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Memory and computation trade-offs for efficient
i-vector extraction

Sandro Cumani and Pietro Laface

Abstract—This work aims at reducing the memory demand
of the data structures that are usually pre–computed and stored
for fast computation of the i-vectors, a compact representation
of spoken utterances that is used by most state–of–the–art
speaker recognition systems. We propose two new approaches
allowing accurate i-vector extraction but requiring less memory,
showing their relations with the standard computation method
introduced for eigenvoices, and with the recently proposed fast
eigen–decomposition technique. The first approach computes an
i–vector in a Variational Bayes (VB) framework by iterating
the estimation of one sub–block of i–vector elements at a time,
keeping fixed all the others, and can obtain i–vectors as accurate
as the ones obtained by the standard technique but requiring
only 25% of its memory. The second technique is based on
the Conjugate Gradient solution of a linear system, which is
accurate and uses even less memory, but is slower than the
VB approach. We analyze and compare the time and memory
resources required by all these solutions, which are suited to
different applications, and we show that it is possible to get
accurate results greatly reducing memory demand compared with
the standard solution at almost the same speed.

Index Terms—Speaker Recognition, Eigenvoices, Joint Factor
Analysis, i-vectors, Variational Bayes, Conjugate Gradient.

I. INTRODUCTION

Speaker recognition technology has shown continuous im-
provement in the last decade as confirmed by the results of a
series of progressively challenging NIST evaluations [1], [2],
and is rapidly moving from research laboratory evaluations
to real applications. The scale of these applications ranges
from large speaker identification systems, requiring clusters
of servers, to simple and fast speaker verification systems to
be hosted in mobile devices, where memory and computation
resources are limited.

State–of–the–art systems are still based on Gaussian Mix-
ture Models (GMMs), first proposed in [3], [4]. In this
approach, a speaker model is represented by a supervector
stacking the GMM means, which is adapted from a Univer-
sal Background Model (UBM) using Maximum a Posteriori
Adaptation. This basic framework, however, has evolved and
many efforts have been devoted to robust speaker model
adaptation techniques with a limited amount of data, and
to devising different solutions to the problem of intersession
compensation. In particular, eigenvoice modeling, a technique
that constrains the variability of speaker utterances to a low di-
mensional space, introduced in [5] for speech recognition, has
been the inspiration for modern speaker recognition systems.
It has proven to be effective for speaker adaptation not only
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in speech [5], [6] and speaker recognition [7], [8], but also for
intersession compensation through eigenchannel modeling [9],
[10]. All these approaches rely on Factor Analysis (FA), which
allows a compact representation of a speaker or channel model
to be obtained as a point in a low–dimensional subspace. A
more effective technique that faces intra-speaker variability is
Joint Factor Analysis (JFA) [11], [12]. JFA uses the same FA
algorithms but jointly estimates speaker and channel variabil-
ity.

A simpler model for speaker recognition has been intro-
duced in [13], [14], which gets rid of the distinction between
speaker and channel variability subspaces, and models both in
a common low dimensional space, referred to as the “total
variability space”. In this approach, a speech segment is
represented by a low-dimensional “identity vector” (i-vector
for short) extracted by Factor Analysis. The main advantage
of this representation is that the problem of intersession
variability is deferred to a second stage, dealing with low-
dimensional vectors rather than with the high-dimensional
supervector space of the GMM means. Good performance
has been obtained using i-vectors and simple LDA and co-
sine distance scoring [13], but better performance has been
achieved by using generative models based on Probabilistic
Linear Discriminant Analysis (PLDA) [15], [16]. The goal of
such systems is to model the underlying distribution of the
speaker and channel components of the i–vectors in a Bayesian
framework. From these distributions it is possible to evaluate
the likelihood ratio between the “same speaker” hypothesis
and “different speakers” hypothesis for a pair of i–vectors.
The same paradigm can be used to train discriminative systems
where the observation patterns are pairs of i–vectors [17], [18].

In this paper we propose two new approaches allowing
accurate i-vector estimation but requiring less memory, show-
ing their relations with the standard method introduced for
eigenvoices [6] and with the eigen–decomposition technique
[19], which is fast, but inaccurate. The first approach computes
an i–vector in a Variational Bayes (VB) framework by iterating
the estimation of one sub–block of i–vector elements at a
time, keeping fixed all the others. It is able to obtain i–
vectors as accurate as the ones obtained by the standard
technique but requires only 25% of its memory, running at
almost the same speed. The second technique, instead, solves
the same linear system by means of the Conjugate Gradient
(CG) algorithm, which iteratively refines a complete i–vector.
This solution does not require computing and inverting the
posterior distribution precision matrix LX , thus reducing the
high storage demands of the standard solution and the costs
for the computation and inversion of LX . The CG technique
is accurate and uses even less memory, but is slower than the
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VB approach.
We analyze the time and memory costs of all these solutions,

which are suited to different application fields, depending on
their memory constraints, and we show that it is possible to get
accurate results greatly reducing memory demand compared
with the standard solution at almost the same speed. It is
worth noting that we are mainly concerned with memory
costs because the incidence of the time spent for i–vector
computation is negligible compared to the importance of
keeping the original accuracy and saving memory. While this
is true for systems using large models and scoring long speaker
segments, real applications often deal with short segments,
and constrain the dimensions of the features, of the subspace
and the number of Gaussian components that can be used.
In these conditions the effectiveness of the i–vector extractor
may become more relevant.

This work revises and extends the experiments of [20],
reporting preliminary results that have been presented during
the Odyssey 2012 workshop. In the same workshop the work
[21] has been presented, which uses the VB approach for i–
vector extraction. This work introduces two interesting topics
with the aim of improving system performance: the extraction
of high dimensional i–vectors, made possible by the VB
methods, and their usage during training. Our work, instead,
was mainly devoted to solve memory and computational issues
in recognition, using the popular 400 dimension i–vectors and
”standard” or even smaller sized models. Being focused on
recognition, we devised and evaluated a VB solution comput-
ing one sub–block of i–vector elements at a time, rather than
a single element, in order to find a reasonable time/memory
trade-off. Moreover, we explore in Section VI-A an issue
that is interesting from an application perspective: using the
”standard” i–vectors for training the ”a–priori knowledge”
(the LDA–WCCN or PLDA parameters) and the i–vectors
extracted by the VB approach in enrollment and test.

The paper is organized as follows: Section II summa-
rizes the i–vector model for speaker recognition, setting the
background for i–vector computation. Section III recalls a
recently proposed approximate i–vector estimator approach,
which significantly reduces memory demand and processing
time. Section IV shows that a Variational Bayes approach,
which computes the i–vector components iteratively, converges
to the standard solution, thus producing the same i–vectors
if enough iterations are performed. The same results can be
obtained by another method illustrated in Section V, which
is slower but uses less memory. The experimental results are
presented and discussed in Section VI, and conclusions are
drawn in Section VII.

II. I–VECTOR MODEL

The i–vector model [13], [14] constrains the GMM super-
vector s, representing both the speaker and channel character-
istics of a given speech segment, to live in a single subspace
according to:

s = m + Tw , (1)

where m is the UBM supervector, T is a low-rank rectangular
matrix with C × F rows and M columns, and C and F

are the number of GMM components and feature dimensions,
respectively. The M columns of T are vectors spanning the
“total variability” space, and w is a random vector of size M
having a standard normal prior distribution.

Following [11] and the notation in [19], given a sequence
of feature vectors X = x1x2 . . .xτ extracted for a speech
segment, the corresponding i–vector wX is computed as the
mean of the normal posterior distribution p(w|X ):

wX = L−1
X T∗Σ−1fX , (2)

where LX is the precision matrix of the posterior distribution:

LX = I +
C∑

c=1

N
(c)
X T(c)∗Σ(c)−1

T(c) . (3)

In these equations, N
(c)
X are the zero–order statistics estimated

on the c-th Gaussian component of the UBM for the set of
feature vectors X , Σ(c)−1

is the UBM c–th precision matrix,
Σ is the block diagonal matrix with Σ(c) entries, T(c) is the
F × M sub-matrix of T corresponding to the c–th mixture
component such that T =

(
T(1)∗, . . . ,T(C)∗

)∗, and fX is
the supervector stacking the first–order statistics f

(c)
X , centered

around the corresponding UBM means:

N
(c)
X =

τ∑
t=1

γ
(c)
t (4)

f
(c)
X =

τ∑
t=1

(
γ

(c)
t xt

)
−N

(c)
X m(c) , (5)

where xt is the t–th feature vector in X , and γ
(c)
t is its

occupation probability.
Since Cholesky decomposition can be applied to each UBM

precision matrix Σ(c)−1

, its contribution can be distributed on
its adjacent factors in (2) by setting:

f
(c)
X ← Σ(c)− 1

2 f
(c)
X

T(c) ← Σ(c)− 1

2 T(c). (6)

Using these “normalized” statistics and sub–matrices, the i–
vector espression in (2) can be written as:

wX = L−1
X T∗fX , (7)

with

LX = I +
C∑

c=1

N
(c)
X T(c)∗T(c) . (8)

A. Complexity analysis
The complexity of a single i–vector computation mainly

depends on the computation of LX and on its inversion. In
particular, the computation complexity is O(M3 +CFM) for
(7) plus O(CFM2) for (8). Usually the number of Gaussian
components C is greater than the subspace dimension M ,
and the latter is greater that the feature dimension F . Popular
settings for state–of–the-art systems are: F = 60, C = 2048,
and M = 400.

The term O(CFM2) (quadratic in M ) accounts for most
of the computation complexity, whereas the memory demand
for storing matrix T is O(CFM).



IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 4

A faster solution for (8) can be obtained if every term
T(c)∗T(c) of each mixture component is pre–computed and
stored. The computational cost becomes O(CM2), but the
speed–up comes at the expense of an additional (large)
memory demand for computing (8), which being O(CM2)
dominates the other memory costs.

In the following we will refer to the latter as the standard
method of i–vector extraction, or fast baseline approach,
whereas the former will be referred to as the slow baseline
approach.
In the next sections we will present a number of approaches
aiming at reducing the complexity of the i–vector extraction
process either trading accuracy for speed and memory, or
even achieving accurate results with less resources. All these
approaches focus on the reduction of the storage cost of matrix
LX , either devising a suitable approximation L̂X , as illustrated
in Section III and IV, or avoiding altogether its computation
as shown in Section V-B, where we rely on the computation
of the product LXwk, which requires much less storage.

III. APPROXIMATE I–VECTOR EXTRACTION

In this section we assume that the statistics and the T(c)

matrices are normalized according to (6). Since T(c)∗T(c)

is symmetric and semi–definite positive, it can be eigen–
decomposed as:

T(c)∗T(c) = G(c)D(c)G(c)∗ , (9)

where G(c) is an orthogonal matrix, and matrix D(c) is
diagonal. D(c) can be expressed as:

D(c) = G(c)∗T(c)∗T(c)G(c) . (10)

A simultaneous orthogonal transformation of the matrices
T(c) has been introduced in [19] for fast computation of the
i–vectors with low memory resources, where each G(c) is
replaced, for the sake of efficiency, by a single matrix Q (see
(16) as an example of such a matrix) as:

D̃(c) = Q∗T(c)∗T(c)Q. (11)

Due to this approximation, every D̃(c) will have small non–
null off–diagonal elements. Setting to zero these off–diagonal
elements diagonalizes D̃(c). From (11) we get the approximate
matrix:

˜T(c)∗T(c) = QD̃(c)Q∗ , (12)

which can be substituted in (8) to obtain the approximated
posterior distribution precision matrix:

L̃X = I +

C∑
c=1

N
(c)
X QD̃(c)Q∗ . (13)

Since Q is an orthonormal matrix,

L̃X = QL̂XQ∗ (14)

is a rotated version of the diagonal matrix:

L̂X = I +

C∑
c=1

N
(c)
X D̃(c) . (15)

Thus, assuming that D̃(c) in (11) is diagonal, i.e., that the
off-diagonal entries of matrix D(c) can be ignored, has the
remarkable advantage that L̂X is a diagonal matrix that can
be computed accumulating C vectors of dimension M and
whose inversion cost is negligible.
A suitable common orthogonalizing matrix Q has been pro-
posed in [19], based on the eigen-decomposition

W = QΛQ−1 (16)

of the weighted average covariance matrix

W =
C∑

c=1

ω(c)T(c)∗T(c), (17)

where ω(c) is the weight of the c–th GMM in the UBM
supervector.
By combining (7) and (14), the i–vector ŵX approximating
wX is obtained as:

ŵX = QL̂−1
X Q∗T∗fX . (18)

A. Complexity analysis
Using this approach, the computational complexity for the

i–vector extraction is reduced to O(CFM), due to T∗fX in
(18). This cost dominates because computing the diagonal
matrix L̂X has complexity O(MC), and its inversion is just
O(M). The contribution O(M2) for L̂X back–rotation is also
negligible compared to O(CFM). The main contribution to
memory costs is O(CFM) for storing matrix T, but additional
memory, O(CM) and O(M2), is needed for storing L̂X and
Q, respectively. These additional costs, however, are relatively
small because CF >> M .

This approach is very fast and memory effective. Its perfor-
mance is good, as shown in [19], and confirmed in our section
devoted to the experiments, but it does not reach the accuracy
of the standard approach. Thus we studied alternative memory-
aware accurate i–vector extraction methods. In the next section
we present the first one: a Variational Bayes approach (VB)
that computes i–vectors as accurate as the ones obtained by the
standard technique but requires only a fraction of its memory.

IV. VARIATIONAL BAYES ACCURATE I–VECTOR
EXTRACTION

Considering the training data X of a specific speaker, and
given the model represented in (1), the joint log-probability of
X and w, according to the notation of Theorem 1 in [11], is
given by:

log PT,Σ(X ,w) = log PT,Σ(X|w) + log P (w) = (19)

GΣ + w∗T∗Σ−1fX −
1

2
w∗T∗NXΣ−1Tw −

1

2
w∗w ,

where NX is a CF×CF block diagonal matrix with diagonal
blocks N

(c)
X I, with I an F × F identity matrix, and

GΣ =

C∑
c=1

[
N

(c)
X log

1

(2π)
F/2|Σ(c)|

1/2
−

1

2
tr
(
Σ(c)−1

s
(c)
X

)]
,

where the s
(c)
X are the second order centered statistics, and GΣ

collects the terms that do not depend on w.
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The posterior distribution of w can be expressed in closed
form [6] as

w|X ∼ N (wX ,L−1
X ) ,

where wX and LX are given in (2) and (3), respectively.
A diagonal LX would imply that the i–vector components wi

are uncorrelated, and thus their posterior distribution would
factorize over the components. In the general case, however,
LX is a full matrix and the i–vector components wi are
correlated in the posterior. For this reason the complexity
of the standard approach is much higher than the eigen–
decomposition approach. Thus, we look for a variational ap-
proximation of the posterior distribution q(w) ≈ PT,Σ(w|X )
having this factorized form:

q(w) =

B∏
i=1

q(wi) ,

where each wi is a set taken from a partition of w into B
disjoint subsets.

Variational Bayes (VB) methods provide a framework to
estimate the distributions q(wi) that minimize the Kullback-
Liebler divergence between the posterior PT,Σ(w|X ) and
its approximation q(w) (see Chapter 10.1.1 in [22]). These
estimates are given by:

log q(wi) = Ej �=i [log PT,Σ(X ,w)] + const (20)

where, recalling that w stacks all the elements wi, the no-
tation Ej �=i [. . .] denotes an expectation with respect to the q
distributions over all variables wj for j �= i.
Let Ti be the matrix excluding a block of columns i from T,
and let wi be the vector excluding the corresponding elements
from vector w

wi = [w1, . . .wi−1,wi+1, . . .wB ]
∗

Ti = [T1, . . .Ti−1,Ti+1 . . .TB]

where the sum of the dimensions of the B blocks is equal to
the dimension of the subspace M . Using these definitions, the
product Tw can be written as:

Tw = Tiwi + Tiwi, (21)

which is valid for every i = 1, . . . , B.
Substituting (21) in (19) and the latter in (20), and collecting
the terms that do not depend on w in a constant, we get:

log q(wi) = Ewi

[
w∗

i T
∗

i Σ
−1fX + w∗

i T
∗
i Σ

−1fX

−
1

2
w∗

i T
∗

i NX ,Σ
−1Tiwi −w∗

i T
∗
i NXΣ−1Tiwi (22)

−
1

2
w∗

i T
∗
i NXΣ−1Tiwi −

1

2
w∗

i wi −
1

2
w∗

i wi

]
+ const .

The terms − 1
2w

∗
i T

∗
i NXΣ−1Tiwi and − 1

2w
∗
i wi, which are

quadratic in wi, can be collected and rewritten as:

−
1

2
w∗

i Λiwi ,

where Λi is defined as:

Λi =
(
T∗

i NXΣ−1Ti + I
)

. (23)

The terms w∗
i T

∗
i Σ

−1fX and −w∗
i T

∗
i NXΣ−1TiEwi

[wi],
which are linear in wi, can be collected as:

w∗
i T

∗
i Σ

−1
(
fX −NXTiEwi

[wi]
)

=

w∗
i T

∗
i Σ

−1
(
fX −NXTiμi

)
,

where μi denotes all the current i–vector means of the q
distributions excluding the ones in block i.
Since the log–probability of a Gaussian is:

logN (x|μ,Λ−1) = −
1

2
x∗Λx + x∗Λμ + const ,

it can be seen that the distribution of q(wi) is Gaussian:

q(wi) ∼ N (wi|μi,Λ
−1
i )

with precision matrix Λi in (23), and mean:

μi = Λ−1
i T∗

i Σ
−1

(
fX −NXTiμi

)
. (24)

Thus, the computation of an i–vector can be performed in a
Variational Bayes framework by iterating the estimation of one
μi at a time, keeping fixed all the others.
Denoting fX ,i the first–order statistics centered around the
new supervector mean m + Tiμi, the Gaussian mean μi can
be computed as:

μi = Λ−1
i T∗

i Σ
−1fX ,i . (25)

A. Fast implementation
It is worth noting that a naive implementation of (25)

with a block size b = 1 would make the complexity of this
approach O(CFM2K), where K is the number of performed
iterations. This is because the computation of fX ,i would be
almost as expensive as computing T∗Σ−1fX in (2) and would
be repeated for each i–vector dimension at every iteration.
However, an efficient implementation is possible by defining
and updating a vector fc that stores the first order statistics
centered around the current supervector mean, defined as:

fc = fX −NX

i−1∑
j=1

Tjμ
k+1
j −NX

B∑
j=i

Tjμ
k
j , (26)

where μk
i refers to the estimate of μi at the k–th iteration.

Initially, thus,

fc = fX −NX

B∑
j=1

Tjμ
0
j = fX −NXTμ0 .

Performing the iterations one block at a time from block i = 1
to B, defining Ki = Λ−1

i T∗
i Σ

−1, and taking into account (26)
the i-th component of the new i–vector is computed at iteration
k as:

μk+1
i = Ki

(
fX −NXTiμ

k
i

)
= Ki

⎛
⎝fX −NX

i−1∑
j=1

Tjμ
k+1
j −NX

B∑
j=i+1

Tjμ
k
j

⎞
⎠

= Ki

(
fc + NXTiμ

k
i

)
. (27)

Since μi changes, we must update the vector of the centered
first order statistics according to the new μ simply excluding
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the contribution of μk
i and including the one given by the new

μk+1
i , as:

fc ← fc + NXTiμ
k
i−NXTiμ

k+1
i . (28)

Notice that fc is updated after the computation of each i-th
block of the i–vector, not at each iteration k, this is one of the
reasons for computing a block rather than a single element of
w at a time.

It is also worth noting that the normalization (6), getting
rid of the UBM precision matrices, can be used also in this
approach.

B. Complexity analysis
We analyze the computation complexity of the VB approach

as a function of the block size b, for the naive and the fast
implementation, accounting also the cost of computing Λ−1

i .
Let’s first set aside the computational cost of Λi. The

naive VB implementation takes O(KCF (M − b)M/b) for
computing the factor fX−NXTiμi in (24), plus O(KCFM)
for its product by T∗

i Σ
−1, and O(KbM) for the product of

Λ−1
i by the other factors. The fast VB implementation, instead,

has complexity O(KCFM) for updating the current first order
statistics of (28), plus O(KCFM) for updating (27) and again
O(KbM) for performing the final matrix product of Λ−1

i with
the other factors.

Since (23) has the same form of (8), Λi can be computed
as it has been done for LX : either accepting the slow solution,
which performs the sum of the matrix products to save
memory, or by pre–computing and storing the covariance
matrices T

(c)
i

∗
Σ(c)−1

T
(c)
i of each block i for speeding-up the

computation. The complexity of the slow solution, which does
not require any additional memory, is O(CFMb). It reduces to
O(CMb) for the fast solution, but with an additional O(CMb)
memory cost. The inversion of all Λi requires Mb2 operations.

The minimum memory cost would be obtained by comput-
ing a single component at a time, i.e., using a block size b = 1.
It is necessary, however, to trade the memory occupation and
the computational load because the selected block size affects
the performance of the matrix multiplication routines, partially
the number of iterations necessary for convergence to a preset
tolerance value, and also the number of updates of the fc
centered statistics.

The computation complexity of the VB approach is slightly
greater than the standard method, not because it requires a
large number of iterations (K), but mostly due to the costs of
centering the first order statistics. In Section VI, illustrating the
experiments, we will show that very few iterations are required
by the VB algorithm to compute suitable i–vectors, obtaining
the same performance of the standard approach using about
25% of its memory.

C. Accuracy
In order to show that the expected values E [wi] converge

to the standard solution, we rewrite equation (24), using (21)
as:

E [wi] = Λ−1
i T∗

i Σ
−1
i (fX −NXTE [w] + NXTiE [wi]) .

Multiplying both sides by Λi and rearranging the terms we
obtain:

T∗
i NXΣ−1TE [w] +

(
Λi −T∗

i NXΣ−1Ti

)
E [wi] =

T∗
i Σ

−1fX ,

and replacing Λi, given by (23), we finally get:

T∗
i NXΣ−1TE [w] + E [wi] = T∗

i Σ
−1fX .

Thus, the optimal values for the set of μi = E [wi] are given
by the solution of the linear system:(

T∗NXΣ−1T + I
)
wX = T∗Σ−1fX , (29)

where T is the matrix that stacks all Ti, and wX is the vector
that stacks all E [wi].

The i–vector is thus obtained from (29) as:

wX =
(
T∗NXΣ−1T + I

)−1
T∗Σ−1fX , (30)

which corresponds, in matrix form, to the mean of the full
posterior PT,Σ(w|X ) given in (2) and (3).

V. SOLVING A LINEAR SYSTEM

Since in (29) we have a linear system of equations, of form
LXwX = c, it is interesting to analyze its solutions by using
standard techniques. There are many iterative algorithms for
solving linear systems, but in this work we considered only
two of them: the Gauss–Seidel and the Conjugate Gradient
(CG). These methods share the property of convergence to the
correct solution for positive definite matrices. This condition is
satisfied in our system because LX is a symmetric and positive
definite matrix because it is the sum of T∗NXΣ−1T, which
is a symmetric and positive semidefinite covariance matrix,
and of the identity matrix.

The first method has been considered because it shows that
the Variational Bayes approach illustrated in the previous sec-
tion is a generalization of the Gauss–Seidel method, whereas
the Conjugate Gradient method has been implemented because
it allows obtaining accurate results with the same memory cost
of the slow baseline approach.

A. Gauss–Seidel solution
The Gauss-Seidel method can be used to solve iteratively a

linear system of equations Lw = c element–wise as:

wk+1
i =

1

lii

⎡
⎣ci −

i−1∑
j=1

lijw
k+1
j −

B∑
j=i+1

lijw
k
j

⎤
⎦ , i = 1, . . . , n ,

until convergence within a predefined threshold has been
achieved. Thus, it would solve iteratively the linear system
(29) exactly as our Variational Bayes approach does, just using
M blocks of size b = 1, but without the speed–up given by
the technique illustrated in Section IV-A.

Gauss–Seidel is a special case of the Successive Over
Relaxation (SOR) method, where the Gauss-Seidel solution
at iteration k+1 is linearly combined with the solution of the
previous iteration through a factor α as:

w(k+1) = αw(k+1)
gs + (1 − α)w(k) .
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For a symmetric and positive definite matrix the SOR iteration
is guaranteed to converge for any value of 0 < α < 2.
The choice of α affects the convergence rate, but finding an
optimal value of α is too expensive. Thus, we did not try
to heuristically improve the convergence behavior of the VB
approach by finding a suitable α value. No preconditioning
was necessary because good performance is obtained after just
2 or 3 iterations.

B. Conjugate Gradient solution
Since matrix LX is symmetric and positive definite, the

linear system of equations (29) can also be solved by the
Conjugate Gradient (CG) method, which solves Lw = c

iterating from an initial guess w0 and generating successive
vectors that are closer to the solution w that minimizes the
quadratic function:

f(w) =
1

2
w∗Lw −w∗c . (31)

Our main interest in this approach comes from the consider-
ation that the iteration updates in this algorithm are based on
the residual:

rk = c− Lwk . (32)

It is thus possible to reduce the high storage demands of the
standard solution and the costs due to the computation and
inversion of matrix LX , because LX appears in the residual
multiplied by wk, thus we can avoid the computation of LX ,
and rely on the computation of the product LXwk, which
requires much less storage. The product

LXwk = (T∗NXΣ−1T)wk + Iwk (33)

can be computed, right–to–left, by the sequence of operations:

Z = Twk (34)
Z ← NXΣ−1Z

Z ← T∗Z

LXwk = Z + wk .

The order of the operations is important because the first
operation produces a vector, which is then scaled by the values
of the diagonal matrix NXΣ−1, and finally LXwk is obtained
by the last two operations. It is worth noting that even if Σ−1

in (33) were a full matrix, it could be distributed to the adjacent
factors T∗ and T as has been done in (6).

C. Complexity analysis
The computation complexity of the CG method, using this

approach, is O(KCFM) for the first and third operation,
plus O(KCF ) for the second and O(KM) for the fourth
one in (34). The cost of a single CG iteration is less
expensive compared to the standard fast computation, which
is O(CFM2). Although few iterations are usually necessary
to reach an acceptable approximation, the Conjugate Gradient
approach is not as fast as the standard approach, but it uses far
less memory, i.e., the same memory required by the baseline
slow approach to keep in memory matrix T (O(CFM)).

VI. EXPERIMENTS

Since the focus of this work was i–vector extraction, we
did not devote particular care to select the best combination
of features, techniques, and training data that allow obtaining
the best performance. However, we targeted the parameters of
state–of–the-art systems, i.e., large feature and model dimen-
sions, and good results, in order to avoid biased conclusions
that could not be extended to the best recognition systems. For
the same reason, we tested the techniques introduced in the
previous sections only on the female part of the tel-tel extended
NIST 2010 evaluation trials [23], using two classifiers having
the same front–end, based on cepstral features.

In particular, we extracted, every 10 ms, 19 Mel frequency
cepstral coefficients and the frame log-energy on a 25 ms
sliding Hamming window. This 20–dimensional feature vector
was subject to short time mean and variance normalization
using a 3 s sliding window, and a 60-dimensional feature
vector was obtained by appending the delta and double delta
coefficients computed on a 5–frame window. We trained a
gender-independent UBM, modeled by a diagonal covari-
ance 2048-component GMM, and also a gender-independent
T matrix using only the NIST SRE04 SRE05 and SRE06
datasets. The i-vector dimension was fixed to 400 for all the
experiments.

The first recognition system that has been tested is based
on the LDA–WCCN approach [14], which performs interses-
sion compensation by means of Linear Discriminant Analysis
(LDA), where all the i-vectors of the same speaker are associ-
ated with the same class. LDA removes the nuisance directions
from the i-vectors by reducing the feature dimensions (from
400 to 200 in our tests, as in the original proposal [14]). These
speaker features are finally normalized by means of Within
Class Covariance Normalization (WCCN) [24], and used for
cosine distance scoring (CS). The second system is based
on Gaussian PLDA, implemented according to the framework
illustrated in [15]. We trained models with full–rank channel
factors, using 120 dimensions for the speaker factors.

The LDA matrix, the WCCN transformations, and the
PLDA models have been trained using the NIST SRE04,
SRE05, SRE06 datasets, and additionally the Switchboard II,
Phases 2 and 3, and Switchboard Cellular, Parts 1 and 2
datasets. The i–vectors of the PLDA models are L2 normal-
ized, whereas the scores provided by both systems are not
normalized. All the experiments were first performed by using
i–vectors extracted by the same technique. Thus, the i–vectors
extracted for training the LDA–WCCN or the PLDA param-
eters and the enrollment and test i–vectors were consistent.
We also devised a second set of experiments for evaluating
the accuracy of the systems considering the possibility that
the i–vectors used for LDA–WCCN or the PLDA training
were the “standard” ones, whereas the enrollment and test i–
vectors were not consistent. In particular, it is interesting from
an application viewpoint to train once the a–priori knowledge
(the LDA–WCCN or PLDA parameters) using the standard
approach, and to use a different i–vector extractor in enroll-
ment and testing due to memory or computational constraints.
We evaluated two possible scenarios keeping fixed the a–priori
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knowledge: in the first one, both enrollment and test i–vectors
are extracted by one of the non–standard approaches, whereas
just the test i–vectors are not consistent in the second scenario.

Table I summarizes the performance of the evaluated ap-
proaches on the female part of the extended telephone con-
dition in the NIST 2010 evaluation. The results reported in
this table were obtained using the same i–vector extractor
for enrollment, test and a–priori knowledge training. The
recognition accuracy is given in terms of percent Equal Er-
ror Rate (% EER) and Minimum Detection Cost Functions
defined by NIST for the 2008 (minDCF08×1000) and 2010
(minDCF10×1000) evaluations [23], respectively.

It is worth noting that preliminary results about memory
and computational costs were reported in [20], which cannot
be compared with the one given in Table I because in that
work we had not considered some straightforward memory and
computational optimizations that can be applied both to the
”standard” i–vector extractor and to the proposed techniques.
In particular, we report here the results obtained using single
rather than double precision floating-point storage because
we have verified that the performance of the system, in any
condition, is not affected by single precision operations. Using
single rather than double precision floating-point immediately
halves the required storage. The second optimization that
allows saving both memory and time consists of storing only
the lower triangular elements of the symmetric matrices. These
optimizations implied also a revision of our previous findings
about the relative computational costs of some of the devised
i–vector extraction implementations.

In Table I, label VB–b–θ refers to the Variational Bayes
approach with block size b and stopping criterion threshold
equal to θ. The stopping criterion is based on the difference
between the L2-norm of the current estimated i–vector and
the one computed in the previous iteration. In label CG–θ,
instead, θ indicates the residual norm (32) stopping criterion
threshold of the Conjugate Gradient approach.

Analyzing the results in Table I it is evident that, no matter
the i–vector extraction technique used, the accuracy of the
PLDA system is significantly better than the LDA-WCCN
cosine distance scoring approach.

The fast baseline results, corresponding to the standard i–
vector extraction approach, are obtained 18 times faster than
the corresponding slow approach. However, the latter requires
only 188 MB for storing matrix T, whereas the former needs
4 times more memory, essentially to store the terms T(c)∗T(c)

that allow speeding–up the computation of (8).
The approximate i–vector extraction based on eigen-

decomposition of Section III is extremely fast and requires
almost the same amount of memory as the accurate slow
approach. However, it is not able to reach the accuracy of
the baseline system. On the contrary, in Section IV-C it has
been shown that the VB approach, given enough iterations,
converges to the i–vectors of the standard solution, thus it
gives the same results of the standard system. This can be
appreciated looking at the results reported in the lines labeled
VB–b–10, corresponding to a tight threshold and slower
extraction times with respect to the faster VB–b–100 systems.

As illustrated in Section IV-B, the block size b in the VB

Fig. 1: Computation time plotted against memory dimension,
as a function of block sizes: 1, 5, 10, 20, 40, and 80,
respectively.

approach affects memory and computation costs. Thus, we
performed a set of experiments evaluating the performance of
these systems using different values of the block size. System
accuracy does not show significant variations for a given
stopping threshold. However, looking also at Figure 1, which
shows the computational time plotted against the required
memory as a function of the block sizes, it can be seen that
the best speed and memory trade–off is obtained by selecting
a block size b = 20. Moreover, for the sake of efficiency,
the iterations can be terminated before the convergence to the
“standard” i–vector has been reached using a less restrictive
stopping criterion. Table I and Figure 1 show that using a
larger stopping criterion threshold θ = 100 no appreciable
performance degradation is observed with the “approximate”
i–vectors obtained in about half processing time. Thus, the
accuracy of the system is not particularly affected by VB i–
vectors that significantly differ from the “standard” ones.

Summarizing the Variational Bayes approach results, we
conclude that the VB–20–10 system is able to get the same
results of the baseline systems, 1.6 to 2.3 times slower than
the standard approach, depending on the available number of
concurrent threads, but using slightly more memory than the
memory efficient slow baseline system, or the fast, but inaccu-
rate, eigen–decomposition approach. Very good performance
is also obtained by the VB–20–100 system, with an earlier
stop of the iterations, leading to i–vector extraction, which is
at worst 1.4 times slower than the standard method when using
a single thread, but requires only 1/4 of its memory.

Two threshold values have also been tested for the Conju-
gate Gradient approach to evaluate how the threshold value
affects the recognition accuracy. The results, given at the
bottom of Table I, show that the stopping criterion is not
critical. The CG approach is slower than the standard and
VB methods. However, it achieves the same accuracy using
the same amount of memory of the slow baseline approach,
just the one needed for storing matrix T, even slightly less
than the Eigen–decomposition approach. Faster convergence
is obtained preconditioning the algorithm by initializing the
precision matrix LX as the diagonal of the weighted average
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TABLE I: Results for the extended NIST SRE2010 female tests in terms of % EER, minDCF08×1000 and minDCF10×1000
using different i–vector extraction approaches, and consistent i–vectors

1 core 12 cores Cosine Scoring PLDA
System Memory 200 utterances 1000 utterances (%) min min (%) min min

2.2M frames 12M frames EER DCF08 DCF10 EER DCF08 DCF10
(MB) time ratio cpu time time ratio cpu time

Fast baseline 814 1.0 26.09 s 1.0 39.97 s 5.00 229 614 3.59 181 568
Slow baseline 188 18.2 474.69 s 9.2 369.71 s 5.00 229 614 3.59 181 568
Eigen–decompo 191 0.3 6.72 s 0.2 7.5 s 5.70 252 692 4.26 202 690
VB-1-10 191 6.3 164.14 s 4.4 176.02 s 4.96 229 613 3.51 181 566
VB-5-10 197 3.7 96.95 s 2.0 79.46 s 4.96 228 618 3.48 181 565
VB-10-10 205 2.8 72.81 s 1.7 68.05 s 4.94 230 619 3.56 181 567
VB-20-10 220 2.3 58.77 s 1.6 63.48 s 4.94 229 621 3.51 182 570
VB-40-10 252 2.2 56.27 s 1.6 63.39 s 4.97 230 614 3.56 181 567
VB-80-10 314 2.3 60.65 s 1.6 65.35 s 4.95 230 615 3.54 179 564
VB-1-100 191 3.4 87.84 s 2.1 84.12 s 5.15 229 620 3.67 183 593
VB-5-100 197 2.1 54.55 s 1.2 47.83 s 5.24 233 615 3.59 184 584
VB-10-100 205 1.6 42.00 s 1.0 40.07 s 5.16 233 627 3.62 183 590
VB-20-100 220 1.4 35.34 s 1.0 39.62 s 5.16 232 622 3.51 183 573
VB-40-100 252 1.4 35.24 s 1.0 38.01 s 5.10 232 621 3.62 181 573
VB-80-100 314 1.4 37.25 s 1.1 41.97 s 5.13 231 622 3.68 181 575
CG-10 188 6.0 155.94 s 3.1 124.21 s 5.00 229 616 3.61 180 568
CG-100 188 3.7 95.4 s 2.1 83.28 s 5.20 224 620 3.62 182 568
CG-10 Preconditioned 191 4.2 109.71 s 2.4 95.90 s 4.97 229 615 3.59 181 566
CG-100 Preconditioned 191 2.7 70.85 s 1.7 68.79 s 5.13 234 620 3.51 185 579

covariance matrix:

LX = diag
C∑

c=1

(N
(c)
X T(c)∗T(c)) + I . (35)

Preconditioning speeds up the CG approach by 30% approxi-
mately.

A. Results with not consistent i–vectors
The results of the second set of experiments, where the

LDA–WCCN or the PLDA parameters were trained using the
“standard” i–vectors, whereas the enrollment and test i–vectors
were not consistent, are given in Table II. The performance of
the systems is reported, as in the previous table, in terms of
% EER, and minDCF08×1000, and minDCF10×1000. In the
first tested system configuration, both enrollment and test i–
vectors are extracted by one of the non–standard approaches.
In the second configuration only the test i–vectors are not
consistent with respect to the standard extraction approach.
The fast baseline results are, of course, identical to the ones
in Table I.

A comparison among these results and the ones obtained
using consistent i–vectors is summarized in the bar graphs
of Figure 2. In these graphs, each group of bars refers to
an i–vector extraction approach, and each bar corresponds to
a classification method (labels CS and PLDA refer to Cosine
Scoring and PLDA classification, respectively), and enrollment
and test configuration. The first bar in each group is the
reference performance of a CS system using consistent i–
vectors, whereas CS∼E∼T and CS∼T show the performance
of a system using non–standard i-vectors both in enrollment
and test, or non–standard i-vectors only in testing, respectively.
The same information is given by the other three bars in each
group, for PLDA systems.

The results of these tests using not consistent i–vectors
confirm the gaps between the PLDA and LDA–WCCN clas-
sification, and among the eigen–decomposition and the other
i–vector extraction approaches. In particular, a relevant perfor-
mance decrease is observed for the CS eigen–decomposition
approach using both enrollment and test approximate i–
vectors, whereas the approximate VB–b–100 and CS–100 i–
vectors do not show appreciable degradation in the same con-
ditions. Better results are obtained by the eigen–decomposition
i–vectors with a PLDA classifier, but they are not comparable
with the very good results, similar to the baseline approach,
which are obtained using the VB–b–100 and CS–100 i–
vectors.

Looking at the performance obtained using non–standard
i–vectors only in test, as expected, there is a very small
degradation for the VB and CG systems. Surprisingly, looking
mostly at the %EER values, it can be seen that the eigen–
decomposition i–vectors behave better in this condition than in
the previous one. We conclude that the classifiers’ performance
is significantly affected when both i–vectors are largely ap-
proximated, possibly because the two eigen–decomposition i–
vectors are approximated in opposite directions with respect to
the corresponding standard i–vector, thus the error is reduced
if one of the i–vectors is consistent.

B. Relative cost of i–vector extraction
It is worth considering that i–vector extraction is only

one of the steps involved in the speaker recognition process.
Voice activity detection, feature extraction, Gaussian selection,
collection of the zero and first order statistics, i–vector scor-
ing and score normalization are, of course, time consuming
modules. Thus, the incidence of the time spent for i–vector
computation in a system using large models and scoring long
speaker segments is negligible compared to the importance of
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TABLE II: Results for the extended NIST SRE2010 female tests in terms of % EER, minDCF08×1000 and minDCF10×1000
using different combinations of i–vector extractors for PLDA training, enrollment and test

Non–standard i-vectors in enrollment and test Non–standard i-vectors only in test
Cosine Scoring PLDA Cosine Scoring PLDA

System EER DCF08 DCF10 EER DCF08 DCF10 EER DCF08 DCF10 EER DCF08 DCF10
Fast baseline 5.00 229 614 3.59 181 568 5.00 229 614 3.59 181 568
Eigen–decomposition 7.24 340 782 5.42 272 729 5.91 254 656 4.19 199 636
VB-20-10 4.86 223 617 3.53 178 569 4.97 228 618 3.64 181 584
VB-40-10 4.88 224 617 3.51 178 564 4.94 228 613 3.65 180 577
VB-20-100 5.05 231 618 3.48 183 568 5.24 236 616 3.86 191 574
VB-40-100 5.15 234 620 3.64 184 573 5.18 235 620 3.83 189 573
CG-10 Preconditioned 4.97 229 616 3.60 181 567 5.02 230 614 3.62 180 566
CG-100 Preconditioned 5.15 236 617 3.61 186 575 5.09 234 617 3.67 184 571

(a) minDCF08×1000 (b) minDCF10×1000

(c) % EER

Fig. 2: Comparison of the % EER, minDCF08×1000, and minDCF10×1000 of different system configurations. Labels CS
and PLDA refer to Cosine Scoring and PLDA classification, respectively. ∼E∼T and ∼T refer to the extraction of non–standard
i-vectors both in enrollment and test, or in test only, respectively.

keeping the original accuracy and saving memory. However,
while large models are typically used for NIST evaluations,
real applications often constrain the number of Gaussian
components, the dimensions of the features, and the size of
i–vectors that can be used. Moreover, while the duration of
the voice regions in the tel-tel conversations of NIST 2010
is approximately 2 minutes, several applications deal with
much shorter segments. Since an i–vector summarizes the
speaker information of a speaker segment, the complexity of
its extraction does not depend on the length of the segment,

thus the effectiveness of the i–vector extractor is more relevant
for systems dealing with short utterances such as, for example,
the text prompts in speaker verification.
In order to assess the incidence of i–vector extraction time
on the overall recognition process time we performed a set of
experiments using two i–vector systems with smaller models
and shorter segments. In particular, the relative contribution
of i–vector extraction to the overall processing time has
been measured reducing the feature dimension to 25 MFCC
parameters (c1 − c12, Δc0 − Δc12), and using 512 or 1024



IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 11

TABLE III: Percentage of the overall recognition time devoted
to i–vector extraction using the standard approach

System 512 G 1024 G
Segment duration (sec) 30 15 30 15

Relative cost (%) 21 34 34 50

Gaussian components, parameters that are more suited to real
applications [25].

For these experiments, we extracted from randomly selected
test trials 100 segments of duration 15s and 30s, respectively.
The results, reported in Table III, show the percentage of
the overall recognition time devoted to i–vector extraction
using the standard approach, as a function of the segment
duration and of the number of Gaussians. For a given segment
duration, the percentage of time spent by i–vector extraction
increases, doubling the dimensions of the models because the
time spent for Gaussian selection and collection of statistics
does not increase as much as the i–vector extraction does. For a
given model dimension, the relative cost of i–vector extraction
increases for short utterances because the time devoted to i–
vector extraction does not depend on the segment duration.
However, when both accuracy and memory requirements of the
system are a concern, the Variational Bayes approach offers
a good solution with a limited increase of the computation
times.

VII. CONCLUSIONS

The aim of this work was to optimize the memory, and
possibly computation time, required for the i-vector extraction
module of a speaker recognition system. Although this opti-
mization is particularly useful for small footprint applications,
it can be also relevant for speaker identification and verifica-
tion applications, where the duration of the available speaker
segments is short.

We analyzed the time and memory resources required by
two new techniques for i-vector extraction. Their implemen-
tation has been compared with the standard one, and with
the eigen–decomposition approximation. Our approaches, al-
though not as fast as the eigen–decomposition technique, allow
obtaining accurate i–vectors and results, and require much less
memory than the standard technique.

There are two key ideas in our proposal to cope with mem-
ory constraints. The first one, which exploits the Variational
Bayes framework, is the iterative optimization of μi in (25)
which does not require the full precision matrix LX , but only
its diagonal blocks Λi in (23), reducing the memory complex-
ity from O(CM2) to O(CM(F + b)), where b is the block
size. The second one is the elimination of the computation, and
inversion, of the posterior distribution precision matrix LX ,
which can can be avoided in the Conjugate Gradient solution
because its iterations do not require LX but only the product
LXw, which is far less expensive to compute and store than
LX , as it has been shown in Section V-B.
Using the common settings of most state–of–the–art systems,
i.e., 2048 GMMs, 60 dimensional MFCC features, and 400

dimension i–vectors, and the Variational Bayes technique,
accurate results were obtained by using a fraction of the
memory needed for the standard approach, in almost the
same time. Even less memory is required for the Conjugate
Gradient approach, which allows obtaining accurate results,
but is slower than the standard approach. This drawback is
negligible for applications focusing on speaker recognition in
conversations.

In summary, the two proposed approaches substantially re-
duce the memory cost of the i–vector extraction module, which
becomes comparable to the eigen–decomposition technique.
Both are slower than eigen–decomposition, which is, however,
inaccurate. The VB technique is faster that the Conjugate
Gradient solution and is the preferred choice, but the latter
is preferable in case of strict memory constraints.
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