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Abstract
Understanding the theoretical foundations of how memories are encoded and retrieved in

neural populations is a central challenge in neuroscience. A popular theoretical scenario for

modeling memory function is the attractor neural network scenario, whose prototype is the

Hopfield model. The model simplicity and the locality of the synaptic update rules come at

the cost of a poor storage capacity, compared with the capacity achieved with perceptron

learning algorithms. Here, by transforming the perceptron learning rule, we present an

online learning rule for a recurrent neural network that achieves near-maximal storage

capacity without an explicit supervisory error signal, relying only upon locally accessible

information. The fully-connected network consists of excitatory binary neurons with plastic

recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics;

the memory patterns to be memorized are presented online as strong afferent currents, pro-

ducing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to

active inputs are modified as a function of the value of the local fields with respect to three

thresholds. Above the highest threshold, and below the lowest threshold, no plasticity

occurs. In between these two thresholds, potentiation/depression occurs when the local

field is above/below an intermediate threshold. We simulated and analyzed a network of

binary neurons implementing this rule and measured its storage capacity for different sizes

of the basins of attraction. The storage capacity obtained through numerical simulations is

shown to be close to the value predicted by analytical calculations. We also measured the

dependence of capacity on the strength of external inputs. Finally, we quantified the statis-

tics of the resulting synaptic connectivity matrix, and found that both the fraction of zero

weight synapses and the degree of symmetry of the weight matrix increase with the number

of stored patterns.

Author Summary

Recurrent neural networks have been shown to be able to store memory patterns as fixed
point attractors of the dynamics of the network. The prototypical learning rule for storing
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memories in attractor neural networks is Hebbian learning, which can store up to 0.138N
uncorrelated patterns in a recurrent network of N neurons. This is very far from the maxi-
mal capacity 2N, which can be achieved by supervised rules, e.g. by the perceptron learning
rule. However, these rules are problematic for neurons in the neocortex or the hippocam-
pus, since they rely on the computation of a supervisory error signal for each neuron of
the network. We show here that the total synaptic input received by a neuron during the
presentation of a sufficiently strong stimulus contains implicit information about the
error, which can be extracted by setting three thresholds on the total input, defining
depression and potentiation regions. The resulting learning rule implements basic biologi-
cal constraints, and our simulations show that a network implementing it gets very close
to the maximal capacity, both in the dense and sparse regimes, across all values of storage
robustness. The rule predicts that when the total synaptic inputs goes beyond a threshold,
no potentiation should occur.

Introduction
One of the fundamental challenges in neuroscience is to understand how we store and retrieve
memories for a long period of time. Such long-term memory is fundamental for a variety of
our cognitive functions. A popular theoretical framework for storing and retrieving memories
in recurrent neural networks is the attractor network model framework [1–3]. Attractors, i.e.
stable states of the dynamics of a recurrent network, are set by modification of synaptic effica-
cies in a recurrent network. Synaptic plasticity rules specify how the efficacy of a synapse is
affected by pre- and post-synaptic neural activity. In particular, Hebbian synaptic plasticity
rules lead to long-term potentiation (LTP) for correlated pre- and post-synaptic activities, and
long-term depression (LTD) for anticorrelated activities. These learning rules build excitatory
feedback loops in the synaptic connectivity, resulting in the emergence of attractors that are
correlated with the patterns of activity that were imposed on the network through external
inputs. Once a set of patterns become attractors of a network (in other words when the network
“learns” the patterns), upon a brief initial activation of a subpopulation of neurons, the network
state evolves towards the learned stable state (the network “retrieves” a past stored memory),
and remains in that state after removal of the external inputs (and hence maintains the infor-
mation in short-term memory). The set of initial network states leading to a memorized state is
called the basin of attraction, whose size determines how robust a memory is. The attractor
neural network scenario was originally explored in networks of binary neurons [1, 2], and then
extended from the 90s to networks of spiking neurons [4–7].

Experimental evidence in different areas of the brain, including inferotemporal cortex [8–11]
and prefrontal cortex [12–14], has provided support for the attractor neural network frame-
work, using electrophysiological recordings in awake monkeys performing delayed response
tasks. In such experiments, the monkey has to maintain information in short-term (working)
memory in a ‘delay period’ to be able to perform the task. Consistent with the attractor network
scenario, some neurons exhibit selective persistent activity during the delay period. This persis-
tent activity of ensembles of cortical neurons has thus been hypothesized to form the basis of
the working memory of stimuli shown in these tasks.

One of the most studied properties of attractor neural network as a model of memory is its
storage capacity, i.e. how many random patterns can be learned in a recurrent network of N
neurons in the large N limit. Storage capacity depends both on the network architecture and on
the synaptic learning rule. In many models, the storage capacity scales with N. In particular,
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the Hopfield network [1] that uses a Hebbian learning rule has a storage capacity of 0.138N in
the limit of N!1 [15]. Later studies showed how the capacity depends on the connection
probability in a randomly connected network [16, 17] and on the coding level (fraction of
active neurons in a pattern) [18, 19]. A natural question is, what is the maximal capacity of a
given network architecture, over all possible learning rules? This question was answered by
Elizabeth Gardner, who showed that the capacity of fully connected networks of binary neu-
rons with dense patterns scales as 2N [20], a storage capacity which is much larger than the one
of the Hopfield model. The next question is what learning rules are able to saturate the Gardner
bound? A simple learning rule that is guaranteed to achieve this bound is the perceptron learn-
ing rule (PLR) [21] applied to each neuron independently. However, unlike the rule used in the
Hopfield model, the perceptron learning rule is a supervised rule that needs an explicit “error
signal” in order to achieve the Gardner bound. While such an error signal might be available in
the cerebellum [22–24], it is unclear how error signals targeting individual neurons might be
implemented in cortical excitatory synapses. Therefore, it remains unclear whether and how
networks with realistic learning rules might approach the Gardner bound.

The goal of the present paper is to propose a learning rule whose capacity approaches the
maximal capacity of recurrent neural networks by transforming the original perceptron learn-
ing rule such that the new rule does not explicitly use an error signal. The perceptron learning
rule modifies the synaptic weights by comparing the desired output with the actual output to
obtain an error signal, subsequently changing the weights in the opposite direction of the error
signal. We argue that the total synaptic inputs (‘local fields’) received by a neuron during the
presentation of a stimulus contain some information about the current error (i.e. whether the
neuron will end up in the right state after the stimulus is removed). We use this insight to build
a field dependent learning rule that contains three thresholds separating no plasticity, LTP and
LTD regions. This rule implements basic biological constraints: (a) it uses only information
local to the synapse; (b) the new patterns can be learned incrementally, i.e. it is an online rule;
(c) it does not need an explicit error signal; (d) synapses obey Dale’s principle, i.e. excitatory
synapses are not allowed to have negative weights. We studied the capacity and the size of the
basins of attraction for a binary recurrent neural network in which excitatory synapses are
endowed with this rule, while a global inhibition term controls the global activity level. We
investigated how the strength of external fields and the presence of correlations in the inputs
affect the memory capacity. Finally, we investigated the statistical properties of the connectivity
matrix (distribution of synaptic weights, degree of symmetry).

Results

The network
We simulated a network of N binary (McCulloch-Pitts) neurons, fully-connected with excit-
atory synapses (Fig 1A). All the neurons feed a population of inhibitory neurons which is mod-
eled as a single aggregated inhibitory unit. This state-dependent global inhibition projects back
onto all the neurons, stabilizing the network and controlling its activity level. At each time step,
the activity (or the state) of neuron i (i = 1. . .N) is described by a binary variable si 2 {0,1}. The
state is a step function of the local field vi of the neuron:

si ¼ Yðvi � yÞ; ð1Þ
where Θ is the Heaviside function (Θ(x) = 1 if x> 0 and 0 otherwise) and θ is a neuronal
threshold. The local field vi represents the overall input received by the neuron from its excit-
atory and inhibitory connections (Fig 1B). The excitatory connections are of two kinds: recur-
rent connections from within the excitatory population, and external inputs.
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Fig 1. A sketch of the network and the neuronmodel. A. Structure of the network. The fully-connected
network consists of N binary (si 2 {0,1}) neurons and an aggregated inhibitory unit. The global inhibition is a
function of the state of the network and the external fields, i.e. Ið~x; ~sÞ. A memory pattern~x is encoded as
strong external fields, i.e.~x ¼ X~x and presented to the network during the learning phase.B. Each neuron
receives excitatory recurrent inputs (thin black arrows) from the other neurons, a global inhibitory input (red
connections), and a strong binary external field (xi 2 {0, X}; thick black arrows). All these inputs are summed
to obtain the total field, which is then compared to a neuronal threshold θ; the output of the neuron is a step
function of the result.

doi:10.1371/journal.pcbi.1004439.g001
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The recurrent excitatory connections are mediated by synaptic weights, denoted by a matrix
W whose elementswij (the weight of the synapse from neuron j to i) are continuous non-negative
variables (wij 2 [0,1); wii = 0). In the following, and in all our simulations, we assume that the
weights are initialized randomly before the training takes place (see Materials andMethods).

Therefore, in the absence of external inputs, the local field of each neuron i is given by:

vi ¼
XN
j¼1

wijsj � I 0ð~sÞ; ð2Þ

where I 0 ð~sÞ represents the inhibitory input.
For the sake of simplicity, we simulated a synchronous update process, in which the activity

of each neuron si is computed from the local field vi at the previous time step, and all updates
happen in parallel.

The network was designed so that, in absence of external input and prior to the training pro-
cess, it should spontaneously stabilize itself to some fixed overall average activity level f (frac-
tion of active neurons, or sparseness), regardless of the initial conditions. In particular, we
aimed at avoiding trivial attractors (the all-off and all-on states). To this end, we model the
inhibitory feedback (in absence of external inputs) as a linear function of the overall excitatory
activity:

I 0ð~sÞ ¼ H0 þ l
XN
i¼1

si � fN

 !
: ð3Þ

The parameters H0 and λ can be understood as follows: H0 is the average inhibitory activity

when the excitatory network has the desired activity level f, i.e. when
PN

i¼1 si ¼ f N ; λmeasures
the strength of the inhibitory feedback onto the excitatory network. This expression can be
interpreted as a first-order approximation of the inhibitory activity as a function of the excit-
atory activity around some reference value fN, which is reasonable under the assumption that
the deviations from fN are small enough. Indeed, by properly setting these two parameters in
relation to the other network parameters (such as θ and the average connection strength) it is
possible to achieve the desired goal of a self-stabilizing network.

In the training process, the network is presented a set of p patterns in the form of strong
external inputs, representing the memories which need to be stored. We denote the patterns as

f~xmg (where μ = 1. . .p and xmi 2 f0; 1g), and assume that each entry xmi is drawn randomly and
independently. For simplicity, the coding level f for the patterns was set equal to the spontane-
ous activity level of the network, i.e. xmi ¼ 1 with probability f, 0 otherwise. During the presen-
tation of a pattern μ, each neuron i receives an external binary input xi ¼ Xxmi , where X denotes

the strength of the external inputs, which we parameterized as X ¼ g
ffiffiffiffi
N

p
. In addition, the

external input also affects the inhibitory part of the network, eliciting a response which indi-
rectly downregulates the excitatory neurons. We model this effect as an additional term H1 in
the expression for the inhibitory term (Eq 3), which therefore becomes:

Ið~x;~sÞ ¼ H0 þ H1

PN
i¼1 xi
fNX

þ l
XN
i¼1

si � fN

 !
; ð4Þ

The general expression for the local field vi then reads:

vi ¼
XN
j¼1

wijsj þ xi � Ið~x;~sÞ: ð5Þ
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In the absence of external fields, xi = 0 for all i, and thus Eqs 4 and 5 reduce to the previous
expressions Eqs 3 and 2.

The goal of the learning process is to find values of wij’s such that the patterns f~xmg become
attractors of the network dynamics. Qualitatively, this means that, if the training process is suc-
cessful, then whenever the network state gets sufficiently close to one of the stored patterns, i.e.

whenever the Hamming distance d ¼PN
i¼1 j xmi � si j between the current network state and a

pattern μ is sufficiently small, the network dynamics in the absence of external inputs should
drive the network state towards a fixed point equal to the pattern itself (or very close to it). The
general underlying idea is that, after a pattern is successfully learned, some brief external input
which initializes the network close to the learned state would be sufficient for the network to
recognize and retrieve the pattern. The maximum value of d for which this property holds is
then called the basin of attraction size (or just basin size hereafter for simplicity); indeed, there
is generally a trade-off between the number of patterns which can be stored according to this
criterion and the size of their basin of attraction.

More precisely, the requirement that a pattern ~xm is a fixed point of the network dynamics
in the absence of external fields can be reduced to a condition for each neuron i (cfr. Eqs 4
and 5):

8i : Y
XN
j¼1

wijx
m
j � Ið~0; ~xmÞ � y

 !
¼ xmi : ð6Þ

This condition only guarantees that, if the network is initialized into a state~s ¼ ~xm , then it will
not spontaneously change its state, i.e. it implements a zero-size basin of attraction. A simple
way to enlarge the basin size is to make the requirement in Eq 6 more stringent, by enforcing a
more stringent constraint for local fields:

8i :
PN

j¼1 wijx
m
j � Ið~0; ~xmÞ > yþ f

ffiffiffiffi
N

p
� if xmi ¼ 1

PN
j¼1 wijx

m
j � Ið~0; ~xmÞ < y� f

ffiffiffiffi
N

p
� if xmi ¼ 0;

ð7Þ

8><
>:

where �� 0 is a robustness parameter. When � = 0, we recover the previous zero-basin-size sce-
nario; increasing � we make the neurons’ response more robust towards noise in their inputs,
and thus we enlarge the basin of attraction of the stored patterns (but then fewer patterns can
be stored, as noted above).

The three-threshold learning rule (3TLR)
In the training phase, the network is presented with patterns as strong external fields xi. Pat-
terns are presented sequentially in random order. For each pattern μ, we simulated the follow-
ing scheme:

Step 1: The pattern is presented (i.e. the external inputs xi are set to Xx
m
i ). A single step of syn-

chronous updating is performed (Eqs 1, 4 and 5). If the external inputs are strong enough,
i.e. γ is large enough, this updating sets the network in a state corresponding to the pre-
sented pattern.

Step 2: Learning occurs. Each neuron imay update its synaptic weights depending on 1) their
current value wt

ij, 2) the state of the pre-synaptic neurons, and 3) the value of the local

field vi. Therefore, all the information required is locally accessible, and no explicit error

A Learning Rule for Optimal Storage in Recurrent Neural Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004439 August 20, 2015 6 / 23



signals are used. The new synaptic weights wtþ1
ij are set to:

wtþ1
ij ¼

wt
ij � Zsj; if y0 < vi < y

wt
ij þ Zsj; if y < vi < y1

wt
ij; otherwise;

ð8Þ

8>><
>>:

where η is the learning rate, and θ0 and θ1 are two auxiliary learning thresholds set as

y0 ¼ y� ðgþ �Þf ffiffiffiffi
N

p ð9Þ

y1 ¼ yþ ðgþ �Þf ffiffiffiffi
N

p
: ð10Þ

We refer to this update scheme as the “three-threshold learning rule” (3TRL). After some
number of presentations, we checked whether the patterns are learned by presenting a noisy
version of these patterns, and checking whether the patterns (or network states which are very
close to the patterns) are fixed points of the network dynamics.

When N� 1, γ is large enough, and H1 = fX, the update rule described by Eq 8 is essentially
equivalent to the perceptron learning rule for the task described in Eq 7. This can be shown as
follows (see also Fig 2 for a graphical representation of the case f = 0.5 and � = 0): when a stimu-
lus is presented, the population of neurons is divided in two groups, one for which xi = 0 and

Fig 2. The three-threshold learning rule (3TLR), and its relationship with the standard perceptron
learning rule (PLR). The perceptron learning rule modifies the synaptic weights by comparing the desired
output with the actual output to obtain an error signal, subsequently changing the weights in the opposite
direction of the error signal (see the table in the left panel). For a pattern which is uncorrelated with the current
synaptic weights, the distribution is Gaussian (in the limit of largeN), due to the central limit theorem.H0 is set
such that, on average, a fraction f of the local fields are above the neuronal threshold θ; in the case of f = 0.5,
this means that the Gaussian is centered on θ (left panel). In our model (Fig 1B), the desired output is given
as a strong external input, whose distribution across the population is bimodal (with two delta functions on xi =
0 and xi = X); therefore, the distribution of the local fields during stimulus presentation becomes bimodal as
well (right panel). The left and right bumps of this distribution correspond to cases where the desired outputs
are zero and one, respectively. Note that, since the external input also elicits an inhibitory response, the
neurons in the network which are not directly affected by the external input (i.e. those with desired output
equal to zero) are effectively hyperpolarized. If X is sufficiently large, the two distributions do not overlap, and
the four cases of the PLR can be mapped to the four regions determined from the three thresholds, indicated
by vertical dashed lines (see text).

doi:10.1371/journal.pcbi.1004439.g002
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one for which xi = X. The net effect of the stimulus presentation on the local field has to take
into account the indirect effect through the inhibitory part of the network (see Eq 4), and thus
is equal to −fX for the xi = 0 population and to (1 − f)X for the xi = X population. Before learn-
ing, the distribution of the local fields across the excitatory population, in the limit N!1, is a

Gaussian whose standard deviation is proportional to
ffiffiffiffi
N

p
, due to the central limit theorem;

moreover, the parameter H0 is set so that the average activity level of the network is f, which

means that the center of the Gaussian will be within a distance of order
ffiffiffiffi
N

p
from the neuronal

threshold θ (this also applies if we use different values for the spontaneous activity level and the

pattern activity level). Therefore, if X ¼ g
ffiffiffiffi
N

p
is large enough, the state of the network during

stimulus presentation will be effectively clamped to the desired output, i.e. si ¼ xmi for all i. This
fact has two consequences: 1) the local field potential can be used to detect the desired output
by just comparing it to the threshold, and 2) each neuron i will receive, as its recurrent inputs

{sj}j 6¼ i, the rest of the pattern xmj
n o

j 6¼i
. Furthermore, due to the choice of the secondary thresh-

olds θ0 and θ1 in Eqs 9 and 10, the difference between the local field and θ0 (or θ1) during stim-
ulus presentation for the xi = 0 population (or xi = X, respectively) is equal to the difference

between the local field and y� f
ffiffiffiffi
N

p
� (or yþ f

ffiffiffiffi
N

p
�, respectively) in the absence of external

stimuli, provided the recurrent inputs are the same. Therefore, the value of the local field vi
during stimulus presentation in relation to the three thresholds θ, θ0 and θ1 is sufficient to
determine whether an error is made with respect to the constraints of Eq 7, and which kind of
error is made. Following these observations, it is straightforward to map the standard percep-
tron learning rule on the 4 different cases which may occur (see Fig 2), resulting in Eq 8.

In Fig 3 we demonstrate the effect of the learning rule on the distribution of the local field
potentials as measured from a simulation (with f = 0.5 and � = 1.2): the initial distribution of
the local fields of the neurons, before the learning process takes place and in the absence of
external fields, is well described by a Gaussian distribution centered on the neuronal threshold

θ (see Fig 3A) with a standard deviation which scales as
ffiffiffiffi
N

p
. During a pattern presentation,

the resulting distribution becomes a bimodal one; before learning takes place, the distribution

is given by the sum of two Gaussians of equal width, centered around y0 þ f
ffiffiffiffi
N

p
� and y1 �

f
ffiffiffiffi
N

p
� (Fig 3B). The left Gaussian corresponds to the cases where xi = 0 and the right one to the

cases where xi = X. Having applied the learning rule, we observe that the depression region (i.e.
the interval (θ0, θ)) and the potentiation region (i.e. (θ, θ1)) gets depleted (Fig 3C). In the testing
phase, when the external inputs are absent, the left and right parts of the distribution come

closer, such that the distance between the two peaks is equal to at least 2�f
ffiffiffiffi
N

p
(Fig 3D). This

margin between the local fields of the ON and OFF neurons makes the attractors more robust.

Storage capacity
Since our proposed learning rule is able to mimic (or approximate, depending on the parame-
ters) the perceptron learning rule, which is known to be able to solve the task posed by Eq 7
whenever a solution exists, we expect that a network implementing such rule can get close to
maximal capacity in terms of the number of memories which it can store at a given robustness
level. The storage capacity, denoted by α = p/N, is measured as a ratio of the maximum number
of patterns p which can successfully be stored to the number of neurons N, in the limit of large
N. As mentioned above, it is a function of the basin size.

We used the following definition for the basin size: a set of p patterns is said to be success-
fully stored at a size b if, for each pattern, the retrieval rate when starting from a state in which
a fraction b of the pattern was randomized is at least 90%. The retrieval rate is measured by the
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probability that the network dynamics is able to bring the network state to an attractor within
1% distance from the pattern, in at most 30 steps. The distance between the state of the network

and a pattern μ is measured by the normalized Hamming distance 1
N

PN
i¼1 j si � xmi j. Therefore,

at coding level f = 0.5, reaching a basin size bmeans that the network can successfully recover
patterns starting from a state at distance b/2.

Fig 3. Distribution of local fields before and after learning for f = 0.5 and non-zero robustness. A. Before learning begins, the distribution of local field of
neurons is a Gaussian distribution (due to central limit theorem) centered around neuronal threshold θ both for neurons with the desired output zero (OFF
neurons) and with the desired output one (ON neurons). The goal is to have the local field distribution of ON neurons (red curve) to be above the threshold θ,
and that of OFF neurons to be below θ. B.Once any of the to-be-stored patterns are presented as strong external fields, right before the learning process
starts, the local field distribution of the OFF neuron shifts toward the left-side centered around y0 þ f�

ffiffiffiffi
N

p
, whereas the distribution of the ON neurons moves

toward the right-side, centered around y1 � f�
ffiffiffiffi
N

p
, with a negligible overlap between the two curves if the external field is strong enough. Thanks to the strong

external fields and global inhibition, the local fields of the ON and OFF neurons are well separated.C. Due to the learning process, the local fields within the
depression region [i.e. (θ0, θ)] get pushed to the left-side, below θ0, whereas those within the potentiation region get pushed further to the right-side, above θ1.
If the learning process is successful, it will result in a region (θ0, θ1) which no longer contain local fields, with two sharp peaks on θ0 and θ1. D. After successful
learning, once the external fields are removed, the blue and red curves come closer, with a gap equal to 2f�

ffiffiffiffi
N

p
. The larger the robustness parameter �, the

more the gap between the left- and right-side of the distribution. Notice that now the red curve is fully above θ which means those neurons remain stably ON,
while the the blue curve is fully below θ, which means those neurons are stably OFF. Therefore the corresponding pattern is successfully stored by the
network.

doi:10.1371/journal.pcbi.1004439.g003
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Fig 4A shows the maximal capacity as a function of the basin size for a simulated network of
N = 1001 neurons. We simulated many pairs of (α, �) with different random seeds, obtaining a
probability of success for each pair. The red line shows the points for which the probability of
successful storage is 0.5, and the error bars span 0.95 to 0.05 success probability. The capacity
was optimized over the robustness parameter �. The maximal capacity (the Gardner bound) in
the limit of N!1 at the zero basin size is αc = 2 for our model (see Materials and Methods

Fig 4. Critical capacity as a function of the basin size and the robustness parameter. A. The red plot
shows the critical capacity as a function of the size of the basins of attraction (N = 1001 neurons in the dense
regime f = 0.5) when the strength of the external field is large (γ = 6) such that the ON and OFF neuronal
populations are well separated. The points indicate 0.5 probability of successful storage at a given basin size,
optimized over the robustness parameter �. The error bars show the [0.95,0.05] probability interval for
successful storage. The blue plot shows the performance of the Hopfield model with N = 1001 neurons. The
maximal capacity at zero basin size (the Gardner bound) is equal to 2.B. To compare the result of simulation
of our model with the analytical results, we plotted the critical capacity as a function of the robustness
parameter �. The dark red curve is the critical capacity versus � for our model obtained form analytical
calculations (see Materials and Methods), the cyan line shows the result of simulations of our model, and the
dark blue shows the Gardner bound for a network with no constraints on synaptic weights. The difference
between the two theoretical curves is due to the constraints on the weights in our network.

doi:10.1371/journal.pcbi.1004439.g004
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for the calculation), as for a network with unconstrained synaptic weights [20]. In Fig 4A, we
also compare our network with the Hopfield model. Our network stores close to the maximal
capacity at zero basin size, at least eleven times more than the Hopfield model. Across the
range of basin sizes, 3TLR achieves more than twice the capacity that can be achieved with the
Hopfield model.

The enlargement of the basin of attraction was achieved by increasing the robustness
parameter �. We computed the maximal theoretical capacity as a function of � at N!1 (see
Materials and Methods) and compared it to our simulations, and to the maximal theoretical
capacity of the Hopfield network. The results are shown in Fig 4B. For any given value of �, the
cyan curve shows the maximum α for which the success ratio with our network was at least 0.5
across different runs. The difference between the theory and the experiments in our model can
be ascribed to several factors: the finite size of the network; the choice of the finite learning rate
η, and the fact that we imposed a hard limit on the number of pattern presentations (see num-
ber of iterations in Table 1), while the perceptron rule for excitatory synaptic connectivity is
only guaranteed to be optimal in the limit of η! 0, with a number of presentations inversely
proportional to η [25]. Note that the correspondence between the PLR and the 3TLR is only
perfect in the large γ limit, and is only approximate otherwise, as can be shown by comparing
explicitly the synaptic matrices obtained by both algorithms on the same set of patterns (see
Materials and Methods).

A crucial ingredient of the 3TLR is having a strong external input which effectively acts as a
supervisory signal. How strong do the external fields need to be? How much does the capacity
depend on this strength? To answer these questions, we measured the maximum number of
stored patterns as a function of the parameter γ which determines the strength of external fields

as X ¼ g
ffiffiffiffi
N

p
. This parameter, in fact, determines how far the two Gaussian distributions of the

local field are; as shown in Fig 2, the distance between the two peaks of the distribution is X.
For large enough γ, the overlap of these two distributions is negligible and the capacity is maxi-
mal; but as we lower γ, the overlap increases, causing the learning rule to make mistakes, i.e.
when it should potentiate, it depresses the synapses and vice versa. In our simulations with
N = 1001 neurons in the dense regime f = 0.5 at a fixed epsilon � = 0.3, we varied γ and com-
puted the maximum α that can be achieved with a fixed number of iterations (1000). The
capacity indeed gradually decreases as γ decreases, until it reaches a threshold, below which
there is a sharp drop of capacity (see Fig 5). With the above values for the parameters, this tran-
sition occurs at γ� 2.4.

The 3TLR can also be adapted to work in a sparser regime, at a coding level lower than 0.5.
However, the average activity level of the network is determined byH0, and their relationship

Table 1. Table of parameters in the simulation.

Parameter name Value in dense regime Value in sparse regime

N 1001 1001

l ¼ �w init
ij � 1.08 � 1.08

f 0.5 0.2

ψ 0.35 0.35

θ 350 350

η 0.01 [0.001 when � = 0] 0.01 [0.001 when � = 0]

γ 6.0 12.0

# of interations (learning) 1000 [10000 when � = 0] 1000 [10000 when � = 0]

# of trials in test phase 50 50

doi:10.1371/journal.pcbi.1004439.t001

A Learning Rule for Optimal Storage in Recurrent Neural Networks

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004439 August 20, 2015 11 / 23



also involves the variance of the distribution of the synaptic weights when f 6¼ 0.5 (see Materials
and Methods). During the learning process, the variance of the weights changes, which implies
that the parameterH0 must adapt correspondingly. In our simulations, this adaptation was per-
formed after each complete presentation of the whole pattern set. In practice, this additional
self-stabilizing mechanism could still be performed in an unsupervised fashion along with (or in
alternation with) the learning process. Using this adjustment, we simulated the network at
f = 0.2 and compared the results with the theoretical calculations. As shown in Fig 6, we can
achieve at least 70% of the critical capacity across different values of the robustness parameter �.

Fig 5. Dependence of the critical capacity on the strength of the external input.We varied the strength
of the external field (γ) in order to quantify its effect on the learning process. The critical capacity is plotted as
a function of γ at a fixed robustness � = 0.3 in the dense regime f = 0.5. The simulations show that there is a
very sharp drop in the maximum α when γ goes below� 2.4.

doi:10.1371/journal.pcbi.1004439.g005

Fig 6. Capacity as a function of the robustness parameter � at sparseness f = 0.2. The theoretical
calculations is compared with the simulations for f = 0.2. Note that the capacity in the sparse regime is higher
than in the dense regime.

doi:10.1371/journal.pcbi.1004439.g006
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We also investigated numerically the effect of correlations in the input patterns. The PLR is
able to learn correlated patterns as long as a solution to the learning problem exists. As the
3TLR approximates the PLR, we expect the 3TLR to be able to learn correlated patterns as well.
As a simple model of correlation, we tested patterns organized in L categories [26, 27]. Each
category was defined by a randomly generated prototype. Prototypes were uncorrelated from
category to category. For each category, we then generated p/L patterns independently with a
specified correlation coefficient c with the corresponding prototype. We show in Fig 7 the
results of simulations with L = 5, f = 0.2 and � = 3. The figure shows that the learning rule
reaches a capacity that is essentially independent of c, in the range 0� c� 0.75.

Statistical properties of the connectivity matrix
We next investigated the statistical properties of the connectivity matrix after the learning pro-
cess. Previous studies have shown that the distribution of synaptic weights in perceptrons with
excitatory synapses becomes at maximal capacity a delta function at zero weight, plus a trun-
cated Gaussian for strictly positive weights [25, 28–30]. Our model differs from this setting
because of the global inhibitory feedback. Despite this difference, the distribution of weights in
our network bear similarities with the results obtained in these previous studies: the distribu-
tion exhibits a peak at zero weight (‘silent’, or ‘potential’ synapses), while the distribution of
strictly positive weights resembles a truncated Gaussian. Finally, the fraction of silent synapses
increases with the robustness parameter (see Fig 8).

We have also computed the degree of symmetry of the weight matrix. The symmetry degree
is computed as the Pearson correlation coefficient between the reciprocal weights in pairs of
neurons. We observe a general trend towards an increasingly symmetric weight matrix as more
patterns are stored, for all values of the robustness parameter � (see Fig 9).

Fig 7. Capacity as a function of correlations in the input patterns, for f = 0.2 at � = 3.0. Patterns are
organized in categories, with a correlation cwith the prototype of the corresponding category (see text).

doi:10.1371/journal.pcbi.1004439.g007
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Discussion
We presented a biologically-plausible learning rule that is characterized by three thresholds,
and is able to store memory patterns close to the maximal storage capacity in a recurrent neural
networks without the need of an explicit “error signal”. We demonstrated how the learning
rule can be considered a transformed version of the PLR in the limit of a strong external field.
Our network implements the separation between excitatory and inhibitory neurons, with
learning occurring only at excitatory-to-excitatory synapses. We simulated a recurrent network
with N = 1001 binary neurons, reaching to αc = 1.6 at zero basin size. We then used a robust-
ness parameter � to enlarge the basin size. The simulations showed that we are close to the the-
oretical capacity across the whole investigated range of values of �. We expect that as N
increases and the learning rate gets smaller, this difference would go to zero.

Fig 8. Synaptic weight distributions.Comparing the distributions of the synaptic weights at critical capacity for three different values of robustness
obtained from simulation. The distribution of weights approaches a Dirac-delta distribution at zero plus a truncated Gaussian. As the patterns becomemore
robust, the center of the partial Gaussian shifts towards the left, and the number of silent synapses increases.

doi:10.1371/journal.pcbi.1004439.g008

Fig 9. The degree of symmetry of the weight matrix. The Pearson correlation coefficient betweenwij and
wji is computed at different values of α for three values of �. As α increases the weight matrix tends to be more
symmetric, but gets saturated for high α. For the same values of α, as the robustness increases, the
correlation also increases, so the weight matrix becomes more symmetric. Error bars (across 10 runs) are
smaller than the symbols.

doi:10.1371/journal.pcbi.1004439.g009
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Two crucial ingredients of the 3TLR are necessary: (1) strong external inputs, (2) three
learning thresholds which are set according to the statistics of inputs to the neuron. The learn-
ing rule only uses information that is local to a synapse and corresponding neurons. Like classic
Hebbian learning rules, our 3TLR works in an online fashion. In addition, it can also perform
as a ‘palimpsest’ [31–33]: in case the total number of patterns exceeds the maximal capacity (at
a certain basin size) the network begins to forget patterns that are not being presented
anymore.

Comparison with other learning rules
The 3TLR can be framed in the setting of the classic Bienenstock-Cooper-Munro (BCM) the-
ory [34, 35], with additional requirements to adapt it to the attractor network scenario. The
original BCM theory uses firing-rate units, and prescribes that synaptic modifications should
be proportional to (1) the synaptic input, and (2) a function ϕ(v) of the total input v (or, equiv-
alently, of the total output). The function ϕ(v) is subject to two conditions: (1) ϕ(v)� 0
(or� 0) when v> θ (or< θ, respectively); (2) ϕ(0) = 0. The parameter θ is also assumed to
change, but on a longer time scale (such that the changes reflect the statistics of the inputs);
this (metaplastic) adaptation has the goal of avoiding the trivial situations in which all inputs
elicit indistinguishable responses. This (loosely specified) framework ensures that, under rea-
sonable conditions, the resulting units become highly selective to a subset of the inputs, and
has been mainly used to model the developmental stages of primary sensory cortex. The arising
selectivity is spontaneous and completely unsupervised: in absence of further specifications,
the units become selective to a random subset of the inputs (e.g. depending on random initial
conditions).

Our model is defined on simpler (binary) units; however, if we define ϕ(v) = Θ (v − θ)Θ
(θ1 − v) − Θ (θ − v) Θ (v − θ0), then ϕ behaves according to the prescriptions of the BCM the-
ory. Furthermore, we have essentially assumed the same slow metaplastic adaptation mecha-
nism of BCM, even though we have assigned this role explicitly to the inhibitory part of the
network (see Materials and Methods). On the other hand, our model has additional require-
ments: (1) ϕ(v) = 0 when v< θ0 or v> θ1, (2) plasticity occurs during presentation of external
inputs, which in turn are strong enough to drive the network towards a desired state. The sec-
ond requirement ensures that the network units become selective to a specific subset of the
inputs, as opposed to a random subset as in the original BCM theory, and thus that they are
able to collectively behave as an attractor network. The first requirement ensures that each unit
operates close to critical capacity. Indeed, these additional requirements involve extra parame-
ters with respect to the BCM theory, and we implicitly assume these parameters to also slowly
adapt according to the statistics of the inputs during network formation and development.

A variant of the BCM theory, known as ABS rule [36, 37] introduced a lower threshold for
LTD, analogous to our θ0, motivated by experimental evidence; however, a high threshold for
LTP, analogous to our θ1, was not used there, or—to our knowledge—in any other BCM vari-
ant. The idea of stopping plasticity above some value of the ‘local field’ has been introduced
previously to stabilize the learning process in feed-forward networks with discrete synapses
[38–40]. Our study goes beyond these previous works in generalizing such a high threshold to
recurrent networks, and showing that the resulting networks achieve close to maximal
capacity.

Comparison with data and experimental predictions
In vitro experiments have characterized how synaptic plasticity depends on voltage [41] and
firing rate [42], both variables that are expected to have a monotonic relationship with the total
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excitatory synaptic inputs received by a neuron. In both cases, a low value of the controlling
variable leads to no changes; intermediate values lead to depression; and high values to potenti-
ation. These three regimes are consistent with the three regions for v< θ1 in Fig 2. The 3TLR
predicts that a fourth region should occur at sufficiently high values of the voltage and/or firing
rates. Most of the studies investigating the dependence of plasticity on firing rate or voltage
have not reported a decrease in plasticity at high values of the controlling variables, but these
studies might have not increased sufficiently such variables. To our knowledge, a single study
has found that at high rates, the plasticity vs rate curve is a decreasing function of the input rate
[43].

Another test of the model consists in comparing the statistics of the synaptic connectivity
with experimental data. As it has been argued in several recent studies [25, 28, 30, 44, 45], net-
works with plastic excitatory synapses are generically sparse close to maximal capacity, with a
connection probability that decreases with the robustness of information storage, consistent
with short range cortical connectivity [46, 47]. Our network is no exception, though the frac-
tion of silent synapses that we observe is significantly lower than in models that lack inhibition.
Furthermore, network that are close to maximal capacity tends to have a connectivity matrix
that has a significant degree of symmetry, as illustrated by the over-representation of bidirec-
tionally connected pairs of neurons, and the tendency of bidirectionally connected pairs to
form stronger synapses than unidirectionally connected pairs as observed in cortex [47, 48],
except in barrel cortex [49]. Again, the 3TLR we have proposed here reproduces this feature
(Fig 9), consistent with the fact that the rule approaches the optimal capacity.

Future directions
Our network uses the simplest possible single neuron model [50]. One obvious direction for
future work would be to implement the learning rule in a network of more realistic neuron
models such as firing rate models or spiking neuron models. Another potential direction
would be to understand the biophysical mechanisms leading to the high threshold in the 3TLR.
In any case, we believe the results discussed here provide a significant step in the quest for
understanding how learning rules in cortical networks can optimize information storage
capacity.

Materials and Methods

Simulation
The main equations of the network, the neuron model, the learning rule, and the criteria for
stopping the learning algorithm are outlined in the Results section, Eqs 1–7. We present here
additional details about network simulations.

Network setup before learning process. Before applying the learning rule, we required
the network to have stable dynamics around a desired activity level f. A network with only
excitatory neurons is highly unstable and typically converges towards the trivial all-off and all-
on states; therefore, we implemented a global inhibition such that the network operates around
activity level f. The basal inhibitory term (H0) and the inhibitory reaction term (H1) are defined
as:

H0 ¼ ðN � 1Þðf �w � cÞ þ �w H
�1ðf Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN � 1Þfp ð11Þ

H1 ¼ f g
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p ð12Þ

whereH xð Þ ¼ 1
2
erfc xffiffi

2
p
� �

and H−1 is the inverse of H, ψ is defined as θ = (N − 1)ψ; �w and σw are
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the mean and standard deviation of the synaptic weights, respectively. With these definitions
the network dynamics is stable in the sense that the activity level converges to f very fast,
regardless of the initial condition.

In Eq 11, we see thatH0 depends on the activity level f and on the standard deviation of the
weights σw. In the dense regime, f = 0.5, we have H−1(0.5) = 0, therefore the rightmost term of
Eq 11 vanishes, which means that in this regime H0 is independent of σw. However, in sparser
regimes, the network must be endowed with a mechanism to adjust for the changes in standard
deviation, otherwise the learning process would bring the network out of the stable state,
changing the basal activity level. In contrast, the mean synaptic efficacy �w does not change sig-
nificantly during the learning process.

In all our simulations, the initial values for {wij} were sampled from a Gaussian distribution
with mean and standard deviation equal to one, after which negative values were set to zero.
This has the effect the �w init

ij is slightly higher than one. We also set wii = 0 for all i.

Table 1 shows the values of the parameters used in the simulations, in the dense and sparse
regimes.

Direct comparison between the 3TLR and the PLR. In order to determine the degree to
which the 3TLR is able to mimic the PRL, and the effect of deviations from the latter rule, we
tested both rules on the same tasks. In these simulations, every part of the simulation code was
kept identical—including the pseudo-random numbers used to choose the initial state and the
arbitrary permutations for the update order of the units—except for the learning rule. We
tested the network in the dense case f = 0.5, at � = 3, varying the storage load α, using 10 sam-
ples for each point. We compared the probability of solving the learning task and the distribu-
tion of the discrepancies (absolute value of the differences) in the values of the resulting
synaptic weights. We tested two values of the parameter γ, 6 (as in Fig 4) and 12. We found
that at γ = 12 there was absolutely no difference between the two rules, while at γ = 6 the 3TLR
performed slightly worse, and significant deviations from the PLR started to appear close to the
maximal capacity of the 3TLR (see Fig 10).

Analytical calculation of the storage capacity at infinite N
Entropy calculation. In this section, we present the details of the calculations for the typi-

cal storage capacity of our network in the limit of N!1, using the Gardner analysis [20, 28].
The capacity is defined as the maximum value of α = p/N such that a solution to Eq 7 can

typically be found.
We can rewrite Eq 7 as

8i :
YaN
m¼1

Y ð2xm
i � 1ÞðXN

j¼1

wijx
m
i � H0 � lðXN

j¼1

xmj � fNÞ � yÞ � f �
ffiffiffiffi
N

p !
¼ 1 ð13Þ

where

H0 ¼ Nf �w � yþ H�1ðf Þsw

ffiffiffiffiffi
fN

p ð14Þ

l ¼ �w ð15Þ
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Eq 13 becomes:

8i :
YaN
m¼1

Y ð2xm
i � 1ÞðXN

j¼1

ðwij � �wÞxmi � H�1ðf Þsw

ffiffiffiffiffi
fN

p Þ � f �
ffiffiffiffi
N

p !
¼ 1 ð16Þ

Let us now consider a single unit i. We write sm
i ¼ 2xm

i � 1
� �

, and re-parametrize the

weights asWij ¼ wij

�w
� 1 2 �1;1½ Þ, and also define

T ¼ H�1ðf Þ ffiffiffi
f

p ð17Þ

K ¼ �

�w
: ð18Þ

Dropping the index i and neglecting terms of order 1, we obtain:

YaN
m¼1

Y sm
XN
j¼1

Wjx
m
j � T

sw

�w

ffiffiffiffi
N

p !
� fK

ffiffiffiffi
N

p !
¼ 1 ð19Þ

Fig 10. Direct comparions of the 3TLR and the PLR. Success probability for the 3TLR at γ = 6 (blue curve,
left axis) and the PLR (red curve) at f=0.5 and ϵ=3; the results for the 3TLR at γ = 12 are identical to those of
the PLR (red curve). The orange points show the absolute difference of weights between the final values of
the weights for the PLR at γ = 6 and the PLR (right axis): the points show the median of the distribution, while
the error bars span the 5th-95th percentiles, showing that, while the distribution is concentrated at near-zero
values, outliers appear at the critical capacity of the 3TLR algorithm. (Note that the average value of the
weights is in all cases approximately 1.08; also compare the discrepancies with the overall distribution of the
weights, Fig 8).

doi:10.1371/journal.pcbi.1004439.g010
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Our goal is to compute the quenched entropy of this problem, i.e. the scaled average of the
logarithm of the volume ofW which satisfies the above equation:

S ¼ 1

N
hlogVifxm ;smg

¼ 1

N
log
Z YN

j¼1

ðdWjYðWj þ 1ÞÞ
YaN
m¼1

Y sm
XN
j¼1

Wjx
m
j �

sw

�w
T
ffiffiffiffi
N

p !
� fK

ffiffiffiffi
N

p !* +
fxm;smg

ð20Þ

The computation proceeds along the lines of [20, 28], by using the so-called replica trick to
perform the average of the logarithm of V, exploiting the identity:

h logVi ¼ lim
n!0

hVni � 1

n
; ð21Þ

performing the computation for integer values of n and using an analytical continuation to per-
form the limit n! 0. We perform the calculation using the replica-symmetric (RS) Ansatz,
which is believed to give exact results in the case of perceptron models with continuous
weights. The final expression for the entropy depends on six order parameters; the first three
are Q, q andM, whose meaning is

Q ¼ 1

N

X
j
ðWjÞ2

q ¼ 1

N

X
j
Wa

j W
b
j

M ¼ 1ffiffiffiffi
N

p
X

j
Wj

where we usedWa andWb to denote two different replicas of the system, which can simply be
interpreted as two independent solutions to the constraint equation.Q is called the self-overlap,

and is equal to sw
�w

� �2
in our case, while q is the mutual-overlap. The remaining order parameters

are the conjugate quantities Q̂, q̂ and M̂ . The entropy expression is:

S Q; q;M; Q̂; q̂; M̂
� � ¼ � QQ̂ � qq̂

2

� �
þ aZA Q; q;Mð Þ þ ZW Q̂; q̂; M̂

� � ð22Þ

where

ZAðQ; q;MÞ ¼
Z

Du ln H
K � sðM � T

ffiffiffiffi
Q

p Þ þ uð1� f Þ ffiffiffi
q

p
ð1� f Þ ffiffiffiffiffiffiffiffiffiffiffiffi

Q� q
p

� �� �	 

s

ð23Þ

ZWðQ̂; q̂; M̂Þ ¼ R
Du ln

R1
�1
dW exp � 1

2
q̂ � 2Q̂
� �

W2 þW u
ffiffiffî
q

p
� M̂

� �� �� �
: ð24Þ

We used the usual notation Du � du e
�u2

2ffiffiffiffi
2p

p ¼ duG uð Þ to denote Gaussian integrals, and defined

H xð Þ ¼ R1
x Du ¼ 1

2
erfc xffiffi

2
p
� �

. In the following, we will also use the shorthand GðxÞ ¼ GðxÞ
HðxÞ.

We also used the notation h � iσ to denote the average over the output σ, i.e. h’(σ)iσ = f’(1) +
(1 − f ) ’ (−1) for any function ’. The value of the order parameters is found by extremizing S.
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The notation and the following computations can be simplified using:

DQ ¼ Q� q ð25Þ

tsðuÞ ¼
K � sðM � T

ffiffiffiffi
Q

p Þ þ uð1� f Þ ffiffiffi
q

p
ð1� f Þ ffiffiffiffiffiffiffi

DQ
p ð26Þ

DQ̂ ¼ q̂ � 2Q̂ ð27Þ

nðu;WÞ ¼ e
�
1

2
DQ̂W2 þW u

ffiffiffî
q

p
� M̂

� �
ð28Þ

The extremization of S then results in the system of equations:

DQ̂ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðQ� DQÞDQp Z
DuuhGðtsðuÞÞis ð29Þ

q̂ ¼ a
DQ

Z
DuhGðtsðuÞÞtsðuÞis þ DQ̂ ð30Þ

0 ¼
Z

DuhGðtsðuÞÞsis ð31Þ

Q ¼ R Du
R1
�1
dWW2nðu;WÞR1
�1
dWnðu;WÞ ð32Þ

DQ ¼ 1ffiffiffî
q

p Z
Du u

R1
�1
dWWnðu;WÞR1

�1
dWnðu;WÞ ð33Þ

0 ¼ R Du
R1
�1
dWWnðu;WÞR1

�1
dWnðu;WÞ ð34Þ

The integrals over dW in the last three equations can be performed explicitly, yielding:

Q ¼ q̂ þ M̂2 þ DQ̂

DQ̂2
þ 1

DQ̂3
2

Z
Du u

ffiffiffî
q

p
� M̂ � DQ̂

� �
G � u

ffiffiffî
q

p � M̂ þ DQ̂ffiffiffiffiffiffiffi
DQ̂

p
 !

ð35Þ

DQ ¼ 1

DQ̂
þ 1ffiffiffiffiffiffiffiffiffiffi

DQ̂q̂
q Z

Du uG � u
ffiffiffî
q

p � M̂ þ DQ̂ffiffiffiffiffiffiffi
DQ̂

p
 !

ð36Þ

0 ¼ � M̂

DQ̂
þ 1ffiffiffiffiffiffiffi

DQ̂
p Z

Du G � u
ffiffiffî
q

p � M̂ þ DQ̂ffiffiffiffiffiffiffi
DQ̂

p
 !

ð37Þ

Critical capacity. At critical capacity, the space of the solutions shrinks to a point, and the
mutual overlap tends to become equal to the self overlap: q! Q, i.e. ΔQ! 0. In this limit, the
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conjugate order parameters diverge as:

q̂ ¼ C
DQ2

ð38Þ

DQ̂ ¼ A
DQ

ð39Þ

M̂ ¼ B
ffiffiffiffi
C

p

DQ
ð40Þ

Using these conditions, and calling αc the critical value of α, the saddle point equations, 29
to 34, become:

Q ¼ 1

A
C � B

ffiffiffiffi
C

p� �
ð41Þ

A ¼ H B� Affiffiffiffi
C

p
� �

ð42Þ

0 ¼
ffiffiffiffi
C

p

A
G B� Affiffiffiffi

C
p

� �
� BA

� �
� 1� Að Þ ð43Þ

C ¼ acQhð1þ t2sÞHðtsÞ � tsGðtsÞis ð44Þ

A ¼ achHðtsÞis ð45Þ

0 ¼ hsðGðtsÞ � tsHðtsÞÞis ð46Þ

where we defined

ts ¼
sðM � T

ffiffiffiffi
Q

p Þ � K

ð1� f Þ ffiffiffiffi
Q

p ð47Þ

These equations can be solved numerically to find the six parameters αc, Q, A, B, C andM.
Note that in the special case K = 0 these equations have a degenerate solution with Q = 0

and the same αc as in the case of unbounded synaptic weights (e.g. αc = 2 for f = 0.5). This is
because in that case the original problem has the property that scaling all weights by a factor of
x is equivalent to scaling the boundary �w by a factor of x−1 (see Eq 16); therefore, the optimal
strategy is to exploit this property by setting x! 0, i.e. effectively reducing the problem to the
unbounded case. Of course, this strategy can only be pursued up to the available precision in a
practical setting.
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