
Jab,Z

(i)
cd

]
= ηcbZ

(i)
ad − ηcaZ

(i)
bd + ηdbZ

(i)
ca − ηdaZ

(i)
cb (1.59)[

Z
(i)
ab,Z

(j)
cd

]
= ηcbZ

(i+j)
ad − ηcaZ(i+j)

bd + ηdbZ
(i+j)
ca − ηdaZ(i+j)

cb (1.60)[
Pa, Z

(i)
c

]
= Z

(i+1)
ab ,

[
Z(i)
a , Z

(j)
c

]
= Z

(i+j+1)
ab . (1.61)

where Jab = λ0⊗J̃ab, Z(i)
ab = λ2i⊗J̃ab, Pa = λ1⊗P̃a and Z

(i)
a = λ2i+1⊗P̃a with i, j = 1, ..., n−1.

The generalized Poincaré algebra is also known as the Maxwell type algebra M2n+1 [17].

These algebras are particularly interesting in the context of gravity since, as we shall see

now, standard odd-dimensional General Relativity may emerge as the weak coupling constant

limit (l→ 0) of a (2n+1)-dimensional Chern-Simons Lagrangian invariant under theM2n+1

algebra.

1.4.1 General Relativity from Chern-Simons gravity

In this subsection, it is shown that the odd-dimensional Einstein-Hilbert Lagrangians

can be obtained from Chern-Simons Lagrangians invariant under the Maxwell type algebras.

According to Theorem VII.2 from [15], the only non-vanishing components of a symmetric

invariant tensor of order n+ 1 for the M2n+1algebra, are given by

〈
J(a1a2,i1) · · · J(a2n−1a2n,in )P(a2n+1,in+1)

〉
=

2nl2n−1

n+ 1
αjδ

j
i1+···in+1

εa1···a2n+1 , (1.62)

where ip, j = 0, . . . , 2n− 1, and the αi’s are arbitrary constants of dimension [length]−2n+1.

The M2n+1-valued, one-form gauge connection A takes the form

A =
n−1∑
k=0

[
1

2
ω(ab,2k)J(ab,2k) +

1

l
e(a,2k+1)P(a,2k+1)

]
, (1.63)
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while the associated curvature two-form F = dA+ AA,is given by

F =
n−1∑
k=0

[
1

2
F (ab,2k)J(ab,2k) +

1

l
F (a,2k+1)P(a,2k+1)

]
, (1.64)

where

F (ab,2k) = dω(ab,2k) + ηcdω
(ac,2i)ω(db,2j)δki+j +

1

l2
e(a,2i+1)e(b,2j+1)δki+j+1, (1.65)

F (a,2k+1) = de(a,2k+1) + ηbcω
(ab,2i)e(c,2j)δki+j. (1.66)

From de definition of the one-form gauge connection A, we see that it depends on a scale

parameter l, which can be interpreted as a coupling constant that characterizes different

regimes within the theory. The (2n+ 1)-dimensional Chern-Simons Lagrangian invariant

under the M2n+1 algebra can be written as [12]

L
M2n+1

CS (2n+1) =
n∑
k=1

l2k−2ckαjδ
j
i1+···+in+1

δ
ik+1

p1+q1 · · · δ
in
pn−k+qn−k

εa1···a2n+1R
(a1a2,i1) · · ·R(a2k−1a2k,ik)e(a2k+1,p1)e(a2k+2,q1) · · ·

· · · e(a2n−1,pn−k)e(a2n,qn−k)e(a2n+1,in+1), (1.67)

where

ck =
1

2 (n− k) + 1

(
n

k

)
,

R(ab,2k) = dω(ab,2k) + ηcdω
(ac,2i)ω(db,2j)δki+j,

and αj are arbitrary constants which appear as a consequence of the S-expansion process.

Let us note that the S-expanded fields are related to the original AdS fields
{
ω̃ab, ẽa

}
:

ω(ab,2k) = λ2k ⊕ ω̃ab, e(a,2k+1) = λ2k+1 ⊕ ẽa. The Lagrangian (1.67) is called the Einstein-

Chern-Simons (ECS) Lagrangian.

In the limit l → 0, the only non vanishing term in (1.67) corresponds to the case k = 1,

whose only non-vanishing component occurs for p = q1 = · · · = q2n−1 = 0 and is proportional

to the Einstein-Hilbert Lagrangian in odd-dimensions [12]

L
(2n+1)
CS

∣∣∣
l=0

=
n

2n− 1
α2n−1εa1···a2n+1R

a1a2ea3 · · · ea2n+1 (1.68)
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Example for D = 5

Let us consider as an example the case of D = 5 dimensions. In this case, the CS AdS

Lagrangian for gravity is given by (see eq.(1.41))

L
(5)
AdS = κεabcde

(
1

l
RabRcdee +

2

3l3
Rabecedee +

1

5l5
eaebecedee

)
. (1.69)

From this Lagrangian, we see that neither the l→∞ nor the l→ 0 limits yield the EH term

εabcdeR
abecedee. Rescaling κ properly, those limits will lead to either the Gauss-Bonnet

term or the cosmological constant term by itself, respectively.

Following the above definitions, let us consider the S-expansion of the AdS Lie algebra

so (4, 2) , using S
(3)
E = {λ0, λ1, λ2, λ3, λ4} as a semigroup. After extracting a resonant subal-

gebra and performing its 0S-reduction, one finds the new Lie algebraM5, whose generators

{Jab, Pa, Zab, Za}, satisfy the following commutation relations

[Pa, Pb] = Zab, [Jab, Pc] = ηbcPa − ηacPb
[Jab,Jcd] = ηcbJad − ηcaJbd + ηdbJca − ηdaJcb
[Jab, Zc] = ηbcZa − ηacZb,
[Zab, Pc] = ηbcZa − ηacZb, (1.70)

[Jab,Zcd] = ηcbZad − ηcaZbd + ηdbZca − ηdaZcb
[Zab, Zc] = [Pa, Zc] = [Za, Zc] = [Zab,Zcd] = 0,

which are given in terms of the original AdS generators
{
J̃ab, P̃a

}
as follows

Jab = λo ⊗ J̃ab, Pa = λ1 ⊗ P̃a, (1.71)

Zab = λ2 ⊗ J̃ab, Za = λ3 ⊗ P̃a. (1.72)

From the expression (1.62), we have that the only non-vanishing components of a symmetric

invariant tensor for the M5 algebra are

〈JabJcdPe〉 =
4

3
l3α1εabcde,

〈JabJcdZe〉 =
4

3
l3α3εabcde, (1.73)

〈JabZcdPe〉 =
4

3
l3α3εabcde.

Then the M5-valued, one-form gauge connection A takes the form

A =
1

2
ωabJab +

1

l
eaPa +

1

2
kabZab +

1

l
haZa, (1.74)
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and the corresponding curvature 2-form is given by

F =
1

2
RabJab +

1

l
T aPa +

1

2

(
Dωk

ab +
1

l2
eaeb

)
Zab +

1

l

(
Dωh

a + kabe
b
)
Za. (1.75)

Using the dual formulation of the S-expansion in terms of the Maurer-Cartan forms [22], we

can write down the CS Lagrangian in D = 5 dimensions for the M5 algebra as

LM5

CS (5) = α1l
2εabcdeR

abRcdee + α3εabcde

(
2

3
Rabecedee + 2l2kabRcdT e + l2RabRcdhe

)
. (1.76)

From this Lagrangian, we see that it is split in two independent pieces, one proportional to α1

and the other proportional to α3. The former corresponds to the In̈onü–Wigner contraction

[21] of the Lagrangian (1.69), and therefore it is the CS Lagrangian for the Poincaré Lie

group ISO(4, 1). The latter contains the EH term εabcdeR
abecedee plus non-linear couplings

between the curvature and the new bosonic fields kab and ha. Let us note that these couplings

are all proportional to l2.

Remarkably, considering the strict limit l = 0 in the Lagrangian, we obtain solely the

EH term

LM5

CS (5)

∣∣∣
l=0

=
2

3
α3εabcdeR

abecedee. (1.77)

These results have been generalized in [17], where we have shown that the (2n+ 1)-

dimensional Lagrangians L
M2m+1

CS (2n+1) invariant under theM2m+1 algebra, lead to the Einstein-

Hilbert Lagrangian in a weak coupling constant limit, if and only if m ≥ n. In fact, the

following theorem was announced:

Theorem 1 Let M2m+1 be the Maxwell type algebra, which is obtained from the AdS alge-

bra by a resonant reduced S
(2m−1)
E -expansion. If L

M2m+1

CS (2p+1) is a Chern-Simons Lagrangian

(2p+ 1)-dimensional invariant under the M2m+1 algebra, then the (2p+ 1)-dimensional

Chern-Simons Lagrangian leads to the Einstein-Hilbert Lagrangian in a certain limit of the

coupling constant l, if and only if m ≥ p.

1.5 Born-Infeld gravity and Lorentz type Maxwell al-

gebras

In even dimensions, the closest one can get to a Chern-Simons theory is with the so

called Born-Infeld theories [5], [6], [7], [8]. As seen before, the Born-Infeld Lagrangian is
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obtained by a particular choice of the parameters in the LL action. In this case, the action is

invariant only under local Lorentz rotations, in the same way as the Einstein–Hilbert action.

If BI theories are the appropriate even-dimensional theories to provide a framework for

the gravitational interaction, then these theories must satisfy the correspondence principle,

namely they must be related to General Relativity.

In [19] it was shown that the standard, even-dimensional General Relativity can be ob-

tained from a Born-Infeld theory invariant under a certain Lorentz type algebra, LB(= LM).

This algebra can be obtained from the Lorentz algebra and a particular semigroup by means

of the S-expansion procedure, and corresponds to a subalgebra of the Maxwell type algebra.

Then, in [17] it was found that standard even-dimensional General Relativity emerges as

a weak coupling constant limit of a 2p-dimensional Born-Infeld Lagrangian invariant under

LM2m+1 , if and only if m ≥ p. Let us briefly review here the results obtained in [17] and

[19].

Let us consider the S-expansion of the Lie algebra so(2n− 1, 2) using as a semigroup the

sub-semigroup S
(2n−1)
0 = {λ0, λ2, λ4, . . . , λ2n} of the semigroup S

(2n−1)
E = {λ0, λ1, λ2, λ3, . . . , λ2n}.

The semigroup S
(2n−1)
0 is endowed with the multiplication law

λαλβ =

{
λα+β, when α + β ≤ 2n,

λ2n, when α + β > 2n.
(1.78)

The Lorentz generators
{
J̃ab

}
satisfy the following commutation relations[

J̃ab,J̃cd

]
= ηcbJ̃ad − ηcaJ̃bd + ηdbJ̃ca − ηdaJ̃cb. (1.79)

After performing a 0S (= λ2n)-reduction, one finds a new Lie algebra LM2n+1 whose genera-

tors Jab = λ0⊗ J̃ab, Z(i)
ab = λ2i⊗ J̃ab with i, j = 1, ..., n−1, satisfy the following commutation

relations

[Jab,Jcd] = ηcbJad − ηcaJbd + ηdbJca − ηdaJcb, (1.80)[
Jab,Z

(i)
cd

]
= ηcbZ

(i)
ad − ηcaZ

(i)
bd + ηdbZ

(i)
ca − ηdaZ

(i)
cb , (1.81)[

Z
(i)
ab,Z

(j)
cd

]
= ηcbZ

(i+j)
ad − ηcaZ(i+j)

bd + ηdbZ
(i+j)
ca − ηdaZ(i+j)

cb . (1.82)

Comparing these commutators with eqs. (1.55), (1.59) and (1.55), we can see that the

Lorentz type algebra LM2n+1 is a subalgebra of the Maxwell type algebraM2n+1. As we shall

see now, standard even-dimensional General Relativity may emerge as the weak coupling

constant limit (l→ 0) of a Born-Infeld Lagrangian invariant under the LM2n+1 algebra.
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1.5.1 General Relativity from Born-Infeld gravity

In this subsection, it is shown that the even-dimensional Einstein-Hilbert Lagrangians

can be obtained from Born-Infeld Lagrangians invariant under the Lorentz type algebras.

Using Theorem VII.2 of [15], it is possible to show that the only non-vanishing components

of a symmetric invariant tensor for the LM2n+1 algebra are given by

〈
J(a1a2,i1) · · · J(a2n−1a2n,in )

〉
=

2n−1l2n−2

n
αjδ

j
i1+···inεa1···a2n , (1.83)

where j = 0, . . . , 2n− 2, and the αj’s are arbitrary constants of dimension [length]−2n+2.

In this case the curvature 2-form is given by

F =
n−1∑
k=0

1

2
F (ab,2k)J(ab,2k) (1.84)

where

F (ab,2k) = dω(ab,2k) + ηcdω
(ac,2i)ω(db,2j)δki+j +

1

l2
e(a,2i+1)e(b,2j+1)δki+j+1, (1.85)

which depends on a scale parameter l which can be interpreted as a coupling constant that

characterizes different regimes within the theory. Then, using the dual formulation of the S-

expansion in terms of the Maurer-Cartan forms, we find that the 2n-dimensional Born-Infeld

Lagrangian invariant under the LM2n+1 algebra can be written as [19]

LLM2n+1

BI (2n) =
n∑
k=1

l2k−2

(
n

k

)
αjδ

j
i1+···+inδ

ik+1

p1+q1 · · · δ
in
pn−k+qn−k

εa1···a2nR
(a1a2,i1) · · ·R(a2k−1a2k,ik)e(a2k+1,p1)e(a2k+2,q1) · · ·

· · · e(a2n−1,pn−k)e(a2n,qn−k), (1.86)

where

R(ab,2k) = dω(ab,2k) + ηcdω
(ac,2i)ω(db,2j)δki+j,

and αj are arbitrary constants which appear as a consequence of the S-expansion method.

Let us note that the S-expanded fields are related to the AdS
{
ω̃ab, ẽa

}
fields: ω(ab,2k) =

λ2k⊕ ω̃ab, e(a,2k+1) = λ2k+1⊕ ẽa. The Lagrangian (1.86) was called the Einstein-Born-Infeld

(EBI) Lagrangian.

In the limit l→ 0, the only non zero term in (1.86) corresponds to the case k = 1, whose

only non-vanishing component occurs for p = q1 = · · · = q2n−1 = 0 and is proportional to

the Einstein-Hilbert Lagrangian in even-dimensions [19]

L
(2n)
BI

∣∣∣
l=0

=
1

2
α2n−2εa1···a2nR

a1a2ea3 · · · ea2n (1.87)
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Example for D = 4

Let us consider the case of D = 4 dimensions. In this case, the Born-Infeld Lagrangian

for gravity is written as (see eq.(1.45))

L
(4)
BI =

κ

4
εabcd

(
RabRcd +

2

l2
Rabeced +

1

l4
eaebeced

)
. (1.88)

From this Lagrangian, it is apparent that neither the l → ∞ nor l → 0 limit yields the

Einstein-Hilbert term alone. Rescaling κ properly, those limits will lead either to the Euler

density or to the cosmological constant term by itself, respectively. Since the Euler density

is a topological invariant, it does not contribute to the equations of motion. Thus, in D = 4

dimensions and considering l →∞, the dominant term would be the EH term εabcdR
abeced.

Nevertheless, for D > 4 this statement is not valid anymore and we have that no limit allows

us to obtain the desired term.

Following the above definitions, let us consider the S-expansion of the Lorentz Lie algebra

so (3, 1) using the semigroup S
(3)
0 = {λ0, λ2, λ4}. After performing its 0S-reduction, we

find the new Lie algebra LM5 (or LB5 as was introduced in [19]), which corresponds to

a subalgebra of the Maxwell type algebra M5. The generators defined by Jab = λ0J̃ab,

Zab = λ2J̃ab (where J̃ab are the so (3, 1) generators), satisfy

[Jab, Jcd] = ηcbJad − ηcaJbd + ηdbJca − ηdaJcb,
[Jab, Zcd] = ηcbZad − ηcaZbd + ηdbZca − ηdaZcb, (1.89)

[Zab, Zcd] = 0.

From (1.83) we find the LM5 invariant tensors, which are given by

〈JabJcd〉LM5 = α0l
2εabcd, (1.90)

〈JabZcd〉LM5 = α2l
2εabcd (1.91)

and the curvature two-form is

F =
1

2
RabJab +

1

2

(
Dωk

ab +
1

l2
eaeb

)
Zab

Using the dual formulation of the S-expansion in terms of the Maurer-Cartan forms [22], we

can write down the Born-Infeld Lagrangian invariant under LM5 algebra, as follows

LLM5

BI (4) =
α0

4
εabcdl

2RabRcd +
α2

2
εabcd

(
Rabeced + l2Dωk

abRcd
)
. (1.92)
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This Lagrangian is split in two independent pieces, one proportional to α0 and the other

proportional to α2. The term proportional to α0 corresponds to the Euler invariant, while

the piece proportional to α2 contains the EH term εabcdR
abeced plus a boundary term which

contains, besides the usual curvature Rab, a bosonic matter field kab.

Then, considering the strict limit l = 0 in the Lagrangian, we recover the four-dimensional

EH Lagrangian

LLM5

BI (4)

∣∣∣
l=0

=
α2

2
εabcdR

abeced. (1.93)

These results have been generalized in [17], where we have shown that the 2n-dimensional

Lagrangians LLM2m+1

BI (2n) invariant under the LM2m+1 algebra, lead to the Einstein–Hilbert La-

grangian in a weak coupling constant limit, if and only if m ≥ n. In fact, the following

theorem was announced:

Theorem 2 Let LM2m+1 be the algebra obtained from the Lorentz algebra by a reduced

S
(2m−2)
0 -expansion, which corresponds to a subalgebra of the M2m+1 algebra.. If LLM2m+1

BI (2p)

is a Born-Infeld type 2p-dimensional Lagrangian invariant under the LM2m+1 algebra, then

the 2p-dimensional Born-Infeld type Lagrangian leads to the Einstein-Hilbert Lagrangian in

a certain limit of the coupling constant l, if and only if m ≥ p.

1.6 Einstein-Lovelock-Cartan gravity theory

In this section, we shall briefly discuss the main results of [20], where we have shown

that it is possible to construct an Einstein-Lovelock-Cartan (ELC) Lagrangian leading to

the Einstein-Chern-Simons Lagrangian in D = 2n− 1 invariant under the M2n−1 algebra ,

and to the Einstein-Born-Infeld Lagrangian in D = 2n invariant under the LM2m algebra.

The ECS and EBI theories are particularly interesting since as was shown in the previous

sections, General Relativity can be obtained as a certain limit of these gravity theories. For

our purpose, we shall use the useful properties of the S-expansion procedure using S
(D−2)
E as

the relevant semigroup.

The expanded action is given by [20]

SELC =

∫ [D/2]∑
p=0

µiαpL
(p,i)
ELC (1.94)
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where αp and µi, with i = 0, . . . , D − 2 are arbitrary constants and L
(p,i)
ELC is given by

L
(p,i)
ELC = ld−2δii1+···+id−p

εa1a2···aDR
(a1a2,i1) · · ·R(a2p−1a2p,ip)e(a2p+1,ip+1) · · · e(aD,iD−p), (1.95)

where

R(ab,2i) = dω(ab,2i) + ηcdω
(ac,2j)ω(db,2k)δij+k. (1.96)

The expanded fields
{
e(a,2i+1), ω(ab,2i)

}
are related to the AdS fields

{
ẽa, ω̃ab

}
as follows

ω(ab,2i) = λ2i ⊗ ω̃ab (1.97)

e(a,2i+1) = λ2i+1 ⊗ ẽa (1.98)

with λα ∈ S
(D−2)
E , and where S

(D−2)
E is the semigroup whose elements obey the following

multiplication law

λαλβ =

{
λα+β, when α + β ≤ D − 1,

λ2n, when α + β > D − 1.
(1.99)

The Lagrangian in (1.94) corresponds to the Einstein-Lovelock-Cartan Lagrangian and can

be used in both odd and even dimensions. Following the same procedure of [5], and consid-

ering the action as a functional of the expanded fields SELC = SELC
[
e(a,j), ω(ab,j)

]
, we have

that the variation of the action with respect to e(a,i)and ω(ab,i) lead to the following equations:

ε(i)
a =

[(D−1)/2]∑
p=0

µiαp (d− 2p) ε(p,i)
a = 0 , (1.100)

ε
(i)
ab =

[(D−1)/2]∑
p=1

µiαpp (d− 2p) ε
(p,i)
ab = 0, (1.101)

where

ε(p,i)
a : = ld−2δii1+···+id−p−1

εab1···bd−1
R(b1b2,i1) · · ·R(b2p−1b2p,ip)

× e(b2p+1,ip+1) · · · e(bD−1,iD−p−1), (1.102)

ε
(p,i)
ab : = ld−2δii1+···+id−p−1

εaba3···adR
(a3a4,i1) · · ·R(a2p−1a2p,ip−1)

T (a2p+1,ip)e(a2p+2,ip+1) · · · e(aD,iD−p−1), (1.103)

and where T (a,i) = de(a,i) + ηdcω
(ad,j)e(c,k)δij+k is the expanded torsion 2-form . In general,

there are different ways of choosing the coefficients αp which in general correspond to different
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theories with different numbers of degrees of freedom. It is possible to choose the αp such

that ε
(i)
a and ε

(i)
ab are independent. This last condition corresponds to the maximum number

of independent components.

As in [5], we showed that in odd-dimensions the αp coefficients are given by

αp = α0
(2n− 1) (2γ)p

(2n− 2p− 1)

(
n− 1

p

)
, (1.104)

where

α0 =
κ

(lD−1D)
; γ = −sgn (Λ)

l2

2
, (1.105)

and, for any dimension D, l is a length parameter related to the cosmological constant by

Λ = ±(D − 1) (D − 2)

2l2
. (1.106)

With these coefficients the Lagrangian (1.94) can be written as the Chern–Simons form

L
M2n−1

CS (2n−1) =
n−1∑
p=0

l2p−2 κ

2 (n− p)− 1

(
n− 1

p

)
µiδ

i
i1+···+i2n−1−p

εa1a2···a2n−1R
(a1a2,i1) · · ·R(a2p−1a2p,ip)e(a2p+1,ip+1) · · · e(a2n−1,i2n−1−p).(1.107)

Thus, we conclude that in odd-dimensions the choice of the coefficients (1.104), allows us

to write the Lagrangian (1.94) as a Chern-Simons form for the Maxwell type algebraM2n−1,

called the Einstein-Chern-Simons Lagrangian in [12]. Furthermore, let us note that the S-

expansion process did not modify the αp coefficients of [18] for the odd-dimensional case.

In the even dimensional case the αp coefficients are given by

αp = α0 (2γ)p
(
n

p

)
. (1.108)

With these coefficients the ELC Lagrangian (1.94) is written as

LLM2n

BI (2n) =
n∑
p=0

κ

2n
l2p−2

(
n

p

)
µiδ

i
i1+···+i2n−p

εa1a2···a2nR
(a1a2,i1) · · ·R(a2p−1a2p,ip)e(a2p+1,ip+1) · · · e(a2n,i2n−p), (1.109)

which corresponds to the Einstein-Born-Infeld Lagrangian found in [19].

In this way, we have shown that the S-expansion procedure does not modify the αp’s

coefficients defined in [5]. Unlike the Lanczos-Lovelock action, the ELC action (1.94) has
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the property of leading to General Relativity in a certain limit of the coupling constant l, both

even and odd dimensions. The Einstein-Lovelock Lagrangian ((1.94) can be interpreted as

the most general D-form invariant under a Lorentz type subalgebra LM2n of the Maxwell

type algebra. This Lagrangian is constructed from the expanded vielbein and the expanded

spin connection e(a,2k+1), ω(ab,2k) (k = 0, . . . , n− 1)3 and their exterior derivatives.

Furthermore, in [20] we have shown that the Einstein-Lovelock-Cartan Lagrangian can

be generalized adding torsional terms, following a similar procedure to that of [5].

3When k = 0, e(a,1) and ω(ab,0) are identified with the usual vielbein ea and the spin connection ωab,

respectively.
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Chapter 2

Supersymmetric extension of Gravity

2.1 Introduction

It is well known that the Standard Model describes consistently three of the four fun-

damental interactions of Nature, through Yang-Mills quantum theories. Despite numerous

attempts, the fourth fundamental interaction, gravity, has resisted quantization. Gravity is

described by General Relativity as a manifestation of the geometric properties of space-time.

The possibility of unifying gravity with the other interactions in a same geometric frame-

work would require to incorporate internal and space-time symmetries in a same group. A

possible way to achieve this task is supersymmetry, a kind of symmetry against which we

shall demand the laws of nature be invariant, at least at a certain level (for an introduc-

tion of supersymmetry see for instance [23]). The idea that SUSY is actually an underlying

symmetry of Nature is supported by various phenomenological arguments. For example,

the presence of this symmetry makes field theories better behaved in the UV by virtue of

the cancellation of fermionic and bosonic contributions to divergent loop integrals (see for

instance [24]). This solves an important problem with the Standard Model, namely the

hierarchy problem.

The supersymmetric extension of General Relativity is known as Supergravity (see refs.

[25], [26] and [27]) and it is a theory of local supersymmetry. In SUGRA, the gravitational

field is coupled to its super-partners and possibly to other supermultiplets containing matter

multiplets. Furthermore, it can be viewed as the gauge theory of the superPoincaré group,

which unifies space-time and internal symmetries. Mathematically, it is about a graded Lie

algebra, also called super Lie algebra (or superalgebra) having bosonic (B) and fermionic
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(F ) generators satisfying (anti)commutation relations; [B,B] = B, [B,F ] = F, {F, F} = B

(see for instance [23]).

Initially, Supergravity was conceived as a theory described by an action including the

Einstein-Hilbert term representing the graviton plus a Rarita-Schwinger kinetic term describ-

ing the gravitino. The N = 1 pure Supergravity was constructed first by D. Z. Freedman,

P. van Nieuwenhuizen, and S. Ferrara in [29], and was derived in the second order formalism,

i.e. writing ωab in terms of the other fields by imposing the vanishing of the supertorsion.

Then, the same results were found by S. Deser and B. Zumino in the first order formal-

ism [29]. Subsequently, the model was extended to incorporate other features like enlarged

symmetries, matter couplings, higher dimensions with their corresponding reductions to four

dimensions and cosmological constant.

In the next section, we briefly describe some general aspects of supersymmetry and super-

gravity, which are essential concepts in this thesis. Then, we shall introduce a supergravity

theory withN = 1 in four dimensions with cosmological constant. In particular, we consider

the geometrical approach presented by S.W. MacDowell and F. Mansouri in [28]. Eventu-

ally, in the last section we consider the construction of the most general three-dimensional

CS Supergravity action for the AdS superalgebra.

2.2 Supersymmetry and Supergravity: General aspects

Supersymmetry is a symmetry that mixes bosonic and fermionic particles. As we said

before, the idea that this curious symmetry is actually an underlying symmetry of Nature

is supported by many phenomenological arguments. For instance, the presence of this

symmetry makes many field theories better behaved in the UV by virtue of the cancellation

of divergences of the bosons by divergences coming from the fermionic sector. This is a

very interesting property from the point of view of a quantum gravity theory. In fact, it

was shown in [24] that in a supersymmetric extension of General Relativity, the ultraviolet

divergences at the one-loop level are exactly cancelled.

From a theoretical point of view, SUSY has a most interesting aspect since it unifies

bosonic space-time symmetries with other internal bosonic symmetries (like the SU(3) ×
SU(2)×U(1) invariance of the standard model), giving the possibility of unify gravity with

the other interactions in a same geometric framework. In fact, the group containing super-

symmetry transformations generalizes the Poincaré group, and in addition to the Lorentz

generators Jab and the space-time translations Pa, we have also supersymmetry generators
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Q (the fermionic generators) and internal generators Bi. Then, the corresponding algebra is

called the super-Poincaré algebra. Furthermore, we have that the action of the Q generators

on the states |fermion〉 or |boson〉 is given by

Q |fermion〉 = |boson〉 ; Q |boson〉 = |fermion〉 (2.1)

The super-Poincaré algebra must be defined in terms of both commutators [, ] and anticom-

mutators {, } as follows,

[B,B] ∼ B, [B,F ] ∼ F, {F, F} ∼ B, (2.2)

where the generators of the Poincaré group are included in the bosonic sector, and the F ’s

are the supersymmetry generators. A Lie algebra containing fermionic generators obeying

anti-commutation relations as above is called a graded Lie algebra, or simply superalgebra.

For an arbitrary bosonic group is not always possible to find a set of fermionic generators

in order to close the superalgebra. In this way, a consistency condition is required and is

given by the super-Jacobi identity[
GI [GJ , GK ]±

]
± + (−)σ(JKI) [GJ , [GK , GI ]±

]
± + (−)σ(KIJ) [GK , [GI , GJ ]±

]
± = 0, (2.3)

where GI represents any generator in the algebra, [A,B]± = AB ± BA, and σ corresponds

to the number of permutations of fermionic generators required for (IJK)→ (JKI).

As said before, the supersymmetric extension of General Relativity is known as Super-

gravity and it is a theory of local supersymmetry. In its simplest version Supergravity

can be viewed as the ”gauge” theory of the super-Poincaré group whose action is given by

the Einstein-Hilbert term representing the graviton, plus a Rarita-Schwinger kinetic term

describing the gravitino ψ, a spin-3/2 particle,

S =

∫
εabcdR

abeced + 4ψ̄eaγaγ5Dψ.

Standard SUGRAs are not gauge theories for a group or a supergroup, and the local

(super)symmetry algebra closes naturally on-shell only. When we said that Supergravity

can be viewed as the ”gauge” theory of the super-Poincaré group, we mean that the ”gauge

group” describes external, i.e. space-time symmetries. On the other hand, in the case of the

Standard Model, the gauge group is an internal symmetry, namely acts on internal degrees

of freedom.

25



There are several different supersymmetric theories, which differ in the space-time di-

mension D and in the number N of supersymmetry charges. SUGRA theories of particular

relevance are defined in D = 10 and D = 11, since they describe the low-energy dynamics

of superstring theory and M-theory, on at space-time, respectively. Regarding the num-

ber of supersymmetry, N supersymmetry generators define an N -extended supersymmetry.

Theories which are only invariant under global superPoincaré transformations (rigid super-

symmetry), do not contain gravity and are thus defined on flat space-time. Renormalizability

requires their fields not to have spin greater than 1, and thus N ≤ 4. The N = 4 case

describes a supersymmetric extension of the Yang-Mills theory (super-YM theory). In Su-

pergravity, the limit on the amount N of supersymmetry comes from the possibility of a

consistent coupling to gravity, which restricts the maximum spin of the fields to be 2, thus

implying N ≤ 8.

In particular, global and local supersymmetric theories display deep geometrical struc-

tures inherent to the non-linear interactions of matter multiplets. In the D = 4, N = 2 case

the geometrical structure is described by the Special Kähler geometry and the Hypergeome-

try, when vector multiplets and hypermultiplets are present. There are two kinds of special

Kähler geometry: the local and the rigid one. In the local case, the special Kähler geometry

describes the scalar field sector of vector multiplets in N = 2 SUGRA, while in the latter

case the rigid special Kähler geometry describes the same sector in a N = 2 Yang–Mills

theory.

When matter is added, the underlying geometrical structure is much richer, since N = 2

matter hypermultiplets are associated with the quaternionic geometry. There are four real

scalar fields for each hypermultiplet, which can be viewed (locally) as the four components

of a quaternion. As in the vector multiplet case, there are two kinds of hypergeometry, the

local and the rigid one. The former is called Quaternionic geometry, while the latter is called

the HyperKähler geometry.

A complete study of the N = 2 Supergravity and N = 2 Super Yang-Mills theory

coupled to vector multiplets and hypermultiplets can be found in [31]. As we will see in

the Part III of this thesis, interesting results have been found in the study of rigid and local

supersymmetric N = 2 field theories in D = 4. In particular, in the study of spontaneous

breaking of N = 2 to N = 1 in local supersymmetric theories, and the corresponding low

energy limit to a rigid supersymmetric theory, we have shown that a well-defined limit exists

where the low energy, N = 1 residual theory appears as a supersymmetric Born-Infeld

theory.
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2.3 Mac Dowell-Mansouri Supergravity

Several supergravity theories are known for all D ≤ 11. For D = 4 dimensions a super-

gravity action with a cosmological constant was first presented by P. K Towsand in [34] and

then by S.W. MacDowell and F. Mansouri [28]. Nevertheless, to find a supergravity action

with cosmological constant in an arbitrary dimension is a nontrivial task. For instance, in

the case of the standard supergravity in D = 11 dimensions [32] it has been shown that it is

not possible to accommodate a cosmological constant [35], [36].

In [28] S.W. MacDowell and F. Mansouri presented a geometric formulation of N = 1

supergravity in four dimensions, where the relevant gauge fields of the theory are those

corresponding to the Osp(4|1) supergroup. The resulting action, constructed exclusively

in terms of the components of the curvature, led to the N = 1 supergravity plus cosmo-

logical and topological terms, and corresponds to a generalization of [29] with the addition

of cosmological terms. In this section, we consider a brief review of this construction,

whose results will be essential in the formulation of new supergravity models which will be

presented throughout this thesis.

The (anti)-commutation relations for the osp (4|1) superalgebra are given by[
J̃ab, J̃cd

]
= ηbcJ̃ad − ηacJ̃bd − ηbdJ̃ac + ηadJ̃bc, (2.4)[

J̃ab, P̃c

]
= ηbcP̃a − ηacP̃b, (2.5)[

P̃a, P̃b

]
= J̃ab, (2.6)[

J̃ab, Q̃α

]
= −1

2

(
γabQ̃

)
α
,

[
P̃a, Q̃α

]
= −1

2

(
γaQ̃

)
α
, (2.7){

Q̃α, Q̃β

}
= −1

2

[(
γabC

)
αβ
J̃ab − 2 (γaC)αβ P̃a

]
. (2.8)

where J̃ab, P̃a and Q̃α correspond to the Lorentz generators, the AdS boost generators and

the fermionic generators, respectively. Here, C stands for the charge conjugation matrix and

γa are Dirac matrices.

In order to write down a Lagrangian for this superalgebra, we start from the one-form

gauge connection

A =
1

2
ωabJ̃ab +

1

l
eaP̃a +

1√
l
ψαQ̃α, (2.9)

and the associated curvature two-form F = dA+ A ∧ A,

F = FATA =
1

2
RabJ̃ab +

1

l
RaP̃a +

1√
l
ραQ̃α, (2.10)
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where

Rab = dωab + ωacω
cb +

1

l2
eaeb +

1

2l
ψ̄γabψ, (2.11)

Ra = dea + ωabe
b − 1

2
ψ̄γaψ, (2.12)

ρ = dψ +
1

4
ωabγ

abψ +
1

2l
eaγaψ = Dψ +

1

2l
eaγaψ. (2.13)

From the Bianchi identity ∇F = 0, where ∇ = d + [A, ·], it is possible to show that the

Lorentz covariant exterior derivatives of the curvatures are given by,

DRab =
1

l2
Raeb − 1

l2
eaRb − 1

l
ψ̄γabΨ, (2.14)

DRa = Ra
be
b + ψ̄γaΨ, (2.15)

Dρ =
1

4
Rabγ

abψ +
1

2l
Raγaψ −

1

2l
eaγaΨ. (2.16)

The one-forms ea, ωab and ψ are respectively the vierbein, the spin connection and the

gravitino field (a Majorana spinor, i.e, ψ̄ = ψTC, where C is the charge conjugation matrix).

Unlike the original approach in [28], here we have introduced a length scale l. This is

done because we have chosen the Lie algebra generators TA =
{
J̃ab, P̃a, Q̃α

}
as dimensionless

and thus the one form connection A = AAµTAdx
µ must also be dimensionless. Nevertheless,

the vierbein ea = eaµdx
µ must have dimensions of length if it is related to the spacetime

metric gµν through the usual equation gµν = eaµe
b
νηab. This means that the ”true” gauge

field must be considered as ea/l, with l a length parameter. In the same way, as the gravitino

ψ = ψµdx
µ has dimensions of (length)1/2, we must consider that ψ/

√
l is the gauge field of

supersymmetry.

The general form of an action constructed with the curvature 2-form (2.10) is given by

S = 2

∫
〈F ∧ F 〉 = 2

∫
FA ∧ FB 〈TATB〉 . (2.17)

Let us note that if we choose 〈TATB〉 as an invariant tensor (which satisfies the Bianchi

identity) for the Osp (4|1) supergroup, then the action (2.17) is a topological invariant and

thus, gives no equations of motion. However, with the following choice of the invariant

tensor

〈TATB〉 =


〈
J̃abJ̃cd

〉
= εabcd〈

Q̃αQ̃β

〉
= 2 (γ5)αβ

(2.18)
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the action (2.17) becomes

S = 2

∫
1

4
RabRabεabcd +

2

l
ρ̄γ5ρ (2.19)

which corresponds to the Mac Dowell-Mansouri action [28]. This choice of the invariant

tensor, which is required in order to reproduce a dynamical action, breaks the Osp (4|1)

supergroup to their Lorentz subgroup.

The explicit form of the action is given by,

S =

∫
1

2
εabcd

(
RabRcd +

2

l2
Rabeced +

1

l4
eaebeced +

2

l3
ψ̄γabψeced

)
+

4

l2
ψ̄eaγaγ5Dψ +

4

l
d
(
ψ̄γ5Dψ

)
. (2.20)

Here, we have used the gravitino Bianchi identity

DDψ =
1

4
Rabγ

abψ, (2.21)

and the gamma matrix identity

2γabγ5 = −εabcdγcd, (2.22)

to recognize that
1

2
εabcdR

abψ̄γabψ + 4Dψ̄γ5Dψ = 4d
(
ψ̄γ5Dψ

)
. (2.23)

Thus the action can be written, modulo boundary terms, as follows

S =

∫
1

l2
(
εabcdR

abeced + 4ψ̄eaγaγ5Dψ
)

+
1

2
εabcd

(
1

l4
eaebeced +

2

l3
ψ̄γabψeced

)
, (2.24)

where Rab = dωab+ωacω
cb. The action (2.24) corresponds to the Mac Dowell-Mansouri action

for the osp (4|1) superalgebra. This action describes N = 1, D = 4 AdS Supergravity, and

the last term is the supersymmetric cosmological term. We can see that in the limit l→∞
the usual N = 1 , D = 4 supergravity is recovered, namely

S =

∫ (
εabcdR

abeced + 4ψ̄eaγaγ5Dψ
)

(2.25)

which is the simplest version of supergravity for the super-Poincaré group. In fact, this

limit corresponds to the Inönü-Wigner contraction of OSp(4|1) to the superPoincaré group.

The action (2.24) is not invariant under the osp (4|1) gauge transformations. Never-

theless, the invariance of the action under supersymmetry transformations can be obtained

modifying the spin connection supersymmetry transformation [33].
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2.3.1 Osp(4|1) gauge transformations and supersymmetry

The gauge transformation of the one-form gauge connection A is

δρA = Dρ = dρ+ [A, ρ] (2.26)

where ρ is the Osp(4|1) gauge parameter,

ρ =
1

2
ρabJab +

1

l
ρaPa +

1√
l
εαQα. (2.27)

Then, using

δ
(
AATA

)
= dρ+

[
ABTB, ρ

CTC
]
, (2.28)

the Osp(4|1) gauge transformations are given by

δωab = Dρab +
2

l2
eaρb − 1

l
ε̄γabψ, (2.29)

δea = Dρa + ebρ a
b + ε̄γaψ, (2.30)

δψ = dε+
1

4
ωabγabε+

1

2l
eaγaε−

1

4
ρabγabψ −

1

2l
ρaγaψ. (2.31)

Although the MacDowell-Mansouri action (2.24) is built from the Osp(4|1) curvature, it

is not invariant under the Osp(4|1) gauge transformations. Furthermore, the action does

not correspond to a Yang-Mills action, nor a topological invariant.

Moreover, the action is not invariant under gauge supersymmetry. In fact, if we consider

the variation of the action (2.24) under gauge supersymmetry, we find that

δsusyS = − 4

l2

∫
RaΨ̄γaγ5ε. (2.32)

As in the super-Poincaré case, the action is invariant under gauge supersymmetry im-

posing the super torsion constraint Ra = 0. This yields to express the spin connection ωab

in terms of the vielbein and the gravitino fields, leading to the supersymmetric action for

the osp (4|1) superalgebra in second order formalism.

On the other hand, it is possible to have supersymmetry in first order formalism if we

modify the supersymmetry transformation for the spin connection ωab. In fact, if we consider

the variation of the action under an arbitrary δωab we have

δωS =
2

l2

∫
εabcdR

aebδωcd, (2.33)
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thus the variation vanishes for arbitrary δωab if Ra = 0. It is possible to modify δωab adding

an extra piece to the gauge transformation such that the variation of the action can be

written as

δS = − 4

l2

∫
Ra

(
Ψ̄γaγ5ε−

1

2
εabcde

bδextraω
cd

)
. (2.34)

In order to have an invariant action, δextraω
ab must be given by

δextraω
ab = 2εabcd

(
Ψ̄ecγdγ5ε+ Ψ̄deγcγ5ε− Ψ̄cdγeγ5ε

)
ee, (2.35)

with Ψ̄ = Ψ̄abe
aeb.

Then, in the first order formalism the action is invariant under the following supersym-

metry transformations

δωab = −1

l
ε̄γabψ + 2εabcd

(
Ψ̄ecγdγ5ε+ Ψ̄deγcγ5ε− Ψ̄cdγeγ5ε

)
ee, (2.36)

δea = ε̄γaψ, (2.37)

δψ = dε+
1

4
ωabγabε+

1

2l
eaγaε ≡ ∇ε. (2.38)

2.4 AdS Chern-Simons Supergravity.

As we have seen before, in odd dimensions the Lanczos-Lovelock Lagrangian is a Chern-

Simons form for the (Anti)-de Sitter or Poincaré groups. In particular, in three dimensions

a CS theory for these gauge groups is equivalent to General Relativity, but with different

cosmological constants [38], [39]. CS models for gravity are interesting because they provide

with a truly gauge-invariant action principle in the fiber-bundle sense.

In general, in all odd-dimensions D = 2n− 1 a CS form is defined by the condition that

its exterior derivative be an invariant polynomial of degree n in the curvature F . Thus, a

generic CS Lagrangian, L
(2n−1)
CS for a Lie algebra g can be written as dL

(2n−1)
CS = 〈F n〉, where

〈· · · 〉 corresponds to a symmetric invariant tensor for g, and

L
(2n−1)
CS = n

∫ 1

0

dt
〈
A
(
tdA+ t2A2

)n−1
〉
. (2.39)

In D = 3 dimensions, the locally supersymmetric extension of General Relativity was done

in [40], and it has been shown that it can be written as a CS theory for the Poincaré or the

(anti)-De Sitter supergroups in [38], [39].
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As mentioned before, a good candidate to describe a three-dimensional CS supergravity

theory with cosmological constant is the AdS supergroup. The most generalized super-

symmetric extension of the three-dimensional AdS algebra is given by the direct product

[39]

osp (2|p)⊗ osp (2|q) , (2.40)

describing a (p, q)-type AdS-Chern-Simons supergravity in presence of a cosmological con-

stant. Interestingly, the osp (2|p)⊗osp (2|q) superalgebra allows to construct a non minimal

three-dimensional AdS CS supergravity theory. In particular, the minimal AdS CS super-

gravity is obtained when p = 1 and q = 0 (osp (2|1)⊗ sp (2)) [37]. As was pointed out in

ref. [39], the presence of N = p + q supersymmetries allows to introduce CS terms related

to the O (p)⊗O (q) gauge symmetry.

In this section, we consider the construction of the most general three-dimensional CS

Supergravity action for the AdS superalgebra, osp (2|1)⊗sp (2), containing a cosmological

constant. This corresponds to the supersymmetric extension of the most general action for

gravity in D = 3 dimensions, which apart from the Einstein-Hilbert term with cosmological

constant, contains the Lorentz-Chern-Simons form (or ”exotic” Lagrangian [8]) and a term

involving the torsion [41], [42].

The (anti)-commutation relations for the D = 3 AdS superalgebra are given by[
J̃ab, J̃cd

]
= ηbcJ̃ad − ηacJ̃bd − ηbdJ̃ac + ηadJ̃bc, (2.41)[

J̃ab, P̃c

]
= ηbcP̃a − ηacP̃b,

[
P̃a, P̃b

]
= J̃ab, (2.42)[

P̃a, Q̃α

]
= −1

2

(
ΓaQ̃

)
α
, (2.43)[

J̃ab, Q̃α

]
= −1

2

(
ΓabQ̃

)
α
, (2.44){

Q̃α, Q̃β

}
= −1

2

[(
ΓabC

)
αβ
J̃ab − 2 (ΓaC)αβ P̃a

]
, (2.45)

where J̃ab, P̃a and Q̃α are the generators of Lorentz transformations, the AdS boost and

supersymmetry, respectively. Here C stands for the charge conjugation matrix, Γa are

Dirac matrices and Γab = 1
2

[Γa,Γb].

The Chern-Simons action in (2 + 1) dimensions [9], [11] is given by

S
(2+1)
CS = k

∫ 〈
A

(
dA+

2

3
A2

)〉
, (2.46)
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In our case A is the one-form gauge connection for the osp (2|1)⊕sp (2) superalgebra

A =
1

2
ωabJ̃ab +

1

l
eaP̃a +

1√
l
ψαQ̃α, (2.47)

whose associated curvature two-form F = dA+ A ∧ A is

F = FATA =
1

2
RabJ̃ab +

1

l
RaP̃a +

1√
l
ΨαQ̃α, (2.48)

with

Rab = dωab + ωacω
cb +

1

l2
eaeb +

1

2l
ψ̄Γabψ,

Ra = dea + ωabe
b − 1

2
ψ̄Γaψ,

Ψ = ∇ψ = dψ +
1

4
ωabΓ

abψ +
1

2l
eaΓaψ.

In (2.46) the bracket 〈· · · 〉 stands for the non-vanishing components of an invariant tensor

for the osp (2|1)⊗sp (2) superalgebra in (2 + 1)-dimensions:〈
J̃abJ̃cd

〉
= µ0 (ηadηbc − ηacηbd) , (2.49)〈

J̃abP̃c

〉
= µ1εabc, (2.50)〈

P̃aP̃b

〉
= µ0ηab, (2.51)〈

Q̃αQ̃β

〉
= (µ0 − µ1)Cαβ, (2.52)

where µ0 and µ1 are arbitrary constants.

Considering (2.49)-(2.52) and the one-form connection (2.47), the CS action (2.46) for

the osp (2|1)⊗sp (2) superalgebra can be written as

S
(2+1)
CS = k

∫
M

µ0

2

(
ωabdω

b
a +

2

3
ωacω

c
bω

b
a +

2

l2
eaTa +

2

l
ψ̄Ψ

)
+
µ1

l

(
εabc

(
Rabec +

1

3l2
eaebec

)
− ψ̄Ψ

)
− d

(µ1

2l
εabcω

abec
)

(2.53)

where T a = dea + ωabe
b is the torsion 2-form and Rab = dωab + ωacω

cb is the Lorentz curva-

ture. This action describes the most general N = 1, D = 3 CS supergravity action with

cosmological constant for the AdS supergroup [37]. There are two independent terms, the

one proportional to µ0 contains the ”exotic” Lagrangian and a term involving the torsion,
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while the second one proportional to µ1 contains the EH Lagrangian with a cosmological

constant.

It is straightforward to show that the action (2.47) is invariant (up to boundary terms)

under supersymmetry,

δεψ = ∇ε, δεe
a = ε̄Γaψ, δεω

ab = −1

l
ε̄Γabψ. (2.54)

As no field equations are required in order to prove this invariance, we said that it is an

off-shell local SUSY.

Furthermore, the Inönü Wigner contraction of the the Osp (2|1)⊗ sp (2) group leads us

to the superPoincaré in three dimensions, in a similar way as the Poincaré group is obtained

as an Inönü Wigner contraction of the AdS group.
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Part II

N = 1 Supergravity theories, Maxwell

and AdS-Lorentz superalgebras
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Chapter 3

Maxwell superalgebras and Abelian

semigroup expansion

3.1 Introduction

The derivation of new Lie algebras from a given one is particularly interesting in Physics

since it allows us to find new physical theories from an already known. In fact, an important

example consists in obtaining the Poincaré algebra from the Galileo algebra using a deforma-

tion procedure which can be seen as an algebraic prediction of Relativity. At present, there

are at least four different ways to relate new Lie algebras; deformation, contraction, exten-

sion and expansion. In particular, the expansion method leads to higher dimensional new

Lie algebras from a given one. The expansion procedure was first introduced by Hadsuda

and Sakaguchi in [43] in the context of AdS superstring. An interesting expansion method

was proposed by Azcarraga, Izquierdo, Picón and Varela in [44] and subsequently developed

in [45], [46]. This expansion method known as Maurer-Cartan (MC) forms power-series

expansion consists in rescaling some group parameters by a factor λ, and then apply an

expansion as a power series in λ. This series is truncated in a way that the Maurer-Cartan

equations of the new algebra are satisfied.

Another expansion method was proposed by F. Izaurieta, E. Rodŕıguez and P. Salgado in

[18] which is based on operations performed directly on the algebra generators. This method

consists in combining the inner multiplication law of a semigroup S with the structure con-

stants of a Lie (super)algebra g in order to define the Lie bracket of a new (super)algebra

G = S×g. This abelian semigroup expansion procedure, or simply S-expansion, can repro-
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duce all Maurer-Cartan forms power series expansion for a particular choice of a semigroup

S. Interestingly, different choices of the semigroup lead to new expanded Lie algebras that

cannot be obtained by the MC expansion.

Some examples of (super)algebras obtained as an S-expansion can be found in [18],

[47] where the D’auria-Fré superalgebra introduced originally in [48] and the M algebra are

derived alternatively as an S-expansion of osp (32|1). As we have seen in previous sections,

the S-expansion method allows to obtain the Maxwell type algebras Mm from the AdS

algebra using S
(N)
E = {λα}N+1

α=0 as the relevant semigroup.

The Maxwell algebra (and its supersymmetric extensions) has been extensively studied

in [50]-[59]. This algebra describes the symmetries of a particle moving in a background in

the presence of a constant electromagnetic field [50]. In [53] the minimal D = 4 Maxwell su-

peralgebra sM which contains the Maxwell algebra as its bosonic subalgebra was presented.

In [57] the Maurer-Cartan expansion allowed to obtain the minimal Maxwell superalgebra

and its N -extended generalization from the osp (4|N) superalgebra. This Maxwell superal-

gebra can be used to obtain the minimal D = 4 pure supergravity from the curvature 2-form

associated to sM [58].

In this chapter, we present the results of [60], where we have shown that the abelian semi-

group expansion is an alternative expansion method to obtain the Maxwell superalgebra and

the N -extended cases. In this way, we showed that the results of [57] can be derived alter-

natively as an S-expansion of the osp (4|N ) superalgebra choosing appropriate semigroups.

In particular, the minimal Maxwell superalgebra sM is obtained as an S-expansion setting

a generator equals to zero. We finally generalize these results proposing new Maxwell su-

peralgebras namely, the minimal Maxwell type superalgebras sMm+2 and the N -extended

superalgebras sM(N)
m+2, which can be derived from the osp (4|N ) superalgebra.

As we will see in the next chapter, these superalgebras can be used to construct dynamical

actions in D = 4, leading to standard pure supergravity in a very similar way to the bosonic

case considered in [17], [19].
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3.2 Maxwell algebra as an S-expansion

Before considering the supersymmetric case, let us review here how to obtain the

Maxwell algebra M as an S-expansion of AdS. This algebra describes the symmetries

of a particle moving in a background in presence of a constant electromagnetic field, and is

provided by {Jab, Pa, Zab}, where {Pa, Jab} do not generate the Poincaré algebra. In fact, a

particular feature of the Maxwell algebra (which is also a feature shared by all the family of

Maxwell type algebras) is given by the relation

[Pa, Pb] = Zab (3.1)

where Zab commutes with all generators of the algebra except the Lorentz generators Jab,

[Jab, Zcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (3.2)

[Zab, Pa] = [Zab, Zcd] = 0. (3.3)

The other commutators of the algebra are

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (3.4)

[Jab, Pc] = ηbcPa − ηacPb. (3.5)

Following [16] and [18], it is possible to obtain the Maxwell algebraM as an S-expansion of

the AdS Lie algebra g using S
(2)
E as the appropriate abelian semigroup. Before applying the

S-expansion procedure it is necessary to consider a decomposition of the original algebra g

in subspaces Vp,

g = so (3, 2) = so (3, 1)⊕ so (3, 2)

so (3, 1)
= V0 ⊕ V1, (3.6)

where V0 is generated by the Lorentz generator J̃ab and V1 is generated by the AdS boost

generator P̃a. The J̃ab, P̃a generators satisfy the following relations[
J̃ab, J̃cd

]
= ηbcJ̃ad − ηacJ̃bd − ηbdJ̃ac + ηadJ̃bc, (3.7)[

J̃ab, P̃c

]
= ηbcP̃a − ηacP̃b, (3.8)[

P̃a, P̃b

]
= J̃ab. (3.9)

The subspace structure may be written as

[V0, V0] ⊂ V0, [V0, V1] ⊂ V1, [V1, V1] ⊂ V0. (3.10)
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Let S
(2)
E = {λ0, λ1, λ2, λ3} be an abelian semigroup with the following subset decomposition

S
(2)
E = S0 ∪ S1, where the subsets S0, S1 are given by

S0 = {λ0, λ2, λ3} , (3.11)

S1 = {λ1, λ3} , (3.12)

where λ3 corresponds to the zero element of the semigroup (0s = λ3). This subset decom-

position is said to be ”resonant” because it satisfies [compare with eqs.(3.10).]

S0 · S0 ⊂ S0, S0 · S1 ⊂ S1, S1 · S1 ⊂ S0. (3.13)

In this case, the elements of the semigroup {λ0, λ1, λ2, λ3} satisfy the following multiplication

law

λαλβ =

{
λα+β, when α + β ≤ 3,

λ3, when α + β > 3.
(3.14)

Following the definitions of [18], after extracting a resonant subalgebra and performing

its 0S-reduction, one finds the Maxwell algebraM = {Jab, Pa, Zab}, whose generators can be

written in terms of the original ones,

Jab = λ0 ⊗ J̃ab, (3.15)

Pa = λ1 ⊗ P̃a, (3.16)

Zab = λ2 ⊗ J̃ab. (3.17)

Furthermore, as we have seen in previous sections, it is possible to extend this procedure

and obtain all the Maxwell type algebras using the appropriate semigroup [17].

3.3 S-expansion of the osp (4|1) superalgebra

In this section, we shall consider the AdS superalgebra osp (4|1) as a starting point.

We will see that different choices of abelian semigroup S lead to new D = 4 superalgebras.

In every case, before applying the S-expansion procedure it is necessary to decompose the

original algebra g as a direct sum of subspaces Vp,

g = osp (4|1) = so (3, 1)⊕ osp (4|1)

sp (4)
⊕ sp (4)

so (3, 1)

= V0 ⊕ V1 ⊕ V2, (3.18)
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where V0 corresponds to the Lorentz subspace generated by J̃ab, V1 corresponds to the

fermionic subspace generated by a 4-component Majorana spinor charge Q̃α and V2 corre-

sponds to theAdS boost generated by P̃a. The osp (4|1) generators satisfy the (anti)commutation

relations given by (2.4)− (2.8).

The subspace structure can be written as

[V0, V0] ⊂ V0, [V1, V1] ⊂ V0 ⊕ V2, (3.19)

[V0, V1] ⊂ V1, [V1, V2] ⊂ V1, (3.20)

[V0, V2] ⊂ V2, [V2, V2] ⊂ V0. (3.21)

The next step consists in finding a subset decomposition of a semigroup S which is

”resonant” with respect to (3.19)− (3.21).

3.3.1 Minimal D = 4 Maxwell superalgebra

Let us consider S
(4)
E = {λ0, λ1, λ2, λ3, λ4, λ5} as the relevant abelian semigroup whose ele-

ments obey the multiplication law

λαλβ =

{
λα+β, when α + β ≤ 5,

λ5, when α + β > 5.
(3.22)

In this case, λ5 plays the role of the zero element of the semigroup S
(4)
E , so we have for each

λα ∈ S(4)
E , λ5λα = λ5 = 0s. Let us consider the decomposition S = S0 ∪ S1 ∪ S2, with

S0 = {λ0, λ2, λ4, λ5} , (3.23)

S1 = {λ1, λ3, λ5} , (3.24)

S2 = {λ2, λ4, λ5} . (3.25)

One sees that this decomposition is resonant since it satisfies the same structure as the

subspaces Vp [compare with eqs. (3.19)− (3.21)]

S0 · S0 ⊂ S0, S1 · S1 ⊂ S0 ∩ S2, (3.26)

S0 · S1 ⊂ S1, S1 · S2 ⊂ S1, (3.27)

S0 · S2 ⊂ S2, S2 · S2 ⊂ S0. (3.28)

Following theorem IV.2 of [18], we can say that the superalgebra

GR = W0 ⊕W1 ⊕W2, (3.29)
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is a resonant super subalgebra of S
(4)
E × g, where

W0 = (S0 × V0) = {λ0, λ2, λ4, λ5} ×
{
J̃ab

}
=
{
λ0J̃ab, λ2J̃ab, λ4J̃ab, λ5J̃ab

}
, (3.30)

W1 = (S1 × V1) = {λ1, λ3, λ5} ×
{
Q̃α

}
=
{
λ1Q̃α, λ3Q̃α, λ5Q̃α

}
, (3.31)

W2 = (S2 × V2) = {λ2, λ4, λ5} ×
{
P̃a

}
=
{
λ2P̃a, λ4P̃a, λ5P̃a

}
. (3.32)

In order to extract a smaller superalgebra from the resonant super subalgebra GR it is

necessary to apply the reduction procedure.

Let Sp = Ŝp ∪ Šp be a partition of the subsets Sp ⊂ S where

Š0 = {λ0, λ2, λ4} , Ŝ0 = {λ5} , (3.33)

Š1 = {λ1, λ3} , Ŝ1 = {λ5} , (3.34)

Š2 = {λ2} , Ŝ2 = {λ4, λ5} . (3.35)

For each p, Ŝp ∩ Šp = ∅, and using the product (3.22) one sees that the partition satisfies

[compare with ecs. (3.19)− (3.21)]

Š0 · Ŝ0 ⊂ Ŝ0, Š1 · Ŝ1 ⊂ Ŝ0 ∩ Ŝ2,

Š0 · Ŝ1 ⊂ Ŝ1, Š1 · Ŝ2 ⊂ Ŝ1,

Š0 · Ŝ2 ⊂ Ŝ2, Š2 · Ŝ2 ⊂ Ŝ0.

(3.36)

Then, following definitions of [18], we have

ǦR =
(
Š0 × V0

)
⊕
(
Š1 × V1

)
⊕
(
Š2 × V2

)
, (3.37)

ĜR =
(
Ŝ0 × V0

)
⊕
(
Ŝ1 × V1

)
⊕
(
Ŝ2 × V2

)
, (3.38)

where [
ǦR, ĜR

]
⊂ ĜR, (3.39)

and therefore
∣∣ǦR

∣∣ corresponds to a reduced algebra of GR. This S-expansion process can

be seen explicitly in the following diagrams:

λ5 Jab,5 Qα,5 Pa,5

λ4 Jab,4 Pa,4

λ3 Qα,3

λ2 Jab,2 Pa,2

λ1 Qα,1

λ0 Jab,0

V0 V1 V2

λ5

λ4 Jab,4

λ3 Qα,3

λ2 Jab,2 Pa,2

λ1 Qα,1

λ0 Jab,0

V0 V1 V2

, (3.40)
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where we have defined Jab,i = λiJ̃ab, Pa,i = λiP̃a and Qα,i = λiQ̃α. We can observe that the

first diagram corresponds to the resonant subalgebra of the S-expanded superalgebra S
(4)
E ×

osp (4|1). The second one consists in a particular reduction of the resonant subalgebra.

Thus, the new superalgebra is generated by
{
Jab, Pa, Z̃ab, Zab, Qα,Σα

}
where these new

generators can be written in terms of the original AdS generators as

Jab = Jab,0 = λ0J̃ab, Pa = Pa,2 = λ2P̃a,

Z̃ab = Jab,2 = λ2J̃ab, Zab = Jab,4 = λ4J̃ab,

Qα = Qα,1 = λ1Q̃α, Σα = Qα,3 = λ3Q̃α.

(3.41)

These new generators satisfy the commutation relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (3.42)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (3.43)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (3.44)

[Pa, Qα] = −1

2
(γaΣ)α , (3.45)

[Jab, Qα] = −1

2
(γabQ)α , (3.46)

[Jab,Σα] = −1

2
(γabΣ)α , (3.47)

{Qα, Qβ} = −1

2

[(
γabC

)
αβ
Z̃ab − 2 (γaC)αβ Pa

]
, (3.48)

{Qα,Σβ} = −1

2

(
γabC

)
αβ
Zab, (3.49)

[
Jab, Z̃ab

]
= ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc, (3.50)[

Z̃ab, Z̃cd

]
= ηbcZad − ηacZbd − ηbdZac + ηadZbc, (3.51)[

Z̃ab, Qα

]
= −1

2
(γabΣ)α , (3.52)

others = 0, (3.53)

where we have used the multiplication law of the semigroup (3.22) and the commutation

relations of the original superalgebra. The new superalgebra obtained after a reduced

resonant S-expansion of the osp (4|1) superalgebra corresponds to the minimal Maxwell

type superalgebra sM4 in D = 4 . One can see that imposing Z̃ab = 0 leads us to the

minimal Maxwell superalgebra sM [55, 57]. This can be done since the Jacobi identities
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for spinors generators are satisfied due to the gamma matrix identity (Cγa)(αβ (Cγa)γδ) = 0

(cyclic permutations of α, β, γ).

In this case, the S-expansion procedure produces a new Majorana spinor charge Σ. The

introduction of a second abelian spinorial generator has been initially proposed in [48] in

the context of D = 11 supergravity and subsequently in [59] in the context of superstring

theory.

The sM superalgebra seems particularly interesting in the context ofD = 4 supergravity.

In fact, in [58], it was shown that the D = 4, N = 1 pure supergravity Lagrangian can be

written as a quadratic expression in the curvatures of the gauge fields associated with the

minimal Maxwell superalgebra. As we will see in the next chapter, the same result can

be found for the minimal Maxwell type superalgebra sM4 (and its generalization sMm+2),

using the S-expansion method.

3.3.2 Minimal D = 4 Maxwell type superalgebra sM5

In [17] it was shown that the Maxwell type algebra Mm can be obtained from an S-

expansion of AdS algebra. These bigger algebras require semigroups with more elements

but with the same type of multiplication law. Since our main motivation is to obtain a

D = 4 Maxwell type superalgebra sMm it seems natural to consider a semigroup bigger

than S
(4)
E = {λ0, λ1, λ2, λ3, λ4, λ5}. As in the previous case, we shall consider g = osp (4|1)

as a starting point with the subspace structure given by eqs. (3.19)− (3.21).

Let us consider S
(6)
E = {λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7} as the relevant finite abelian semi-

group whose elements are dimensionless and obey the multiplication law

λαλβ =

{
λα+β, when α + β ≤ 7,

λ7, when α + β > 7,
(3.54)

where λ7 plays the role of the zero element of the semigroup S
(6)
E . Let us consider the

decomposition S = S0 ∪ S1 ∪ S2, with

S0 = {λ0, λ2, λ4, λ6, λ7} , (3.55)

S1 = {λ1, λ3, λ5, λ7} , (3.56)

S2 = {λ2, λ4, λ6, λ7} . (3.57)

This subset decomposition of S
(6)
E satisfies the resonance condition since it satisfies the same
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structure that the subspaces Vp [compare with eqs. (3.19)− (3.21)]

S0 · S0 ⊂ S0, S1 · S1 ⊂ S0 ∩ S2, (3.58)

S0 · S1 ⊂ S1, S1 · S2 ⊂ S1, (3.59)

S0 · S2 ⊂ S2, S2 · S2 ⊂ S0. (3.60)

Therefore, according to Theorem IV.2 of [18], we have that

GR = W0 +W1 +W2, (3.61)

with

Wp = Sp × Vp, (3.62)

is a resonant super subalgebra of G = S × g.

As in the previous case, it is possible to extract a smaller superalgebra from the resonant

subalgebra GR using the reduction procedure. Let Sp = Ŝp∪ Šp be a partition of the subsets

Sp ⊂ S where

Š0 = {λ0, λ2, λ4} , Ŝ0 = {λ6, λ7} , (3.63)

Š1 = {λ1, λ3, λ5} , Ŝ1 = {λ7} , (3.64)

Š2 = {λ2, λ4, λ6} , Ŝ2 = {λ7} . (3.65)

For each p, Ŝp∩ Šp = ∅, and using the product (3.54) one can see that the partition satisfies

[compare with ecs. (3.19)− (3.21)]

Š0 · Ŝ0 ⊂ Ŝ0, Š1 · Ŝ1 ⊂ Ŝ0 ∩ Ŝ2,

Š0 · Ŝ1 ⊂ Ŝ1, Š1 · Ŝ2 ⊂ Ŝ1,

Š0 · Ŝ2 ⊂ Ŝ2, Š2 · Ŝ2 ⊂ Ŝ0.

(3.66)

Then, we have

ǦR =
(
Š0 × V0

)
⊕
(
Š1 × V1

)
⊕
(
Š2 × V2

)
, (3.67)

ĜR =
(
Ŝ0 × V0

)
⊕
(
Ŝ1 × V1

)
⊕
(
Ŝ2 × V2

)
, (3.68)

where [
ǦR, ĜR

]
⊂ ĜR, (3.69)

and therefore
∣∣ǦR

∣∣ corresponds to a reduced algebra of GR.
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The new superalgebra is generated by
{
Jab, Pa, Zab, Z̃ab, Za, Z̃a, Qα,Σα,Φα

}
where these

new generators can be written as

Jab = Jab,0 = λ0J̃ab, Z̃a = Pa,4 = λ4P̃a,

Pa = Pa,2 = λ2P̃a, Qα = Qα,1 = λ1Q̃α,

Zab = Jab,4 = λ4J̃ab, Σα = Qα,3 = λ3Q̃α,

Z̃ab = Jab,2 = λ2J̃ab, Φα = Qα,5 = λ5Q̃α,

Za = Pa,6 = λ6P̃a.

(3.70)

These new generators satisfy the commutation relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (3.71)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (3.72)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (3.73)

[Zab, Pc] = ηbcZa − ηacZb, [Jab, Zc] = ηbcZa − ηacZb, (3.74)[
Z̃ab, Z̃cd

]
= ηbcZad − ηacZbd − ηbdZac + ηadZbc, (3.75)[

Jab, Z̃cd

]
= ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc, (3.76)[

Z̃ab, Pc

]
= ηbcZ̃a − ηacZ̃b,

[
Z̃ab, Z̃c

]
= ηbcZa − ηacZb (3.77)[

Jab, Z̃c

]
= ηbcZ̃a − ηacZ̃b, (3.78)

[Jab, Qα] = −1

2
(γabQ)α , [Jab,Σα] = −1

2
(γabΣ)α , (3.79)

[Jab,Φα] = −1

2
(γabΦ)α ,

[
Z̃ab, Qα

]
= −1

2
(γabΣ)α , (3.80)[

Z̃ab,Σα

]
= −1

2
(γabΦ)α , [Zab, Qα] = −1

2
(γabΦ)α , (3.81)

[Pa, Qα] = −1

2
(γaΣ)α , [Pa,Σα] = −1

2
(γaΦ)α , (3.82)[

Z̃a, Qα

]
= −1

2
(γaΦ)α , (3.83)

{Qα, Qβ} = −1

2

[(
γabC

)
αβ
Z̃ab − 2 (γaC)αβ Pa

]
, (3.84)

{Qα,Σβ} = −1

2

[(
γabC

)
αβ
Zab − 2 (γaC)αβ Z̃a

]
, (3.85)

{Qα,Φβ} = (γaC)αβ Za = {Σα,Σβ} , (3.86)

others = 0, (3.87)
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where we have used the multiplication law of the semigroup (3.54) and the commutation

relations of the original superalgebra (2.4)− (2.8). The new superalgebra obtained after a

reduced resonant S-expansion of osp (4|1) superalgebra corresponds to a minimal Maxwell

type superalgebra sM5 in D = 4. Interestingly, this new superalgebra contains the Maxwell

type algebra M5 = {Jab, Pa, Zab, Za} as a subalgebra [12], [17].

In this case, two new Majorana spinor charges Σ and Φ appear as a consequence of the S-

expansion. These fermionic generators transform as spinors under Lorentz transformations.

One sees that the minimal Maxwell type superalgebra sM5 requires new bosonic generators(
Z̃ab, Z̃a, Za

)
and Σ is not abelian anymore. It is important to note that setting Z̃ab and

Z̃a equal to zero does not lead to a subalgebra. In fact, these generators are required

in Jacobi identity for (Qα, Qβ,Σγ) due to the gamma matrix identity (Cγa)(αβ (Cγa)γδ) =(
Cγaβ

)
(αβ

(Cγaβ)γδ) = 0 (cyclic permutations of α, β, γ).

3.3.3 Minimal D = 4 Maxwell type superalgebra sMm+2

Let us generalize the previous setting. In order to obtain the minimal D = 4 Mawell

type superalgebra sMm+2, it is necessary to consider a bigger semigroup. Let us consider

S
(2m)
E = {λ0, λ1, λ2, · · · , λ2m+1} as the relevant finite abelian semigroup whose elements are

dimensionless and obey the multiplication law

λαλβ =

{
λα+β, when α + β ≤ λ2m+1,

λ2m+1, when α + β > λ2m+1.
(3.88)

where λ2m+1 plays the role of the zero element of the semigroup. Let us consider the

decomposition S
(2m)
E = S0 ∪ S1 ∪ S2, where the subsets S0, S1, S2 are given by the general

expression

Sp =

{
λ2n+p, with n = 0, · · · ,

[
2m− p

2

]}
∪ {λ2m+1} , p = 0, 1, 2. (3.89)

This decomposition is said to be resonant since it satisfies [compare with eqs. (3.19)−(3.21)]

S0 · S0 ⊂ S0, S1 · S1 ⊂ S0 ∩ S2, (3.90)

S0 · S1 ⊂ S1, S1 · S2 ⊂ S1, (3.91)

S0 · S2 ⊂ S2, S2 · S2 ⊂ S0. (3.92)

Thus, we have that

GR = W0 ⊕W1 ⊕W2, (3.93)
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with

Wp = Sp × Vp, (3.94)

is a resonant subalgebra of G = S × g.

As in previous cases, it is possible to extract a smaller algebra from the resonant sub-

algebra GR using the reduction procedure. Let Sp = Ŝp ∪ Šp be a partition of the subsets

Sp ⊂ S, with

Š0 = {λ2n, with n = 0, · · · , 2 [m/2]} , Ŝ0 = {(λ2m) , λ2m+1} , (3.95)

Š1 = {λ2n+1, with n = 0, · · · ,m− 1} , Ŝ1 = {λ2m+1} , (3.96)

Š2 = {λ2n+2, with n = 0, · · · , 2 [(m− 1) /2]} , Ŝ2 = {(λ2m) , λ2m+1} , (3.97)

where (λ2m) means that λ2m ∈ Ŝ0 if m is odd and λ2m ∈ Ŝ2 if m is even. For each p,

Ŝp∩ Šp = ∅, and using the product (3.88) one sees that the partition satisfies [compare with

ecs. (3.19)− (3.21)]

Š0 · Ŝ0 ⊂ Ŝ0, Š1 · Ŝ1 ⊂ Ŝ0 ∩ Ŝ2,

Š0 · Ŝ1 ⊂ Ŝ1, Š1 · Ŝ2 ⊂ Ŝ1,

Š0 · Ŝ2 ⊂ Ŝ2, Š2 · Ŝ2 ⊂ Ŝ0.

(3.98)

Thus,

ǦR = W̌0 ⊕ W̌1 ⊕ W̌2, (3.99)

corresponds to a reduced algebra of GR, where

W̌0 =
(
Š0 × V0

)
= {λ2n, with n = 0, · · · , 2 [m/2]} ×

{
J̃ab

}
, (3.100)

W̌1 =
(
Š1 × V1

)
= {λ2n+1, with n = 0, · · · ,m− 1} ×

{
Q̃α

}
, (3.101)

W̌2 =
(
Š2 × V2

)
= {λ2n+2, with n = 0, · · · , 2 [(m− 1) /2]} ×

{
P̃a

}
. (3.102)

Here, J̃ab, P̃a and Q̃α correspond to the generators of osp (4|1) superalgebra. The new

superalgebra obtained by the S-expansion procedure is generated by{
Jab, Pa, Z

(k)
ab , Z̃

(k)
ab , Z

(l)
a , Z̃

(l)
a , Qα,Σ

(k)
α ,Φ(l)

α

}
, (3.103)

where these new generators can be written as

Jab = Jab,0 = λ0J̃ab, Z̃
(l)
a = Pa,4l = λ4lP̃a,

Pa = Pa,2 = λ2P̃a, Qα = Qα,1 = λ1Q̃α,

Z
(k)
ab = Jab,4k = λ4kJ̃ab, Σ

(k)
α = Qα,4k−1 = λ4k−1Q̃α,

Z̃
(k)
ab = Jab,4k−2 = λ4k−2J̃ab, Φ

(l)
α = Qα,4l+1 = λ4l+1Q̃α,

Z
(l)
a = Pa,4l+2 = λ4l+2P̃a.

(3.104)
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with k = 1, . . . ,
[
m
2

]
, l = 1, . . . ,

[
m−1

2

]
. It is important to note that the super indices k

and l of spinor generators correspond to the expansion labels and they do not define an

N -extended superalgebra. The N -extended case will be considered in the next section.

These new generators satisfy the commutation relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (3.105)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Z
(1)
ab , (3.106)[

Jab, Z
(k)
cd

]
= ηbcZ

(k)
ad − ηacZ

(k)
bd − ηbdZ

(k)
ac + ηadZ

(k)
bc , (3.107)[

Z
(k)
ab , Pc

]
= ηbcZ

(k)
a − ηacZ

(k)
b ,

[
Jab, Z

(l)
c

]
= ηbcZ

(l)
a − ηacZ

(l)
b , (3.108)[

Z
(k)
ab , Z

(l)
c

]
= ηbcZ

(k+l)
a − ηacZ(k+l)

b , (3.109)[
Z

(k)
ab , Z

(j)
cd

]
= ηbcZ

(k+j)
ad − ηacZ(k+j)

bd − ηbdZ(k+j)
ac + ηadZ

(k+j)
bc , (3.110)[

Pa, Z
(k)
c

]
= Z

(k+1)
ab ,

[
Z(l)
a , Z

(n)
c

]
= Z

(l+n+1)
ab (3.111)

[
Z̃

(k)
ab , Z̃

(j)
cd

]
= ηbcZ

(k+j−1)
ad − ηacZ(k+j−1)

bd − ηbdZ(k+j−1)
ac + ηadZ

(k+j−1)
bc , (3.112)[

Jab, Z̃
(k)
cd

]
= ηbcZ̃

(k)
ad − ηacZ̃

(k)
bd − ηbdZ̃

(k)
ac + ηadZ̃

(k)
bc , (3.113)[

Z̃
(k)
ab , Pc

]
= ηbcZ̃

(k)
a − ηacZ̃

(k)
b ,

[
Jab, Z̃

(l)
c

]
= ηbcZ̃

(l)
a − ηacZ̃

(l)
b , (3.114)[

Z
(k)
ab , Z̃

(l)
c

]
= ηbcZ̃

(k+l)
a − ηacZ̃(k+l)

b ,
[
Z̃

(k)
ab , Z

(l)
c

]
= ηbcZ̃

(k+l)
a − ηacZ̃(k+l)

b , (3.115)[
Z̃

(k)
ab , Z̃

(l)
c

]
= ηbcZ

(k+l−1)
a − ηacZ(k+l−1)

b ,
[
Pa, Z̃

(l)
b

]
= Z̃

(l+1)
ab (3.116)[

Z̃(l)
a , Z̃

(n)
b

]
= Z

(l+n)
ab ,

[
Z(l)
a , Z̃

(n)
b

]
= Z̃

(l+n+1)
ab , (3.117)[

Z
(k)
ab , Z̃

(j)
cd

]
= ηbcZ̃

(k+j)
ad − ηacZ̃(k+j)

bd − ηbdZ̃(k+j)
ac + ηadZ̃

(k+j)
bc , (3.118)
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[Jab, Qα] = −1

2
(γabQ)α ,

[
Jab,Σ

(k)
α

]
= −1

2

(
γabΣ

(k)
)
α
, (3.119)[

Jab,Φ
(l)
α

]
= −1

2

(
γabΦ

(l)
)
α
,

[
Z̃

(k)
ab , Qα

]
= −1

2

(
γabΣ

(k)
)
α
, (3.120)[

Z̃
(k)
ab ,Σ

(j)
α

]
= −1

2

(
γabΦ

(k+j−1)
)
α
,

[
Z̃

(k)
ab ,Φ

(l)
α

]
= −1

2

(
γabΣ

(k+l)
)
α
, (3.121)[

Z
(k)
ab , Qα

]
= −1

2

(
γabΦ

(k)
)
α
,

[
Z

(k)
ab ,Σ

(j)
α

]
= −1

2

(
γabΣ

(k+j)
)
α
, (3.122)[

Z
(k)
ab ,Φ

(l)
α

]
= −1

2

(
γabΦ

(k+l)
)
α
, [Pa, Qα] = −1

2

(
γaΣ

(1)
)
α

(3.123)[
Pa,Σ

(k)
α

]
= −1

2

(
γaΦ

(k)
)
α
,

[
Pa,Φ

(l)
α

]
= −1

2

(
γaΣ

(l+1)
)
α
, (3.124)[

Z̃(l)
a , Qα

]
= −1

2

(
γaΦ

(l)
)
α
,

[
Z̃(l)
a ,Σ

(k)
α

]
= −1

2

(
γaΣ

(l+k)
)
α
, (3.125)[

Z̃(l)
a ,Φ

(n)
α

]
= −1

2

(
γaΦ

(l+n)
)
α
,

[
Z(l)
a , Qα

]
= −1

2

(
γaΣ

(l+1)
)
α
, (3.126)[

Z(l)
a ,Σ

(n)
α

]
= −1

2

(
γaΦ

(l+n)
)
α
,

[
Z(l)
a ,Φ

(n)
α

]
= −1

2

(
γaΣ

(l+n+1)
)
α
, (3.127)

{Qα, Qβ} = −1

2

[(
γabC

)
αβ
Z̃

(1)
ab − 2 (γaC)αβ Pa

]
, (3.128){

Qα,Σ
(k)
β

}
= −1

2

[(
γabC

)
αβ
Z

(k)
ab − 2 (γaC)αβ Z̃

(k)
a

]
, (3.129){

Qα,Φ
(l)
β

}
= −1

2

[(
γabC

)
αβ
Z̃

(l+1)
ab − 2 (γaC)αβ Z

(l)
a

]
, (3.130){

Σ(k)
α ,Σ

(j)
β

}
= −1

2

[(
γabC

)
αβ
Z̃

(k+j)
ab − 2 (γaC)αβ Z

(k+j−1)
a

]
, (3.131){

Σ(k)
α ,Φ

(l)
β

}
= −1

2

[(
γabC

)
αβ
Z

(k+l)
ab − 2 (γaC)αβ Z̃

(k+l)
a

]
, (3.132){

Φ(l)
α ,Φ

(n)
β

}
= −1

2

[(
γabC

)
αβ
Z̃

(l+n+1)
ab − 2 (γaC)αβ Z

(l+n)
a

]
, (3.133)

with k, j = 1, . . . ,
[
m
2

]
, l, n = 1, . . . ,

[
m−1

2

]
. These (anti)commutation relations are obtained

using the multiplication law of the semigroup (3.88) and the (anti)commutation relations of

the original superalgebra (2.4)− (2.8). One sees that when k + l >
[
m
2

]
the generatos T

(k)
A

and T
(l)
B are abelian.

The new superalgebra obtained after a reduced resonant S-expansion of osp (4|1) su-

peralgebra corresponds to the D = 4 minimal Maxwell type superalgebra sMm+2. This

superalgebra contains the Maxwell type algebra Mm+2 =
{
Jab, Pa, Z

(k)
ab , Z

(l)
a

}
as a subalge-

bra (eqs. (3.105)− (3.111)) [12], [17]. Interestingly, when m = 2 and imposing Z̃
(1)
ab = 0

we recover the minimal Maxwell superalgebra sM. The case m = 1 corresponds to D = 4
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Poincaré superalgebra sP = {Jab, Pa, Qα}. This is not a surprise since the reduced resonant

S
(2)
E -expansion of osp (4|1) coincides with an Inönü-Wigner contraction.

In this case, the S-expansion method produces new Majorana spinors charge Σ(k) and

Φ(l). These fermionic generators transform as spinors under Lorentz transformations. One

can see that the Jacobi identities for spinors generators are satisfied due to the gamma matrix

identity (Cγa)(αβ (Cγa)γδ) =
(
Cγaβ

)
(αβ

(Cγaβ)γδ) = 0 (cyclic permutations of α, β, γ).

3.4 S-expansion of the osp (4|N ) superalgebra

3.4.1 N -extended Maxwell superalgebras

We have shown that the minimal D = 4 Maxwell type superalgebras sMm+2 can be

obtained from a reduced resonant S
(2m)
E -expansion of osp (4|1) superalgebra. It seems natural

to expect to obtain the D = 4 N -extended Maxwell superalgebras from an S-expansion of

the osp (4|N ) superalgebra.

Let us consider the following decomposition of the original superalgebra g as a direct

sum of subspaces Vp,

g = osp (4|N ) = (so (3, 1)⊕ so (N ))⊕ osp (4|N )

sp (4)⊕ so (N )
⊕ sp (4)

so (3, 1)

= V0 ⊕ V1 ⊕ V2, (3.134)

where V0 corresponds to the subspace generated by Lorentz generators J̃ab and by N (N−1)
2

internal symmetry generators T ij, V1 corresponds to the fermionic subspace generated by N
Majorana spinor charges Q̃i

α (i = 1, · · · ,N ; α = 1, · · · , 4) and V2 corresponds to the AdS

boost generated by P̃a. The osp (4|N ) (anti)commutation relations read[
J̃ab, J̃cd

]
= ηbcJ̃ad − ηacJ̃bd − ηbdJ̃ac + ηadJ̃bc, (3.135)[

T ij, T kl
]

= δjkT il − δikT jl − δjlT ik + δilT jk, (3.136)[
J̃ab, P̃c

]
= ηbcP̃a − ηacP̃b, (3.137)[

P̃a, P̃b

]
= J̃ab, (3.138)
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[
J̃ab, Q̃

i
α

]
= −1

2

(
γabQ̃

i
)
α
,

[
P̃a, Q̃

i
α

]
= −1

2

(
γaQ̃

i
)
α
, (3.139)[

T ij, Q̃k
α

]
=
(
δjkQ̃i

α − δikQ̃i
α

)
, (3.140){

Q̃i
α, Q̃

j
β

}
= −1

2
δij
[(
γabC

)
αβ
J̃ab − 2 (γaC)αβ P̃a

]
+ CαβT

ij, (3.141)

where i, j, k, l = 1, . . . ,N .

The subspace structure may be written as

[V0, V0] ⊂ V0, [V1, V1] ⊂ V0 ⊕ V2, (3.142)

[V0, V1] ⊂ V1, [V1, V2] ⊂ V1, (3.143)

[V0, V2] ⊂ V2, [V2, V2] ⊂ V0. (3.144)

Let us consider S
(4)
E = {λ0, λ1, λ2, λ3, λ4, λ5} as the relevant finite abelian semigroup whose

elements obey the multiplication law

λαλβ =

{
λα+β, when α + β ≤ 5,

λ5, when α + β > 5.
(3.145)

In this case, λ5 plays the role of the zero element of the semigroup S
(4)
E .

Let S
(4)
E = S0 ∪ S1 ∪ S2 be a subset decomposition of S

(4)
E with

S0 = {λ0, λ2, λ4, λ5} , (3.146)

S1 = {λ1, λ3, λ5} , (3.147)

S2 = {λ2, λ4, λ5} , (3.148)

This subset decomposition satisfies the resonance condition since we have [compare with eqs.

(3.142)− (3.144)]

S0 · S0 ⊂ S0, S1 · S1 ⊂ S0 ∩ S2,

S0 · S1 ⊂ S1, S1 · S2 ⊂ S1,

S0 · S2 ⊂ S2, S2 · S2 ⊂ S0.

(3.149)

Thus, according to Theorem IV.2 of [18], we have that

GR = W0 ⊕W1 ⊕W2, (3.150)
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is a resonant subalgebra of S
(4)
E × g, where

W0 = (S0 × V0) = {λ0, λ2, λ4, λ5} ×
{
J̃ab, T

ij
}

(3.151)

=
{
λ0J̃ab, λ2J̃ab, λ4J̃ab, λ5J̃ab, λ0T

ij, λ2T
ij, λ4T

ij, λ5T
ij
}
,

W1 = (S1 × V1) = {λ1, λ3, λ5} ×
{
Q̃α

}
=
{
λ1Q̃α, λ3Q̃α, λ5Q̃α

}
, (3.152)

W2 = (S2 × V2) = {λ2, λ4, λ5} ×
{
P̃a

}
=
{
λ2P̃a, λ4P̃a, λ5P̃a

}
. (3.153)

Imposing λ5TA = 0, the 0S-reduced resonant superalgebra is obtained. Thus, the new

superalgebra is generated by
{
Jab, Pa, Zab, Z̃ab, Z̃a, Q

i
α,Σ

i
α, T

ij, Y ij, Ỹ ij
}

where

Jab = Jab,0 = λ0J̃ab, Qi
α = Qi

α,1 = λ1Q̃
i
α,

Pa = Pa,2 = λ2P̃a, Σi
α = Σi

α,3 = λ3Q̃
i
α,

Zab = Jab,4 = λ4J̃ab, T ij = T ij,0 = λ0T
ij,

Z̃ab = Jab,2 = λ2J̃ab, Y ij = T ιj,4 = λ4T
ij,

Z̃a = Pa,4 = λ4P̃a, Ỹ ij = T ij,2 = λ2T
ij.

(3.154)

Then using the multiplication law of the semigroup (3.145) and the (anti)commutations

relations of the original superalgebra (3.135)− (3.141) we find the new superalgebra

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (3.155)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (3.156)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (3.157)[
Jab, Z̃cd

]
= ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc, (3.158)[

Z̃ab, Z̃cd

]
= ηbcZad − ηacZbd − ηbdZac + ηadZbc, (3.159)[

Jab, Z̃c

]
= ηbcZ̃a − ηacZ̃b, (3.160)[

Z̃ab, Pc

]
= ηbcZ̃a − ηacZ̃b, (3.161)

[
T ij, T kl

]
= δjkT il − δikT jl − δjlT ik + δilT jk, (3.162)[

T ij, Y kl
]

= δjkY il − δikY jl − δjlY ik + δilY jk, (3.163)[
T ij, Ỹ kl

]
= δjkỸ il − δikỸ jl − δjlỸ ik + δilỸ jk, (3.164)[

Ỹ ij, Ỹ kl
]

= δjkY il − δikY jl − δjlY ik + δilY jk, (3.165)
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[
Jab, Q

i
α

]
= −1

2

(
γabQ

i
)
α
,

[
Z̃ab, Q

i
α

]
= −1

2

(
γabΣ

i
)
α
, (3.166)[

Jab,Σ
i
α

]
= −1

2

(
γabΣ

i
)
α
,

[
T ij, Qi

α

]
=
(
δjkQi

α − δikQi
α

)
, (3.167)[

T ij,Σk
α

]
=
(
δjkΣi

α − δikΣi
α

)
, (3.168)[

Ỹ ij, Qk
α

]
=
(
δjkΣi

α − δikΣi
α

)
, (3.169)[

Pa, Q
i
α

]
= −1

2

(
γaΣ

i
)
α
, (3.170)

{
Qi
α, Q

j
β

}
= −1

2
δij
[(
γabC

)
αβ
Z̃ab − 2 (γaC)αβ Pa

]
+ CαβỸ

ij, (3.171){
Qi
α,Σ

j
β

}
= −1

2
δij
[(
γabC

)
αβ
Zab − 2 (γaC)αβ Z̃a

]
+ CαβY

ij, (3.172)

others = 0. (3.173)

The new superalgebra obtained after a reduced resonant S
(4)
E -expansion of osp (4|N )

superalgebra corresponds to the D = 4 N -extended Maxwell superalgebra sM(N )
4 . An

alternative expansion procedure to obtain the N -extended Maxwell superalgebra has been

proposed in [57]. Interestingly, this superalgebra contains the generalized Maxwell algebra

gM =
{
Jab, Pa, Zab, Z̃ab, Z̃a

}
as a subalgebra (see Appendix B). One sees that the S-

expansion procedure introduces additional bosonic generators which modify the minimal

Maxwell superalgebra [see eqs. (3.171), (3.172)]. Naturally when Z̃a = Z̃ab = Y ij = Ỹ ij =

0, we obtain the simplest D = 4 N -extended Maxwell superalgebra sM(N ) generated by

{Jab, Pa, Zab, Qi
α,Σ

i
α, Tab} . Eventually for N = 1, with Tab = 0, the D = 4 minimal Maxwell

superalgebra sM is recovered.

It is important to note that setting some generators equals to zero does not always lead

to a Lie superalgebra. However, the properties of the gamma matrices in 4 dimensions allow

us to impose some generators equals to zero without breaking the Jacobi identity.

We can generalize this procedure and obtain the N -extended Maxwell type superalgebra

sM(N )
m+2 as a reduced resonant S-expansion of osp (4|N ) , when S

(2m)
E = {λ0, λ1, λ2, · · · , λ2m+1}

is the relevant abelian semigroup. In fact, if we consider a resonant subset decomposition

S
(2m)
E = S0 ∪ S1 ∪ S2, where

Sp =

{
λ2n+p, with n = 0, · · · ,

[
2m− p

2

]}
∪ {λ2m+1} , p = 0, 1, 2, (3.174)
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and let Sp = Ŝp ∪ Šp be a partition of the subsets Sp ⊂ S where

Š0 = {λ2n, with n = 0, · · · , 2 [m/2]} , Ŝ0 = {(λ2m) , λ2m+1} , (3.175)

Š1 = {λ2n+1, with n = 0, · · · ,m− 1} , Ŝ1 = {λ2m+1} , (3.176)

Š2 = {λ2n+2, with n = 0, · · · , 2 [(m− 1) /2]} , Ŝ2 = {(λ2m) , λ2m+1} , (3.177)

where (λ2m) means that λ2m ∈ Ŝ0 if m is odd and λ2m ∈ Ŝ2 if m is even. This decomposition

satisfies the resonant condition for any value of m and we find that

ǦR =
(
Š0 × V0

)
⊕
(
Š1 × V1

)
⊕
(
Š2 × V2

)
, (3.178)

corresponds to a reduced resonant algebra. This new superalgebra correspond to the N -

extended Maxwell superalgebra type sM(N )
m+2 which is generated by{

Jab, Pa, Z
(k)
ab , Z̃

(k)
ab , Z

(k)
a , Z̃(k)

a , Qi
α,Σ

i(k)
α ,Φi(k)

α , T ij, Y ij(k), Ỹ ij(k)
}
. (3.179)

These generators can be written as

Jab = Jab,0 = λ0J̃ab, Pa = Pa,2 = λ2P̃a,

Z
(k)
ab = Jab,4k = λ4kJ̃ab, Z̃

(k)
ab = Jab,4k−2 = λ4k−2J̃ab,

Z
(l)
a = Pa,4l+2 = λ4l+2P̃a, Z̃

(l)
a = Pa,4l = λ4lP̃a,

Qi
α = Qi

α,1 = λ1Q̃
i
α, Σ

i(k)
α = Qi

α,4k−1 = λ4k−1Q̃
i
α,

Φ
i(l)
α = Qi

α,4l+1 = λ4l+1Q̃
i
α, T ij = T ij,0 = λ0T

ij,

Y ij(k) = T ιj,4k = λ4kT
ij, Ỹ ij(k) = T ij,4k−2 = λ4k−2T

ij,

(3.180)

with k = 1, . . . ,
[
m
2

]
, l = 1, . . . ,

[
m−1

2

]
, i, j = 1, . . . ,N . The new bosonic generators{

Zab, Z̃ab, Za, Z̃a, Y
ij, Ỹ ij

}
modify some anticommutators of the minimal Maxwell type su-

peralgebra ((3.128)− (3.133)). Now we have{
Qi
α, Q

j
β

}
= −1

2
δij
[(
γabC

)
αβ
Z̃

(1)
ab − 2 (γaC)αβ Pa

]
+ CαβỸ

ij(1), (3.181){
Qi
α,Σ

j(k)
β

}
= −1

2
δij
[(
γabC

)
αβ
Z

(k)
ab − 2 (γaC)αβ Z̃

(k)
a

]
+ CαβY

ij(k), (3.182){
Qi
α,Φ

j(l)
β

}
= −1

2
δij
[(
γabC

)
αβ
Z̃

(l+1)
ab − 2 (γaC)αβ Z

(l)
a

]
+ CαβỸ

ij(l+1), (3.183){
Σi(k)
α ,Σ

j(q)
β

}
= −1

2
δij
[(
γabC

)
αβ
Z̃

(k+q)
ab − 2 (γaC)αβ Z

(k+q−1)
a

]
+ CαβỸ

ij(k+q), (3.184){
Σi(k)
α ,Φ

j(l)
β

}
= −1

2
δij
[(
γabC

)
αβ
Z

(k+l)
ab − 2 (γaC)αβ Z̃

(k+l)
a

]
+ CαβY

ij(k+l), (3.185){
Φi(l)
α ,Φ

j(n)
β

}
= −1

2
δij
[(
γabC

)
αβ
Z̃

(l+n+1)
ab − 2 (γaC)αβ Z

(l+n)
a

]
+ CαβỸ

ij(l+n+1), (3.186)
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with k, q = 1, . . . ,
[
m
2

]
, l, n = 1, . . . ,

[
m−1

2

]
, i, j = 1, . . . ,N . The internal symmetries

generators also brings some new commutation relations besides the commutators (3.105)−
(3.127), [

T ij, T gh
]

= δjgT ih − δigT jh − δjhT ig + δihT jg, (3.187)[
T ij, Y gh(k)

]
= δjgY ih(k) − δigY jh(k) − δjhY ig(k) + δihY jg(k), (3.188)[

T ij, Ỹ gh(k)
]

= δjgỸ ih(k) − δigỸ jh(k) − δjhỸ ig(k) + δihỸ jg(k), (3.189)[
Ỹ ij(k), Ỹ gh(q)

]
= δjgY ih(k+q−1) − δigY jh(k+q−1) − δjhY ig(k+q−1) + δihY jg(k+q−1), (3.190)[

Ỹ ij(k), Y gh(q)
]

= δjgỸ ih(k+q) − δigỸ jh(k+q) − δjhỸ ig(k+q) + δihỸ jg(k+q), (3.191)[
Y ij(k), Y gh(q)

]
= δjgY ih(k+q) − δigY jh(k+q) − δjhY ig(k+q) + δihY jg(k+q), (3.192)[

T ij, Qi
α

]
=
(
δjkQi

α − δikQi
α

)
, (3.193)

[
T ij,Σg(k)

α

]
=
[
Ỹ ij(k), Qg

α

]
=
(
δjgΣi(k)

α − δigΣi(k)
α

)
, (3.194)[

T ij,Φg(k)
α

]
=
[
Y ij(k), Qg

α

]
=
(
δjgΦi(k)

α − δigΦi(k)
α

)
, (3.195)[

Ỹ ij(k),Φg(q)
α

]
=
[
Y ij(k),Σg(q)

α

]
=
(
δjgΣi(k+q)

α − δigΣi(k+q)
α

)
, (3.196)[

Ỹ ij(k),Σg(q)
α

]
=
(
δjgΦi(k+q−1)

α − δigΦi(k+q−1)
α

)
, (3.197)[

Y ij(k),Φg(q)
α

]
=
(
δjgΦi(k+q)

α − δigΦi(k+q)
α

)
. (3.198)

As in the case of the minimal Maxwell type superalgebra, one sees that when k+q >
[
m
2

]
then the generators T

(k)
A and T

(q)
B are abelian. As in the previous case, the S-expansion

method produces new Majorana spinors charge Σi(k) and Φi(l) which transform as spinors

under Lorentz transformations.

The N -extended Maxwell type superalgebra sM(N )
m+2 contains the Maxwell type algebra

Mm+2 =
{
Jab, Pa, Z

(k)
ab , Z

(l)
a

}
as a subalgebra (eqs. (3.105)− (3.111)) [17]. We can see that

for m = 2, we recover the D = 4 N -extended Maxwell superalgebra sM(N )
4 . It is interesting

to observe that for m = 1, we obtain the D = 4 N -extended Poincaré superalgebra sP(N ) =

{Jab, Pa, Qα, T
ij}. This is not a surprise because the reduced resonant S

(2)
E -expansion of

osp (4|N ) coincides with an Inönü-Wigner contraction.

In summary, we have shown that the Maxwell superalgebras found by the MC expansion

method in [57], can be alternatively derived by the S-expansion procedure. In particular,

the S-expansion of osp (4|1) allowed us to obtain the minimal Maxwell superalgebra sM.
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Then, choosing different semigroups we have shown that it is possible to define new minimal

D = 4 Maxwell type superalgebras sMm+2, which can be seen as a generalization of the

D’Auria-Fré superalgebra and the Green algebras introduced in [48], [59] respectively.

We also have shown that the D = 4, N -extended Maxwell superalgebra sM(N ) derived

initially as a MC expansion in [57], can be alternatively obtained as an S-expansion of

osp (4|N ). Choosing bigger semigroups we have defined new D = 4 N -extended Maxwell

type superalgebras sM(N )
m+2. Clearly, when m = 2 we recover the sM(N ) superalgebra and

for N = 1 we recover the Maxwell type algebra sMm+2.

As we shall see in the next chapter, the minimal Maxwell type superalgebra sM4 (and

its generalization sMm+2) can be used to construct dynamical actions in D = 4.
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Chapter 4

N = 1, D = 4 Supergravity and

Maxwell Superalgebras

4.1 Introduction

The so-called Maxwell algebra M corresponds to a modification of the Poincaré sym-

metries, where a constant electromagnetic field background is added to the Minkowski space

[49], [50], [51], [52], [54], [61]. In D = 4 dimensions this algebra is obtained by adding to the

Poincaré generators {Jab, Pa} the tensorial Abelian charges Zab, modifying the commutator

of the translation generators Pa as follows

[Pa, Pb] = Zab. (4.1)

In this way, the Maxwell algebra is an enlargement of Poincaré algebra, i.e., if we consider

Zab = 0 we recover the Poincaré algebra. As we discussed above this Maxwell algebra can

also be obtained through an expansion procedure from the AdS Lie algebra so(3, 2) [16],

[57] using S
(2)
E = {λ0, λ1, λ2, λ3}. Moreover, this result was extended to all Maxwell type

algebras Mm which can be obtained as an S-expansion of the AdS algebra using bigger

semigroups [17].

In the context of supersymmetry, the minimal D = 4 Maxwell superalgebra sM is

obtained as an enlargement of the Poincaré superalgebra [53]. This is particularly interesting

since it describes the supersymmetries of generalized N = 1, D = 4 superspace in the

presence of a constant abelian supersymmetric field strength background. This superalgebra

can also be obtained using the Maurer Cartan expansion method [57], and can be used to

obtain the minimalD = 4 pure supergravity from the curvature 2-form associated to sM [58].
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Furthermore, in the previous chapter we saw that this superalgebra and its generalization

sMm+2 can be found as an S-expansion of the osp (4|1) superalgebra [60].

In this chapter, we present one of the main results of this thesis. Following Ref.[62],

we shall construct the minimal D = 4 supergravity action from the minimal Maxwell type

superalgebra sM4. To this aim, we will apply the S-expansion procedure and we will build

a geometric action à la Mac Dowell-Mansouri with the expanded curvature 2-form. We

show that N = 1, D = 4 pure supergravity can be derived alternatively as the MacDowell-

Mansouri like action, which is constructed exclusively in terms of the curvatures of the

Maxwell type superalgebra sM4. Eventually, we extend this result to all minimal Maxwell

type superalgebras sMm+2 in D = 4.

4.2 D = 4 pure Supergravity from sM4

In the previous chapter, we introduced the minimal Maxwell type superalgebra sM4

in D = 4. This superalgebra was obtained after a reduced resonant S
(4)
E -expansion of

the osp (4|1) superalgebra, and its generators
{
Jab, Z̃ab, Zab, Pa, Qα,Σα

}
satisfy the (anti)-

commutation relations (3.42)− (3.53).

In this section, we present a geometric formulation of N = 1 supergravity in four dimen-

sions, where the relevant gauge fields of the theory are those corresponding to the minimal

Maxwell superalgebra sM4. In order to write down an action for sM4, we start from the

one-form gauge connection

A =
1

2
ωabJab +

1

2
k̃abZ̃ab +

1

2
kabZab +

1

l
eaPa +

1√
l
ψαQα +

1√
l
ξαΣα, (4.2)

where the 1-form gauge fields are given by

ωab = ω(ab,0) = λ0ω̃
ab, ea = e(a,2) = λ2ẽ

a,

k̃ab = ω(ab,2) = λ2ω̃
ab, ψα = ψ(α,1) = λ1ψ̃

α,

kab = ω(ab,4) = λ4ω̃
ab, ξα = ψ(α,3) = λ3ψ̃

α,

where ẽa, ω̃ab and ψ̃ are the components of the osp (4|1) connection (see eq. (2.9)) and the

λα are the elements of the S
(4)
E = {λ0, λ1, λ2, λ3, λ4, λ5} semigroup.

The associated curvature two-form F = dA+ A ∧ A is

F = FATA =
1

2
RabJab +

1

l
RaPa +

1

2
F̃ abZ̃ab +

1

2
F abZab +

1√
l
ΨαQα +

1√
l
ΞαΣα, (4.3)
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where

Rab = dωab + ωacω
cb, (4.4)

Ra = dea + ωabe
b − 1

2
ψ̄γaψ, (4.5)

F̃ ab = dk̃ab + ωack̃
cb − ωbck̃ca +

1

2l
ψ̄γabψ, (4.6)

F ab = dkab + ωack
cb − ωbckca + k̃ack̃

cb +
1

l2
eaeb +

1

l
ξ̄γabψ, (4.7)

Ψ = dψ +
1

4
ωabγ

abψ = Dψ, (4.8)

Ξ = dξ +
1

4
ωabγ

abξ +
1

4
k̃abγ

abψ +
1

2l
eaγaψ

= Dξ +
1

4
k̃abγ

abψ +
1

2l
eaγaψ. (4.9)

From the Bianchi identity ∇F = 0, with ∇ = d + [A, ·], one finds the Lorentz covariant

exterior derivatives of the curvatures,

DRab = 0, (4.10)

DRa = Ra
be
b + ψ̄γaΨ, (4.11)

DF̃ ab = Ra
ck̃
cb −Rb

ck̃
ca − 1

l
ψ̄γabΨ (4.12)

DF ab = Ra
ck
cb −Rb

ck
ca + F̃ a

ck̃
cb − F̃ b

ck̃
ca +

1

l2
Raeb − 1

l2
eaRb (4.13)

+
1

l
Ξ̄γabψ − 1

l
ξ̄γabΨ, (4.14)

DΨ =
1

4
Rabγ

abψ, (4.15)

DΞ =
1

4
Rabγ

abξ − 1

4
k̃abγ

abΨ +
1

4
F̃abγ

abψ +
1

2l
Raγaψ −

1

2l
eaγaΨ. (4.16)

Then, the action can be written as [28]

S = 2

∫
〈F ∧ F 〉 = 2

∫
FA ∧ FB 〈TATB〉sM4

, (4.17)

where 〈TATB〉 corresponds to an S-expanded invariant tensor which is obtained from (2.18).

In fact, using Theorem VII.1 of [18] it is possible to show that the non-vanishing components
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of the S-expanded invariant tensor are given by

〈JabJcd〉sM4
= α0

〈
J̃abJ̃cd

〉
, (4.18)〈

JabZ̃cd

〉
sM4

= α2

〈
J̃abJ̃cd

〉
, (4.19)〈

Z̃abZ̃cd

〉
sM4

= α4

〈
J̃abJ̃cd

〉
, (4.20)

〈JabZcd〉sM4
= α4

〈
J̃abJ̃cd

〉
, (4.21)

〈QαQβ〉sM4
= α2

〈
Q̃αQ̃β

〉
, (4.22)

〈QαΣβ〉sM4
= α4

〈
Q̃αQ̃β

〉
, (4.23)

where 〈
J̃abJ̃cd

〉
= εabcd, (4.24)〈

Q̃αQ̃β

〉
= 2 (γ5)αβ , (4.25)

are the invariant tensors required to reproduce the MacDowell-Mansouri action for the

osp (4|1) superalgebra [28] (see Chapter 2, Section 2.3), and the α’s are dimensionless arbi-

trary constants.

Considering the different non-vanishing components of the invariant tensor (4.18)−(4.23)

and the curvature two-form (4.3), we found that the action can be written as

S = 2

∫ (
1

4
α0εabcdR

abRcd +
1

2
α2εabcdR

abF̃ cd +
1

2
α4εabcdR

abF cd

+
1

4
α4εabcdF̃

abF̃ cd +
2

l
α2Ψ̄γ5Ψ +

4

l
α4Ψ̄γ5Ξ

)
(4.26)

or explicitly,

S =

∫
α0

2
εabcdR

abRcd + α2εabcd

(
RabDk̃cd +

1

2l
Rabψ̄γcdψ

)
+

4

l
α2Dψ̄γ5Dψ + α4εabcd

(
RabDkcd +

1

2
Dk̃abDk̃cd +

1

l2
Rabeced

+
1

2l
Dk̃abψ̄γcdψ +Rabk̃cf k̃

fd +
1

l
Rabξ̄γcdψ

)
+

8

l
α4Dψ̄γ5Dξ +

2

l
α4Dψ̄γ5k̃abγ

abψ +
4

l2
α4ψ̄e

aγaγ5Dψ (4.27)
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where D = d+ [ω, ·] . Using the gravitino Bianchi identity

DΨ =
1

4
Rabγabψ, (4.28)

and the gamma matrix identity (C.1)

2γabγ5 = −εabcdγcd, (4.29)

it is straightforward to show that,

1

2
εabcdR

abψ̄γabψ + 4Dψ̄γ5Dψ = d
(
4Dψ̄γ5ψ

)
,

εabcdR
abξ̄γcdψ + 8Dξ̄γ5Dψ = d

(
8Dξ̄γ5ψ

)
,

1

2
εabcdDk̃

abψ̄γcdψ + 2ψ̄k̃abγabγ5Dψ = d
(
ψ̄k̃abγabγ5ψ

)
.

Thus the geometric Mac Dowell-Mansouri like action for the sM4 superalgebra is given by

S =

∫
α0

2
εabcdR

abRcd + α2d

(
εabcdR

abk̃cd +
4

l
Dψ̄γ5ψ

)
+ α4

[
1

l2
εabcdR

abeced +
4

l2
ψ̄eaγaγ5Dψ

+d

(
εabcd

(
Rabkcd +

1

2
Dk̃abk̃cd

)
+

8

l
ξ̄γ5Dψ +

1

l
ψ̄k̃abγabγ5ψ

)]
(4.30)

From this action, we see that it is split into three independent pieces proportional to α0, α2

and α4. The first term corresponds to the Euler invariant and can be written as a boundary

term. The piece proportional to α2 is also a boundary term. The term proportional

to α4 contains the Einstein-Hilbert term εabcdR
abeced plus the Rarita-Schwinger Lagrangian

4ψ̄eaγaγ5Dψ, and a boundary term.

From (4.30) we can see that the minimal Maxwell superalgebra sM4 leads us to the

pure Supergravity action. In this way the new Maxwell gauge fields do not contribute to

the dynamics and enlarge only the boundary terms. Moreover, as a consequence of the

S-expansion procedure the supersymmetric cosmological term disappears completely from

the action for sM4 [compare (2.24) and (4.30)]. Although the boundary terms does not

contribute to the dynamics of the theory, they play an important role in the context of

AdS/CFT correspondence [75].

The result found here can be seen as the supersymmetric case of [17], [19] where the

Einstein-Hilbert action was obtained from the Maxwell algebra as a Born-Infeld like action.
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Note that if we consider k̃ab = 0, the term proportional to α4 corresponds to the action

found in [58], namely

S|k̃ab=0 = α4

∫
1

l2
(
εabcdR

abeced + 4ψ̄eaγaγ5Dωψ
)

+ d

(
εabcdR

abkcd +
8

l
ξ̄γ5Dωψ

)
(4.31)

which corresponds to four-dimensional pure supergravity plus a boundary term. This is not

a surprise but something expected because as we said before, setting Z̃ab = 0 in sM4 leads

us to the simplest minimal Maxwell superalgebra [57], whose curvature two-form allows the

construction of (4.31) as was shown in [58].

4.2.1 sM4 gauge transformations and supersymmetry

The gauge transformation of the one-form gauge connection A is

δρA = Dρ = dρ+ [A, ρ] (4.32)

where ρ is the sM4 gauge parameter,

ρ =
1

2
ρabJab +

1

2
κ̃abZ̃ab +

1

2
κabZab +

1

l
ρaPa +

1√
l
εαQα +

1√
l
%αΣα. (4.33)

Then, using eq. (2.28) we have that the sM4 gauge transformation are given by

δωab = Dρab, (4.34)

δk̃ab = Dκ̃ab −
(
k̃ac ρ

b
c − k̃bcρac

)
− 1

l
ε̄γabψ, (4.35)

δkab = Dκab −
(
kacρbc − kbcρac

)
−
(
k̃acκ̃bc − k̃bcκ̃ac

)
+

2

l2
eaρb − 1

l
%̄γabψ − 1

l
ε̄γabξ, (4.36)

δea = Dρa + ebρ a
b + ε̄γaψ, (4.37)

δψ = dε+
1

4
ωabγabε−

1

4
ρabγabψ, (4.38)

δξ = d%+
1

4
ωabγab%+

1

2l
eaγaε−

1

2l
ρaγaψ −

1

4
ρabγabξ

+
1

4
k̃abγabε−

1

4
κ̃abγabψ. (4.39)

In the same way, from the gauge variation of the curvature

δρF = [F, ρ] (4.40)
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it is possible to show that the gauge transformations of the curvature F are given by

δRab = Racρ b
c −Rcbρac, (4.41)

δF̃ ab =
(
Racκ̃ b

c −Rbcκ̃ac
)
−
(
F̃ acρbc − F̃ bcρac

)
− 1

l
ε̄γabΨ, (4.42)

δF ab =
(
Racκ b

c −Rbcκac
)
−
(
F acρbc − F bcρac

)
−
(
F̃ acκ̃bc − F̃ acκ̃ac

)
+

2

l2
Raρb − 1

l
%̄γabΨ− 1

l
ε̄γabΞ, (4.43)

δRa = Ra
bρ
b +Rbρ a

b + ε̄γaΨ, (4.44)

δΨ =
1

4
Rabγabε−

1

4
ρabγabΨ, (4.45)

δΞ =
1

4
Rabγab%+

1

2l
Raγaε−

1

2l
ρaγaΨ−

1

4
ρabγabΞ +

1

4
F̃ abγabε−

1

4
κ̃abγabΨ, (4.46)

Although the MacDowell-Mansouri like action (4.30) is built from the sM4 curvature, it

is not invariant under the sM4 gauge transformations. As we can see the action does not

correspond to a Yang-Mills action, nor a topological invariant.

Furthermore, the action is not invariant under gauge supersymmetry. In fact, if we

consider the variation of the action (4.30) under gauge supersymmetry, we find

δsusyS = − 4

l2
α4

∫
RaΨ̄γaγ5ε. (4.47)

As in osp (4|1) and super-Poincaré cases, the action is invariant under gauge supersym-

metry imposing that the super torsion vanishes Ra = 0, leading to the supersymmetric action

for the sM4 superalgebra in second order formalism.

Alternatively, it is possible to have supersymmetry in first order formalism if we modify

the supersymmetry transformation for the spin connection ωab. In fact, if we consider the

variation of the action under an arbitrary δωab we have that

δωS =
2

l2
α4

∫
εabcdR

aebδωcd, (4.48)

and thus the variation vanishes for arbitrary δωab if Ra = 0. It is possible to modify δωab

adding an extra piece to the gauge transformation such that

δS = − 4

l2
α4

∫
Ra

(
Ψ̄γaγ5ε−

1

2
εabcde

bδextraω
cd

)
. (4.49)

In order to have an invariant action, δextraω
ab is given by

δextraω
ab = 2εabcd

(
Ψ̄ecγdγ5ε+ Ψ̄deγcγ5ε− Ψ̄cdγeγ5ε

)
ee, (4.50)
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with Ψ̄ = Ψ̄abe
aeb.

Then, the action in the first order formalism is invariant under the following supersym-

metry transformations

δωab = 2εabcd
(
Ψ̄ecγdγ5ε+ Ψ̄deγcγ5ε− Ψ̄cdγeγ5ε

)
ee, (4.51)

δk̃ab = −1

l
ε̄γabψ, (4.52)

δkab = −1

l
ε̄γabξ, (4.53)

δea = ε̄γaψ, (4.54)

δψ = dε+
1

4
ωabγabε = Dε, (4.55)

δξ =
1

2l
eaγaε+

1

4
k̃abγabε. (4.56)

Note that there is a new supersymmetry related to the spinor charge Σ. The new supersym-

metry transformations are given by

δωab = 0, δk̃ab = 0, (4.57)

δkab = −1

l
%̄γabψ, δea = 0, (4.58)

δψ = 0, δξ = d%+
1

4
ωabγab%. (4.59)

Considering the variation of the action (4.30) under the new gauge supersymmetry transfor-

mations, we find that the action is truly invariant

δ%S = 0. (4.60)

Then one can see that the action is off-shell invariant under a subalgebra of sM4 given by

sLM4 =
{
Jab, Z̃ab, Zab,Σα

}
which corresponds to a Lorentz type superalgebra.

4.3 D = 4 Supergravity from sMm+2

In the previous chapter, we introduce the minimal Maxwell type superalgebra sMm+2

in D = 4. This superalgebra was obtained after a reduced resonant S
(2m)
E -expansion of the

osp (4|1) superalgebra, and its generators
{
Jab, Pa, Z

(k)
ab , Z̃

(k)
ab , Z

(l)
a , Z̃

(l)
a , Qα,Σ

(p)
α

}
satisfy the

(anti)-commutation relations (3.105) − (3.133). In order to write down an action for this
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superalgebra, we will consider a more compact notation for the (anti)-commutation relations,

namely

{
Jab,(k), Pa,(l), Qα,(p)

}
, (4.61)

where these new generators can be written as

Jab,(k) = λ2kJ̃ab, (4.62)

Pa,(l) = λ2lP̃a, (4.63)

Qα,(p) = λ2p−1Q̃α, (4.64)

with k = 0, . . . ,m; l = p = 1, . . . ,m and where J̃ab, P̃a and Q̃α are the osp (4|1) generators.

The new generators satisfy the commutation relations[
Jab,(k), Jcd,(j)

]
= ηbcJad,(k+j) − ηacJbd,(k+j) − ηbdJac,(k+j) + ηadJbc,(k+j), (4.65)[

Jab,(k), Pa,(l)
]

= ηbcPa,(k+l) − ηacPb,(k+l), (4.66)[
Pa,(l), Pb,(n)

]
= Jab,(l+n), (4.67)[

Jab,(k), Qα,(p)

]
= −1

2
(γabQ)α,(k+p) , (4.68)[

Pa,(l), Qα,(p)

]
= −1

2
(γaQ)α,(l+p) , (4.69){

Qα,(p), Qβ,(q)

}
= −1

2

[(
γabC

)
αβ
Jab,(p+q) − 2 (γaC)αβ Pa,(p+q)

]
. (4.70)

Naturally, when k + j > m the generators T
(k)
A and T

(j)
B are abelian. If we redefine the

generators as

Jab = Jab,0 = λ0J̃ab, Pa = Pa,2 = λ2P̃a,

Z
(k)
ab = Jab,4k = λ4kJ̃ab, Z

(l)
a = Pa,4l+2 = λ4l+2P̃a,

Z̃
(k)
ab = Jab,4k−2 = λ4k−2J̃ab, Z̃

(l)
a = Pa,4l = λ4lP̃a,

Qα = Qα,1 = λ1Q̃α, Σ
(k)
α = Qα,4k−1 = λ4k−1Q̃α,

Φ
(l)
α = Qα,4k+1 = λ4k+1Q̃α,

we obtain the (anti)commutation relations (3.105)− (3.133).

In order to write down a Lagrangian for sMm+2, we start from the one-form gauge

connection

A =
1

2

∑
k

ωab,(k)Jab,(k) +
1

l

∑
l

ea,(l)Pa,(l) +
1√
l

∑
p

ψα,(p)Qα,(p), (4.71)
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where the different components are given by

ωab,(k) = λ2kω̃
ab, (4.72)

ea,(l) = λ2lẽ
a, (4.73)

ψα,(p) = λ2p−1ψ̃
α, (4.74)

in terms of ẽa, ω̃ab and ψ̃ which are the components of the osp (4|1) connection.

The associated curvature two-form F = dA+ A ∧ A is

F = FATA =
1

2

∑
k

Rab,(k)Jab,(k) +
1

l

∑
l

Ra,(l)Pa,(l) +
1√
l

∑
p

Ψα,(p)Qα,(p), (4.75)

where

Rab,(k) = dωab,(k) + ωa (i)
c ∧ ωcb,(j)δki+j +

1

l2
ea,(l)eb,(n)δkl+n

+
1

2l
ψ̄(p)γab ∧ ψ(q)δ2k

p+q, (4.76)

Ra,(l) = dea,(l) + ω
a (k)
b ∧ eb,(n)δlk+n −

1

2
ψ̄(p)γa ∧ ψ(q)δ2l

p+q, (4.77)

Ψ(p) = dψ(p) +
1

4
ω

(k)
ab γab ∧ ψ(q)δpk+q +

1

2l
ea,(l)γa ∧ ψ(q)δpl+q, (4.78)

with k = 0, . . . ,m; l = p = 1, . . . ,m. Considering the Bianchi identity ∇F = 0, where

∇ = d+ [A, ·], it is possible to show that

DRab,(k) =
(
Rac,(i)ω b,(j+1)

c −Rbc,(i)ω a,(j+1)
c

)
δki+j+1

+
1

l

(
Ra,(l)eb,(n) − ea,(n)Rb,(l)

)
δkl+n −

1

l
ψ̄(p)γabΨ(q)δ2k

p+q, (4.79)

DRa,(l) = Rab,(i)e
,(j)

b δli+j +Rc,(n)ω a,(j+1)
c δln+j+1 + ψ̄(p)γaΨ(q)δ2l

p+q, (4.80)

DΨ(p) =
1

4

(
Rab,(i)γabψ

(q)
)
δpi+q −

1

4

(
ωab,(i+1)γabΨ

(q)
)
δpi+1+q

+
1

2l

(
T a,(l)γaψ

(q)
)
δpl+q −

1

2l

(
ea,(l)γaΨ

(q)
)
δpl+q, (4.81)

where D corresponds to the Lorentz covariant exterior derivative D = d+ [ω, ·].
Then, the action can be written as

S = 2

∫
〈F ∧ F 〉 = 2

∫
FA ∧ FB 〈TATB〉sMm+2

, (4.82)

where 〈TATB〉 corresponds to the non-vanishing components of an S-expanded invariant

tensor which is obtained from (2.18). Using Theorem VII.1 of [18] it is possible to show that
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these components are given by〈
Jab,(k)Jcd,(j)

〉
sMm+2

= α2(k+j)

〈
J̃abJ̃cd

〉
, (4.83)〈

Qα,(p)Qβ,(q)

〉
sMm+2

= α2(p+q−1)

〈
Q̃αQ̃β

〉
, (4.84)

which can be written as 〈
Jab,(k)Jcd,(j)

〉
sMm+2

= α2(k+j)εabcd, (4.85)〈
Qα,(p)Qβ,(q)

〉
sMm+2

= 2α2(p+q−1) (γ5)αβ , (4.86)

where the α’s are arbitrary independent constants and Jab,(k), Qα,(p) are given by (4.62) , (4.64),

respectively. Using the different components of the invariant tensor (4.85)− (4.86) and the

curvature two-form (4.75), we found that the action is given by

S = 2

∫ ∑
k,j

α2(k+j)

2
εabcdRab,(k)Rcd,(j) +

∑
p,q

α2(p+q−1)
4

l
Ψ̄(p) ∧ γ5Ψ(q), (4.87)

with k, j = 0, . . . ,m; p, q = 1, . . . ,m.

4.3.1 sMm+2 gauge transformations and supersymmetry

Using the multiplication law of the semigroup (3.88) and eq. (2.28) it is possible to

show that the gauge transformations are given by

δωab,(k) = Dρab,(k) −
(
ωac,(i+1)ρb ,(j)c − ωbc,(i+1)ρa ,(j)c

)
δki+j+1

+
2

l2
ea,(l)ρb,(n)δkl+n −

1

l
ε̄(p)γabψ(q)δ2k

p+q, (4.88)

δea,(l) = Dρa,(l) + ω
a ,(k+1)
b ρb,(n)δlk+n+1 + eb,(n)ρ

a,(k)
b δln+k + ε̄(p)γaψ(q)δ2l

p+q, (4.89)

δψ(p) = dε(p) +
1

4
ωab,(k)γabε

(q)δpk+q +
1

2l
ea,(l)γaε

(q)δpl+q

− 1

4
ρab,(k)γabψ

(q)δpk+q −
1

2l
ρa,(l)γaψ

(q)δpl+q. (4.90)

where the sMm+2 gauge parameter is

ρ =
1

2

∑
k

ρab,(k)Jab,(k) +
1

l

∑
l

ρa,(l)Pa,(l) +
1√
l

∑
p

εα,(p)Qα,(p), (4.91)

and where we have written the components of the gauge parameter as an S-expansion of the

component of the osp (4|1) gauge parameter,

ρab,(k) = λ2kρ̃
ab, ρa,(l) = λ2lρ̃

a, εα,(p) = λ2p−1ε̃
α,

67



with k = 0, . . . ,m; l = p = 1, . . . ,m and λα ∈ S(2m)
E = {λ0, λ1, λ2, · · · , λ2m+1}.

In the same way, from the gauge variation of the curvature δλF = [F, λ] , it is possible

to show that the gauge transformations of the curvature F are given by

δRab,(k) =
(
Rac,(i)ρ b,(j)

c −Rcb,(i)ρa ,(j)c

)
δki+j +

2

l2
Ra,(l)ρb,(n)δkl+n

− 1

l
ε̄(p)γabΨ(q)δ2k

p+q, (4.92)

δRa,(l) = Ra ,(k)
b ρb,(n)δlk+n +Rb,(n)ρ

a,(k)
b δlk+n + ε̄(p)γaΨ(q)δ2l

p+q, (4.93)

δΨ(p) =
1

4
Rab,(k)γabε

(q)δpk+q +
1

2l
Ra,(l)γaε

(q)δpl+q −
1

4
ρab,(k)γabΨ

(q)δpk+q

− 1

2l
ρa,(l)γaΨ

(q)δpl+q, (4.94)

with k = i = j = 0, . . . ,m; l = n = p = q = 1, . . . ,m.

Although the Mac Dowell-Mansouri like action (4.87) is built from the sMm+2 curvature,

it is not invariant under sMm+2 gauge transformations.

Moreover, the action is not invariant under gauge supersymmetry. In fact, if we consider

the variation of the action (4.87) under gauge supersymmetry related to Q(1), we find

δsusyS = − 4

l2

∫ ∑
k

α2kR
a,(l)Ψ̄(p)γaγ5εδ

k
l+p, (4.95)

with k = 2, . . . ,m; l, p ≥ 1 and where ε is the gauge parameter associated to the spinor

charge Q(1).

As in the previous case the action is invariant for every value of k under gauge super-

symmetry imposing the expanded super torsion constraint Ra,(l) = 0. This yields to express

the expanded spin connection ωab,(k) in terms of the expanded fields as we can see in (4.77),

leading to the supersymmetric action for the sMm+2 superalgebra in the second order for-

malism.

Alternatively, since the α’s are arbitrary and independent we can study the supersym-

metry in each term separately. Then if we consider the variation of the action proportional

to α2k under gauge supersymmetry transformations asociated to Q(k−1), we find

δsusyS = − 4

l2
α2k

∫
RaΨ̄γaγ5ε

(k−1),

with k = 2, . . . ,m and where ε(k−1) is the gauge parameter associated to the spinor charge

Q(k−1). Here Ra and Ψ correspond to Ra,(1) and Ψ(1) respectively.
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It is possible to have invariance under supersymmetry in first order formalism in every

term if we modify the supersymmetry transformation for every expanded spin connection.

In fact, if we consider the variation of the action under an arbitrary δωab,(k−2) we find

δωS =
2

l2
α2k

∫
εabcdR

aebδωcd,(k−2), (4.96)

with k = 2, . . . ,m; Ra = Ra,(1) and ea = ea,(1). One can see that the variation vanishes for

arbitrary δωab,(k−2) if Ra = 0.

Nevertheless, it is possible to modify δωab,(k−2) by adding an extra piece such that the

variation of the action (∼ α2k) can be written as

δS = − 4

l2
α2k

∫
Ra

(
Ψ̄γaγ5ε

(k−1) − 1

2
εabcde

bδextraω
cd,(k−2)

)
. (4.97)

Thus the transformation of the ωab,(k−2) field leaving the term proportional to α2k invariant

is

δextraω
ab,(k−2) = 2εabcd

(
Ψ̄ecγdγ5ε

(k−1) + Ψ̄deγcγ5ε
(k−1) − Ψ̄cdγeγ5ε

(k−1)
)
ee,

with Ψ̄ = Ψ̄abe
aeb.

Note that the term proportional to α2k is truly invariant under gauge supersymmetry

transformations associated to Q(q), with q ≥ k. Moreover, when m = 2 in sMm+2 we obtain

the results presented in the previous section.

4.3.2 Pure supergravity from sMm+2

Since we are interested in obtaining the Einstein-Hilbert and the Rarita-Schwinger La-

grangians, we will consider only the terms proportional to α4. Then, the following choice

for the non-vanishing components of an invariant tensor is requiered〈
Jab,(0)Jcd,(4)

〉
sMm+2

= α4

〈
J̃abJ̃cd

〉
, (4.98)〈

Jab,(2)Jcd,(2)

〉
sMm+2

= α4

〈
J̃abJ̃cd

〉
, (4.99)〈

Qα,(1)Qβ,(3)

〉
sMm+2

= α4

〈
Q̃αQ̃β

〉
, (4.100)

which can be expressed as 〈
Jab,(0)Jcd,(4)

〉
sMm+2

= α4εabcd, (4.101)〈
Jab,(2)Jcd,(2)

〉
sMm+2

= α4εabcd, (4.102)〈
Qα,(1)Qβ,(3)

〉
sMm+2

= 2α4 (γ5)αβ . (4.103)
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Thus, we only have to consider curvatures the two-form associated to the Jab,(0), Jab,(2),

J(ab,4), Qα,(1) and Qα,(3) generators, which can be derived from (4.76)− (4.78)

Considering the non-vanishing components of the invariant tensor and the respective

curvatures two-form we obtain the following action for the S-expanded superalgebra

S = 2α4

∫ (
1

2
εabcdRab,(0)Rcd,(4) +

1

4
εabcdRab,(2)Rcd,(2) +

4

l
Ψ̄(3) ∧ γ5Ψ(1)

)
, (4.104)

which can be written explicitly as follows

S = α4

∫
εabcd

1

l2
(
Rab,(0)ec,(2)ed,(2) + 4ψ̄(1)ea,(2)γaγ5Dψ

(1)
)

+ d

(
εabcd

(
Rab,(0)ωab,(4) +

1

2
Dωab,(2)ωcd,(2)

)
+

8

l
Dψ̄(1)γ5ψ

(3) +
1

l
ψ̄(1)ωab,(2)γabγ5ψ

(1)

)
(4.105)

Here we have used the gravitino Bianchi identity DΨ(1) = 1
4
RabγabΨ

(1) and the matrix gamma

identity (4.29) to show that

εabcdRab,(0)ψ̄(3)γcdψ(1) + 8Dψ̄(1)γ5Dψ
(3) = D

(
8Dψ̄(1)γ5ψ

(3)
)

1

2
εabcdDω

ab,(2)ψ̄(1)γcdψ(1) + 2ψ̄(1)ωab,(2)γabγ5Dψ
(1) = D

(
ψ̄(1)ωab,(2)γabγ5ψ

(1)
)
.

Then, using the following identification

ωab,(0) = ωab, ωab,(2) = k̃ab,

ωab,(4) = kab, ea,(2) = ea,

Rab,(0) = Rab, ψ(1) = ψ,

ψ(3) = ξ,

the action is given by

S = α4

∫
εabcd

1

l2
(
Rabeced + 4ψ̄eaγaγ5Dψ

)
+ d

(
εabcd

(
Rabkcd +

1

2
Dωk̃

abk̃cd
)

+
8

l
ξ̄γ5Dψ +

1

l
ψ̄k̃abγabγ5ψ

)
. (4.106)

Here, we can see that the action proportional to α4 contains the Einstein-Hilbert term

εabcdR
abeced, the Rarita-Schwinger Lagrangian 4ψ̄eaγaγ5Dψ and a boundary term involving

the new fields kab, k̃ab, ξ and the original ones.
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Unlike the Mac Dowell-Mansouri Lagrangian for the osp (4|1) superalgebra the supersym-

metric cosmological constant does not appear explicitly in this action. This is due to the

S-expansion procedure since if we want to obtain the supersymmetric cosmological constant

1

2l4
eaebeced +

1

l3
ψ̄γabψeced

in the action, it should be necessary to consider the components
〈
Jab,(4)Jcd,(4)

〉
and

〈
Jab,(2)Jcd,(4)

〉
which are proportional to α8 and α6, respectively.

Regardless of the number of new generators of the Maxwell type superalgebra, the new

Maxwell fields do not contribute to the dynamics of the term proportional to α4. In this

way, we have shown that N = 1, D = 4 pure supergravity can be obtained as a Mac

Dowell-Mansouri like action for the minimal Maxwell superalgebras sMm+2 (with m > 1).

S = α4

∫
1

l2
[
εabcdR

abeced + 4ψ̄eaγaγ5Dψ
]

+ boundary terms. (4.107)

It is important to note that the m = 1 case corresponds to the Poincaré superalgebra

sP = {Jab, Pa, Qα}. Nevertheless, in this case we cannot derive the pure supergravity action

as a Mac Dowell-Mansouri like action since it is not possible to obtain the Eintein-Hilbert

term from 〈JabJcd〉 for sP .

In sumary, we have derived the minimal D = 4 supergravity action from the minimal

Maxwell type superalgebra sM4. The action was constructed in geometrical terms as the

Mac Dowell-Mansouri like action and interestingly describes pure supergravity. Then we have

obtained the minimal supergravity action in four dimensions from the sMm+2 superalgebra.

The invariance under supersymmetry was also discussed.
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Chapter 5

N = 1, D = 4 Supergravity with

supersymmetric cosmological term

5.1 Introduction

It is well-known that a cosmological constant can be introduced in gravity when we

consider the (A)dS algebra instead of Poincaré. As was pointed out in [63], [64] the presence

of a cosmological constant seems to be an interesting alternative in order to describe the dark

energy. Furthermore, the supersymmetric extension of gravity including a cosmological

constant can be derived in geometrical terms from the AdS superalgebra. As we have seen

in a previous chapter, in this approach the theory is built in terms of the osp (4|1) curvature

and the action is known as the Mac Dowell-Mansouri action [28].

Recently, an alternative way of introducing a generalized cosmological constant term in

gravity was proposed using the Maxwell symmetries [55]. Moreover, the deformations of

these symmetries lead to the s0(D−1, 2)⊕s0(D−1, 1) algebra [65], [66]. In [66] this algebra

was found as a semi-simple extension of the Poincaré algebra. From now on we will refer

to this algebra as the AdS-Lorentz (AdS − L4) algebra.

The AdS −L4 algebra (and its generalizations) has been extensively studied in [16]. In

particular, it was shown that a generalized cosmological constant can be included in a four-

dimensional Born-Infeld like action constructed out from the curvature 2-form of the AdS-

Lorentz algebra. Interestingly, this algebra can also be obtained as an abelian semigroup

expansion (S-expansion) of the AdS algebra [67].

In this chapter we analyze the physical consequences of considering the supersymmetric
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extension of the AdS-Lorentz algebra in the construction of a minimal supergravity theory.

Following [68] we present an alternative way of introducing the supersymmetric cosmological

constant to supergravity. Based on the AdS-Lorentz superalgebra we build the minimal D =

4 supergravity action which includes a generalized supersymmetric cosmological constant

term.

5.2 AdS-Lorentz superalgebra

Following [18], [69] in this section we will show the procedure to obtain the AdS-Lorentz

superalgebra as an S-expansion of the osp (4|1) superalgebra using S
(2)
M as the abelian semi-

group.

Before applying the S-expansion method it is necessary to consider a decomposition of

the original algebra in subspaces g = osp (4|1) = V0⊕ V1⊕ V2 , where V0 is generated by the

Lorentz generator J̃ab, V1 corresponds to the fermionic subspace generated by a 4-component

Majorana spinor charge Q̃α and V2 corresponds to the AdS boost generated by P̃a. These

generators satisfy the (anti)commutation relations given by (2.4)− (2.8).

The subspace structure can be written as

[V0, V0] ⊂ V0, [V1, V1] ⊂ V0 ⊕ V2,

[V0, V1] ⊂ V1, [V1, V2] ⊂ V1,

[V0, V2] ⊂ V2, [V2, V2] ⊂ V0.

(5.1)

Let S
(2)
M = {λ0, λ1, λ2} be an abelian semigroup whose elements satisfy the multiplication

law,

λαλβ =

{
λα+β, when α + β ≤ 2

λα+β−2, when α + β > 2
(5.2)

Let us consider the subset decomposition S
(2)
M = S0 ∪ S1 ∪ S2, with

S0 = {λ0, λ2} , (5.3)

S1 = {λ1} , (5.4)

S2 = {λ2} . (5.5)

One sees that this decomposition is said to be resonant since it satisfies the same structure
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as the subspaces Vp [compare with eqs (5.1)]

S0 · S0 ⊂ S0, S1 · S1 ⊂ S0 ∩ S2,

S0 · S1 ⊂ S1, S1 · S2 ⊂ S1,

S0 · S2 ⊂ S2, S2 · S2 ⊂ S0.

(5.6)

Following theorem IV.2 of [18], we can say that the superalgebra

GR = W0 ⊕W1 ⊕W2, (5.7)

is a resonant subalgebra of S
(2)
M × g, where

W0 = (S0 × V0) = {λ0, λ2} ×
{
J̃ab

}
=
{
λ0J̃ab, λ2J̃ab

}
, (5.8)

W1 = (S1 × V1) = {λ1} ×
{
Q̃α

}
=
{
λ1Q̃α

}
, (5.9)

W2 = (S2 × V2) = {λ2} ×
{
P̃a

}
=
{
λ2P̃a

}
. (5.10)

Thus, we obtain a new superalgebra generated by {Jab, Pa, Zab, Qα}. These new generators

can be written as

Jab = λ0J̃ab, Pa = λ2P̃a

Zab = λ2J̃ab, Qα = λ1Q̃α,

and satisfy the following (anti)commutation relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (5.11)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (5.12)

[Zab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (5.13)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (5.14)

[Zab, Pc] = ηbcPa − ηacPb, (5.15)

[Jab, Qα] = −1

2
(γabQ)α , [Pa, Qα] = −1

2
(γaQ)α , (5.16)

[Zab, Qα] = −1

2
(γabQ)α , (5.17)

{Qα, Qβ} = −1

2

[(
γabC

)
αβ
Zab − 2 (γaC)αβ Pa

]
, (5.18)

where we have used the multiplication law of the semigroup (5.2) and the commutation

relations of the osp (4|1) superalgebra. The new superalgebra obtained after a resonant

74



S
(2)
M -expansion of osp (4|1) corresponds to the AdS-Lorentz superalgebra in four dimensions,

which will be denote as sAdS − L4 .

From the above relations we see that the AdS-Lorentz superalgebra contains the AdS −
L4 algebra = {Jab, Pa, Zab}1 as a subalgebra. Unlike the Maxwell superalgebra the Zab

generators are not abelian and behave as a Lorentz generator.

On the other hand, it is well known that an Inönü-Wigner contraction of the AdS-Lorentz

superalgebra leads to the non-standard Maxwell superalgebra [70]. In fact, the rescaling

Zab → µ2Zab, Pa → µPa and Qα → µQα (5.19)

provides the Maxwell superalgebra in the limit µ→∞,

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (5.20)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (5.21)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (5.22)

[Zab, Pc] = 0, [Zab, Zcd] = 0 (5.23)

[Jab, Qα] = −1

2
(γabQ)α , (5.24)

[Zab, Qα] = 0, [Pa, Qα] = 0 (5.25)

{Qα, Qβ} = −1

2

(
γabC

)
αβ
Zab, (5.26)

5.3 Supergravity action for sAdS − L4

In this section, we present a geometric formulation of N = 1 supergravity in four

dimensions, where the relevant gauge fields of the theory are those corresponding to the

AdS-Lorentz superalgebra sAdS − L4. The action will be constructed exclusively in terms

of the curvature 2-form following the same approach of [28], and using the useful properties

of the S-expansion procedure.

The one-form connection is given by

A = AATA =
1

2
ωabJab +

1

l
eaPa +

1

2
kabZab +

1√
l
ψαQα, (5.27)

1Also known as Poincaré semi-simple extended algebra.
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where the one-form gauge fields are given in terms of the AdS fields
{
ω̃ab, ẽa, ψ̃α

}
,

ωab = λ0ω̃
ab, kab = λ2ω̃

ab,

ea = λ2ẽ
a, ψα = λ1ψ̃

α.

The associated curvature two-form F = dA+ A ∧ A is given by

F = FATA =
1

2
RabJab +

1

l
RaPa +

1

2
F abZab +

1√
l
ΨαQα, (5.28)

where

Rab = dωab + ωacω
cb, (5.29)

Ra = dea + ωabe
b + kabe

b − 1

2
ψ̄γaψ, (5.30)

F ab = dkab + ωack
cb − ωbckca + kack

cb +
1

l2
eaeb +

1

2l
ψ̄γabψ, (5.31)

Ψ = dψ +
1

4
ωabγ

abψ +
1

2l
eaγaψ +

1

4
kabγ

abψ. (5.32)

Let us note that the presence of the generator Zab implies the introduction of a bosonic

”matter” field kab, which modifies the definition of the curvatures.

From the Bianchi identity∇F = 0, with∇ = d+[A, ·], we can write the Lorentz covariant

exterior derivatives of the curvatures as

DRab = 0, (5.33)

DRa = Ra
be
b + F a

be
b +Rck a

c + ψ̄γaΨ, (5.34)

DF ab = Ra
ck
cb −Rb

ck
ca + F a

ck
cb − F b

ck
ca +

1

l2
(
Raeb − eaRb

)
+

1

l
Ψ̄γabψ, (5.35)

DΨ =
1

4
Rabγ

abψ +
1

4
Fabγ

abψ − 1

4
kabγ

abΨ +
1

2l
Raγaψ

− 1

2l
eaγaΨ. (5.36)

The MacDowell-Mansouri like action for the AdS-Lorentz superalgebra can be written as

S = 2

∫
FA ∧ FB 〈TATB〉sAdS−L4 , (5.37)

where 〈TATB〉sAdS−L4 are non-vanishing components of an invariant tensor which can be

derived from the components of the invariant tensor (2.18). In fact, using Theorem VII.1
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of [18], it is possible to show that the non-vanishing components of 〈TATB〉sAdS−L4 are given

by

〈JabJcd〉sAdS−L4 = α0

〈
J̃abJ̃cd

〉
, (5.38)

〈JabZcd〉sAdS−L4 = α2

〈
J̃abJ̃cd

〉
, (5.39)

〈ZabZcd〉sAdS−L4 = α2

〈
J̃abJ̃cd

〉
, (5.40)

〈QαQβ〉sAdS−L4 = α2

〈
Q̃αQ̃β

〉
, (5.41)

where α0 and α2 are dimensionless arbitrary constants and〈
J̃abJ̃cd

〉
= εabcd, (5.42)〈

Q̃αQ̃β

〉
= 2 (γ5)αβ , (5.43)

are the invariant tensors requiered to reproduce the MacDowell-Mansouri action for the

osp (4|1) superalgebra (see Chapter 2, Section 2.3). This choice of the invariant tensor

breaks the AdS-Lorentz supergroup to their Lorentz like subgroup.

Then considering the invariant tensors (5.38) − (5.41) and the curvature 2-form (5.28),

it is possible to write down the action à la Mac Dowell-Mansouri as follows

S = 2

∫ (
1

4
α0εabcdR

abRcd +
1

2
α2εabcdR

abF cd +
1

4
α2εabcdF

abF cd +
2

l
α2Ψ̄γ5Ψ

)
. (5.44)

or explicitly,

S =

∫
α0

2
εabcdR

abRcd + α2εabcd

(
RabDkcd +Rabkcek

ed +
1

l2
Rabeced

+
1

2l
Rabψ̄γcdψ +

1

2
DkabDkcd +Dkabkcek

ed +
1

l2
Dkabeced

+
1

2l
Dkabψ̄γcdψ +

1

2
kafk

fbkcgk
gd +

1

l2
kafk

fbeced +
1

2l
kafk

fbψ̄γcdψ

)
+

1

2l3
eaebψ̄γcdψ +

1

2l4
eaebeced

)
+ α2

(
4

l
Dψ̄γ5Dψ +

4

l2
ψ̄eaγaγ5Dψ

+
2

l
Dψ̄γ5kabγ

abψ +
1

l3
ψ̄eaγaγ5e

bγbψ +
1

l2
ψ̄eaγaγ5k

bcγbcψ

+
1

4l
ψ̄kabγ

abγ5kcdγ
cdψ

)
. (5.45)
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The action can be written in a more compact way using the gamma matrix identity (C.1)

γabγ5 = −1

2
εabcdγ

cd, (5.46)

and the gravitino Bianchi identity

DDψ =
1

4
Rabγabψ, (5.47)

to show the following relations

1

2
εabcdR

abψ̄γcdψ + 4Dψ̄γ5Dψ = d
(
4Dψ̄γ5ψ

)
, (5.48)

1

2
εabcdDk

abψ̄γcdψ + 2Dψ̄γ5k
abγabψ = d

(
ψ̄kabγabγ5ψ

)
. (5.49)

Furthermore,

ψ̄eaγaγ5e
bγbψ =

1

2
eaebψ̄γcdψεabcd, (5.50)

1

4
ψ̄kabγ

abγ5kcdγ
cdψ = −1

2
kafk

fbψ̄γcdψεabcd, (5.51)

ψ̄eaγaγ5k
bcγbcψ = εabcdk

abecψ̄γdψ, (5.52)

where we have used the identities (C.2)− (C.5) and that γ5γa is an antisymmetric matrix.

Thus the MacDowell-Mansouri like action for the sAdS − L4 superalgebra is

S =

∫
α0

2
εabcdR

abRcd +
α2

l2
(
εabcdR

abeced + 4ψ̄eaγaγ5Dψ
)

+ α2εabcd

(
RabDkcd +Rabkcek

ed +
1

2
DkabDkcd +Dkabkcek

ed +
1

2
kafk

fbkcgk
gd

)
+ α2εabcd

(
1

l2
Dkabeced +

1

l2
kafk

fbeced +
1

l3
eaebψ̄γcdψ

+
1

l2
kabecψ̄γdψ +

1

2l4
eaebeced

)
+ α2d

(
4Dψ̄γ5ψ + ψ̄kabγabγ5ψ

)
. (5.53)

We have separated the action in five pieces in order to analyze each one of them. The first

term is proportional to α0 and corresponds to the Gauss Bonnet term. The second term

contains the Einstein-Hilbert term plus the Rarita-Schwinger Lagrangian. The third piece

corresponds to a Gauss Bonnet like term and does not contribute to the dynamics because

it can be written as a boundary term. The fourth term corresponds to a generalized

supersymmetric cosmological term which contains the usual supersymmetric cosmological
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constant plus three additional terms depending on the field kab. The last piece is a boundary

term.

Then, the action written à la MacDowell-Mansouri for the AdS-Lorentz superalgebra

describes a supergravity theory with a generalized supersymmetric cosmological term. From

(5.53) we can see that the bosonic part of the action corresponds to the one found in [16]

for AdS-Lorentz algebra. Moreover, the action contains the generalized cosmological term

introduced in [55] for the Maxwell algebra.

Neglecting boundary terms, the action can be written as

S =

∫
α2

l2
(
εabcdR

abeced + 4ψ̄eaγaγ5Dψ
)

+ α2εabcd

(
1

l2
Dkabeced +

1

l2
kafk

fbeced

+
1

l3
eaebψ̄γcdψ +

1

l2
kabecψ̄γdψ +

1

2l4
eaebeced

)
, (5.54)

and using that

εabcdDk
abeced = 2εabcdk

abT ced + d

(
1

l2
εabcdk

abeced
)
,

T̂ a ≡ Dea − 1

2
ψ̄γaψ = T a − 1

2
ψ̄γaψ, (5.55)

it can be rewritten as follows

S =

∫
α2

l2
(
εabcdR

abeced + 4ψ̄eaγaγ5Dψ
)

+ α2εabcd

(
2

l2
kabT̂ ced +

1

l2
kafk

fbeced +
1

l3
eaebψ̄γcdψ +

1

2l4
eaebeced

)
. (5.56)

5.4 The equations of motion of D = 4, N = 1 AdS-

Lorentz supergravity

Let us find the equations of motion associated to the four independent space-time fields

ωab, kab, ea and ψ. The variation of the Lagrangian with respect to the spin connection ωab

yields (modulo boundary terms)

δωL =
α2

l2
εabcd

(
2δωabDeced + 2δωafk

fbeced
)

+
α2

l2
ψ̄eaγaγ5δω

cdγcdψ

=
2α2

l2
εabcdδω

ab

(
T c + kcfe

f − 1

2
ψ̄γcψ

)
ed

=
2α2

l2
εabcdδω

abRced. (5.57)
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Thus, for arbitrary δωab we have that δωL = 0 leads to the following field equation

2εabcdR
ced = 0. (5.58)

Considering now the variation of the Lagrangian with respect to the vielbein ea, we found

δeL =
α2

l2
εabcd

(
2Rabec + 2Dkabec + 2kafk

fbec +
2

l
ψ̄γabψec +

2

l2
eaebec

)
δed

+
α2

l2
(
4ψ̄γdγ5Dψ + ψ̄γdγ5k

abγabψ
)
δed.

=
2α2

l2
εabcd

(
Rabec + F abec

)
δed +

α2

l2
(
4ψ̄γdγ5Ψ

)
δed, (5.59)

where we have used the AdS-Lorentz curvatures 2-form (5.28) and eqs.(5.50)− (5.51). Then

the field equation is obtained imposing δeL = 0

2εabcd
(
Rab + F ab

)
ec + 4ψ̄γdγ5Ψ = 0. (5.60)

The variation of the Lagrangian with respect to the new AdS-Lorentz field kab gives

δkL =
α2

l2
εabcd

(
2δkabDeced + 2δkafk

fbeced +
1

l2
δkabψ̄γdψec

)
=

2α2

l2
εabcdδk

ab

(
T c + kcfe

f − 1

2
ψ̄γcψ

)
ed

=
2α2

l2
εabcdδk

abRced, (5.61)

where we have used the gamma matrix identities (C.1) and (C.5). Thus, δkL = 0 leads to

the same field equation that δωL = 0,

2εabcdR
ced = 0. (5.62)

Let us consider the variation of the Lagrangian with respect to the gravitino field ψ,

δψL =
α2

l2
(
4δψ̄eaγaγ5Dψ − 4Dψ̄eaγaγ5δψ + 4ψ̄Deaγaγ5δψ

)
+
α2

l2
εabcd

(
2kabecδψ̄γdψ +

2

l
eaebδψ̄γcdψ

)
=
α2

l2
δψ̄

(
8eaγaγ5Dψ − 4γaγ5ψDe

a + 2eaγaγ5k
bcγbcψ − 4γaγ5k

a
b e
bψ +

4

l
eaγaγ5e

bγbψ

)
=
α2

l2
δψ̄ (8eaγaγ5Ψ− 4γaγ5ψR

a) . (5.63)
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Then, we find the following field equation,

8eaγaγ5Ψ− 4γaγ5ψR
a = 0. (5.64)

We can see that the presence of a generalized supersymmetric cosmological constant leads

to field equations very similar to those of standard supergravity. The differences appear in

the definition of the curvatures two-form due to the presence of the new matter field kab.

As we said before, from eqs. (5.58) and (5.62), we see that the equation of motion coming

from the variation of the Lagrangian with respect to the bosonic field kab reduces to that of

the spin connection ωab. From this equation we have that

Ra ≡ T a + kabe
b − 1

2
ψ̄γaψ = 0. (5.65)

Let us define a new bosonic field as

$ab = ωab + kab, (5.66)

and its respective covariant derivative,

D = d+$. (5.67)

Then, eq.(5.65) can be written as

Dea − 1

2
ψ̄γaψ = 0. (5.68)

This allows to express the bosonic field $ab in terms of the vielbein ea and gravitino field

ψα. The equation can be solved considering the following decomposition,

$ab = $̊ab + $̃ab, (5.69)

where $̊ab corresponds to the solution of Dec = 0 and is given by

$̊ab
µ =

(
ecλ∂[µe

d
ν]ηcd + ecν∂[λe

d
µ]ηcd − ecµ∂[νe

d
λ]ηcd

)
eλ|aeν|b. (5.70)

Now we have that

Dea = dea + $̊abeb + $̃abeb =
1

2
ψ̄γaψ, (5.71)

implies

$̃ab
[µeν]b =

1

2
ψ̄µγ

aψν . (5.72)
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Then we may solve $̃ab in terms of the two other fields,

$̃ab
µ =

1

4
ea|λeb|ν

(
ψ̄µγλψν + ψ̄λγνψµ − ψ̄νγµψλ − ψ̄µγνψλ − ψ̄νγλψµ + ψ̄λγµψν

)
. (5.73)

Thus, the bosonic field $ab is completely determined in terms of eaµ and ψαµ and does not carry

additional physical degrees of freedom. In fact, when the supertorsion Ra = Dec − 1
2
ψ̄γcψ

is set equals to zero, the number of bosonic degrees of freedom is 2 as the Einstein-Hilbert

gravity theory.

5.5 Supersymmetry transformations and action invari-

ance

Although the action is built from the AdS-Lorentz superalgebra, it is not invariant under

gauge transformations. The variation of the action (5.53) under gauge supersymmetry can

be derived using δF = [F, ε], with ε the supersymmetry parameter,

δsusyS = −4α2

l2

∫
RaΨ̄γaγ5ε. (5.74)

Thus in order to have gauge supersymmetry invariance it is necessary to impose the AdS-

Lorentz supertorsion constraint

Ra = 0. (5.75)

However this leads to express the spin connection ωab in terms of the others fields
{
ea, kab, ψ

}
.

Nevertheless, it is possible to have supersymmetry invariance in the first formalism adding

an extra piece to the gauge transformation δωab such that the variation of the action can be

written as

δS = −4α2

l2

∫
Ra

[
Ψ̄γaγ5ε−

1

2
εabcde

bδextraω
cd

]
, (5.76)

where the supersymmetry invariance is fullfilled when

δextraω
ab = 2εabcd

(
Ψ̄ecγdγ5ε+ Ψ̄deγcγ5ε− Ψ̄cdγeγ5ε

)
ee, (5.77)

with Ψ̄ = Ψ̄abe
aeb.

82



Thus, the action (5.53) in the first order formalism is invariant under the following

supersymmetry transformations

δωab = 2εabcd
(
Ψ̄ecγdγ5ε+ Ψ̄deγcγ5ε− Ψ̄cdγeγ5ε

)
ee, (5.78)

δkab = −1

l
ε̄γabψ, (5.79)

δea = ε̄γaψ, (5.80)

δψ = dε+
1

4
ωabγabε+

1

4
kabγabε+

1

2l
eaγaε. (5.81)

Let us note that supersymmetry is not a gauge symmetry of the action, since it is broken to

a Lorentz like symmetry.
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Chapter 6

Maxwell Chern-Simons Supergravity

Analogously to the four dimensional case seen above, the AdS-Lorentz superalgebra in

D = 3 can be derived as an S-expansion of the osp (2|1)⊕ sp (2) superalgebra [69]. Further-

more, as we said before, the non-standard Maxwell superalgebra sM can be obtained as a

Inönü-Wigner contraction of the AdS-Lorentz superalgebra [16], [70]. Then it seems natu-

ral to derive the non-standard Maxwell superalgebra combining the S-expansion procedure

with the Inönü-Wigner contraction. In particular, as we will see later the non-vanishing

components of an invariant tensor for this superalgebra can be found in this way.

Following [71], in this chapter we construct a D = 3 supergravity action from a minimal

Maxwell superalgebra sMg. The sMg superalgebra is obtained as an S-expansion of the

osp (2|1)⊗ sp (2) superalgebra by considering an appropriate semigroup, and corresponds to

a supersymmetric extension of the generalized Maxwell algebra Mg (see Appendix B).

Let us first consider an algebraic construction of a three-dimensional supersymmetric

action invariant under the usual Maxwell supergroup. To this aim, we shall combine the S-

expansion procedure and the Inönü-Wigner contraction in order to derive the non-standard

sM superalgebra and the non-vanishing components of an invariant tensor for this superal-

gebra.

6.1 CS supersymmetric action from sM
In this section, we present a D = 3 Chern-Simons supersymmetric action for the non-

standard Maxwell superalgebra. As we will see next, the Maxwell superalgebra sM can be

obtained alternatively combining the S-expansion method and the Inönü-Wigner contrac-

tion.
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6.1.1 D = 3 Maxwell superalgebra sM

Following [69] and [18], it is possible to obtain the AdS-Lorentz superalgebra as an S-

expansion of the osp (2|1)⊕sp (2) superalgebra using S∧ = {λ0, λ1} as the relevant semigroup.

As in the previous cases, we have to consider a decomposition of the original algebra in

subspaces g = osp (2|1)⊕sp (2) = V0⊕V1⊕V2, where V0 corresponds to a Lorentz subalgebra

and it is generated by the Lorentz generator J̃ab, V1 corresponds to the fermionic subspace

generated by a 3-component Majorana spinor charge Q̃α and V2 corresponds to the AdS boost

generated by P̃a. These generators satisfy the (anti)commutation relations (2.41)− (2.45).

The subspace structure may be written as

[V0, V0] ⊂ V0, [V1, V1] ⊂ V0 ⊕ V2,

[V0, V1] ⊂ V1, [V1, V2] ⊂ V1,

[V0, V2] ⊂ V2, [V2, V2] ⊂ V0.

(6.1)

Consider the abelian semigroup S∧ = {λ0, λ1} whose elements are dimensionless and satisfy

the multiplication law,

λαλβ =

{
λ1, if α = β = 1

λ0, all others
(6.2)

Let us consider the subset decomposition S∧ = S0 ∪ S1 ∪ S2, with

S0 = {λ0, λ1} , S1 = {λ0} , S2 = {λ0} . (6.3)

One sees that this decomposition is said to be resonant since it satisfies the same structure

as the subspaces Vp [compare with eqs. (6.1)]

S0 · S0 ⊂ S0, S1 · S1 ⊂ S0 ∩ S2,

S0 · S1 ⊂ S1, S1 · S2 ⊂ S1,

S0 · S2 ⊂ S2, S2 · S2 ⊂ S0.

(6.4)

Following theorem IV.1 of [18], we can say that the superalgebra

GR = W0 ⊕W1 ⊕W2, (6.5)

is a resonant subalgebra of S∧ × g, where

W0 = (S0 × V0) = {λ0, λ1} ×
{
J̃ab

}
=
{
λ0J̃ab, λ1J̃ab

}
, (6.6)

W1 = (S1 × V1) = {λ0} ×
{
Q̃α

}
=
{
λ0Q̃α

}
, (6.7)

W2 = (S2 × V2) = {λ0} ×
{
P̃a

}
=
{
λ0P̃a

}
. (6.8)
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The new superalgebra is generated by {Jab, Pa, Zab, Qα}, where these generators are defined

by

Jab = λ1J̃ab, Pa = λ0P̃a, (6.9)

Zab = λ0J̃ab, Qα = λ0Q̃α. (6.10)

and satisfy the (anti)commutation relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (6.11)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (6.12)

[Zab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (6.13)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (6.14)

[Zab, Pc] = ηbcPa − ηacPb, (6.15)

[Jab, Qα] = −1

2
(ΓabQ)α , [Pa, Qα] = −1

2
(ΓaQ)α , (6.16)

[Zab, Qα] = −1

2
(ΓabQ)α , (6.17)

{Qα, Qβ} = −1

2

[(
ΓabC

)
αβ
Zab − 2 (ΓaC)αβ Pa

]
, (6.18)

where we have used the multiplication law of the semigroup (6.2) and the commutation re-

lations of the original superalgebra (2.41)− (2.45). The new superalgebra obtained after a

resonant S∧-expansion of osp (2|1)⊕ sp (2) corresponds to the AdS-Lorentz superalgebra in

three dimensions. As we have seen in the previous chapter this superalgebra has an inter-

esting application in D = 4 supergravity since it allows to include a generalized cosmological

constant in a MacDowell-Mansouri like action [68]. The generalization of the AdS-Lorentz

superalgebra (6.11) − (6.17) and its extension to N supersymmetries can be found in [68]

and [74], respectively.

Let us now consider the Inönü-Wigner contraction of the AdS-Lorentz superalgebra ap-

plying the rescaling presented in [70],

Zab → σ2Zab, Pa → σPa and Qα → σQα. (6.19)
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Then the limit σ →∞ provides us with the following (anti)commutation relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (6.20)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (6.21)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (6.22)

[Zab, Zcd] = 0, [Zab, Pc] = 0, (6.23)

[Jab, Qα] = −1

2
(ΓabQ)α , (6.24)

[Zab, Qα] = 0, [Pa, Qα] = 0, (6.25)

{Qα, Qβ} = −1

2

(
ΓabC

)
αβ
Zab. (6.26)

The new superalgebra obtained after a resonant S-expansion of osp (2|1) ⊗ sp (2) and an

Inönü-Wigner contraction corresponds to the Maxwell superalgebra sM in D = 3. This

superalgebra contains the Maxwell algebraM = {Jab, Pa, Zab} and the Lorentz type algebra

LM = {Jab, Zab} as subalgebras. In particular, the study of a 3-dimensional gravity using

the Maxwell algebra was considered in [72], [73].

Let us observe that the Maxwell superalgebra sM does not contain a necessary relation

in supergravity, expressing momenta as bilinears of supercharges. Indeed, from relation

(6.26) we see that it supersymmetrizes only tensorial central charges. As we will see later,

this situation is completely different in the case of a minimal Maxwell superalgebra. Before

presenting the construction of a CS supergravity action for a minimal Maxwell superalgebra,

let us first consider an algebraic construction of a three-dimensional supersymmetric action

for the non-standard Maxwell superalgebra sM.

6.1.2 Three-dimensional Maxwell CS supersymmetric action

Here we present a geometrical construction of a CS supersymmetric action using the

Maxwell superalgebra and the properties of the S-expansion procedure. As seen from the

definition of a CS Lagrangian (see (2.46)), a fundamental ingredient in the construction of a

CS action is the existence of symmetric invariant tensors for the corresponding gauge group.

As we have discussed in previous chapters a useful property of the S-expansion method is

that it provides us with an invariant tensor for the S-expanded algebra. In fact, by Theorem

VII.2 of [18], the invariant tensor of an S-expanded (super)algebra G is given in terms of

an invariant tensor of the original (super)algebra g as follows〈
T(A,α)T(B,β)

〉
G

= α̃γK
γ

αβ 〈TATB〉g , (6.27)
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where α̃γ are arbitrary constants and K γ
αβ corresponds to a 2-selector. Starting from the

AdS superalgebra (2.41− 2.45) and using the Theorem VII.2, it is possible to show that

the non-vanishing components of an invariant tensor for the 3-dimensional AdS-Lorentz

superalgebra are given by

〈JabJcd〉AdS−L = α̃1

〈
J̃abJ̃cd

〉
, 〈ZabPc〉AdS−L = α̃0

〈
J̃abP̃c

〉
,

〈JabZcd〉AdS−L = α̃0

〈
J̃abJ̃cd

〉
, 〈PaPb〉AdS−L = α̃0

〈
P̃aP̃b

〉
,

〈ZabZcd〉AdS−L = α̃0

〈
J̃abJ̃cd

〉
, 〈QαQβ〉AdS−L = α̃0

〈
Q̃αQ̃β

〉
,

〈JabPc〉AdS−L = α̃0

〈
J̃abP̃c

〉
,

(6.28)

where
〈
J̃abJ̃cd

〉
,
〈
J̃abP̃c

〉
,
〈
P̃aP̃b

〉
and

〈
Q̃αQ̃β

〉
are the components of an invariant tensor

for the osp (2|1)⊕ sp (2) superalgebra [see eqs. (2.49)− (2.52)] .

It seems natural to derive a Chern Simons action for the Maxwell superalgebra by com-

bining this result with the corresponding Inönü-Wigner contraction in the generators (6.19).

Nevertheless, the rescaling in the generators leads to trivial invariant tensors for the Maxwell

superalgebra and consequently to a trivial Chern Simons action. A possible way to avoid

this problem is to generalize the Inönü-Wigner contraction by considering the rescaling not

only of the generators but also of the invariant tensors. Interestingly, there is just one

rescaling that preserves the structure of curvatures in the action and is given by

β0 → σ2β0, α0 → σα0, β1 → β1. (6.29)

where

β0 ≡ α̃0µ0, α0 ≡ α̃0µ1, β1 ≡ α̃1µ0.

Then, considering the rescaling of both generators (6.19) and constants (6.29) in (6.28),

one can see that the limit σ → ∞ leads to the non-trivial non-vanishing components of an

invariant tensor for the Maxwell superalgebra sM,

〈JabJcd〉sM = β1 (ηbcηad − ηacηbd) , (6.30)

〈JabZcd〉sM = β0 (ηbcηad − ηacηbd) , (6.31)

〈JabPc〉sM = α0εabc, (6.32)

〈PaPb〉sM = β0ηab, (6.33)

〈QαQβ〉sM = β0Cαβ. (6.34)
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In order to write down a CS action for the sM superalgebra we start from the one-form

gauge connection

A = AATA =
1

2
ωabJab +

1

l
eaPa +

1

2
kabZab +

1√
l
ψαQα, (6.35)

where ea, ωab, kab and ψ are respectively the vielbein, the spin connection, a ”matter” bosonic

field and the gravitino field. These one-forms are the corresponding expanded fields of the

osp (2|1)⊕ sp (2) gauge fields
{
ω̃ab, ẽa , ψ̃α

}
,

ωab = ω(ab,1) = λ1ω̃
ab, ea = e(a,0) = λ0ẽ

a,

kab = ω(ab,0) = λ0ω̃
ab, ψα = ψ(α,0) = λ0ψ̃

α,
(6.36)

The associated curvature two-form is,

F = FATA =
1

2
RabJab +

1

l
RaPa +

1

2
F abZab +

1√
l
ΨαQα, (6.37)

where

Rab = dωab + ωacω
cb,

Ra = dea + ωabe
b = T a,

F ab = dkab + ωack
cb − ωbckca +

1

l2
eaeb +

1

2l
ψ̄Γabψ,

Ψ = dψ +
1

4
ωabΓ

abψ = Dψ.

Then, when we insert the one-form connection (6.35) into the general expression of the CS ac-

tion (2.46) and using the invariant tensor (6.30− 6.34), we can write the CS supersymmetric

action for the Maxwell superalgebra sM. Explicitly, it is given by

S
(2+1)
CS = κ

∫
M

[
1

2
β1

(
ωabdω

b
a +

2

3
ωabω

b
cω

c
a

)
+
α0

l

(
εabcR

abec
)

+β0

(
Ra

bk
b
a +

1

l2
eaTa +

1

l
ψ̄Ψ

)
− 1

2
d
(
β0ω

a
bk
b
a +

α0

l
εabcω

abec
)]

, (6.38)

The action (6.38) is split into three independent pieces proportional to β1, α0 and β0.

The term proportional to β1 corresponds to the exotic Lagrangian [8], [38]. The piece

proportional to α0 is invariant under Poincaré and corresponds to the Einstein-Hilbert term.

On the other hand, the term proportional to β0 contains the torsional term, the fermionic

term and the coupling between the new gauge field kab and the Lorentz curvature Rab. The
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gauge field kab associated to the Zab generator appears also in the boundary term. Let us

note that the cosmological constant term εabce
aebec does not appear in the action.

Up to boundary terms, the full action is invariant under gauge transformations of the

Maxwell supergroup and under supersymmetry,

δεω
ab = 0, δεk

ab = −1

l
ε̄Γabψ, (6.39)

δεe
a = 0, δεψ = Dε, (6.40)

As no field equations are requiered in order to prove this invariance, we said that it is an off-

shell SUSY. Furthermore, we can see that the bosonic part of the action (6.38) corresponds

to the CS gravity action found in [72] and [73] for the Maxwell algebra. Clearly, when we

consider σ = 1 in the rescalings (6.19) and (6.29) we obtain the CS supergravity action for

the AdS-Lorentz superalgebra presented in [69].

6.2 Maxwell-Chern-Simons Supergravity

Let us now consider the construction of a Chern-Simons supergravity action for the

minimal D = 3 Maxwell superalgebra sMg. As we will see, this superalgebra can be

derived as an S-expansion of osp (2|1)⊕ sp (2) using an appropriate semigroup.

As in the previous section we will consider the splitting of the AdS superalgebra into

subspaces g =V0 ⊕ V1 ⊕ V2, where V0 =
{
J̃ab

}
, V1 =

{
Q̃α

}
and V2 =

{
P̃a

}
. The next step

consists in finding a subset decomposition of a semigroup S which is ”resonant” with respect

to the subspace structure (6.1). Let us consider S
(4)
E = {λ0, λ1, λ2, λ3, λ4, λ5} as the relevant

abelian semigroup whose elements obey the multiplication law (3.22). Let us consider a

subset decomposition S
(4)
E = S0 ∪ S1 ∪ S2, with

S0 = {λ0, λ2, λ4, λ5} , (6.41)

S1 = {λ1, λ3, λ5} , (6.42)

S2 = {λ2, λ4, λ5} . (6.43)

This subset decomposition is said to be ”resonant” since it satisfies the same structure as

the subspaces Vp [compare with eqs. (6.1)]

S0 · S0 ⊂ S0, S1 · S1 ⊂ S0 ∩ S2,

S0 · S1 ⊂ S1, S1 · S2 ⊂ S1,

S0 · S2 ⊂ S2, S2 · S2 ⊂ S0.

(6.44)
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Imposing the 0S-reduction condition λ5TA = 0s, we find a new Lie superalgebra generated

by
{
Jab, Pa, Z̃ab, Zab, Z̃a, Qα,Σα

}
where these new generators can be written as

Jab = λ0J̃ab, Z̃a = λ4P̃a,

Z̃ab = λ2J̃ab, Qα = λ1Q̃α,

Zab = λ4J̃ab, Σα = λ3Q̃α.

Pa = λ2P̃a,

(6.45)

and satisfy the following (anti)commutation relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (6.46)

[Jab, Pc] = ηbcPa − ηacPb, [Pa, Pb] = Zab, (6.47)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (6.48)

[Pa, Qα] = −1

2
(ΓaΣ)α , (6.49)

[Jab, Qα] = −1

2
(ΓabQ)α , (6.50)

[Jab,Σα] = −1

2
(ΓabΣ)α , (6.51)

{Qα, Qβ} = −1

2

[(
ΓabC

)
αβ
Z̃ab − 2 (ΓaC)αβ Pa

]
, (6.52)

{Qα,Σβ} = −1

2

[(
ΓabC

)
αβ
Zab − 2 (ΓaC)αβ Z̃a

]
(6.53)

[
Jab, Z̃ab

]
= ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc, (6.54)[

Z̃ab, Z̃cd

]
= ηbcZad − ηacZbd − ηbdZac + ηadZbc, (6.55)[

Jab, Z̃c

]
= ηbcZ̃a − ηacZ̃b,

[
Z̃ab, Pc

]
= ηbcZ̃a − ηacZ̃b, (6.56)[

Z̃ab, Qα

]
= −1

2
(γabΣ)α , (6.57)

others = 0 (6.58)

where we have used the multiplication law of the semigroup (3.22) and the commutation

relations of the AdS superalgebra (2.41− 2.45). The new superalgebra obtained after a

0S-reduced resonant S-expansion of osp (2|1)⊗sp (2) corresponds to the minimal Maxwell

superalgebra sMg. This superalgebra can be seen as the supersymmetric extension of the

generalized Maxwell algebra Mg in D = 3 dimensions [60] .
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6.2.1 Three-dimensional Maxwell CS supergravity action

In order to write down an CS action for the minimal Maxwell superalgebra sMg we

start from the one-form gauge connection

A =
1

2
ωabJab +

1

2
k̃abZ̃ab +

1

2
kabZab +

1

l
eaPa +

1

l
h̃aZ̃a +

1√
l
ψαQα +

1√
l
ξαΣα, (6.59)

where the 1-form gauge fields are given in terms of the components of the osp (2|1)⊗ sp (2)

connection ẽa, ω̃ab and ψ̃:

ωab = λ0ω̃
ab, k̃ab = λ2ω̃

ab kab = λ4ω̃
ab,

ea = λ2ẽ
a, h̃a = λ4ẽ

a, ψα = λ1ψ̃
α,

ξα = λ3ψ̃
α.

The associated curvature two-form is given by

F = FATA =
1

2
RabJab +

1

l
RaPa +

1

2
F̃ abZ̃ab +

1

2
F abZab

+
1

l
H̃aZ̃a +

1√
l
ΨαQα +

1√
l
ΞαΣα, (6.60)

where

Rab = dωab + ωacω
cb,

Ra = dea + ωabe
b − 1

2
ψ̄Γaψ,

H̃a = dh̃a + ωabh̃
b + k̃ace

c − ξ̄Γaψ,

F̃ ab = dk̃ab + ωack̃
cb − ωbck̃ca +

1

2l
ψ̄Γabψ, (6.61)

F ab = dkab + ωack
cb − ωbckca + k̃ack̃

cb +
1

l2
eaeb +

1

l
ξ̄Γabψ,

Ψ = dψ +
1

4
ωabΓ

abψ,

Ξ = dξ +
1

4
ωabΓ

abξ +
1

4
k̃abΓ

abψ +
1

2l
eaΓaψ.

Considering (6.27) it is possible to show that the only non-vanishing components of a sym-

metric invariant tensor for the Maxwell superalgebra sMg, can be found in terms of the
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invariant tensors for osp (2|1)⊗ sp (2) [see eqs. (2.49)− (2.52)]

〈JabJcd〉sMg = α0 (ηadηbc − ηacηbd) (6.62)〈
JabZ̃cd

〉
sMg

= α2 (ηadηbc − ηacηbd) (6.63)〈
Z̃abZ̃cd

〉
sMg

= 〈JabZcd〉 = α4 (ηadηbc − ηacηbd) (6.64)

〈JabPc〉sMg = α1εabc (6.65)

〈
Z̃abPc

〉
sMg

=
〈
JabZ̃c

〉
= α3εabc (6.66)

〈PaPb〉sMg = α4ηab (6.67)

〈QαQβ〉sMg = (α2 − α1)Cαβ (6.68)

〈QαΣβ〉sMg = (α4 − α3)Cαβ (6.69)

where we have used the following definitions

α0 ≡ α̃0µ0, α1 ≡ α̃2µ1, α2 ≡ α̃2µ0

α3 ≡ α̃4µ1, α4 ≡ α̃4µ0.

Considering (6.62)− (6.69) and the one-form connection (6.59) in the general expression

for the CS action (2.46), we find that the CS supergravity action for the minimal Maxwell

superalgebra sMg is given explicitly by

S
(2+1)
CS = k

∫
M

[
α0

2

(
ωabdω

b
a +

2

3
ωacω

c
bω

b
a

)
+
α1

l

(
εabcR

abec − ψ̄Ψ
)

+ α2

(
Ra

bk̃
b
a +

1

l
ψ̄Ψ

)
+
α3

l

(
εabc

(
Rabh̃c +Dk̃abec

)
− ξ̄Ψ− ψ̄Ξ

)
+ α4

(
Ra

bk
b
a +

1

l2
eaTa +

1

l
ξ̄Ψ +

1

l
ψ̄Ξ

)
−d
(α1

2l
εabcω

abec +
α3

2l
εabc

(
k̃abec + ωabh̃c

)
+
α2

2
ωabk̃

b
a +

α4

2
ωabk

b
a

)]
. (6.70)

where T a = Dea is the torsion 2-form. This is the most general supergravity action in

(2 + 1) dimensions invariant under the minimal Maxwell superalgebra sMg. The first term

corresponds to the so called exotic Lagrangian and it is Lorentz invariant [8]. The second

term describes pure supergravity without cosmological constant. The terms proportional to

α2, α3 and α4 contain the coupling of the spin connection to the new gauge fields k̃ab, kab
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and h̃c. In particular the new Majorana spinor field ξ appears in the terms proportional to

α3 and α4. This action can be seen as a supersymmetric extension of [72, 73] where new

extra fields have been added in order to have well defined S-expanded invariant tensors.

Furthermore, note that the new fields appear also in the boundary term. The inclusion

of boundary contributions to (super)gravity models has been extensively studied in [13], [76],

[77], [78].

Up to boundary terms, the full action (6.70) is invariant under local gauge transforma-

tions of the Maxwell supergroup and also under both supersymmetries, the one associated

to the Q generator

δωab = 0, δk̃ab = −1
l
ε̄γabψ, δkab = −1

l
ε̄γabξ,

δea = ε̄γaψ, δh̃a = ε̄γaξ, δξ = 1
2l
eaγaε+ 1

4
k̃abγabε,

δψ = Dε.

(6.71)

and the other associated to the Σ generator

δωab = 0, δk̃ab = 0, δkab = −1
l
%̄γabψ

δea = 0, δh̃a = %̄γaψ δξ = d%+ 1
4
ωabγab%,

δψ = 0.

In summary, in this chapter we have derived the D = 3 Chern-Simons supersymmetric action

from the non-standard Maxwell superalgebra sM. We have shown that the superMaxwell

symmetries can be obtained from the osp (2|1)⊗sp (2) superalgebra combining the semigroup

expansion procedure with the Inönü-Wigner contraction. This procedure allowed to obtain

the invariant tensors for the Maxwell superalgebra and to build the most general D = 3

CS supersymmetric action invariant under the Maxwell supergroup. However, since in this

superalgebra the four-momentum generators Pa are not expressed as bilinears expressions

of fermionic generators Q, we have that the supersymmetric action constructed out of the

non-standard Maxwell superalgebra, does not describe a supergravity action but an exotic

alternative supersymmetric action.

The CS supergravity action from a minimal Maxwell superalgebra sMg has also been

constructed. We have shown that this superalgebra can be derived from the osp (2|1)⊗sp (2)

superalgebra using the semigroup expansion method.

The CS formalism used here represents a toy model in order to approach problems present

in higher dimensions or in higher N -extended supergravity theories.
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Part III

N = 2 Supergravity Theory
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Chapter 7

Observations on BI from N = 2

supergravity and the General Ward

Identity

7.1 Introduction

Recently, there has been a particular dedication to the study of Born-Infeld (BI) theory

and its generalization to multi-vectors, in relation to supersymmetric theories. This theory

describes a non-linear electrodynamics in four dimensions and enjoys of relevant features,

such as electric-magnetic duality symmetry. In particular, the supersymmetric version of

the BI Lagrangian was constructed in [79],[80]. These non-linear theories emerges as a low-

energy limit of partially broken U (1)n rigid N = 2 supersymmetric theory [81], in which

the supersymmetric breaking scale is sent to infinity [82]. As shown in [83], this mechanism

requires the introduction of magnetic Fayet-Iliopoulos (FI) terms besides the electric ones,

with the condition that the dual FI terms be not mutually local. On the other hand, the

rigid partially broken N = 2 theory with one vector multiplet of [83] (APT model), was

also obtained as a flat limit of a suitable N = 2 supergravity in [84]. This defines a N = 2

supergravity origin of the original one-vector BI theory.

In the original rigid limit of [84], the gauging was electric and partial supersymmetry

breaking required the use of a specific choice of symplectic frame in which the prepotential

of the special geometry does not exist. More general, partially broken N = 2 supergravities

were constructed in [85] using an analogous choice of symplectic frame. This restriction,
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which is forced within the framework of standard (i.e. electric) gaugings by some no-go

theorems [86], can be avoided in the context of dyonic gaugings. In fact, as shown in [87]

partial supersymmetry breaking can occur in any symplectic frame (and in particular in

one in which the prepotential does exist) using an embedding tensor [88, 89, 90] with both

electric and magnetic components. Consistency of such gaugings requires the introduction

of antisymmetric tensor fields dual to scalars [91, 92, 93, 94, 95].

In this chapter we present the results obtained in [96], where we have generalized the

results of [84] to the case of n vector multiplets. Our starting point is the construction of

an appropriate dyonic gauging of an N = 2 supergravity coupled to n vector multiplets and

to hypermultiplets allowing for a well-defined rigid limit to a multi-vector APT model, and

thus generalizing [84]. This would clarify the supergravity origin of the multifield BI of [82]

and, in particular, to understand the origin of the dyonic FI as deriving from electric and

magnetic charges in the supergravity gauged model.

A crucial part of our analysis is the definition of the rigid limit: Rescalings of the fields

and of the embedding tensor by powers of µ = MPl/Λ (where MPl is the Planck mass MPl

and Λ is the supersymmetry breaking scale) have to be devised in order for the original

supersymmetries to survive the limit µ→∞.

Although they decouple for MPl →∞, the gravitini and the hyperini (the fermion fields

in the hypermultiplets) have a role in defining the general features of the resulting partially

broken rigid supersymmetry: Their supersymmetry transformation laws survive the rigid

limit and contribute a non-trivial traceless constant matrix CA
B to the scalar potential

Ward identity of the final supersymmetric theory:

VδBA + CA
B =

n∑
i=1

δλiBδλiA , (7.1)

where V is the scalar potential and λiA and λiA ≡ gī λ
̄
A are the chiral and anti-chiral

components of the gaugini. The constant matrix CA
B, is an essential ingredient in order

for the partial supersymmetry breaking to occur in the rigid theory. In [84] it was shown

that (7.1) originates from the supergravity Ward identity. We show the same feature in our

generalized dyonic setting.

Eventually, we give in a self-contained form, all the relevant identities related to the most

general gauging of special Kähler and quaternionic Kähler isometries in a generic N = 2

model, including the potential Ward-identity [97]. The general proof of the Ward-identity

for generic dyonic gaugings is a further result of our work.
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7.2 General N = 2 Gauging Identities

In the present section we give some identities which hold for the most general gauging

of N = 2 supergravity involving both electric and magnetic charges. In particular, the Ward

identity [97] which is required by the supersymmetry invariance of the gauged Lagrangian,

is considered. Here we shall work in Poincaré supergravity using the symplectic covariant

description of the special Kähler manifold and generalize the identities given in [31] to

electric-magnetic gaugings and the analysis in [91] to non-abelian gauge groups. In the later

sections these results will be applied to the very specific electric-magnetic abelian gauging,

in which the rigid limit of spontaneously broken N = 2 supergravity is discussed.

We start from an N = 2 supergravity coupled to n vector multiplets and nH hyper-

multiplets. The scalar sector consists of n complex scalars zi and 4nH hyperscalars qu

parametrizing a special Kähler manifoldMSK [98, 99, 100] and a quaternionic Kähler man-

ifold MQK [101, 102, 103], respectively, so that the scalar manifold has the form:

Mscalar =MSK (n)×MQK (nH) . (7.2)

A deep and self-contained study of the properties of special Kähler and quaternionic Kähler

manifolds can be found in [31]. The main concepts are reviewed in Appendix D.

7.2.1 Some useful relations on the sigma-model geometry.

A special Kähler manifold is locally described by a choice of complex coordinates zi and

a section of the flat holomorphic bundle defined on it:

ΩM(z) =

(
XΛ(z)

FΛ(z)

)
, Λ = 0, . . . , n , M = 1, ..., 2n+ 2 (7.3)

in terms of which the Kähler potential reads:

K(z, z̄) = − log[iΩ(z̄)TCΩ(z)] , (7.4)

In terms of Ω and K one defines the covariantly holomorphic section V M ≡ e
K
2 ΩM (see

Appendix D).

A holomorphic function fg(z) and a symplectic matrix M[g] = (M[g]M
N) are associated

with each element g of the identity-connected component GSK of the isometry group ofMSK

such that, if g : zi → z′i = z′i(z):

Ω (z′) = efg(z) M[g]−T Ω(z) ⇔ K(z′, z̄′) = K(z, z̄)− fg(z)− f̄g(z̄) , (7.5)
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where M−T ≡ (M−1)T .

If {ta} are the infinitesimal generators of GSK and ka = kia(z)∂i + kı̄a(z̄)∂ı̄ are the corre-

sponding Killing vectors satisfying the closure conditions:

[ta, tb] = fab
c tc , [ka, kb] = −fabc kc , (7.6)

then equations (7.5) imply:

`aΩ
M = kia∂iΩ

M = −taNM ΩN + fa(z)ΩM , `aK = kia∂iK + kı̄a∂ı̄K = −(fa + f̄a)K ,(7.7)

`aV
M = (kia∂i + kı̄a∂ı̄)V

M = −taNM V N +
fa − f̄a

2
V M , (7.8)

where fa = ∂ifk
i
a and taN

M is the symplectic matrix representation of the generator ta on

covariant vectors: ta[N
PCM ]P = 0 , (taΩ)M = −taNM ΩN .

Denote by Pa(z, z̄) the moment map corresponding to ka, defined as follows [99]:

kia = i gī ∂̄Pa , kı̄a = −i g ı̄i ∂iPa , (7.9)

and satisfying, under general assumptions on GSK ,

igī k
i
[a k

̄
b] = −1

2
fab

c (Pc − Cc) , (7.10)

where Cc is constant vector in the adjoint of GSK which can be reabsorbed by the redefinition

Pc − Cc → Pc.
Eqs. (7.9) are solved by:

Pa = − i
2

(
kia∂iK − kı̄a∂ı̄K

)
+ Im(fa) =

= i kı̄a∂ı̄K + i f̄a = −i kia∂iK − i fa , (7.11)

where we have used the second of (7.7) and (7.10). On the other hand, using (7.8) and (7.11)

we find:

kia U
M
i = −taNM V N + iPa V M . (7.12)

Contracting the above equation with CV and using the special geometry relations V TCV =

i, V TCUi = 0, (see Appendix D), we find:

Pa = −V N taNMV
M

= −V N
taNM V P , (7.13)

where we have defined taNM ≡ taN
PCPM = taMN .
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Moreover, we have the general property:

taMNΩMΩN = 0 , ∀ta . (7.14)

which follows by contracting (7.7) with CΩ and using the third of (D.10), i.e. V TCUi = 0,

which implies

ΩTC∂iΩ = 0 . (7.15)

The geometry of the quaternionic Kähler manifold is recalled in Appendix D, where the

general properties of the quaternionic isometries tm and their description in terms of Killing

vectors km and tri-holomorphic momentum maps Pxm are reviewed.

7.2.2 Symplectically-covariant gaugings of N = 2 supergravity.

Let us consider the gauging of a gauge group G in the isometry group of the scalar man-

ifold Mscalar. The gauge generators are conveniently written as components of an electric-

magnetic vector XM = (XΛ, X
Λ), according to the notation of [93] and expanded in the

generators {ta, tm} of the isometry groups of MSK and MQK through the embedding ten-

sor:

XM = ΘM
a ta + ΘM

m tm . (7.16)

The symplectic electric-magnetic duality action of XM is described by the symplectic matri-

ces: XMN
P = ΘM

a taN
P . Consistency of the gauging is guaranteed by the following set of

linear and quadratic constraints on the embedding tensor:

X(MNP ) ≡ X(MN
QCQ|P ) = 0 , (7.17)

ΘM
aΘN

bfab
c +XMN

P ΘP
c = 0 , (7.18)

ΘM
mΘN

nfmn
p +XMN

P ΘP
p = 0 , (7.19)

ΘM
aCMNΘN

b = ΘM
aCMNΘN

n = ΘM
mCMNΘN

n = 0 . (7.20)

Conditions (7.18), (7.19) are closure constraints, i.e. are equivalent to

[XM , XN ] = −XMN
P XP . (7.21)

The first two equalities in (7.20) follow from (7.17) and (7.18), (7.19) while the last one has

to be imposed independently [93]. We can define gauge Killing vectors and momentum maps

as follows:

kM ≡ ΘM
a ka , PM ≡ ΘM

aPa , PxM ≡ ΘM
mPxm . (7.22)
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From the quadratic constraints and Eqs.(7.10) and (D.36) we find the equivariance condi-

tions:

igī k
i
[M k̄N ] =

1

2
XMN

P PP , (7.23)

2Kx
uv k

u
M kvN + εxyz PyM P

z
N = XMN

P PxP , (7.24)

where we have used λ = −1.

Using the linear constraint we can prove the following identities:

PMΩM = 0 , kiM ΩM = 0 . (7.25)

To prove the first one we write (7.13) for the gauge-momentum maps:

PM = −eKXMNPΩ
N

ΩP . (7.26)

Contracting both sides with ΩM we find:

ΩMPM = −eK ΩMXMNPΩ
N

ΩP =
eK

2
Ω
N
XNMPΩMΩP = 0 , (7.27)

where we have used the linear constraint (7.17) and the symplectic property of the matrices

XMN
P :

2X(MP )N = −XNMP , (7.28)

being XMNP ≡ XMN
QCQP . Last equality in (7.27) then follows from (7.14).

Let us now prove the second of (7.25)

ΩM kiM = i gī ΩM ∂̄PM = i gī ∂̄(Ω
M PM) = 0 , (7.29)

where we have used the first of (7.25).

From (7.25) we can deduce the following relations:

Di(V
MPM) = 0 ⇒ UM

i PM + V M∂iP = 0 ⇒ UM
i PM + i gī k

̄
MV

M = 0 . (7.30)

Contracting (7.12) with the embedding tensor we find:

kiM UP
i = −XMN

P V N + iPM V P . (7.31)

Contracting both sides with V
M

and using the first of (7.25) we find:

V
M
kiM UP

i = −XMN
P V

M
V N . (7.32)
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Next we contract both sides with ΘP , where ΘP can be either ΘP
a or ΘP

n and use the

quadratic constraints (7.21) which imply that the generalized structure constants XMN
P are

antisymmetric in the first two indices only if contracted to the right by ΘP : XMN
PΘP =

−XNM
PΘP . By virtue of this feature we find:

V
M
kiM UP

i ΘP = −XMN
P V

M
V NΘP = XNM

P V
M
V NΘP = −V Mkı̄M U

P

ı̄ ΘP . (7.33)

The identities (7.25) and (7.33) were proven in the electric case in [99]. Here, for the first

time, we give a general, compact proof of their generalization to a generic dyonic gauging,

showing that they directly follow from the linear constraint on the embedding tensor.

7.2.3 The general Ward identity

The supersymmetry Ward identity [97] is required by the cancelation of the supersym-

metry variation terms of the gauged Lagrangian, which are quadratic in the embedding

tensor. It expresses a relation between the fermion shift matrices and the scalar potential

V(z, z̄, q) and has the following form:

gīW
i ACW

̄

BC + 2Nα
ANα

B − 12SACSBC = δBA V(z, z̄, q) , (7.34)

where W i AC , Nα
B, SAB are the supersymmetry shift-matrices of the gaugini λi, hyperini ζα

and gravitini ψA, respectively1. In this case we have that these fermion shifts have the

following symplectically-invariant expressions:

SAB =
i

2
(σx)A

CεBC PxM V M , (7.35)

W i AB = εAB kiM V
M − i (σx)C

BεCAPxM gīU
M

̄ , (7.36)

Nα
A = 2UAu α kuM V

M
, Nα

A ≡ (Nα
A)∗ = −2 UuAα kuM V M . (7.37)

Let us now prove the Ward identity [97] for the generic dyonic gauging ofN = 2 supergravity.

We shall evaluate each term in the left hand side of (7.34) separately.

Let us firt evaluate the square of the gaugini shifts:

W i ACW
̄

BCgī = δAB k
i
Mk

̄
NgīV

M
V N − i (σx)B

A
(
k̄M V M U

N

̄ − kiM V
M
UN
i

)
PxN +

+(σxσy)B
APxMP

y
NU

MN , (7.38)

1We use the following convention for rising and lowering symplectic indices:

vA = εAB v
B , vA = εBA vB , vα = Cαβ vβ , vα = Cβα vβ .
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where UMN ≡ UN
i gī U

N

̄ , see (D.20). On the r.h.s of the above expression we split the terms

proportional to δAB from those proportional to (σx)B
A and use Eq. (7.33) to find:

W i ACW
̄

BCgī = δAB

(
kiMk

̄
NgīV

M
V N + PxNPxMUMN

)
+ i (σx)B

A
(
−2XMN

PV
M
V N PxP+

+ εxyz PyMP
z
NU

[MN ]
)
. (7.39)

Now using Eqs. (D.20) and the locality constraint (7.20) we can write:

PyMP
z
NU

[MN ] = − i
2
PyMP

z
NCMN − PyMP

z
NV

[M
V N ] = −PyMP

z
NV

[M
V N ] , (7.40)

so that we finally find:

W i ACW
̄

BCgī = δAB

(
kiMk

̄
NgīV

M
V N + PxNPxMUMN

)
+ i (σx)B

A
(
−2XMN

PV
M
V N PxP+

− εxyz PyMP
z
N V

M
V N
)

(7.41)

Let us now consider the evaluation of the square of the hyperini shifts:

2Nα
ANα

A = 8UAαu Uv Bα kuM kvN V
M
V N = 4

(
δABhuv + i (σx)B

AKx
uv

)
kuM kvN V

M
V N . (7.42)

where we have used Eq. (D.31). Finally let us consider the square of the gravitini shifts:

−12SAC SBC = −3 (σxσy)B
APxMP

y
N V

MV
N

= −3PxMPxN V MV
N

+3i εxyz PyMP
z
N V

M
V N(σx)B

A .

(7.43)

In this way, we find the following expression:

gīW
i ACW

̄

BC + 2Nα
ANα

B − 12SACSBC = δAB V (z, z̄, q) + i Zx (σx)B
A , (7.44)

where

V (z, z̄, q) = (kiMk
̄
Ngī + 4huvk

u
Mk

v
N)V

M
V N + (UMN − 3V MV

N
)PxNPxM , (7.45)

is the general symplectic invariant expression of the scalar potential given in [93] as a gen-

eralization of [31] to the case of dyonic gaugings, and

Zx = (−2XMN
P PxP + 2 εxyz PyMP

z
N + 4Kx

uvk
u
M kvN)V

M
V N . (7.46)

From the equivariance condition (7.24) it follows that Zx = 0, so that the Ward identity is

proven.
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7.2.4 Abelian gauging of quaternionic isometries

The previous discussion holds for the gauging of a gauge group G in the isometry group

of the scalar manifold Mscalar. In what follows, we will consider a gauging which involves

an abelian group of quaternionic isometries. In this way, being only quaternionic isometries

gauged, the generalized structure constants vanish: XMN
P = 0. Then, (7.24) implies

Kx
uv k

u
M kvN = −1

2
εxyz PyM P

z
N .

Using this identity, it is easy to show that in this case the three fermion-shift contribute to

Zx and show that they cancel against one another:

gīW
i ACW

̄

BC → −εxyz PyMP
z
NV

M
V N , (7.47)

2Nα
ANα

B → −2 εxyz PyMP
z
NV

M
V N , (7.48)

−12SACSBC → 3 εxyz PyMP
z
NV

M
V N . (7.49)

In what follows, we will be interested in the limit of a gauged N = 2 supergravity of this

kind to a rigid supersymmetric theory of n vector multiplets [81] (rigid limit), along the lines

of [84]. In particular, the rigid limit of the Ward identity (7.34) [83, 84, 104, 105] will be a

crucial point in our analysis.

The Ward identity of an N = 2 (abelian) rigid supersymmetric theory of n vector mul-

tiplets is given by the general expression [83, 84, 105]:

g̊ī W̊
i ACW̊

̄

BC = δAB V
(APT )
N=2 (z, z̄) + CB

A , (7.50)

where V(APT )
N=2 (z, z̄) is the N = 2 scalar potential in the spontaneously broken rigid theory,

which reproduces the APT scalar potential in the case of one-vector multiplet, CB
A is a

su(2)-traceless matrix, g̊ī is the metric of the rigid special Kähler manifold describing the

scalar fields zi in the vector multiplets and W̊ i AC are the gaugini shift-matrices.

As shown in [83, 84], partial breaking of supersymmetry can occur only if CB
A 6= 0. This

happens in the presence of mutually non-local electric and magnetic Fayet-Iliopoulos terms

[83].

The symplectically-covariant relations (7.47),(7.48),(7.49) allow to elucidate the meaning

of the matrix CB
A by relating the rigid Ward identity (7.50) to the supergravity one (7.34).

In fact, let us rewrite the Ward identity in the form:

gīW
i ACW

̄

BC = δBA V(z, z̄, q)− 2Nα
ANα

B + 12SACSBC , (7.51)
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As we will see in the next section, all squared fermion-shift matrices in (7.51) survive in the

rigid limit (MPl → ∞). In particular the left-hand-side of (7.51) reproduces that of (7.50),

while the constant matrix CB
A receives contribution from the terms in Nα

ANα
B, S

ACSBC

proportional to σx, which are given in (7.48), (7.49). More specifically we will find that:

CB
A = lim

MPl→∞

M4
Pl

Λ4

(
−i εxyz PyMP

z
NV

M
V N(σz)B

A
)
, (7.52)

where Λ is the supersymmetry-breaking scale. The same hyperini and gravitini shift-matrices

also contribute terms proportional to δAB which affect the form of the scalar potential in the

resulting rigid theory. These terms were explicitly computed in (7.42) and (7.43) so that we

can identify:

V(APT )
N=2 = lim

MPl→∞

M4
Pl

Λ4

[
V(z, z̄, q)− (4huv k

u
Mk

v
N − 3PxMPxN)V

M
V N
]
. (7.53)

As we shall prove in the next section, in the rigid limit, the leading order terms in ΘN
nV N

are independent of zi, z̄i, but only depend on the hyperscalars qu, so that:

V(APT )
N=2 = lim

MPl→∞

M4
Pl

Λ4
[V(z, z̄, q)] + A(q) . (7.54)

Since the fluctuations of qu are suppressed by a factor M−1
Pl , in the rigid theory the hy-

perscalars are non-dynamical, i.e. constants. As a consequence of this the N = 2 scalar

potential of the rigid theory V(APT ) is given by the rigid limit of the supergravity potential

V modulo an unphysical additive constant. This was already observed in [84] in a particular

model.

7.3 Multi-vector generalization of the APT model

In this section, we present a supergravity model with partial breaking of N = 2 to

N = 1 supersymmetry which, in the low energy limit, gives rise to a rigid supersymmetric

theory corresponding to the generalization of the APT model [83] to a generic number n of

vector multiplets. As we will see, this procedure admits a well defined limit to many-vectors

supersymmetric Born-Infeld theory.

The minimal underlying supergravity model consists of N = 2 supergravity coupled

to n vector multiplets and a single charged hypermultiplet, whose scalars parametrize the

quaternionic manifold

MQK =
SO (4, 1)

SO (4)
. (7.55)
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Following the procedure adopted in [84], let us consider a special geometry symplectic

section

ΩM
(
zi
)

=

(
XΛ (zi)

FΛ (zi)

)
Λ = 0, I, I, i = 1, . . . , n, (7.56)

(where i are holomorphic-coordinate indices) in a symplectic frame where a holomorphic

prepotential exists. Using special coordinates zi = δiIX
I/X0, it takes the form:

F
(
XΛ
)

= −i
(
X0
)2
f
(
X i/X0

)
, (7.57)

so that, choosing:

XΛ =

{
X0 = 1

X i = zi
, (7.58)

we found

FΛ =

{
F0 = ∂F/∂X0 = −i (2f − zi∂if)

Fi = ∂F/∂X i = −i∂if
, (7.59)

and

ΩM =


1

zi

−i (2f − zi∂if)

−i∂if

 . (7.60)

In terms of the holomorphic sections the Kähler potential reads

K = − ln
[
i
(
X̄ΛFΛ −XΛF̄Λ

)]
,

= − ln
[
2
(
f + f̄

)
− (z − z̄)i

(
∂if − ∂if

)]
. (7.61)

In order to generalize the procedure in [84] to the case of n vector multiplets, we should

consider a rigid limit (µ = MPl/Λ → ∞, where MPl denotes the Planck scale and Λ the

supersymmetry breaking scale), leading to partial breaking N = 2 → N = 1 in a rigid

supersymmetric theory. In the derivation of [84] for partial breaking N = 2 → N = 1, an

essential point was the presence of a linear term (in the holomorphic special coordinate z)

in the expansion of the prepotential f(z) in powers of 1
µ
:

f (z) =
1

4
+

z

2µ
+
φ(z)

2µ2
+O

(
1

µ3

)
. (7.62)

In this way, for the case of many vector multiplets we need to introduce a set of n constant

parameters ηi, so that the holomorphic prepotential takes the form

f
(
zi
)

=
1

4
+
ηiz

i

2µ
+
φ(zi)

2µ2
+O

(
1

µ3

)
. (7.63)
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Using the standard formula for the Kähler potential (7.61) one derives, up to order µ−3

K =
K̊(1)

µ
+
K̊
µ2
r

= −ηi (z + z̄)i

µ
− 1

µ2

φ+ φ̄− (z − z̄)i
(
∂iφ− ∂iφ

2

)
−

(
ηi (z + z̄)i

)2

2

 .
so that

gī = ∂i∂̄K

=
1

µ2
g̊ī =

1

µ2

{
ηiηj −

1

2

(
∂ijφ+ ∂ijφ

)}
, (7.64)

where g̊ī corresponds to the rigid special Kähler metric. Let us note that the rigid special

Kähler metric can be found, in terms of the (rigid) Sp(2n)-symplectic section

Ω̂M =

(
zi

∂iF

)
=

(
zi

i
2
(ηiηjz

j − ∂iφ)

)
, M = 1, · · · , 2n , (7.65)

from the (rigid) prepotential

F =
i

4

[(
ηiz

i
)2 − 2φ

]
. (7.66)

In fact,

Fī = ∂i∂̄F =
i

2
(ηiη̄ − ∂i∂̄φ)

=
i

4

(
∂i∂̄φ− ∂i∂̄φ

)
+
i

2

(
ηiη̄ −

1

2

(
∂i∂̄φ+ ∂i∂̄φ

))
=

i

4

(
∂i∂̄φ− ∂i∂̄φ

)
+
i

2
g̊ī,

which can be written as

Fī = τ1ī + iτ2ī,

and where we have defined

τ1ī ≡
i

4

(
∂i∂̄φ− ∂i∂̄φ

)
, (7.67)

τ2ī ≡
g̊ī
2
. (7.68)
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The covariantly holomorphic symplectic section V M ≡ eK/2ΩM has the following expansion

V M =


1− 1

2µ
ηi (z + z̄)i +O (1/µ2)

zj − 1
2µ
ηi (z + z̄)i zj +O (1/µ2)

−i
[

1
2

+ 1
2µ

{
ηiz

i − 1
2
ηi (z + z̄)i

}]
+O (1/µ2)

− i
2µ
ηj +O (1/µ2)

 . (7.69)

Furthermore, the Kähler-covariant derivative of the symplectic section defined by,

UM
i = DiV

M = ∂iV
M +

∂iK
2
V M , (7.70)

takes the form

UM
i =


−ηi

µ
+ 1

2µ2

(
−
[
∂iφ+ ∂iφ

]
+ ∂ijφ [z − z̄]j + 3ηiηj [z + z̄]j

)
+O (1/µ3)

δji − 1
µ

(
1
2
ηk (z + z̄)k δji + ηiz

j
)

+O (1/µ3)

− i
4µ2

([
∂iφ− ∂iφ

]
− ∂ijφ [z + z̄]j + 2ηiηjz

j
)

+O (1/µ3)

− i
2µ2

(∂ijφ− ηiηj) +O (1/µ3)

 . (7.71)

As we will see in the following subsection, a natural interpretation of the constant parameters

ηi appearing in the symplectic section Ω̂M and in the metric g̊ī of the rigid theory, can be

given in supergravity as charges associated with the gauging procedure, when a different

choice of symplectic frame is considered.

Let us now consider the gauging of two translational isometries in the hypermultiplet

sector involving both electric and magnetic charges [91, 92]. This gauging can be described

in terms of a (redundant) symplectic vector of gauge generators XM ≡ (XΛ, X
Λ), expressed

as linear combinations of the isometry generators tm, m = 1, . . . , dimG, of the quaternionic

Kähler manifold through an embedding tensor [90, 93]:

XM = ΘM
m tm . (7.72)

We choose the gauging involving only two translational isometries tm (m = 1, 2) and the

embedding tensor Θ m
M

Θ α
M =

(
Θ 1
M ,Θ

2
M

)
=


Θ 1

0 Θ 2
0

Θ 1
i Θ 2

i

Θ0 1 Θ0 2

Θi 1 Θi 2

 =


e/µ2 σ/µ2

0 0

0 0

mi/µ 0

 , (7.73)
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depending on constant charges e, σ,mi, and satisfying the locality condition

CMNΘ m
M Θ n

N = 0 , where CMN =

(
0 1

−1 0

)
. (7.74)

The embedded Killing vectors k u
M =

(
k u

Λ , kΛ u
)

are related to the geometrical Killing

vectors k u
α (α = 1, . . . , dimG) generating the isometry group G of MQK by:

k u
M = Θ m

M k u
m . (7.75)

The introduction of the embedding tensor allows to write the fermion shifts δ
(Θ)
ε of the

supersymmetry transformation laws in a symplectic covariant way. For N = 2 supergravity,

they are given by

δ(Θ)
ε λi A = W i ABεB, (7.76)

δ(Θ)
ε ψA µ = iSABγµε

B, (7.77)

δ(Θ)
ε ζα = Nα

Aε
A, (7.78)

where the fermion shifts are given by [see (7.35) - (7.37)]:

W i AB = igī (σx) B
C εCAU M

̄ Θ m
M Pxm, (7.79)

SAB =
i

2
(σx) C

A εBCV
MΘ m

M Pxm, (7.80)

Nα
A = −2UαA|uk u

mV
MΘ m

M . (7.81)

where we have set kiM = 0, since our gauging does not involve special Kähler isometries.

Denoting by ϕ and ~q ≡ {q1, q2, q3} the four hyper-scalars in the solvable parametrization,

the metric of the quaternionic Kähler manifold has the following form

ds2 =
1

2

(
dϕ2 + e2ϕd~q · d~q

)
, (7.82)

and the corresponding vielbein UαA|u, appearing in the supersymmetry shift-matrices of the

hyperini, reads [84]:

UαA = UαA|udqu = −1

2
εαβ [dϕ+ ieϕd~q · ~σ]A β , (7.83)

where (σx) C
A are the standard Pauli matrices and Pxm are the quaternionic momentum maps

associated with the quaternionic isometries via the relation:

Pxm = −k u
m ωxu, (7.84)
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where ωxu denotes the SU(2)-connection on MQK . The metric (7.82) is invariant under

constant translation of the three axions: ~q → ~q + ~c. We shall choose to gauge the two

translations tn acting on q2, q3.

The gauging under consideration (7.73) involves two traslational isometries tn whose

momentum maps can be chosen as follows

Pxm = (Px1 ,Px2 ) = δxme
ϕ,

with

Px1 = (0, 1, 0) eϕ, (7.85)

Px2 = (0, 0, 1) eϕ. (7.86)

In the next section, the two hyperscalars q2, q3 will be dualized into antisymmetric tensor

fields Bn|µν .

7.3.1 Partial supersymmetry breaking and rigid limit

Here we will consider the prescription of [84]2. The partial supersymmetry breaking is

recovered considering the limit µ = MPl

Λ
→ ∞. Since the fermionic shifts are written in

natural units c = ~ = MPl = 1, and in order to explicitly perform the limit, it is convenient

to reintroduce the appropriate dependence on the Planck Mass and on the supersymmetry

breaking scale Λ, due to the gauging, in the supergravity expressions. Since the scale Λ is re-

lated to the gravitino mass by Λ2 = MPlm 3
2
, and that the special-Kähler sigma-model metric

rescales according to (7.64), then the canonically normalized kinetic terms are recovered by

the rescaling [84]:

xµ →MPlx
µ, ε→M

1/2
Pl ε,

ψµ →M
−3/2
Pl ψµ, λ→

(
MPlΛ

2
)−1/2

λ, ζα →M
−3/2
Pl ζα.

(7.87)

2In the next Section, we will consider the low energy limit of the Lagrangian starting from a different,

µ-independent, symplectic frame of the supergravity theory, and thus we will approach the rescaling in a

different way.
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If we use the above rescaling we find that the shifts of the fermions read

δλi A = −iΛ2εCA
[̊
gī
(
ex̄ − τ1̄km

k x
)

+
i

2
mi x

]
(σx) B

C eϕεB,

δψA µ = −Λ2

2
εBC

[
ex − iηj

2
mj x

]
(σx) C

A eϕεB,

δζα = −iΛ2εαβ
[
ex − iηj

2
mj x

]
(σx)β A e

ϕεA, (7.88)

where the following definitions have been used:

ex = (0, e, σ) = (0, em) ,

mi x =
(
0,mi, 0

)
= (0,mim) , (7.89)

exi = ηie
x.

Let us note that, as we will see in detail by the analysis of the Lagrangian in the rigid limit,

the hypermultiplet decouple in the rigid theory and the momentum maps PxM reduce to

constant Fayet-Iliopoulos terms PxM = (mix, exi ). The relation between them can be read

explicitly from the gaugino shift:

g̊īŪM
̄ PxM =

[̊
gī
(
ex̄ − τ1̄km

k x
)

+
i

2
mi x

]
= g̊īŪM̄ PxM , (7.90)

where UMi are related to the rigid symplectic sections introduced in (7.65) by UMi = ∂iΩ̂
M.

We emphasize here that in this formulation of the rigid limit, the FI terms are expressed

not only in terms of the parameters e, σ,mi defining the embedding tensor (the gauging

parameters), but also in terms of the parameters ηi characterizing the special geometry

through the choice of the prepotential (7.63). In the next subsection we shall discuss a

different formulation in which the FI terms only descend from the supergravity gauging

parameters.

For the case of one vector multiplet, n = 1, eq. (7.88) reproduces the results of [84]

leading to the APT model.

7.3.2 Some comments on the interpretation of the constant pa-

rameters ηi

It is well known that partial breaking of rigid supersymmetry crucially requires, in order

to evade previously stated no-go theorems[108, 109], that the quantity ξx, defined by

ξx ≡ 1

2
εxyzPyMPzNCMN = εxyzeyim

zi , (7.91)
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with eyi ,m
zi given by (7.89), be different from zero 3. This relation looks like a non-locality

condition. Nevertheless, the choice of embedding tensor as in (7.73) implies that the locality

condition

Θm
MΘn

NCMN = 2Θi[mΘ
n]
i = 0 (7.92)

is satisfied in the rigid theory so that, the condition εxyzPyMPzNCMN = 0, with PxM =

PxmΘm
M, is satisfied in the chosen frame. This is not in contradiction with (7.91) since the

FI parameters PxM of the rigid theory are not the simple restriction of the supergravity

momentum maps to the Sp (2n,R)-index M. In fact, the momentum maps in supergravity

and the Fayet-Iliopoulos terms of the rigid theory are related through (7.90), which non-

trivially involves the contribution from the index 0 of the symplectic section, keeping a

memory of the graviphoton. On the other hand, as eq.s (7.64) and (7.65) show, the geometry

of the rigid theory in the chosen coordinate frame depends in a non trivial way on the constant

parameters ηi, also appearing in (7.91) through the charges eyi = eyηi.

As we will see, the embedding of the theory in supergravity allows to clarify the topolog-

ical role of all the constant parameters involved in the gauging, showing that the ηi required

in the special geometry of the rigid theory in order to have partial supersymmetry breaking

(with its BI low energy limit), can be traded with charges via a symplectic rotation involving

a redefinition of the special coordinates in the underlying supergravity theory.

Indeed, consider the (electric) symplectic transformation in supergravity:

S(η, µ) =


1 ηi/µ 0 0

0 1
µ
1n 0 0

0 0 1 0

0 0 −ηi µ1n

 (7.93)

which induces the following rotation in the symplectic section (7.69):

Ω̃M = S · ΩM =


X0 + 1

µ
ηiX

i

1
µ
X i

F0

µFi − ηiF0

 =


X̃0

X̃ i

F̃0

F̃i

 . (7.94)

The new holomorphic prepotential is F̃ (X̃) = F (X). Since the new special coordinates z̃i

3As shown in [105], this condition is also necessary to achieve, in the low energy limit, a multi-field

generalization of the Born-Infeld Lagrangian.
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are related to the old ones by

z̃i =
zi

µ+ ηjzj
=

1

µ
ωi , (7.95)

then the reduced prepotential f̃(z̃) is related to f(z) by (see (7.57)):

f̃(z̃) = (1 +
1

µ
ηjz

j)−2f(z)

that is

f̃(z̃) =

(
1

4
+

1

2µ2
φ̃(z̃) +O(

1

µ3
)

)
(7.96)

where φ̃(z̃) = φ(z) − 1
2
(ηiz̃

i)2 ≡ Φ(ω). Note that in the new frame the linear term in

z̃ has disappeared from (7.96). Moreover, after the symplectic rotation, the covariantly

holomorphic symplectic sections Ṽ M = e
K
2 Ω̃M and ŨM

i = ∂iṼ
M can be written in a generic

coordinate frame and behave, in the rigid limit µ→∞, as:

Ṽ M =


X0

0

F0

0

 +
1

µ


0

X̊I(ω)

0

F̊I(ω)

 +O
(
1/µ2

)
, (7.97)

ŨM
i =

1

µ


0

∂iX̊
I

0

∂iF̊I

 +O
(
1/µ2

)
, (7.98)

where Ω̊M ≡ (X̊I , F̊I) (I = 1, · · ·n) denotes the symplectic section or the rigid theory (in

special coordinates X̊I(ω) = ωi, F̊I(ω) = ∂Φ
∂ωi ). In the new frame the symplectic structure

Sp(2n+ 2) of the supergravity theory flows in the rigid limit to a manifest Sp(2n) structure.

In particular, the 0-directions have a different µ-rescaling with respect to theM-directions.

They are then directly associated to the Hodge-bundle of the local special geometry (that

is to the graviphoton direction) and are projected out in the low energy limit. Still, the

special-geometry sigma-model metric in supergravity is related to its counterpart g̊ī in the

rigid limit by:

gī =
1

µ2
g̊ī , (7.99)

while the relations of special geometry imply a low-energy rescaling of the vector-kinetic-

matrix NΛΣ corresponding to the following identification of the matrix N̊ΛΣ of the rigid

113



theory:

N00 = N̊00 , NIJ = N̊IJ , N0I =
1

µ
N̊0I . (7.100)

The symplectic transformation (7.93) acts on the embedding tensor (7.73) as follows

Θ̃m
M = Θm

N · (S−1)NM =
1

µ2

(
em,−ηiem, ηimim,mim

)
=

1

µ2
Θ̊m
M , (7.101)

where Θ̊m
M is the embedding tensor of the rigid theory. In this way, in the new frame the

parameters ηi play the role of charges, since Θ̃m
i = ηie

m are the electric charges associated

with the vector multiplets and Θ̃0m = ηim
im is the magnetic charge associated with the

graviphoton. Note that in the old frame both of them were zero.

As a consequence, the new embedding tensor (7.101) satifies the same locality condition

(7.74) as the old one, but now

Θ̃Λ[mΘ̃
n]
Λ = 0 ⇒ Θ̃0[mΘ̃

n]
0 = −Θ̃i[mΘ̃

n]
i =

1

µ4
emηim

in 6= 0 . (7.102)

This expresses a sort of ”non-locality” of the rigid theory, and hints toward a high-energy in-

terpretation of it in terms of a non-triviality of the fiber bundle associated with the gravipho-

ton. In the new frame the graviphoton is identified with the 0 direction of the vector field

strengths, what is not true in the old frame. More specifically, if we denote by AΛ
µ = (A0

µ, A
I
µ),

the n+1 supergravity vector fields, in the new symplectic frame, A0
µ is consistently identified

with the graviphoton while AIµ with the vector fields of the resulting rigid theory. Since in

the rigid limit the graviphoton decouples from the spectrum, we find that the rigid super-

symmetric theory found as low energy limit of supergravity in the new frame is actually non

local. However, as we are going to discuss, the non-locality only affects the fermionic direc-

tions of superspace, while it does not emerge as a non-locality on space-time. This clarifies

the meaning of (7.91), which expresses indeed the non locality of the rigid theory, when all

the constant parameters needed for the partial breaking of supersymmetry are expressed as

electric and magnetic charges in the embedding tensor.

Moreover, this non-locality poses no obstruction to a correct definition of the vector fields

AIµ in the rigid theory, by virtue of an interesting mechanism which is at work in the rigid

limit: A generic feature of magnetic gaugings in supergravity is the fact that the vector fields

AΛ
µ corresponding to non-vanishing magnetic components ΘΛm of the embedding tensor, are

not well defined since the corresponding field strengths FΛ
µν are not covariantly closed

DFΛ ∝ ΘΛm dBm + · · · 6= 0 , (7.103)
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Bm|µµ being antisymmetric tensor fields. This poses no problem because such vector fields,

in a vacuum, are ”eaten” by the tensor ones Bm and become their longitudinal components

by virtue of the ”anti-Higgs” mechanism [107]. This is the case of the vectors AIµ which

are thus not well defined in the chosen supergravity gauging. In the rigid limit however,

as we shall show, the antisymmetric tensor fields decouple, thus preventing the anti-Higgs

mechanism from taking place, so that the vectors AIµ survive and, at the same time, become

well defined. As we shall illustrate, the magnetic character of the FI parameters ΘI m in

the rigid theory can be also related, besides to their position within the Sp(2n,R)-covariant

parameter vectors (ΘI
m, ΘI m), to the following feature of the vector field strengths: While

dF I vanish in space-time, they do not vanish in superspace since:

dF I =
i

2
ΘImPxm (σx) BA ψ̄B ∧ γaψA ∧ V a 6= 0 . (7.104)

In other words, the magnetic FI terms parametrize a non-locality only along the fermionic

directions of superspace, thus not affecting the well-definiteness of AIµ.

The effects of the non-locality (7.102) are directly related to the supersymmetric structure

of the theory. As said before, the non locality of the rigid theory is related to the non-

triviality of the fiber bundle associated with the graviphoton in the rigid limit. Because of

this and as already noted in [84], the supergravity modes associated with the underlying

N = 2 supergravity theory still freely propagate in the rigid theory (see (7.88)) even if

decoupled from the visible sector. As a consequence, the SU(2)-Lie algebra valued term

CA
B appearing in the supersymmetry Ward-identity of the spontaneously broken rigid theory

can be understood as the contribution to the Ward identity from gravitini and hyperini, still

propagating in the rigid theory.

On the other hand, it is known from [91, 93, 95, 106] that, in the presence of magnetic

charges mΛn in supersymmetric theories, the natural symplectic frame to deal with them is

rotated with respect to the purely electric frame, allowing for the presence of antisymmetric

tensors Bn|µν , coupled to the gauge fields AΛ in the combinations F̂Λ
µν = FΛ

µν + 2mΛnBnµν

4. The N = 2 supersymmetric Free Differential Algebra in four dimensions contains in

particular, in the case where the antisymmetric tensors dualize scalars in the quaternionic

4The fermionic shifts found in [84] and generalized to n vector multiplets in this work are in fact naturally

recovered in the symplectic frame where some of the hyper-scalars are dualized to tensor fields, as one can

explicitly check by comparison with Section 3 of [91], and in particular eqs. (3.13) - (3.15) there.
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sector

F̂ (2)Λ ≡ dAΛ + 2mΛnBn + (LΛ(z)ψ̄A ∧ ψBεAB + h.c.) (7.105)

H(3)
n ≡ dBn +

i

2
Pxn (σx) BA ψ̄B ∧ γaψA ∧ V a (7.106)

where LΛ are the upper-part of the special geometry symplectic sections V M and Pxn are

functions of the hyperscalars [92]. From (7.105) and (7.106) we obtain

dF̂Λ = ΘΛn
(

2Hn − iPxn (σx) BA ψ̄B ∧ γaψA ∧ V a
)
, (7.107)

where we have identified mΛn with ΘΛn. In the low energy limit the hyperscalars are not

suppresed but tend to constants, in such a way that Θ n
MPxn becomes constants Θ n

MPxn 6= 0

whose restriction to the non-zero indices Θ n
MPxn yield the FI parameters. Then, from the

expression (7.107), taking account the decoupling of the tensor fields, the clousure of the

free differential algebra gives

dF̂ I ∝ iΘI nPxn (σx) BA ψ̄B ∧ γaψA ∧ V a + · · · 6= 0 . (7.108)

From (7.108) we see that the non-locality only affects the fermionic directions of superspace,

while it does not emerge as a non-locality on space-time.

7.4 Rigid limit of the N = 2 supergravity Lagrangian

In this section, we consider the rigid limit of the N = 2 supergravity Lagrangian cor-

responding to partial breaking of supersymmetry, and whose gauge structure has been dis-

cussed in the previous section.

We shall work in the symplectic frame where the gauging structure of the theory is

unveiled and shown to involve the presence of magnetic charges. In this way, the natural

framework to perform the limit is the version of the Lagrangian where some of the scalars of

the hypermultiplets are Hodge-dualized to antisymmetric tensors Bmµν [91, 92, 93, 95, 106].

In order to perform the rigid limit, it is convenient to reintroduce in the Lagrangian

(usually written in natural units c = ~ = 1, but with also MPl = 1) the appropriate

scale dimensions. We will consider the limit process in two main steps: We will first

explicitly write the correct Planck-mass dependence of the physical fields in the supergravity

Lagrangian and then, after considering the low energy (µ → ∞) behavior of the special-

geometry sigma-model sector, we will get the appropriate redefinitions of the physical fields

appearing in the rigid supersymmetric theory.
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The canonical scale dimensions of the fields in natural units c = ~ = 1 are:

[xµ] = M−1 , [∂µ] = M , [AΛ
µ ] = [Bmµν ] = M , [zi(can.)] = [qu(can.)] = M,

[ψAµ ] = [λA] = [ζα] = M3/2 , [εA] = M−1/2 ,

while the embedding tensor is adimensional. For the embedding tensor we will consider

its symplectic-covariant expression (7.101). Since the scalars zi, qu appear in the theory

through non-linear sigma-models, we will keep them adimensional (that is we will consider

zi ≡ zi(can.)/MPl, q
u ≡ qu(can.)/MPl).

Following this prescription, the Lagrangian in [92] can be split in terms of Planck-scale

powers and reads, up to four fermions terms:

L = L(4) + L(2) + L(1) + L(0) + L(−1) (7.109)

where

L(4) = M4
PlV(z, q) (7.110)

L(2) = M2
Pl

(
−R

2
+ gī∂

µzi∂µz̄
̄ + huv∂µq

u∂µqv
)

(7.111)

L(1) = MPl

{
(− ε

µνρσ

√
−g

)

[
2Hm|νρσA

m
u ∂µq

u +
1

2
Bm|µνΘ

m
Λ

(
F̂Λ
ρσ −MPl

1

2
Θ ΛnBn|ρσ

)]
+

+
(
2SABψ̄

A
µ γ

µνψBν + igīW
iABλ̄̄Aγµψ

µ
B + 2iNA

α ζ̄
αγµψ

µ
A

+Mαβ ζ̄αζβ +Mα
iB ζ̄αλ

iB +MiAjBλ̄
iAλjB + h.c.

)}
(7.112)

L(0) = i
(
N̄ΛΣF̂−Λ

µν F̂−Σµν −NΛΣF̂+Λ
µν F̂+Σµν

)
+ 6MmnHmµνρH µνρ

n +

+
εµνλσ√
−g
(
ψ̄Aµ γνρA|λσ − ψ̄A|µγνρAλσ

)
− i

2
gī
(
λ̄iAγµ∇µλ

̄
A + λ̄̄Aγ

µ∇µλ
iA
)

+

−i
(
ζ̄αγµ∇µζα + ζ̄αγ

µ∇µζ
α
)

+

−gī∂µz̄ ̄
(
ψ̄µAλ

iA − λ̄iAγµνψAν + h.c.
)
− 2UαAu ∂µq

u
(
ψ̄µAζα − ζ̄αγ

µνψAν + h.c.
)

(7.113)

L(−1) = M−1
Pl

{
F̂−Λ
µν IΛΣ

[
LΣψ̄AµψBνεAB − 4if̄Σ

ı̄ λ̄
ı̄
Aγ

νψµBε
AB +

1

2
∇if

Σ
j λ̄

iAγµνλjBεAB+

−LΣζ̄αγ
µνζβCαβ

]
+ h.c.+

+ 2MmnH µνρ
m

[
U Aα
n

(
3iψ̄Aµγνρζα + ψ̄Aµζα

)
+ i∆ β

nα ζβγµνρζ
α
]}
, (7.114)

where huv, A
m
u , Mmn are the components of the quaternionic metric after dualizition of the

scalars qm to antisymmetric tensors Bm|µν , F̂Λ
µν := FΛ + 1

2
MPl Θ

ΛmBµνm are the gauge field-

strengths undergoing the anti-Higgs mechanism introduced in (7.105) (in our case ΘΛm =
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mΛm = 1
µ2
ηim

im), and F±Λ
µν = 1

2

(
FΛ
µν ± i

2
εµνρσFΛρσ

)
denotes projection on (anti)self-dual

part 5. Furthermore, the mass-matrices are given by [31, 92]

Mαβ = −UαAu UβBv εABΘ m
M ∇[ukv]

mV
M , (7.116)

Mα
iB = −4UαBuΘ m

M kumU
M
i , (7.117)

MiAjB =
i

3

(
σxε
−1
)
AB

Θ m
M Pxm∇jU

M
i . (7.118)

To perform the rigid limit MPl

Λ
≡ µ→∞ of the Lagrangian, we must first consider the limit

of the various couplings in the Lagrangian, and clarify the relation between supergravity

fields and their rigid counterparts correspondingly. We will identify the fields of the rigid

supersymmetric theory with a ring, to distinguish them from the supergravity fields.

From the previous section we know that the special-Kähler metric rescales as (7.99), so

that the kinetic terms of scalars and spinors in the vector multiplets in the rigid limit read

(from (7.111) and (7.113):

1

µ2
g̊ī

[
M2

Pl∂
µzi∂µz̄

̄ − i

2

(
λ̄iAγµ∇µλ

̄
A + λ̄̄Aγ

µ∇µλ
iA
)]
.

This implies that the gaugini of the rigid theory should be related to their supegravity

relatives as follows:

λ̊iA =
1

µ
λiA, (7.119)

while the holomorphic scalars should not be rescaled

z̊i = zi.

Thus, we have that

Lrig = · · · g̊ī
[
Λ2∂µz̊i∂µ ¯̊z ̄ − i

2

(
¯̊
λiAγµ∇µλ̊

̄
A +

¯̊
λ̄Aγ

µ∇µλ̊
iA
)]

+ · · ·

Furthermore, since the components of the gauge kinetic matrix NΛΣ rescale as (7.100), then

the gauge vector should not be redefined:

ÅΛ
µ = AΛ

µ , (7.120)

5In a symplectic frame, where the gauge fields undergo the standard Higgs-mechanism by coupling to the

scalars in the quaternionic sector (not dualized to antisymmetric tensors), the gauge-covariant derivative in

the quaternionic sector is defined as

∇µqu = ∂µq
u +M−1

Pl A
Λ
µΘ α

Λ k uα . (7.115)
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and the gauge kinetic term reads, at low energies:

IΛΣF
Λ
µνF

Σ|µν = I̊00F
0
µνF

0|µν + I̊IJF
I
µνF

J |µν +
2

µ
I̊0IF

0
µνF

I|µν +O(1/µ2)

where IΛΣ ≡Im(NΛΣ).

Given (7.97),(7.98),(7.101) and (7.120), we can identify the low energy limit of the self-

dual components of the graviphoton T−µν and of the matter vectors G−iµν . We find that

T−µν ≡ IΛΣL
ΛF−Σ

µν → I̊00X̊
0F̊−0

µν +O(
1

µ
) (7.121)

gīG
−i
µν ≡

i

2
IΛΣf

Λ
̄ F
−Σ
µν →

i

2µ
I̊IJ f̊

I
i F̊
−J
µν +O(

1

µ2
) (7.122)

showing that, in the rigid limit, the gauge-index 0 corresponds to the graviphoton direction,

while the gauge-index I to the matter-vectors directions.

The rescalings of the fermion shifts and spinor mass matrices follow from the low energy

limit of the symplectic sections and embedding tensor discussed in the previous section.

They are:

W i AB =
1

µ
W̊ i AB , Mαβ =

1

µ2
M̊αβ , (7.123)

SAB =
1

µ2
S̊AB , Mα

iB =
1

µ3
M̊α

iB , (7.124)

Nα
A =

1

µ2
N̊α

A , MiAjB =
1

µ3
M̊iAjB . (7.125)

As a consequence, the scalar potential rescales as

V =
1

µ4
V̊ (7.126)

In this way, the different contributions to the Lagrangian (7.109), when written in terms of
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the rescaled fields, read:

L(4) = Λ4V̊(z, q) (7.127)

L(2) = M2
Pl

(
−R

2
+ huv∂µq

u∂µqv
)

+ Λ2g̊ī∂
µz̊i∂µ˚̄z

̄ (7.128)

L(1) = MPl

{
(− ε

µνρσ

√
−g

)

[
2Hm|νρσA

m
u ∂µq

u +
1

2µ2
Bm|µνΘ̊

m
Λ

(
F̂Λ
ρσ −

MPl

µ2

1

2
Θ̊ ΛnBn|ρσ

)]
+

+
1

µ2

(
2S̊ABψ̄

A
µ γ

µνψBν + i̊gīW̊
iAB˚̄λ̄Aγµψ

µ
B + 2iN̊A

α ζ̄
αγµψ

µ
A + h.c.

)
+

+
1

µ2

(
M̊αβ ζ̄αζβ + M̊α

iB ζ̄αλ̊
iB + h.c.

)}
+

+Λ
(
M̊iAjB

˚̄λiAλ̊jB + h.c.
)
. (7.129)

L(0) = i
(
N̄ΛΣF̂−Λ

µν F̂−Σµν −NΛΣF̂+Λ
µν F̂+Σµν

)
+ 6MmnHm|µνρH µνρ

n +

+
εµνλσ√
−g
(
ψ̄Aµ γνρA|λσ − ψ̄A|µγνρAλσ

)
− i

2
g̊ī

(
˚̄λiAγµ∇µλ̊

̄
A + ˚̄λ̄Aγ

µ∇µλ̊
iA
)

+

−i
(
ζ̄αγµ∇µζα + ζ̄αγ

µ∇µζ
α
)

+

− 1

µ
g̊ī[∂µz̄

̄
(
ψ̄µAλ̊

iA − ˚̄λiAγµνψAν

)
+ h.c.]− 2UαAu ∂µq

u
(
ψ̄µAζα − ζ̄αγ

µνψAν + h.c.
)

L(−1) = Λ−1F−Iµν I̊IJ
[1

2
∇if̊

J
j
˚̄λiAγµνλ̊jBεAB

]
−M−1

Pl

[
4i˚̄fJı̄

˚̄λı̄Aγ
νψµBε

AB + h.c.
]

+

+M−1
Pl

{
F−0
µν I̊00L̊

0
[
ψ̄AµψBνεAB − ζ̄αγµνζβCαβ + h.c.

]
+

+2MmnH µνρ
m

[
U Aα
n

(
3iψ̄Aµγνρζα + ψ̄Aµζα

)
+ i∆ β

nα ζβγµνρζ
α
]}
, (7.130)
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and it reduces, in the limit µ→∞, to:

L(4) = Λ4V̊(z, q) (7.131)

L(2) = M2
Pl

(
−R

2
+ huv∂µq

u∂µqv
)

+ Λ2g̊ī∂
µzi∂µz̄

̄ (7.132)

L(1) = −2
εµνρσ√
−g

MPlHm|νρσA
m
u ∂µq

u + Λ
(
M̊iAjB

˚̄λiAλ̊jB + h.c.
)
. (7.133)

L(0) = i
(

˚̄NΛΣF−Λ
µν F−Σµν − N̊ΛΣF+Λ

µν F+Σµν
)

+ 6MmnHmµνρH µνρ
n +

+
εµνλσ√
−g
(
ψ̄Aµ γνρA|λσ − ψ̄A|µγνρAλσ

)
− i

2
g̊ī

(
˚̄λiAγµ∇µλ̊

̄
A + ˚̄λ̄Aγ

µ∇µλ̊
iA
)

+

−i
(
ζ̄αγµ∇µζα + ζ̄αγ

µ∇µζ
α
)
− 2UαAu ∂µq

u
(
ψ̄µAζα − ζ̄αγ

µνψAν + h.c.
)

(7.134)

L(−1) = Λ−1F̊−Iµν I̊IJ
[1

2
∇if̊

J
j
˚̄λiAγµνλ̊jBεAB + h.c.

]
. (7.135)

Note that after the appropriate rescalings and the low energy limit, the supergravity La-

grangian reduces to an observable sector corresponding to the rigid Lagrangian of [83], under-

going spontaneous breaking to N = 1 supersymmetry, plus a hidden sector, still propagating

but fully decoupled from the observable sector:

Lsugra → LAPT + Lhidden (7.136)

where

LAPT = Λ2g̊ī∂
µzi∂µz̄

̄ − i

2
g̊ī

(
˚̄λiAγµ∇µλ̊

̄
A + ˚̄λ̄Aγ

µ∇µλ̊
iA
)

+

+i
(

˚̄NIJF−Iµν F−Jµν − N̊IJF+I
µν F+Jµν

)
+

+Λ4V̊ + Λ
(
M̊iAjB

˚̄λiAλ̊jB + h.c.
)

+

+Λ−1F̊−Iµν I̊IJ
[1

2
∇if̊

J
j
˚̄λiAγµνλ̊jBεAB + h.c.

]
(7.137)

Lhidden = M2
Pl

(
−R

2
+ huv∂µq

u∂µqv
)

+ i
(

˚̄N00F−0
µν F−0µν − N̊00F+0

µν F+0µν
)

+

+6MmnHm|µνρH µνρ
n − 2

εµνρσ√
−g

MPlHm|νρσA
m
u ∂µq

u +

+
εµνλσ√
−g
(
ψ̄Aµ γνρA|λσ − ψ̄A|µγνρAλσ

)
− i
(
ζ̄αγµ∇µζα + ζ̄αγ

µ∇µζ
α
)

+

−2UαAu ∂µq
u
(
ψ̄µAζα − ζ̄αγ

µνψAν + h.c.
)

(7.138)
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Let us note that in the low energy limit the space-time metric, the graviphoton, the anti-

symmetric tensors and the scalars of the hypermultiplet sector, together with their fermionic

super partners obey the field equations of free waves not interacting with the rest. In par-

ticular, the metric can be chosen as a constant background, the hyperscalars can be set to

constant values.

In conclusion, in this chapter we have investigated the supergravity origin of a U(1)n,

rigid, partially-broken N = 2 supersymmetric theory whose infra-red limit is described by

the multi-field BI action of [82].

The high-energy supergravity is characterized by a visible sector described by the n

vector multiplets surviving the rigid limit, and by a hidden one consisting of the gravitational

multiplet and by a hypermultiplet, which decouple as the Planck mass is sent to infinity.
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Conclusions

In this thesis, we studied pure and matter coupled supergravity theories in different

frameworks. Standard supergravity was extended to incorporate other interesting features

like enlarged symmetries, matter couplings and cosmological constant. In particular, we

constructed different supergravity Lagrangians in three and four dimensions following a geo-

metrical approach, and using the useful properties of the S-expansion procedure. Moreover,

we presented the multi-vector generalization of a rigid, partially broken N = 2 supersym-

metric theory as a rigid limit of a gauged N = 2 supergravity with electric and magnetic

charges.

In Chaper 3, we presented supersymmetric extensions of the Maxwell type algebras in

D = 4 dimensions. Using the properties of the S-expansion method we showed that in-

equivalent Maxwell superalgebras can be obtained when different semigroups are chosen.

Thus, we obtained a family of Maxwell superalgebras having the Maxwell type algebras as

subalgebras. In particular, the S-expansion of osp (4|1) allowed us to obtain the minimal

Maxwell superalgebra sM4. Then choosing different semigroups we defined new minimal

D = 4 Maxwell type superalgebras sMm+2, which can be seen as a generalization of the

D’Auria-Fré superalgebra and the Green algebras introduced in [48], [59] respectively.

We also showed that the D = 4, N -extended Maxwell superalgebra sM(N ) derived

initially as a MC expansion in [57], can be alternatively obtained as an S-expansion of

osp (4|N ). Choosing bigger semigroups presented new D = 4 N -extended Maxwell type

superalgebras. The method considered here could play an important role in the context of

supergravity in higher dimensions.

In Chapter 4, we presented a geometric formulation of N = 1 supergravity in four

dimensions, where the relevant gauge fields of the theory are those corresponding to the

minimal Maxwell superalgebra sM4. We showed that N = 1, D = 4 pure supergravity

can be derived alternatively as the MacDowell-Mansouri like action, which is constructed
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exclusively in terms of the curvatures of the Maxwell type superalgebra sM4. Then we

obtained the minimal supergravity action in four dimensions from the sMm+2 superalgebra.

The invariance under supersymmetry was also discussed. A future work could be consider

the N -extended Maxwell superalgebras and the construction of N -extended supergravities

in diverse dimensions in a very similar way to the one shown here.

In Chapter 5, we analyzed the physical consequences of considering the supersymmetric

extension of the AdS-Lorentz algebra in the construction of a minimal supergravity theory.

Based on the AdS-Lorentz superalgebra sAdS − L4 we built the minimal D = 4 supergrav-

ity action which includes a generalized supersymmetric cosmological constant term. In this

way, an alternative way of introducing the supersymmetric cosmological constant in super-

gravity was presented. We also derived the equations of motion of and the supersymmetry

transformations.

In Chapter 6, we derived the D = 3 Chern-Simons supersymmetric action from the

(standard) Maxwell superalgebra sM. We showed that the Maxwell superalgebra can

be obtained from the osp (2|1) ⊗ sp (2) superalgebra combining the semigroup expansion

procedure with the Inönü-Wigner contraction. This procedure allowed to obtain the non-

vanishing components of an invariant tensor for the Maxwell superalgebra and to build the

most generalD = 3 CS supersymmetric action invariant under the Maxwell supergroup. The

action describes an ”exotic” supersymmetric theory without cosmological constant in three

dimensions. The CS supergravity action from a generalized minimal Maxwell superalgebra

sMg was also constructed. We showed that this generalized minimal Maxwell superalgebra

can be derived from the osp (2|1)⊗sp (2) superalgebra using the semigroup expansion method

and choosing a particular semigroup.

Eventually, in Chapter 7 we presented the multi-vector generalization of a rigid, partially

brokenN = 2 supersymmetric theory as a rigid limit of a suitable gaugedN = 2 supergravity

with electric and magnetic charges. We considered a new frame in which, in the rigid limit,

manifest symplectic invariance is preserved and the electric and magnetic Fayet-Iliopoulos

terms are fully originated from the components of the embedding tensor. Furthermore, we

gave a general proof of the Ward identity for generic dyonic gaugings.
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Appendix A

S-expansion method

In this appendix, we review the principal aspects of the S-expansion method introduced

in [18]. The S-expansion procedure consists in combining the inner multiplication law of

a semigroup S with the structure constants of a Lie (super)algebra g. This approach is

entirely based on operations performed on the (super)algebra generators, and thus differs

from the expansion method introduced in [44], where the dual Maurer-Cartan formalism was

used.

Let S = {λα} be a finite abelian semigroup with 2-selector K γ
αβ defined by

K γ
αβ =

{
1, when λαλβ = λγ,

0, otherwise,
(A.1)

and g a Lie (super)algebra with basis {TA} and structure constants C C
AB ,

[TA,TB] = C C
AB TC . (A.2)

Then, the direct product G = S × g is also a Lie (super)algebra with structure constants

C
(C,γ)

(A,α)(B,β) = K γ
αβ C

C
AB , given by[

T(A,α),T(B,β)

]
= C

(C,γ)
(A,α)(B,β) T(C,γ). (A.3)

The Lie algebra G defined by G = S × g is called S-expanded algebra of g.

When the semigroup has a zero element 0S ∈ S, it plays a somewhat peculiar role in the

S-expanded algebra. The algebra obtained by imposing the condition 0STA = 0 on G is

called 0S-reduced algebra of G.

There are different ways of extracting smaller algebras from G = S × g. Nevertheless,

before extracting smaller algebras it is necessary to apply a decomposition of the original
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algebra g. Let g =
⊕

p∈I Vp be a decomposition of g in subspaces Vp, where I is a set of

indices. Then for each p, q ∈ I it is always possible to define i(p,q) ⊂ I such that

[Vp, Vq] ⊂
⊕
r∈i(p,q)

Vr. (A.4)

Now, let S =
⋃
p∈I Sp be a subset decomposition of the abelian semigroup S such that

Sp · Sq ⊂
⋃

r∈i(p,q)

Sp. (A.5)

When such subset decomposition exists, then we say

GR =
⊕
p∈I

Sp × Vp, (A.6)

is a resonant subalgebra of G = S × g.

Another case of smaller algebra can be obtained when the semigroup has a zero element

0S ∈ S. The algebra obtained after imposing the condition 0STA = 0 on G is called 0S-

reduced algebra of G. Interestingly, there is a way to extract a reduced algebra from a

resonant subalgebra. Let GR =
⊕

p Sp × Vp be a resonant subalgebra of G = S × g. Let

Sp = Ŝp ∪ Šp be a partition of the subsets Sp ⊂ S such that

Ŝp ∩ Šp = ∅, (A.7)

Šp · Ŝq ⊂
⋂

r∈i(p,q)

Ŝr. (A.8)

Then, these conditions induce the decomposition

ǦR =
⊕
p∈I

Šp × Vp, (A.9)

ĜR =
⊕
p∈I

Ŝp × Vp, (A.10)

with [
ǦR, ĜR

]
⊂ ĜR, (A.11)

and therefore
∣∣ǦR

∣∣ corresponds to a reduced algebra of GR.

Finding the invariant tensors for an arbitrary (super)algebra is not only an interesting

mathematical problem, but also a physical one. As we have seen in the previous chapters
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an invariant tensor is a crucial ingredient in the construction of supergravity Lagrangians in

odd and even dimensions.

A useful property of the S-expansion procedure is that it provides us with an invariant

tensor for the S-expanded algebra G = S × g in terms of an invariant tensor for g. As was

shown in [18] the theorem VII.1 provides a general expression for an invariant tensor for an

expanded algebra.

Theorem VII.1: Let S be an abelian semigroup, g a Lie (super)algebra of basis {TA},
and let 〈TAn · · ·TAn〉 be an invariant tensor for g. Then, the expression

〈T(A1,α1) · · ·T(An,αn)〉 = αγK
γ

α1···αn
〈TA1 · · ·TAn〉 (A.12)

where αγ are arbitrary constants and K γ
α1···αn

is the n-selector for S, corresponds to an

invariant tensor for the S-expanded algebra G = S × g.

Furthermore, as was pointed out in [18] we can find the components of an invariant tensor

for the resonant subalgebra GR =
⊕

p Sp×Vp. In fact, the GR-valued components of (A.12)

are given by

〈T(ap1 ,αp1 ) · · ·T(apn ,αpn )〉 = αγK
γ

αp1 ···αpn
〈Tap1

· · ·Tapn 〉, with λαp ∈ Sp

It is important to note that since the 0S-reduced algebra is not a subalgebra, in general

the 0S-reduced algebra-valued components of (A.12) do not lead to an invariant tensor. In

[18] it was announced a theorem providing a general expression for an invariant tensor for a

0S-reduced algebra.

Theorem VII.2: Let S be an abelian semigroup with nonzero elements λi, i = 0, . . . , N,

and λN+1 = 0S. Let g be a Lie (super)algebra of basis {TA}, and let 〈TAn · · ·TAn〉 be an

invariant tensor for g. The expression

〈T(A1,i1) · · ·T(An,in)〉 = αjK
j

i1···in
〈TA1 · · ·TAn〉 (A.13)

where αj are arbitrary constants, corresponds to an invariant tensor for the 0S-reduced

algebra obtained from G = S × g.

The proof to these definitions and Theorems can be found in [18].
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Appendix B

Generalized Maxwell algebra

In this appendix we show how to obtain the D-dimensional generalized Maxwell algebra

Mg from so (D − 1, 2), using the S-expansion procedure. As in previous cases, we have to

consider a subspaces decomposition of the original algebra so (D − 1, 2),

g = so (D − 1, 2) = so (D − 1, 1)⊕ so (D − 1, 2)

so (D − 1, 1)
= V0 ⊕ V1, (B.1)

where V0 is generated by the Lorentz generator J̃ab and V1 is generated by the AdS boost

generator P̃a. The J̃ab, P̃a generators satisfy the commutations relations (3.7)− (3.9), thus

the subspace structure can be written as

[V0, V0] ⊂ V0, [V0, V1] ⊂ V1, [V1, V1] ⊂ V0. (B.2)

Let S
(2)
E = {λ0, λ1, λ2, λ3} be a finite abelian semigroup whose elements are dimensionless and

obey the multiplication law (3.14). Let us consider a subset decomposition S
(2)
E = S0 ∪ S1,

with

S0 = {λ0, λ1, λ2, λ3} , (B.3)

S1 = {λ1, λ2, λ3} , (B.4)

This subset decomposition is said to be ”resonant” because it satisfies [compare with eqs. (B.2)]

S0 · S0 ⊂ S0, S0 · S1 ⊂ S1, S1 · S1 ⊂ S0. (B.5)

Imposing the 0S-reduction condition λ3TA = 0,we find a new Lie algebra generated by{
Jab, Pa, Zab, Z̃ab, Z̃a

}
. These generators are defined in terms of the AdS generators as
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follows

Jab = Jab,0 = λ0J̃ab, Pa = Pa,1 = λ1P̃a, (B.6)

Z̃ab = Jab,1 = λ1J̃ab, Z̃a = Pa,2 = λ2P̃a, (B.7)

Zab = Jab,2 = λ2J̃ab, (B.8)

and satisfy the commutation relations

[Jab, Jcd] = ηbcJad − ηacJbd − ηbdJac + ηadJbc, (B.9)

[Jab, Pc] = ηbcPa − ηacPb, (B.10)

[Pa, Pb] = Zab, (B.11)

[Jab, Zcd] = ηbcZad − ηacZbd − ηbdZac + ηadZbc, (B.12)[
Jab, Z̃cd

]
= ηbcZ̃ad − ηacZ̃bd − ηbdZ̃ac + ηadZ̃bc, (B.13)[

Z̃ab, Z̃cd

]
= ηbcZad − ηacZbd − ηbdZac + ηadZbc, (B.14)[

Jab, Z̃c

]
= ηbcZ̃a − ηacZ̃b, (B.15)[

Z̃ab, Pc

]
= ηbcZ̃a − ηacZ̃b, (B.16)

others = 0, (B.17)

where we have used the multiplication law of the semigroup (3.14) and the commutation

relations of the original algebra. The new algebra obtained after a 0S-reduced resonant S-

expansion of so (3, 2) corresponds to a generalized Maxwell algebraMg [57] in D-dimensions,

and contains the Maxwell algebraM as a subalgebra . It is interesting to observe that the

Mg algebra is very similar to the Maxwell type algebraM6 introduced in [12, 17]. In fact,

one could identify Zab, Z̃ab and Z̃a with Z
(1)
ab , Z

(2)
ab and Za ofM6 respectively. However, the

commutation relations (B.11), (B.14) and (B.16) are subtly different of those of Maxwell

type algebra M6.
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Appendix C

Notations and conventions

In this Appendix we summarize our notation and conventions used in Chapters 2, 3, 4

and 5 for the gamma matrices in D = 4.

ηab = (−1, 1, 1, 1) , { γa, γb} = −2ηab, [γa, γb] = 2γab

γ5 ≡ −γ0γ1γ2γ3γ4, γ2
5 = −1, {γ5, γa} = [γ5, γab] = 0

We are working with Majorana spinors, satisfying ψ̄ = ψTC, where C is the charge conju-

gation matrix.

Furthermore, we are using that Cγa and Cγab are symmetric, while C, Cγ5 and Cγ5γa

are antisymmetric gamma matrices.

C.1 Useful identities

γabγ5 = −1

2
εabcdγ

cd, (C.1)

γaγb = γab − ηab, (C.2)

γabγcd = εabcdγ5 − 4δ
[a
[cγ

b]
d] − 2δabcd , (C.3)

γabγc = 2γ[aδb]c − εabcdγ5γd, (C.4)

γcγab = −2γ[aδb]c − εabcdγ5γd. (C.5)

ψψ̄ =
1

2
γaψ̄γ

aψ − 1

8
γabψ̄γ

abψ, (C.6)

γaψψ̄γ
aψ = 0, (C.7)

γabψψ̄γ
abψ = 0. (C.8)
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Appendix D

Special Kähler and Quaternionic

Kähler Manifolds

In this appendix we review the main properties of special Kähler and quaternionic

Kähler manifolds. We shall consider a N = 2 supergravity theory that contains 2n + 4nH

scalar fields interacting through a σ-model based on the following scalar manifold:

Mscalar =MSK (n)×MQK (nH) ,

where MSK (n) is a special Kähler manifold with n complex dimensions and MQK (nH) is

a quaternionic manifold with nH quaternionic dimensions.

D.1 Special Kähler Manifolds

The special Kähler geometry arises in the coupling of vector multiplets to N = 2, D = 4

supergravity. In this case the complex scalar fields sitting in the vector multiplets span a

manifold MSK which is not only Kählerian but also special Kählerian.

A special Kähler manifold is a Kähler manifold of restricted type (Hodge manifold)

endowed with a flat, symplectic, holomorphic bundle, and with a hermitian metric

ds2 = gī (z, z̄) dzi ⊗ dz̄ ̄, (D.1)

such that the (1, 1)-form

K = igī (z, z̄) dzi ∧ dz̄ ̄ (D.2)
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is closed (dK = 0). As in all Kähler manifolds the metric has the form:

gī = ∂i∂̄K (D.3)

On a special Kähler manifold one can always introduce a tensor bundle whose holomor-

phic section will be denoted by Ω (z) =
(
ΩM (z)

)
, M = 1, ..., 2n + 2, and will have the

following structure

Ω(z) =

(
XΛ(z)

FΛ(z)

)
, Λ = 0, . . . , n , (D.4)

The Kähler potential can be written in terms of this holomorphic section as follows

K(z, z̄) = − log[iΩ(z̄)TCΩ(z)] (D.5)

where C = (CMN) is the Sp(2(n+ 1),R)-invariant matrix;

C ≡

(
0 1

−1 0

)
. (D.6)

The transition functions connecting overlapping coordinate patches Um, Un on MSK , act on

Ω (z) as follows

Ωm = efmnMmnΩn

where fmn = fmn (z) is a holomorphic function and Mmn is a constant Sp(2(n+ 1),R) matrix.

Moreover, the action on K amounts to a Kähler transformation:

Km → Kn − fmn − f̄mn, (D.7)

We can define a covariantly holomorphic section V (z, z̄) as follows

V (z, z̄) = (V M(z, z̄)) =

(
LΛ

MΛ

)
≡ eK/2Ω (z) . (D.8)

satisfying

1 = i
〈
V |V̄

〉
= i
(
L̄ΛMΛ − M̄ΣL

Σ
)
, ∇ı̄V = 0.

The last equality implies that V is covariantly holomorphic. The action of the transition

functions on V amounts to a constant symplectic transformation combined with a U(1)-phase

related to the Kähler transformation:

Vm = eiIm(fmn)MmnVn
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We define the U (1)-covariant derivative on V as follows:

Ui = ∇iV =

(
∂i +

1

2
∂iK
)
V ≡

(
fΛ
i

hΣ|i

)
. (D.9)

Furthermore,

∇iUj = iCijkg
kl̄Ūl̄

where Cijk is a covariantly holomorphic symmetric three-tensor. Thus, in a special Kähler

manifold the section V and its covariant derivative Ui need to satisfy the following properties:

∇iUj ≡ ∂iUj +
∂iK
2
Uj − ΓkijUk = iCijkg

kl̄Ūl̄, ∇iŪ̄ = gīV̄ , V TCUi = 0, V TCŪk̄ = 0

(D.10)

Now we can introduce the period matrix via the relations

M̄Λ = N̄ΛΣL̄
Σ, hΣ|i = N̄ΣΛf

Λ
i (D.11)

which can be solved introducing the vectors

fΛ
I =

(
fΛ
i

L̄Λ

)
, hΛ|I =

(
hΛ|i

M̄Λ

)
and setting

N̄ΛΣ = hΛ|I ◦
(
f−1
)I

Σ
. (D.12)

Using V and its covariant derivatives, we can construct the following matrix:

L(z, z̄)MN ≡ (V, ēĪ
ı̄U

M

ı̄ , V
M
, eI

iUM
i ) , (D.13)

where eI
i are the inverse vielbein matrices gī =

∑n
I=Ī=1 ei

I ē̄
Ī , and N is a holonomy group

index. Eqs. (D.10) imply the following property of L:

L†CL = $ , (D.14)

where

$ ≡ −i

(
1 0

0 −1

)
. (D.15)

If we change the complex index N into a real one by means of the Cayley matrix A, thus

defining:

LSp ≡ LA , A ≡ 1√
2

(
1 i1

1 −i1

)
, (D.16)
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Eq. (D.14) expresses the condition that the real matrix LSp be symplectic since $ = ACA†.
As a consequence of this also LTSp is symplectic and this implies an other set of identities

which can be cast in the following compact form:

L$L† = C . (D.17)

Let us define in terms of L the following symmetric, negative-definite, symplectic matrix

encoding all the information about the coupling of the vector fields to the scalars:

M(z, z̄) = (MMN) ≡ CLL†C =M(z, z̄)T ,

MCM = C . (D.18)

Furthermore, under an isometry transformation g : z → z′ in GSK , using (7.5), we find that

M transforms linearly:

M(z, z̄) → M(z′, z̄′) = M[g]TM(z, z̄)M[g] . (D.19)

From the previous properties of V and Ui we find the following general symplectic covariant

relation:

UMN ≡ gī UM
i U

N
̄ = −1

2
MMN − i

2
CMN − V M

V N , (D.20)

where MMN are the components of M−1 = −LL†.
If ka is the Killing vector defining an infinitesimal isometry, then the invariance of the

Kähler form K, `aK = 0, implies

`aK = d(ιaK) = 0 ⇒ ιaK = −dPa , (D.21)

where ιa denotes the contraction of K with ka. The last equation defines the momentum

maps and is equivalent to Eqs. (7.9).

D.2 Quaternionic Kähler manifolds

Let us now consider the hypermultiplet sector of a N = 2 theory. Here there are four

real scalar fields for each hypermultiplet and, at least locally, they can be seen as the four

components of a quaternion. In this sector the scalar manifold MQK (nH) has dimension

multiple of four, dimMQK = 4nH .

A quaternionic manifold is a 4nH-dimensional real manifold endowed with a metric h:

ds2 = huv (q) dqu ⊗ dqv, u, v = 1, ..., 4nH (D.22)
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and three complex structures (Jx)uv , x = 1, 2, 3 that satisfy the quaternionic algebra

JxJy = −δxy + εxyzJz. (D.23)

The triplet of two-forms Kx

Kx = Kx
uvdq

u ∧ dqv; Kx
uv = huw (Jx)wv , (D.24)

is covariantly closed with respect to an SU (2) ' Sp (2) connection ωx

∇Kx ≡ dKx + εxyzωy ∧Kz = 0,

with curvature given by

Ωx ≡ dωx +
1

2
εxyzωy ∧ ωz = λKx, (D.25)

where λ = −1 is fixed by supersymmetry, together with appropriate normalizations for the

kinetic terms in the Lagrangian.

Equations (D.24) and (D.23) imply the following relation

Kx
uwh

wsKy
sv = −δxyhuv + εxyzKz

uv, (D.26)

where hws are the components of the inverse metric.

As a consequence of this structure the manifold MQK (nH) has a holonomy group

H = Hol (Q (nH)) = SU (2)⊗H ′, (D.27)

whereH ′ ∈ Sp (2nH ,R). Then, introducing flat indices {A,B,C = 1, 2} , {α, β, γ = 1, ..., 2nH}
that run, respectively, in the fundamental representations of SU (2) and Sp (2nH), we can

introduce a vielbein 1-form

UAα = UAαu (q) dqu (D.28)

such that

huv = UAαu UBβv CαβεAB (D.29)

where Cαβ = −Cβα and εAB = −εBA are, respectively, the flat Sp (2nH) and Sp (2) ∼
SU (2) invariant metrics. The vielbein UAα is covariantly closed with respect to the SU (2)-

connection ωx and to some Sp (2nH)-Lie algebra valued connection ∆αβ = ∆βα :

∇UAα ≡ dUAα +
i

2
ωx (εσxε)

A
B ∧ U

Bα + ∆αβ ∧ UAγCβγ = 0 (D.30)
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where (σx)
A
B are the standard Pauli matrices. Furthermore the 1-forms UAα satisfy the

following relations:

UAα ≡
(
UAα

)∗
= εABCαβUBβ

UAαuUBαv =
1

2
huvδ

B
A −

i

2
Kx
uv (σx) BA . (D.31)

Let us now consider infinitesimal isometries generated by tm, whose action on the scalar

fields is described by Killing vectors km = kum ∂u, closing the isometry algebra:

[tm, tn] = fmn
p tp , [km, kn] = −fmnp kp , (D.32)

and leaving the 4-form
∑3

x=1K
x ∧Kx invariant [99]. This condition amounts to require:

`nK
x = εxyzKyW z

n , (D.33)

where W z
n is an SU(2)-compensator. This equation is solved by writing the Killing vectors

kn in terms of tri-holomorphic momentum maps Pxn as follows [99]:

ιnK
x = −∇Pxn = −(dPxn + εxyzωy Pzn) , (D.34)

provided

Pxn = λ−1(ιnω
x −W x

n ) = W x
n − ιnωx , (D.35)

where we have used λ = −1. For those isometries with vanishing compensator, W x
n = 0, the

momentum maps have the simple expression:

Pxn = −kun ωxu.

Just as for the special Kähler manifolds, the momentum maps satisfy Poisson brackets

described by the following equivariance condition:

2Kuv k
u
n k

v
m − λ εxyz Pyn Pzm = −fmnpPxp . (D.36)
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[7] M. Bañados, C. Teitelboim, J. Zanelli, Dimensionally continued black holes, Phys. Rev.

D 49 (1994) 975–986.

[8] J. Zanelli, Lecture notes on Chern-Simons (super-)gravities. Second edition (February

2008), hep-th/0502193.

[9] A. H. Chamseddine, Topological Gauge Theory of Gravity in Five and All Odd Dimen-

sions. Phys. Lett. B 233 (1989) 291.

[10] A. H. Chamseddine, D. Wyler, Topological Gravity In (1 + 1)-Dimensions, Nucl. Phys.

B 340 (1990) 595.

139



[11] A. H. Chamseddine, Topological Gravity and Supergravity in Various Dimensions.

Nucl. Phys. B 346 (1990) 213.

[12] F. Izaurieta, P. Minning, A. Perez, E. Rodŕıguez, P. Salgado, Standard General
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[47] F. Izaurieta, E. Rodŕıguez, P. Salgado, Eleven-dimensional gauge theory for the M

algebra as an Abelian semigroup expansion of osp(32—1), Eur. Phys. J. C 54 (2008)

675 [arXiv:hep-th/0606225].

142
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arXiv:1004.3194 [hep-th].

[75] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity,

Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200].

[76] P. Mora, R. Olea, R. Troncoso, J. Zanelli, Finite action principle for Chern-Simons

AdS gravity, JHEP 0406 (2004) 036 [hep-th/0405267].

[77] P. van Nieuwenhuizen, D.V. Vassilevich, Consistent boundary condition for supergrav-

ity, Class. Quant. Grav. 22 (2005) 5029 [hep-th/0507172].

[78] L. Andrianopoli, R. D’Auria, N=1 and N=2 pure supergravities on a manifold with

boundary, JHEP 1408 (2014) 012. arXiv:1405.2010 [hep-th].

[79] S. Deser and R. Puzalowski, Supersymmetric Nonpolynomial Vector Multiplets and

Causal Propagation, J. Phys. A 13 (1980) 2501.

[80] S. Cecotti and S. Ferrara, Supersymmetric Born-infeld Lagrangians, Phys. Lett. B 187

(1987) 335.

[81] J. Hughes and J. Polchinski, Partially Broken Global Supersymmetry and the Super-

string, Nucl. Phys. B 278 (1986) 147.

[82] S. Ferrara, M. Porrati and A. Sagnotti, N = 2 Born-Infeld attractors, JHEP 1412

(2014) 065 [arXiv:1411.4954 [hep-th]].

[83] I. Antoniadis, H. Partouche, T.R. Taylor, Phys. Lett. B 372 (1996) 83.

[84] S. Ferrara, L. Girardello, M. Porrati, Phys. Lett: B 376 (1996) 275.

[85] P. Fre, L. Girardello, I. Pesando and M. Trigiante, Spontaneous N=2 → N=1 local

supersymmetry breaking with surviving compact gauge group, Nucl. Phys. B 493 (1997)

231 [hep-th/9607032].

145



[86] E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253;

S. Cecotti, L. Girardello and M. Porrati, Two Into One Won’t Go, Phys. Lett. B 145

(1984) 61.

[87] J. Louis, P. Smyth and H. Triendl, Spontaneous N=2 to N=1 Supersymmetry Breaking

in Supergravity and Type II String Theory, JHEP 1002 (2010) 103 [arXiv:0911.5077

[hep-th]].

[88] F. Cordaro, P. Fre, L. Gualtieri, P. Termonia and M. Trigiante, N=8 gaugings revisited:

An Exhaustive classification, Nucl. Phys. B 532 (1998) 245 [hep-th/9804056].

[89] H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys.

Rev. Lett. 86 (2001) 1686 [hep-th/0010076].

[90] B. de Wit, H. Samtleben and M. Trigiante, “On Lagrangians and gaugings of maximal

supergravities,” Nucl. Phys. B 655 (2003) 93 [hep-th/0212239].

[91] G. Dall’Agata, R. D’Auria, L. Sommovigo and S. Vaula, D = 4, N=2 gauged supergrav-

ity in the presence of tensor multiplets, Nucl. Phys. B 682 (2004) 243 [hep-th/0312210].

[92] R. D’Auria, L. Sommovigo and S. Vaula, N = 2 supergravity Lagrangian coupled

to tensor multiplets with electric and magnetic fluxes, JHEP 0411 (2004) 028 [hep-

th/0409097].

[93] B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory,

JHEP 0509 (2005) 016 [hep-th/0507289].

[94] B. de Wit, H. Samtleben and M. Trigiante, The Maximal D=4 supergravities, JHEP

0706 (2007) 049 [arXiv:0705.2101 [hep-th]].

[95] L. Andrianopoli, R. D’Auria and L. Sommovigo, D=4, N=2 supergravity in the pres-

ence of vector-tensor multiplets and the role of higher p-forms in the framework of free

differential algebras, Adv. Stud. Theor. Phys. 1 (2008) 561 [arXiv:0710.3107 [hep-th]].

[96] L. Andrianopoli, P. K. Concha, R. D’Auria, M. Trigiante and E. K. Rodriguez,

Observations on BI from N = 2 Supergravity and the General Ward Identity.

arXiv:1508.01474 [hep-th].

146



[97] S. Ferrara and L. Maiani, An Introduction To Supersymmetry Breaking In Extended

Supergravity, CERN-TH-4232/85; S. Cecotti, L. Girardello and M. Porrati, Constraints

On Partial Superhiggs, Nucl. Phys. B 268 (1986) 295;

[98] A. Strominger, Special Geometry, Commun. Math. Phys. 133 (1990) 163.

[99] R. D’Auria, S. Ferrara and P. Fre, Special and quaternionic isometries: General cou-

plings in N=2 supergravity and the scalar potential, Nucl. Phys. B 359 (1991) 705.

[100] A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Duality transformations in

supersymmetric Yang-Mills theories coupled to supergravity, Nucl. Phys. B 444 (1995)

92 [hep-th/9502072].

[101] J. Bagger and E. Witten, Matter Couplings in N=2 Supergravity, Nucl. Phys. B 222

(1983) 1.

[102] N. J. Hitchin, A. Karlhede, U. Lindstrom and M. Rocek, Hyperkahler Metrics and

Supersymmetry, Commun. Math. Phys. 108 (1987) 535.

[103] K. Galicki, A Generalization of the Momentum Mapping Construction for Quater-

nionic Kahler Manifolds, Commun. Math. Phys. 108 (1987) 117.

[104] M. Rocek and A. A. Tseytlin, Partial breaking of global D = 4 supersymmetry, con-

strained superfields, and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-

th/9811232].

[105] L. Andrianopoli, R. D’Auria, S. Ferrara and M. Trigiante, Observations on the

partial breaking of N = 2 rigid supersymmetry, Phys. Lett. B 744 (2015) 116

[arXiv:1501.07842 [hep-th]].

[106] L. Sommovigo and S. Vaula, D=4, N=2 supergravity with Abelian electric and magnetic

charge, Phys. Lett. B 602 (2004) 130 [hep-th/0407205].

[107] S. Cecotti, S. Ferrara and L. Girardello, Massive Vector Multiplets From Superstrings,

Nucl. Phys. B 294 (1987) 537.

[108] E. Witten, Constraints on Supersymmetry Breaking, Nucl. Phys. B 202 (1982) 253.

[109] S. Cecotti, L. Girardello and M. Porrati, Two Into One Won’t Go, Phys. Lett. B 145

(1984) 61.

147


	Acknowledgements
	Publications
	Abstract
	Introduction
	I Gravity, Maxwell symmetries and Supergravity
	General Relativity and Maxwell type algebras
	Introduction
	First order formulation of gravity
	Lanczos-Lovelock theory
	D=2n-1: Local (A)dS Chern-Simons Gravity
	D=2n: Born-Infeld-Like Gravity

	Chern-Simons gravity and Maxwell type algebras
	General Relativity from Chern-Simons gravity

	Born-Infeld gravity and Lorentz type Maxwell algebras
	General Relativity from Born-Infeld gravity

	Einstein-Lovelock-Cartan gravity theory

	 Supersymmetric extension of Gravity
	Introduction
	Supersymmetry and Supergravity: General aspects
	Mac Dowell-Mansouri Supergravity
	Osp(4|1) gauge transformations and supersymmetry

	AdS Chern-Simons Supergravity.


	II N=1 Supergravity theories, Maxwell and AdS-Lorentz superalgebras
	Maxwell superalgebras and Abelian semigroup expansion
	Introduction
	Maxwell algebra as an S-expansion
	S-expansion of the osp( 4|1)  superalgebra
	Minimal D=4 Maxwell superalgebra
	Minimal D=4 Maxwell type superalgebra sM5
	Minimal D=4 Maxwell type superalgebra sMm+2

	S-expansion of the osp( 4|N)  superalgebra
	N-extended Maxwell superalgebras


	N=1, D=4 Supergravity and Maxwell Superalgebras
	Introduction
	D=4 pure Supergravity from sM4
	sM4 gauge transformations and supersymmetry

	D=4 Supergravity from sMm+2
	sMm+2 gauge transformations and supersymmetry
	Pure supergravity from sMm+2


	N=1, D=4 Supergravity with supersymmetric cosmological term
	Introduction
	AdS-Lorentz superalgebra
	Supergravity action for sAdS-L4
	The equations of motion of D=4, N=1 AdS-Lorentz supergravity
	Supersymmetry transformations and action invariance

	Maxwell Chern-Simons Supergravity
	CS supersymmetric action from sM
	D=3 Maxwell superalgebra sM
	 Three-dimensional Maxwell CS supersymmetric action

	Maxwell-Chern-Simons Supergravity
	Three-dimensional Maxwell CS supergravity action



	III N=2 Supergravity Theory
	Observations on BI from N=2 supergravity and the General Ward Identity
	Introduction
	General N=2 Gauging Identities
	Some useful relations on the sigma-model geometry.
	Symplectically-covariant gaugings of N=2 supergravity.
	The general Ward identity
	Abelian gauging of quaternionic isometries

	Multi-vector generalization of the APT model
	Partial supersymmetry breaking and rigid limit
	Some comments on the interpretation of the constant parameters i

	Rigid limit of the N=2 supergravity Lagrangian

	Conclusions
	Appendix
	S-expansion method
	Generalized Maxwell algebra
	Notations and conventions
	Useful identities

	Special Kähler and Quaternionic Kähler Manifolds 
	Special Kähler Manifolds
	Quaternionic Kähler manifolds



