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On the use of i–vector posterior distributions in
Probabilistic Linear Discriminant Analysis

Sandro Cumani, Oldřich Plchot and Pietro Laface

Abstract—The i-vector extraction process is affected by several
factors such as the noise level, the acoustic content of the observed
features, the channel mismatch between the training conditions
and the test data, and the duration of the analyzed speech
segment. These factors influence both the i–vector estimate and
its uncertainty, represented by the i–vector posterior covariance.
This paper presents a new PLDA model that, unlike the standard
one, exploits the intrinsic i–vector uncertainty. Since the recog-
nition accuracy is known to decrease for short speech segments,
and their length is one of the main factors affecting the i–vector
covariance, we designed a set of experiments aiming at comparing
the standard and the new PLDA models on short speech cuts of
variable duration, randomly extracted from the conversations
included in the NIST SRE 2010 extended dataset, both from
interviews and telephone conversations.
Our results on NIST SRE 2010 evaluation data show that in
different conditions the new model outperforms the standard
PLDA by more than 10% relative when tested on short segments
with duration mismatches, and is able to keep the accuracy
of the standard model for long enough speaker segments. This
technique has also been successfully tested in the NIST SRE 2012
evaluation.

Index Terms—Speaker Recognition, I-vectors, I-vector extrac-
tion, Probabilistic Linear Discriminant Analysis.

I. INTRODUCTION

Recent developments in speaker recognition technology
have seen the success of systems based on a low–dimensional
representation of a speech segment, the so–called “identity
vector” or i–vector [2]. I–vector based techniques represent
the state–of–the–art in speaker detection [3], [4], [5], [6], [7],
[8], [9], [10], [11]. An i–vector is a compact representation of
a Gaussian Mixture Model (GMM) supervector [12], which
captures most of the GMM supervectors variability. It is
obtained by a MAP point estimate of a posterior distribution
[13].

Probabilistic Linear Discriminant Analysis (PLDA) [14]
classifiers based on i–vectors are among the best models for
speaker recognition. Some PLDA systems for the last NIST
2012 Speaker Recognition Evaluation and for the DARPA
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RATS project have been described in [15], [16], [17], [18],
[19], [20]. The covariance of the distribution, which accounts
for the “uncertainty” of the i–vector extraction process is,
however, not exploited by the classifiers based on i–vectors,
such as the ones based on cosine distance scoring [2], Proba-
bilistic Linear Discriminant Analysis (PLDA) [14], or SVMs
[7]. The i–vector covariance mainly depends on the zero–order
statistics estimated on the Gaussian components of a Universal
Background Model (UBM) for the set of observed features
(see equation 3 in Section II), i.e., by the duration of the
speech segments that are used for characterizing a speaker.
Shorter segments tend to produce larger covariances, so that
i–vector estimates become less reliable.

In [1] we presented a new PLDA model that incorporates
the intrinsic uncertainty of the i–vector extraction process.
This work revises and completes the theory, extends the set
of experiments that have been performed to validate the new
model, and analyzes the typical speaker detection scenario that
allows the computational complexity of speaker recognition
scoring to be reduced.

Our approach shows that the simple and effective PLDA
framework can still be used even if a speech segment is
no more mapped to a single i–vector but to its posterior
distribution. In particular, we derive the formulation of the
likelihood for a Gaussian PLDA model based on the i–vector
posterior distribution, and propose a new PLDA model where
the inter–speaker variability is assumed to have an utterance–
dependent distribution. We show that it is possible to rely on
the standard PLDA framework simply replacing the Gaussian
PLDA likelihood definition.

Since segment duration is the main factor affecting the i–
vector covariance, and short segments are known to produce
less reliable i–vectors, our approach has been assessed using
cuts of variable duration, collected from different channels,
extracted from the NIST SRE 2010 extended core tests [21].

Our results show that the new model outperforms the
standard PLDA when tested on short segments, particularly for
training and test conditions with duration mismatch, without
losing accuracy for long enough speaker segments.

An independent development of the same topic has been
presented in [22]. Although the Gaussian PLDA models pro-
posed are equivalent, we developed a more general framework,
from which the Gaussian PLDA model has been derived,
which also allows a more compact and effective scoring
formulation. Since the models are equivalent, the scoring
functions compute the same scores. However, the derivations
of the scoring function are different. Our formulation leads to a
minimal change in the standard PLDA scoring function, allow-
ing a simple and straightforward implementation. In particular,
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it clearly shows the interaction between the PLDA parameters
and the i–vector covariance, so that the standard PLDA scoring
can be used, provided that the i–vector covariance is added
to the PLDA noise covariance. Moreover, the work of [22]
is more focused on training the PLDA models with short
segments, whereas efficiency in testing is our main concern.

In [23], [24], a formulation for the comparison of su-
pervectors has been presented, which does not require the
two–step approach, consisting in the extraction of i–vectors
followed by their PLDA based classification. We comment on
the similarities and differences of this approach with respect
to [1], [22] in Section VI.

The paper is organized as follows: Section II recalls the i-
vector extraction process. Section III presents the generative
PLDA model using the i–vector distributions, and the gives
the expression for the computation of the likelihood that a
set of speech segments belong to the same speaker. Section
IV focuses on the computation of the likelihood for a PLDA
model based on the i–vector posterior distribution, with Gaus-
sian priors. The new PLDA model, where the distribution
of the inter–speaker variability is assumed to be utterance–
dependent, is introduced in Section V. Section VI is devoted
to the estimation of the parameters of this PLDA model. The
important issue of i–vector length normalization is discussed
in Section VII. A detailed analysis of the complexity of the
PLDA and of the proposed approach is given in Section
VIII, exploiting the optimizations allowed by some practical
applications. The experimental results are given in Section IX,
and our conclusions are drawn in Section X.

II. I–VECTOR MODEL

The i–vector model constrains the GMM supervector s,
representing both the speaker and inter–session characteristics
of a given speech segment, to live in a single sub–space
according to:

s = u+Tw , (1)

where u is the Universal Background Model (UBM), a GMM
mean supervector, composed of C GMM components of
dimension F . T is a low-rank rectangular matrix spanning
the sub–space including important inter and intra–speaker
variability in the supervector space, and w is a realization
of a latent variable W, of size M , having a standard normal
prior distribution.

A Maximum-Likelihood estimate of matrix T is usually
obtained by minor modifications of the Joint Factor Analysis
approach [13]. Given T, and the set of τ feature vectors
X = {x1x2 . . .xτ} extracted from a speech segment, it is
possible to compute the likelihood of X given the model
(1), and a value for the latent variable W. The i-vector φ,
which represents the segment, is computed as the Maximum
a Posteriori (MAP) point estimate of the variable W, i.e.,
the mode μX of the posterior distribution PW|X (w). It has
been shown in [13] that assuming a standard normal prior for
W, the posterior probability of W given the acoustic feature
vectors X is Gaussian:

W|X ∼ N (μX ,Γ
−1
X ), (2)

with mean vector and precision matrix:

μX = Γ−1
X TTΣ−1fX

ΓX = I+

C∑
c=1

N
(c)
X T(c)T

Σ(c)−1

T(c) , (3)

respectively. In these equations, N (c)
X are the zero–order statis-

tics estimated on the c-th Gaussian component of the UBM
for the set of feature vectors in X , T(c) is the F ×M sub-
matrix of T corresponding to the c–th mixture component
such that T =

(
T(1)T, . . . ,T(C)T)T, and fX is the supervector

stacking the first–order statistics f
(c)
X , centered around the

corresponding UBM means:

f
(c)
X =

∑
t

(
γ
(c)
t xt

)
−N

(c)
X m(c) , (4)

Σ(c) is the UBM c–th covariance matrix, Σ is a block
diagonal matrix with matrices Σ(c) as its entries, and γ

(c)
t

is the occupation probability of feature vector xt for the c-th
Gaussian component.

III. PLDA WITH I–VECTOR POSTERIORS

Excellent performance has been reported on the last NIST
Speaker Recognition Evaluation campaigns [21], [25] for
systems using i–vectors with generative models based on
PLDA. A PLDA system models the underlying distribution
of the speaker and channel components of the i–vectors in a
generative framework. From these distributions it is possible
to evaluate the likelihood ratio between the same “speaker”
hypothesis (Hs) and “different speakers” hypothesis (Hd)
for sets of i–vectors. In particular, in the PLDA framework,
Factor Analysis is applied to describe the i–vector generation
process. An i–vector is considered a random variable Φ whose
generation process can be described in terms of a set of latent
variables. Different PLDA models exist [26], [14], which use
different numbers of hidden variables as well as different
priors. All PLDA models for speaker recognition [14], [4],
however, represent the speaker identity in terms of a latent
variable Y which is assumed to be tied across all segments
of the same speaker. Usually, inter–speaker variability for a
speech segment Xi is represented by hidden variable Xi. The
hidden variables Xi are assumed to be i.i.d. with respect to
the speech segments.

In the most common PLDA model, an i–vector φ is the sum
of multiple terms [14]:

φ =m+Uy +Vx+ e (5)

where m is the i–vector mean, y is a realization of the speaker
identity variable Y, x is the realization of channel variable X
and e is the realization of the residual noise E. The role of
matrices U and V is to constrain the dimension of the sub–
spaces for y and x, respectively.

Since i–vectors are assumed independent given the hidden
variables, the likelihood that a set of n speech segments
X1 . . .Xn belongs to the same speaker (hypothesis Hs) can
be computed as:
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l (X1 . . .Xn|Hs) = PΦ1...Φn|Hs
(φ1 . . .φn)

=

∫
y

∫
x1

· · ·

∫
xn

n∏
i=1

[
PΦi|Y,Xi

(φi|y,xi)PXi
(xi) dxi

]
· PY(y)dy , (6)

where Φi is the i–vector extracted from segment Xi,
PΦ1...Φn|Hs

(φ1 . . .φn) is the pdf of the joint distribution
of the i–vectors given the same speaker hypothesis Hs,
PX(x) and PY(y) are the prior distributions for X and Y,
respectively. PΦ|Y,X (φ|y,x) is the conditional distribution
of an i–vector given the hidden variables. It is related to the
distribution PE(e) of the noise term by PΦ|Y,X (φ|y,x) =
PE(φ−m−Uy −Vx).

Since speaker factors are assumed independent, given a set
of n enrollment segments Xe1 . . .Xen for a target speaker,
and a set of m test segments of a single unknown speaker
Xt1 . . .Xtm , the speaker verification log–likelihood ratio s can
be computed as:

s = log
l (Xe1 . . .Xen ,Xt1 . . .Xtm |Hs)

l (Xe1 . . .Xen |Hs) l (Xt1 . . .Xtm |Hs)
. (7)

The standard i–vector, which is extracted by MAP point
estimate of the posterior distribution of W given X , and clas-
sified by PLDA, does not embed the intrinsic uncertainty of
its estimate. However, it is well known that i–vectors extracted
from short segments do not capture the speaker characteristic
as well as i–vectors extracted from long segments. Since the
uncertainty associated with the extraction process of the i-
vector, which is represented by its posterior covariance, is not
taken into account by the usual PLDA models, in this work
we extend the model to exploit this additional information.
We refer to this new model as the PLDA based on the “Full
Posterior Distribution” (FPD–PLDA) of W given X . In this
model we assume that every segment X is no more mapped
to a single i–vector but to the i–vector extractor distribution
W|X . Thus, X is mapped to i–vector φ according to the
probability distribution PW|X (φ).

The PLDA model allows computing the likelihood of a
speech segment given a realization of the random variable
W|X . The likelihood of a set of segments X1 . . .Xn, thus,
can be evaluated by integrating the classical PLDA likelihood
over all the i–vectors that these segments can generate as:

l (X1 . . .Xn|Hs) =

∫
φ

1

· · ·

∫
φ

n

l (X1 . . .Xn|Hs,W1 = φ1,

. . . ,Wn = φn)

n∏
i=1

[
PWi|Xi

(φi)dφi

]
=

∫
φ

1

· · ·

∫
φ

n

PΦ1...Φn|Hs
(φ1 . . .φn)

·
n∏

i=1

[
PWi|Xi

(φi)dφi

]
, (8)

where the first factor is the likelihood of the segments ac-
cording to the classical PLDA model given the realizations
φ1, . . . ,φn of the i–vector posterior random variables, com-

puted by (6), and the second factor is the likelihood that the
i–vectors φ1, . . . ,φn are mapped to segments X1, . . . ,Xn,
respectively, according to the i–vector extractor model.
Replacing (6) in (8), the likelihood can be rewritten as:

l (X1 . . .Xn|Hs) =

=

∫
φ

1

· · ·

∫
φ

n

∫
y

∫
x1

· · ·

∫
xn

n∏
i=1

[
PΦi|Y,Xi

(φi|y,xi)

· PXi
(xi)PWi|Xi

(φi) dxidφi

]
PY(y)dy . (9)

It is worth noting that, if the posterior for W|X is replaced by
a delta distribution centered in the posterior mean δ(μX ), the
likelihood of the original PLDA model using MAP–estimated
i–vectors, given by (6), is obtained.

IV. GAUSSIAN PLDA MODEL

In this work we consider only PLDA with Gaussian priors,
because this model has shown to be as accurate and more
effective than other more expensive models, such as the
Heavy–Tailed PLDA [14], provided that the i–vectors are
properly length–normalized [27]. Moreover, we will assume
that the noise term E has full covariance matrix, so that the
terms Vx and e in (5) can be merged. Thus, in our approach
an i–vector φ is defined as:

φ =m+Uy + e . (10)

The Gaussian PLDA approach assumes that the speaker factors
and the residual noise priors are Gaussian, i.e.:

Y ∼ N (0, I) , E ∼ N (0,Λ−1) , (11)

where Λ is the precision matrix of noise E. According to (10)
and (11), the conditional distribution of an i–vector random
variable Φ given a value y for the speaker identity Y is:

Φ| (Y = y) ∼ N (m+Uy,Λ−1) . (12)

Ignoring the channel factors, which in our model are embedded
in the noise term, the likelihood that the n speech segments
X1 . . .Xn belong to the same speaker can be computed by
means of a simplified expression of (6) as:

l(X1 . . .Xn|Hs) = PΦ1...Φn
(φ1 . . .φn|Hs)

=

∫
y

n∏
i=1

PΦi|Y(φi|y)PY(y)dy . (13)

Introducing the full i–vector posterior we get:

l (X1 . . .Xn|Hs) =

∫
φ

i

· · ·

∫
φ

n

∫
y

PY(y)

·
n∏

i=1

[
PΦi|Y(φi|y)PWi|Xi

(φi)dφi

]
dy

=

∫
y

PY(y)

n∏
i=1

[ ∫
φ

i

PΦi|Y(φi|y)PWi|Xi
(φi)dφi

]
dy ,
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According to the Gaussian assumptions given in (2) and (11),
the inner integral can be computed as:∫

φ
i

PΦi|Y(φi|y)PWi|Xi
(φi)dφi =∫

φ
i

1

(2π)
M

2

∣∣Λ−1
∣∣ 1

2

e−
1

2
(φ

i
−m−Uy)TΛ(φ

i
−m−Uy)

·
1

(2π)
M

2

∣∣Γ−1
i

∣∣ 1

2

e−
1

2
(φ

i
−μ

i
)TΓi(φi

−μ
i
)dφi , (14)

where μi and Γi are the mean and precision matrix of Wi|Xi

computed as in (3). Integral (14) can be interpreted as the
convolution of two Gaussian distributions, leading to:

l(X1 . . .Xn|Y = y) =

n∏
i=1

1

(2π)
M

2

∣∣Λ−1 + Γ−1
i

∣∣ 1

2

(15)

· e(μi
−m−Uy)T(Λ−1+Γ

−1

i )
−1

(μ
i
−m−Uy) .

The result in (15) can be interpreted as the likelihood of a
standard PLDA model where a segment is mapped to the mean
μi of the i–vector posterior Wi|Xi, but the PLDA conditional
likelihood is segment–dependent, i.e., the residual noise Ei in
the PLDA model (11), is replaced by the segment–dependent
noise Ei distributed as Ei ∼ N

(
0,

[
Λ−1 + Γ−1

i

])
. Indeed,

the right side of equation (15) is a Gaussian pdf for μi.
Considering every μi as a realization of a random variable
Mi, the conditional likelihood of a set of n speech segments
can be written as:

l(X1 . . .Xn|Y = y) =
n∏

i=1

PMi|Y(μi|y) , (16)

where Mi|Y is distributed as N (m + Uy,
[
Λ−1 + Γ−1

i

]
).

The likelihood that the segments belong to the same speaker
is then given by:

l(X1 . . .Xn|Hs) =

∫
y

n∏
i=1

PMi|Y(μi|y)PY(y)dy . (17)

Comparing (17) and (13) it can be observed that the two
models differ only for the parameters of their conditional
likelihoods. Due to the similarity of these two models, simple
expressions can be derived for estimating the parameters of
the Full Posterior Distribution model, and for computing the
speaker verification log–likelihood scores according to this
model. In particular, the PLDA covariances can be trained
by adapting the EM algorithm which estimates the standard
PLDA model parameters [14].

V. SCORING WITH GAUSSIAN PLDA POSTERIORS

The log–likelihood that a set of segments belongs to the
same speaker can be obtained by means of the same steps
followed for the standard Gaussian PLDA model, just using
the modified likelihood in (15). The new PLDA model can be
described as:

μ =m+Uy + e , (18)

as in (10), but with an segment–dependent distribution of the
residual noise E . The i–vector associated to speech segment

Xi is again the mean μi of the i–vector posterior Wi|Xi, but
the priors of the PLDA parameters are given by:

Ei ∼ N (0,Λ−1 + Γ−1
i ) ∼ N (0,Λ−1

eq,i) ,Y ∼ N (0, I) ,
(19)

where
Λeq,i =

(
Λ−1 + Γ−1

i

)−1
. (20)

In the following, to simplify the notation, we will refer
to distributions without explicitly naming the corresponding
hidden variable, e.g., we will write P (y) rather than PY(y).

In order to compute the likelihood of a set of n i–vectors
μ1 . . .μn (i.e., of the set of speech segments X1 . . .Xn), we
observe that the joint log–likelihood of the i–vectors and the
hidden variables is:

logP (μ1 . . .μn,y|Hs) =
n∑

i=1

logP (μi|y) + logP (y)

=

n∑
i=1

[
−
1

2
(μi −m−Uy)T

Λeq,i (μi −m−Uy)

]
(21)

+
1

2
yTy + k ,

where k is a constant collecting terms that do not depend on y.
Equation (21) shows that the posterior distribution of y given
a set of i–vectors is Gaussian:

y|μ1 . . .μn ∼ N (μy,Λ
−1
y ), (22)

with parameters:

Λy = I+

n∑
i=1

UTΛeq,iU

μy = Λ−1
y UT

n∑
i=1

Λeq,i (μi −m) . (23)

The likelihood that a set of segments belongs to the same
speaker can be written as:

P (μ1 . . .μn|Hs) =
P (μ1 . . .μn|y0)P (y0)

P (y0|μ1 . . .μn)
, (24)

where y0 can be freely chosen provided that the denominator
is non–zero. Setting for convenience y0 = 0, so thatUy0 = 0,
from (22), and (23) we finally get:

logP (μ1 . . .μn|Hs) =
n∑

i=1

[
1

2
log |Λeq,i| −

M

2
log 2π −

1

2
(μi −m)

T
Λeq,i(μi −m)

]
−

1

2
log |Λy|+

1

2
μT

yΛyμy −
S

2
log 2π , (25)

where M is the i–vector dimension, and S is the speaker factor
dimension.

VI. PLDA PARAMETER ESTIMATION

The model presented in (18) allows obtaining a simple
expression for computing the log–likelihood ratio of a speaker
recognition trial. However, it does not allow the update for-
mulas to be easily derived. An equivalent expression of (18),
where the contributions of the i–vector posterior covariance
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and of the residual noise are decoupled, is more effective for
the estimation of model parameters [22]. To this extent, the
segment–dependent residual term Ei can be written as:

Ei = CiXi +E , (26)

where Ci is the Cholesky decomposition CiC
T
i = Γ−1

i , Xi

is a standard Gaussian distributed random variable, Xi ∼
N (0, I), and E is the PLDA residual term introduced in (11).
The corresponding PLDA model is then given by:

φi =m+Uy +Cixi + ei , (27)

where xi is a realization of Xi. It is worth noting that
(27) formally corresponds to the PLDA model in (5) with
the channel sub–space matrix V replaced by a segment–
dependent matrix Ci. The same steps followed to derive the
EM algorithm for the PLDA model (5) can be easily modified
to estimate the parameters of the FPD–PLDA model. The
details of the derivation of the EM algorithm can be found
in [22].

The SV–PLDA approach in [24] and the FPD–PLDA ap-
proach [1], [22], essentially differ because the former obtains
the precision matrix Γi by means of a Maximum Likelihood
Estimation process, whereas the latter relies on Maximum A
Posteriori estimation. MAP estimation simply leads to the
presence of the identity matrix I in the formulation of the
precision matrix Γi in (23), which is missing in the so called
π–vector definition (see equations (8) and (14) in Section
2.6 of [24], where the π–vector and i–vector definitions are
compared). SV–PLDA is in principle an elegant and attractive
single step MLE approach, compared with the standard two–
step approach consisting in i–vector extraction followed by
PLDA classification. Unfortunately SV–PLDA too has to rely
on length normalization [27] in order to obtain good results.
Casting length normalization in the middle of the generative
framework makes SV–PLDA less coherent. In our opinion, a
two–step approach is preferable because it gives the freedom
of using different assumptions about the distribution of the i–
vectors, which could be obtained by different extractors, and
then used as features for the PLDA classifier. Moreover, in our
experience no better accuracy was obtained by the elimination
of the I term from the precision matrix Γi.

VII. I–VECTOR PRE–PROCESSING

A pre–processing step, which involves i–vector whitening
followed by length normalization [27], is required to achieve
state–of–the–art results using i–vectors with Gaussian PLDA
models. While it is easy to understand length normalization
applied to i–vectors, different interpretations of length nor-
malization lead to different normalizations of the posterior
covariance matrices. This section presents three different in-
terpretations of length normalization, and shows their effect
on the normalization of the full i–vector posterior.

A straightforward approach consists in replacing the i–
vector distribution W|X by Ŵ = W|X

‖W|X‖ , which forces all
realizations of Ŵ to lie on the unit sphere. However, since
the resulting random variable Ŵ would not be Gaussian
distributed, it would not be possible to rely on the simple

derivations of Section IV, and to avoid the higher complexity
introduced by the use of a non Gaussian distribution.

We implemented a second approach, where length normal-
ization is considered a non–linear transformation F (φ0) of the
observed i–vector φ0, which can be approximated by its first
order Taylor expansion around the i–vector itself:

F (φ) = F (φ0) + JF (φ0)(φ− φ0) + o(‖φ− φ0‖) , (28)

where JF (φ0) is the Jacobian of F computed in φ0 and
F is the function F (x) = x

‖x‖ . Developing the Jacobian,
the linear transformation which best approximates the length
normalization function around the i–vector is given by:

F̂ (φ) = F (φ0)+ JF (φ0)(φ−φ0) = v+
(I− vvT)

‖φ0‖
φ (29)

where v = φ
0

‖φ
0
‖ and I is the identity matrix.

The extension to the full i–vector posterior consists in
computing the first order Taylor expansion of F centered at
the posterior distribution mean μX , and applying the result-
ing linear transformation to the i–vector posterior W|X ∼
N (μX ,Γ

−1
X ). The expansion of F is:

F̂ (μX ) = vX +
(I− vXv

T
X )

‖μX ‖
μX = vX +AμX , (30)

where vX = μ
X

‖μ
X
‖ and A =

(I−vXvT
X
)

‖μ
X
‖ . Thus, the transformed

distribution is given by:

Ŵ ∼ N
(
F̂ (μX ),AΓ

−1
X AT

)
∼ N

(
μX
‖μX ‖

,
1

‖μX ‖
2 (I− vXv

T
X )Γ

−1
X (I− vXv

T
X )

)
,

(31)

Expression (31) can be further approximated as:

W ∼ N

(
μX
‖μX ‖

,
Γ−1
X

‖μX ‖
2

)
. (32)

In the experimental section we show that these linearizations
of the length normalization are effective. In particular, the
approximation (32) allows a simplification of (31) without
incurring in any performance degradation. We will refer to
(31) as “Projected Length Normalization” (FPD1), and to (32)
as “Length Normalization” (FPD2).

VIII. COMPLEXITY ANALYSIS

The straightforward implementations of classical PLDA and
FPD–PLDA have similar computational complexity. However,
in practical scenarios some of the terms required for the
evaluation of the PLDA log–likelihood ratio (7) can be pre–
computed. These pre-computations allow fast test scoring, at
the cost of a slight increase of the memory requirements for
the PLDA model and for the target models. Unfortunately,
some of these optimizations cannot be done for FPD–PLDA,
which is thus a more accurate but slower approach. In the
following we analyze the computational complexity of PLDA
and FPD–PLDA implementations optimized for the most com-
mon scenario. This scenario consists of a speaker detection



IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 7

task where the system has to score several test sets, whose
number of segments is known in advance, against a fixed set
of target speakers. In particular, each set of segments of a
single test speaker has to be verified against the segments of a
known, fixed, set of target speakers. Since all targets are known
in advance, target–dependent optimizations can be performed
offline. The NIST 2012 SRE evaluation [25] follows this
protocol. However, even for the previous evaluations, where
each trial has to be scored independently it is possible to
speed–up the scoring for the complete evaluation, without
violating its rules, because all target segments are indeed
known in advance.

In this scenario, as will be shown in sub–section VIII-B and
VIII-C, a smart implementation of PLDA allows some of the
terms required for the evaluation of the speaker verification
log–likelihood ratio to be pre–computed, thus the per–trial
scoring complexity is greatly reduced. Different optimizations
are possible for FPD–PLDA depending on the duration of
the trial segments. For short segments, FPD–PLDA does not
allow the pre–computation of most of the terms of the scoring
function, thus its complexity cannot be reduced. However, if
the target segments are long enough, their i–vector posteriors
can be safely approximated by their MAP point estimates,
and the per–trial complexity of the proposed technique can be
reduced.

A. Log–likelihood computation
The complexity of the log–likelihood computation accounts

for two separate contributions. The first contribution is the
complexity of operations which can be independently per-
formed on target or test sets, which will be referred to
as per–target and per–test terms, respectively. The second
contribution is the per–trial complexity, i.e. the complexity
of the terms which jointly involve the target and the test
sets. This distinction is not relevant for the naı̈ve scoring
implementations, but is relevant, instead, in the “fixed set of
target speakers scenarios” because the per–target terms can be
pre–computed, and per–test terms need to be computed only
once regardless of the number of target speakers.

We will analyze both per–test and per–trial complexity of
the PLDA and FPD–PLDA models. It is worth noting that the
complexity of a complete system should account also for the
complexity of the extraction of the acoustic features and of the
i–vectors. The computation of the i–vector covariance matrix,
for each segment, has complexity O(M3) [28], which, as we
will see, dominates the other costs.

Since we compute the speaker variable y posteriors on
different sets, we explicitly condition the parameters of the
posterior distributions of y (23) to a generic set G as:

Λy|G = I+
∑
i∈G

UTΛeq,iU

μy|G = Λ−1
y UT

∑
i∈G

Λeq,i (μi −m) . (33)

The indexes of the sum in this equation, and in the following
equations, are to be interpreted as running over all the seg-
ments of the set. Replacing (25) in (7), the speaker verification

log–likelihood ratio for a target set E and a test set T can be
written as:

llr(E, T ) = log
l(E, T |Hs)

l(E|Hs)l(T |Hs)

=−
1

2
log

∣∣Λy|(E,T )

∣∣+ 1

2
μT

y|(E,T )Λy|(E,T )μy|(E,T )

+
1

2
log

∣∣Λy|(E)

∣∣− 1

2
μT

y|(E)Λy|Eμy|(E)

+
1

2
log

∣∣Λy|(T )

∣∣− 1

2
μT

y|(T )Λy|(T )μy|(T )

+
S

2
log 2π

= σ(E, T )− σ(E)− σ(T ) +
S

2
log 2π , (34)

where the scoring function σ is defined as:

σ(G) = −
1

2
log

∣∣Λy|(G)

∣∣+ 1

2
μT

y|(G)Λy|(G)μy|(G) . (35)

Since the computation of σ(E) and σ(T ) cannot be more
expensive than the computation of σ(E, T ), we restrict our
analysis to this term of the log–likelihood ratio.

B. Complexity of the standard Gaussian PLDA

As shown in Section V, standard PLDA corresponds to a
FPD–PLDA with Γ−1

i = 0 for all i–vectors. Thus, Λeq,i = Λ

for all i–vectors, and the speaker variable posterior parameters
become:

Λy|(E,T ) = I+ (nE + nT )U
TΛU

μy|(E,T ) = Λ−1
y|(E,T )U

TΛ

(∑
i∈E

(μi −m) +
∑
i∈T

(μi −m)

)
= Λ−1

y|(E,T ) (FE + FT ) , (36)

where nE and nT are the number of target and test segments
respectively, FE and FT are the projected first order statistics
defined as:

FE =M
∑
i∈E

(μi −m) , FT =M
∑
i∈T

(μi −m) , (37)

and M = UTΛ is a S ×M matrix. Using these definitions,
the scoring function σ(E, T ) can be rewritten as:

σ(E, T ) =−
1

2
log

∣∣Λy|(E,T )

∣∣+ FT
EΛ

−1
y|(E,T )FT

+
1

2
FT

TΛ
−1
y|(E,T )FT +

1

2
FT

EΛ
−1
y|(E,T )FE . (38)

Computing the projected statistics (37) has complexity
O(NM +MS), where N is the number of speech segments
in the set. It is worth noting that the FE and FT statistics are
per–speaker computations because they can be computed for
the target and test sets independently.

1) Naı̈ve scoring implementation: The computation of the
score function σ(E, T ), given the FG statistics, requires com-
puting Λ−1

y|(E,T ) and its log–determinant. These computations
have complexity O(S3) because, for standard PLDA, the term
UTΛU can be precomputed. Given Λ−1

y|(E,T ), scoring σ(E, T )

has complexity O(S2). The same considerations apply to the
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less expensive computation of σ(E) and σ(T ). Thus, the
overall per–trial complexity is O(S3).

2) Speaker detection with known, fixed, target sets: In
the naı̈ve implementation, the computation and inversion of
Λy|(E,T ) dominates the scoring costs. However, in standard
PLDA this factor depends on the number (nT + nE) of the
target and test segments only (36). Since each set of target
segments Ek, and the number of test segments nT , are known,
it is possible to pre–compute the corresponding Λ−1

y|(Ek,T ),
and its log–determinant. Moreover, since the statistics FEk

are also known in advance, the terms of the scoring function
1
2F

T
Ek
Λ−1

y|(Ek,T ) can be pre–computed. It is worth noting
that these terms are small S–sized vectors. Since the term
depending only on the test statistics FT must be evaluated
just once for the whole set of K targets, its computation
has a per–test, rather than a per–trial, cost. Every function
σ(Ek, T ) can be computed in O(S), each term σ(Ek) can be
easily pre–computed. Given the statistics, the term σ(T ) has
a per–speaker complexity of O(S2). The overall per–speaker
cost, including statistics computations, is then O(NM+MS),
whereas the per–trial cost is O(S).

C. Full Posterior Distribution PLDA
The main difference between the standard PLDA and the

FPD–PLDA approach is that in PLDA Λy|(E,T ) depends just
on the number of i–vectors in the set (36), whereas in FPD–
PLDA it also depends on the covariance of each i–vector in
the test set T (see (33)). This does not allow applying to FPD–
PLDA the optimizations illustrated in the previous section.

The speaker variable posterior parameters can still be writ-
ten as:

Λy|(E,T ) = I+ (Λeq,E +Λeq,T )

μy|(E,T ) = Λ−1
y (Feq,E + Feq,T ) , (39)

where

Feq,G = UT
∑
i∈G

Λeq,i (μi −m)

Λeq,G = UT

(∑
i∈G

Λeq,i

)
U ,

and the scoring function σ(E, T ) can be rewritten as:

σ(E, T ) =−
1

2
log

∣∣∣Λ−1
y|(E,T )

∣∣∣+ 1

2
FT

eq,EΛ
−1
y|(E,T )Feq,E

+
1

2
FT

eq,TΛ
−1
y|(E,T )Feq,T + FT

eq,EΛ
−1
y|(E,T )Feq,T .

(40)

Computing the posterior parameters (39) has a complexity
O(NM3 + M2S), mainly due to the computation of Λeq,i,
and is much higher than the O(NM + MS) complexity of
standard PLDA approach. However, these computations are
required only for a new target or test speaker. These costs are
comparable to the costs O(NM3) of the i–vector extraction
[28]. Given the statistics, Λy|(E,T ) can be computed with
complexity O(S2) and its inversion complexity is O(S3).
The computation of the remaining terms requires O(S2), thus
the overall per–trial complexity is O(S3). Since the posterior

TABLE I: Comparison of the log–likelihood computation complex-
ity for three implementations of PLDA. Per–segment costs should be
multiplied by the number of segments N of a given speaker. Per–
speaker costs do not depend on the number of speaker segments.
These costs refer to PLDA only, without considering the contribution
of i–vector extraction.

System Per–segment Per–speaker Per–trial
costs fixed costs costs

Naı̈ve PLDA M MS S
3

Optmized PLDA M MS S

Standard FPD–PLDA M
3

M
2
S S

3

Asymm. FPD–PLDA M
3

M
2
S S

2

parameter Λy|(E,T ) cannot be pre–computed as in standard
PLDA, the per–trial complexity is the same also for the fixed
set of target speakers scenarios.

D. Asymmetric Full Posterior Distribution PLDA
In some applications the target speaker segments have long

enough duration, so that replacing the corresponding i–vector
posterior distribution by a MAP point estimate has a negligible
impact on the term Λeq,E . In this case, it is possible to narrow
the complexity gap between standard PLDA and FPD–PLDA,
because the i–vector covariance is taken into account only
for the test segments. Thus, we refer to this approach as
Asymmetric Full Posterior Distribution PLDA. Since MAP–
approximated i–vectors are used for the target speakers, the
computational complexity of σ(E) becomes equivalent to the
one of the standard PLDA. The per–trial complexity with
respect to the standard FPD–PLDA approach can be reduced
because the same test set is scored against a fixed set of target
speakers. In particular, the covariance of the posterior of the
speaker identity variable:

Λy|(E,T ) = I+ nEU
TΛU+

∑
i∈T

UTΛeq,iU , (41)

depends only on the test i–vector covariance, and on the
number of target segments. If the number of target segments
per speaker is fixed, computing the term Λ−1

y|(Ek,T ) for each
target speaker becomes a per–test cost because it can be
computed only once. Computing the score function, given
Λ−1

y|(Ek,T ), has thus complexity O(S2).
Table I summarizes the results presented in this Section. The

costs have been divided into per–segment costs, depending on
the number N of segments in the set, per–speaker fixed costs,
and the per–trial costs.

The FP-PLDA approach has a notably higher complexity
that standard PLDA. The Asymmetric FPLDA reduces the
per–trial cost by a factor S, speeding–up the scoring compu-
tation when the number of target speakers is high. However,
the duration of the target segments affects the accuracy of the
approximation, and possibly the performance gain with respect
to standard PLDA.

IX. EXPERIMENTAL RESULTS

The proposed PLDA model aims at compensating duration
mismatches in i–vector estimates. Thus, a dataset was defined
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TABLE II: Training and test conditions of the NIST 2010 evaluation.

Condition Female target / non-target trials Male target / non-target trials Training Test Channel
1 2326 / 449138 1978 / 346857 interview interview same microphone
2 8152 / 157394 6932 / 121558 interview interview different microphones
3 1958 / 334438 2031 / 303412 interview telephone
4 1751 / 392467 1886 / 364308 interview microphone
5 3704 / 233077 3465 / 175873 telephone telephone different numbers

TABLE III: Results for the core extended NIST SRE2010 female tests in terms of % EER, minDCF08×1000 and minDCF10×1000 using
training lists and PLDA models. Label “tel” and “tel+mic” refer to the datasets used for training the PLDA, including or not microphone
data. “Std” and “FPD” labels refer to standard PLDA and FPD–PLDA, respectively. I–vector posterior length–normalization is performed
by means of (32).

List Train Test
cond2 cond3 cond4 cond1 cond5

EER DCF DCF EER DCF DCF EER DCF DCF EER DCF DCF EER DCF DCF
08 10 08 10 08 10 08 10 08 10

tel Std Std 4.2 224 641 2.5 113 445 1.7 102 411 2.0 84 346 2.0 100 339
tel Std FPD 3.9 214 638 2.3 111 462 1.6 101 419 1.7 81 346 2.0 100 346
tel FPD FPD 3.9 214 635 2.4 110 450 1.6 99 415 1.8 79 345 2.0 98 336

tel+mic Std Std 2.6 124 460 2.2 103 405 1.1 65 303 1.8 68 258 1.9 105 335
tel+mic Std FPD 2.3 114 455 2.1 103 402 1.0 60 296 1.7 63 254 2.0 103 347
tel+mic FPD FPD 2.3 112 455 2.0 100 396 1.0 59 288 1.6 60 253 2.0 101 344

TABLE IV: Results for cuts of 3–60 second test data, using different length–normalization approaches. The PLDA parameters are trained
using both microphone and telephone data. Labels “Std” and “FPD” refer to standard PLDA and FPD–PLDA, respectively, and the numeric
suffix of FPD corresponds to the i–vector posterior length–normalization method.

Train Test
cond2 cond3 cond4 cond1 cond5

EER DCF DCF EER DCF DCF EER DCF DCF EER DCF DCF EER DCF DCF
08 10 08 10 08 10 08 10 08 10

Std Std 9.1 384 812 7.8 368 832 7.3 312 695 7.0 273 630 6.7 337 729
Std FPD1 (eq. 31) 6.7 327 791 6.1 343 838 5.2 259 676 4.8 232 603 6.2 322 722
Std FPD2 (eq. 32) 6.7 328 791 6.2 343 838 5.2 259 676 4.7 232 603 6.2 323 722
FPD2 FPD2 6.5 327 796 6.3 355 837 5.0 255 676 4.6 229 601 6.3 328 731

that consists of speech segments, from NIST SRE10 extended
core condition, which were cut, after Voice Activity Detection,
to obtain segments of variable duration in the range 3–30,
10–30, 3-60, and 10–60 seconds, respectively. These sets of
segments have been scored according to the official NIST SRE
2010 conditions 1–5 [21], which are summarized in Table II.

In these experiments, we used cepstral features, extracted
using a 25 ms Hamming window. 19 Mel frequency cepstral
coefficients together with log-energy were calculated every
10 ms. These 20-dimensional feature vectors were subjected
to short time mean and variance normalization using a 3s
sliding window. Delta and double delta coefficients were then
computed using a 5-frame window giving 60-dimensional fea-
ture vectors. Segmentation was based on the BUT Hungarian
phoneme recognizer and relative average energy thresholding.
Also, short segments were pruned out, after which the speech
segments were merged together.

The i–vector extractor was based on a 2048–component
full covariance gender–independent UBM, trained using NIST
SRE 2004–2006 data. Gender–dependent i–vector extractors
for the reference system were trained using the data of NIST
SRE 2004–2006, Switchboard II Phases 2 and 3, Switchboard
Cellular Parts 1 and 2, Fisher English Parts 1 and 2.

All these experiments were performed using i–vector poste-
riors with dimension M = 400. The PLDA was trained with a
speaker variability sub–space of dimension S = 120, and full
channel variability sub–space. Although both female and male

speaker tests were performed, we report more detailed results
on the female datasets only, because the NIST SRE 2010 core
test on female speakers is known to be more difficult, thus
more often compared in the literature. The results on the male
speakers confirm the ones reported for female speakers, as will
be shown in VI.

Table III summarizes the results of the tests performed on
the NIST SRE 2010 female extended conditions, including the
core condition (cond5), in terms of percent Equal Error Rate
and normalized minimum Detection Cost Function (DCF) as
defined by NIST for SRE08 and SRE10 evaluations [21]. In
this table, the PLDA and FPD–PLDA systems are compared
using the original interview data, or telephone conversations,
without any cut. Labels “tel” and “tel+mic” refer to the
datasets used for training the PLDA parameters, including
telephone data only, or additional microphone data. Labels
“Std” and “FPD” refer to the standard and the Full Posterior
Distribution PLDA, respectively. The first two rows give the
baseline results, obtained using standard i–vectors trained on
telephone data only, for the five NIST 2010 conditions. It can
be observed that the matched conditions cond5 and cond1, tel–
tel and int–int, respectively, achieve the best results, whereas
the difficulty of the task decreases from cond2 to cond4.
The same behavior is confirmed for the other experimental
conditions, shown in the remaining lines, and for the other
tests using variable duration segments. The new model not
only keeps the accuracy of the standard model, as expected for
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Fig. 1: Results for test cuts of variable duration, randomly chosen from the extended NIST SRE2010 female tests. On the
left side, comparison of the minDCF08 obtained using PLDA and FPD–PLDA trained with different duration segments. On
the right side, comparison of the minDCF08 obtained in the “tel+mic” condition, and % improvement shown as a black dot.

long segments, but also shows an approximately 7% relative
improvement in three conditions. The third row describes the
effect of using the i–vector covariance also in training. As
expected, since the training segments have long durations, the
results are similar to the ones reported in the second row.
The last three rows show the effect of adding microphone
data in training the PLDA parameters: sensible performance
improvement is obtained, excluding, as expected, the matched
tel–tel condition 5.

Since the system trained with the “tel” list performs worse

than the one trained with the “tel+mic” list, all the remaining
experiment on the NIST 2010 data, whenever not mentioned,
have been performed with the latter. Table IV compares, in
its first three rows, the performance of the PLDA and FPD–
PLDA classifiers using the two length–normalization methods
illustrated in Section VII on the 3–60 seconds cuts. The results
of the last row show that there is no advantage in using the full
i–vector posterior in training the PLDA models. The effect of
the two length–normalization approaches is comparable, thus
in the following we will present only the results obtained with
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TABLE V: Results for cuts of variable duration test data, randomly chosen from the extended NIST SRE2010 female tests, in terms of
% EER, minDCF08×1000 and minDCF10×1000 using different PLDA models. The PLDA parameters are trained using both microphone
and telephone data, labels “Std”, “FPD”, and “SV” refer to standard PLDA, FPD–PLDA, and SV–PLDA, respectively. I–vector posterior
length–normalization is performed by means of (32).

Test Duration
cond2 cond3 cond4 cond1 cond5

EER DCF DCF EER DCF DCF EER DCF DCF EER DCF DCF EER DCF DCF
08 10 08 10 08 10 08 10 08 10

Std 3–30 12.4 531 921 11.3 521 915 11.1 441 864 9.8 405 794 10.6 493 915
FPD 3–30 9.8 474 901 9.3 498 929 8.3 382 849 7.6 327 756 9.7 475 912
SV 3–30 10.9 524 924 11.5 590 967 9.5 433 866 8.8 374 799 11.0 537 927
Std 10–30 9.0 431 890 8.6 429 900 6.6 318 820 7.0 317 707 7.6 390 856
FPD 10–30 7.7 388 873 7.5 417 893 5.7 285 785 5.5 278 650 7.2 373 836
SV 10–30 8.5 425 888 8.6 451 919 6.3 314 827 6.6 307 716 7.8 402 855
Std 3–60 9.1 384 812 7.8 368 832 7.3 312 695 7.0 273 630 6.7 337 729
FPD 3–60 6.7 328 791 6.2 343 838 5.2 259 676 4.7 232 603 6.2 323 722
SV 3–60 7.1 351 809 7.5 429 877 5.7 275 705 5.2 251 620 7.2 359 742
Std 10–60 7.0 318 787 5.0 283 777 4.7 227 636 4.9 211 558 4.9 265 701
FPD 10–60 5.7 283 761 4.8 271 806 3.9 200 603 4.1 176 555 4.7 260 693
SV 10–60 5.9 297 780 5.5 307 825 4.1 213 639 4.1 190 561 4.9 276 710
Std Full 2.6 124 460 2.2 103 405 1.1 65 303 1.8 68 258 1.9 105 335
FPD Full 2.3 114 455 2.1 103 402 1.0 60 296 1.7 63 254 2.0 103 347
SV Full 2.3 115 454 2.0 104 410 1.0 62 298 1.6 63 260 2.1 104 349

TABLE VI: Results for cuts of variable duration test data, randomly chosen from the extended NIST SRE2010 male tests. See Table V
captions.

Test Duration
cond2 cond3 cond4 cond1 cond5

EER DCF DCF EER DCF DCF EER DCF DCF EER DCF DCF EER DCF DCF
08 10 08 10 08 10 08 10 08 10

Std 3–30 8.3 379 825 9.8 448 923 8.9 364 766 6.0 280 697 9.4 436 857
FPD 3–30 6.2 325 795 8.0 432 929 6.6 308 747 4.3 224 641 8.6 419 842
Std 10–30 5.7 286 777 6.8 368 892 5.8 273 701 4.2 192 607 6.7 326 811
FPD 10–30 4.7 243 741 6.1 326 877 5.1 240 665 3.1 157 529 6.3 308 771
Std 3–60 5.8 259 645 6.3 284 753 5.9 247 596 4.5 182 464 6.3 286 692
FPD 3–60 4.1 204 605 5.6 276 819 4.1 194 540 3.0 136 402 5.3 269 697
Std 10–60 3.8 196 609 5.1 251 738 3.5 172 547 2.5 116 402 4.6 224 627
FPD 10–60 2.9 159 565 4.5 231 744 3.0 149 523 2.0 88 370 4.2 218 631
Std Full 1.1 57 270 1.9 86 353 1.2 47 200 0.6 28 138 1.5 82 310
FPD Full 0.9 47 249 1.7 83 356 1.1 45 192 0.5 24 121 1.4 84 319

TABLE VII: NIST SRE 2012 extended set: minimum Cprimary comparison of FPD–PLDA and Asymmetric FPD–PLDA. The numbers
associated to the conditions refer to the mean duration of the segments, after voice activity detection, and to the corresponding standard
deviation.

System

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5
interview phone call interview phone call phone call

without added noise without added noise with added noise phone with added noise from a noisy environment
45s – 41 56s – 48 75s – 37 110s – 56 57s – 48

PLDA 0.254 0.224 0.255 0.245 0.218
FPD–PLDA 0.259 0.209 0.245 0.243 0.195

the Projected Length Normalization (FPD2) (32).
The tests on variable duration cuts, randomly chosen from

the extended NIST SRE2010 female set, are shown in Figure
1 and Table V. Figure 1 compares on its left side column
the minDCF08 obtained using PLDA and FPD–PLDA trained
with different data, either telephone data only or telephone
and additional microphone data. The set of minDCF08 results
are shown as a function of the training conditions and of the
duration of the cuts. On the right side column, the minDCF08
results obtained using the parameters trained in the “tel+mic”
condition for PLDA and FP–PLDA are compared. The figure

also shows as black dots the percent improvement obtained
by FPD–PLDA with respect to standard PLDA. Excluding the
matched tel–tel condition 5, the PLDA models trained adding
microphone data, indicated as “Std tel+mic” on the legend,
are always better than the corresponding models trained with
telephone data only, and FPD–PLDA shows always a relative
improvement, quite small for long enough segments, but up
to 20% depending on the average duration of the small cuts.

Table V also reports the results for the SV–PLDA approach.
Since the training segments are long, as we did with FPD–
PLDA, the SV–PLDA model was trained using π–vectors
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without considering the π–vector covariances. For the same
reason, the T matrix was not retrained. It seems that the ML
estimation of the π–vectors is not as effective as the MAP
estimation of i–vectors, making the FPD–PLDA approach
more attractive.

The results given in Table VI confirm the quality of the our
approach for male speakers.

Pooled results for female and male speakers are reported
in Table VII for the NIST 2012 SRE evaluation experiments
described below. In these experiments, the acoustic features
were again 60–dimensional MFCCs, modeled with a 2048
components full–covariance UBM. The i–vector dimension
was increased to M = 600. Moreover, Linear Discriminant
Analysis was performed to reduce the i–vector dimension-
ality to 200, before applying i–vector whitening and length
normalization. Since the resulting i–vectors are already small,
no dimensionality reduction was applied for the speaker sub–
space, i.e. the speaker sub–space was set to 200. The UBM
was trained on speech segments taken from previous the NIST
2004, 2005, 2006, 2008 and 2010 evaluation corpora, and
from the enrollment set of NIST 2012 evaluation. Additionally,
the Fisher, Switchboard Phase 2 and Switchboard Cellular
datasets were used to train the i–vector extractor and the PLDA
parameters. Due to the enormous amount of trials involved in
the evaluation (some tens of millions), we did not test the
complete FPD–PLDA approach. Since NIST 2012 enrollment
segments are on average quite long, we were able to test FPD–
PLDA according to the Asymmetric FPD–PLDA approach
illustrated in Section VIII-D. Moreover, we had empirical
evidence that representing a target speaker by means of a
single i–vector, computed as the average of all its i–vectors,
provides higher accuracy with respect to the standard multi–
session PLDA scoring. The same approach was, thus, followed
for obtaining the FPD–PLDA scores.

The results comparing standard PDLA and Asymmetric
FPD–PLDA are given in Table VII in terms of minimum
Cprimary , the primary cost measure defined by NIST [25]
for this evaluation. These results clearly show that although
the Asymmetric FP–PLDA introduces some approximations,
it is still able to outperform standard PLDA in most of the
conditions. In particular, it gains for conditions 2 and 5,
which include short and variable duration segments, whereas
it obtains almost the same performance for the long duration
segments of conditions 3 and 4. Condition 1 is an exception,
we speculate that errors in voice activity and interviewee
detection may lead to the estimation of an incorrect i–vector
covariance posterior. This effect might not manifest itself on
condition 3 because the average segment duration is higher.

The real–time contribution of the PLDA techniques eval-
uated in this work, with i–vector dimension M = 400, is
compared in Table VIII. It reports the scoring time per trial
required by standard PLDA, by Full Posterior PLDA, by
Asymmetric FPD-PLDA, and by an optimized implementation
of PLDA, respectively, as a function of the number of enroll-
ment and test pairs which must be scored. All times are given
in milliseconds. It is worth noting that the optimized PLDA
fully exploits both the “fixed set of target speakers scenario”
and the performance of optimized matrix–to-matrix operations

TABLE VIII: Real–time scoring (in milliseconds per trials) for the
standard PLDA, Full Posterior Distribution PLDA, Asymmetric FPD-
PLDA, and for an optimized implementation of PLDA.

Enrollment Test Standard FPD Asymmetric Opt.
segments segments PLDA PLDA FPD–PLDA PLDA

1 1 0.44 102.42 55.99 0.4680
100 100 0.36 7.12 0.54 0.0014
1000 100 0.33 7.05 0.07 0.0007
1000 1000 0.33 6.42 0.07 0.0002

for scoring multiple test segments, whereas the Asymmetric
FPD-PLDA is optimized for scoring a single test against a
fixed set of target speakers. The number of enrollment and test
segments shown in Table VIII have been selected so that the
contribution of each PLDA technique in a different application
scenario could be appreciated. The first row presents the single
trial scenario, where, excluding the pre–computation of Λy

for standard PLDA, one cannot obviously perform any pre–
computation or optimization that can be used for speeding–up
the scoring of other pairs. This is the worst case for FPD–
PLDA and Asymmetric FPD–PLDA, which are approximately
200 and 100 times slower than PLDA, respectively. It is also
the worst case for our highly optimized PLDA implementation,
which does not have any advantage in this scenario. A dramatic
speedup with respect to single pair scoring is obtained, instead,
by the optimized PLDA when the number of enrollment and
test segments (i.e., of trial pairs) increases, as shown in the
second row for 10000 trials. This is also true for FPD–PLDA
and Asymmetric FPD–PLDA. Comparing the scoring times
for the 100 − 100 and 1000 − 100 scenarios, shown in the
second and third row, respectively, one can appreciate the
importance of Asymmetric FPD-PLDA, which does not suffer
the FPD–PLDA overhead for a 10 times larger enrollment set.
Finally, these results, and the ones reported in the last row,
show that whenever a large set of tests has to be performed
against a large, but fixed, set of target speakers, FPD–PLDA is
approximately 20 times slower than standard PLDA, whereas
Asymmetric FPD-PLDA is four times faster. However, in this
scenario, the optimized PLDA is more than two order of
magnitude faster than any other technique.

It is worth noting that these are pure classification times
that do not include i-vector extraction time, which depends on
the length of the speech segment because the UBM statistics
are collected frame by frame. Taking also into account the i-
vector extraction time, the ratio of the single pair scoring time
between FPD–PLDA and standard PLDA reduces from 200 to
4 approximately.

X. CONCLUSIONS

A PLDA model which exploits the uncertainty of the i-
vector extraction process has been presented. We derived the
formulation of the likelihood for a Gaussian PLDA model
based on the i–vector posterior distribution, and illustrated
a new PLDA model, where the inter–speaker variability is
assumed to have an segment–dependent distribution, showing
that we can rely on the standard PLDA framework simply
replacing the likelihood definition.
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We have proposed two i–vector pre–processing techniques,
and compared their effects on the system accuracy, showing
that an approximate version of a linearized length normaliza-
tion is effective.

The complexity of the PLDA and FPD–PLDA implemen-
tations have been analyzed, and an Asymmetric FPD–PLDA
approach has been proposed, which allows obtaining a sub-
stantial complexity reduction in a practical detection scenario.
The results obtained both on the extended core tests and on
short cuts of different duration of the NIST 2010, and on
the extended tests of NIST 2012 evaluations, confirm that
the FPD–PLDA outperforms PLDA mostly for short variable
duration test segments.

REFERENCES

[1] S. Cumani, O. Plchot, and P. Laface, “Probabilistic Linear Discriminant
Analysis of i–vector posterior distributions,” in Proceedings of ICASSP
2013, pp. 7644–7648, 2013.

[2] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front–end
factor analysis for speaker verification,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 19, no. 4, pp. 788–798, 2011.
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