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ADHESIVE STRESSESIN AXIALLY-LOADED TUBULAR BONDED JOINTS -
PART I: CRITICAL REVIEW AND FINITE ELEMENT ASSESSMENT OF
PUBLISHED MODELS

E. Dragoni? L. Goglio™

®Department of Engineering Sciences and Methodsyddsita di Modena e Reggio
Emilia, via Amendola 2, 42100 Reggio Emilia, Italy

PDepartment of Mechanical and Aerospace Engineefujtecnico di Torino, corso
Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

Adhesive bonding of overlapping coaxial tubes dahe conventional or composite
materials is a joining solution often encountenecengineering structures. This paper
reviews the underlying assumptions and assessesadberacy of five published
theoretical models for the adhesive stresses peatby axial loading of the tubular
joint. The models scrutinized are those by Lubkid &eissner (1956), Shi and Cheng
(1993), Nayeb-Hashemi et al. (1997), Pugno and iGmp (2003) and Nemeet al.
(2006). Comparison of the model results with thécome of ad-hoc finite element
analyses on five joint configurations shows that:all models predict correctly the
shear stresses; 2) only Lubkin and Reissner's maets correct peel stress
distributions; 3) the axial and the hoop stresseskse to each other and are about one
half of the peel stresses. The usefulness of adicéxplosed-form solution, not

provided by Lubkin and Reissner’s theory, is recpegh.
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Keywords: C: Stress distribution; C: Finite element strasslysis; E: Joint design;

Cylindrical joint.

Nomenclature

Notations in Lubkin and Reissner model [1] and F&lgsis

a, aj, a Mean radii of adhesive layer, tube 1 and tube 2

A, C Known coefficients in the differential equation set

c Half of overlap length

Dy, D, Bending stiffnesses of tubes 1 and 2

E Young’'s modulus of both tubes in the case studytgoi
E. E Young’s moduli of tube 1 and tube 2

E,. G, Young’s and shear moduli of adhesive

91, G2, O3 Dimensionless functions

E Axial load applied to the joint

My, M, Longitudinal bending moments acting on tubes 1 2md positiorx
Ny, N, Hoop forces acting on tubes 1 and 2 at position

s Complex Laplacian variable

t Thickness of both tubes in the case study joints

t b Thicknesses of tubes 1 and 2

T, T Axial forces acting on tubes 1 and 2 at positkon

Uy, Uy Axial displacements of tubes 1 and 2



Vi, Vs

W1, W2

XY, Z

do

Vi, V2

Ox

O-X max

Oy max

Oz

0-Z max

Tm

Txy

Txy max

Shear forces acting on tubes 1 and 2 at poskion

Radial displacements of tubes 1 and 2

Axial, radial and hoop axes of the reference cawath system
“Elastothickness” parameter (fE/tE,)

Thickness of adhesive layer

Infinitesimal circumferential angle

Poisson’s ratios of tubes 1 and 2

Generic peel and shear stresses

Axial stress evaluated at mid-thickness of the adleelayer
Max value ofoy

Peel stress evaluated at mid-thickness of the adhésyer
Max value ofoy

Hoop stress evaluated at mid-thickness of the adbdédayer
Max value ofo,

Mean shear stress acting at mid-thickness of theside layer

Shear stress evaluated at mid-thickness of thesidhéayer

Max value oftyy



1. Introduction

Coaxial circular tubes can be effectively joined dihesive bonding, since this
geometrical configuration provides wide area initéd space and the adhesive is
loaded mainly (or exclusively, in case of pure itmm} by shear stresses. The use of this
geometry in practical applications is widespreasheeially to join multimaterial or
composite tubings for lightweight structures. Sisipgly, this joint type has been
investigated in the technical literature considgraless than those involving flat
geometries, i.e. single or double lap joints.

Focusing the attention on the condition of axia@dimg, the starting point is the
pioneering work by Lubkin and Reissner [1], whoatesl the tubular joint under the
same main assumptions as used for the flat lagsj¢#]. In Lubkin and Reissner’s
model, the adherends are subjected to tensionr sineabending, while the adhesive
transmits shear and peel stresses (the remainmgaents being disregarded) that are
a function of the axial coordinate only. Subsequantlels in the literature [3-9] have
adopted different approaches. Several models rettheceomplexity of the problem by
assuming that the adherends are subjected to teosiy [4-9]. Conversely, a more
complex stress state in the adhesive is assumedittiay the through-thickness
variation of the stresses [3,4,6-9] and/or theterise of other stress components [3,5-
9].

The aim of the present work is to critically revighe literature concerned with
this problem, compare the results produced by tHierent models and point out the
inadequacies. Finite element (FE) results on agarigoint configurations are used as
numerical benchmark, extending the analyses predeimt [10]. The need for an

analytical, closed-form solution is also highligteand the related difficulties, not



explicitly overcome [1], are discussed.

2. Review of theoretical models

As reminded in the Introduction, the axisymmetdap bonded joint has received
much less attention in the technical literaturanpared to the cases of the flat single-
and double-lap joints. Within this work, the followg studies and the corresponding

analytical models have been found and considered:

Lubkin and Reissner (1956) [1];

Shi and Cheng (1993) [3];

Nayeb-Hashemi, Rossettos and Melo (1997) [4];

e Pugno and Carpinteri (2003) [5];

Neme, Lachaud and Mojtabi (2006) [6], Nemand Lachaud (2009) [7].
For each of these models a brief description i®miseparately in this section,
accounting for the starting assumptions and theitisols obtained. Other studies,
related to the problem of the tubular joint but poésenting analytical models, are

mentioned as well.

2.1. Lubkin and Reissner model

The study presented by Lubkin and Reissner [1]neldeto the axisymmetric
case, the typical approach used for the flat sidgte joint [2] with the following
assumptions:

« The adherends (tubes) are thin shells subjectadiab tension force, shear force
and bending moment; therefore, in particular, thialastress is not constant over

the thickness;



* The adhesive is an elastic medium, in practicermgpayer, transmitting shear
(longitudinal) and peel (radial) stresses. Botlesstes are constant over the
adhesive thickness and are a function of the axabrdinate only.
Circumferential shear stresses are not consideesduse they would imply
torsion of the joint;

« The kinematics of the tubes is expressed in terinaxial displacement (due to
tension and bending), radial displacement andicstdtiue to bending);

* Due to the axisymmetric geometry the rotation @ ¢iverlap is small, thus the
need to account for it, which leads to the “monfantor” in the case of the flat
joint [2], does not arise (this aspect will be mnesidered below in light of FE
results and theoretical considerations).

Therefore, such assumptions are consistent witbetlod the models proposed for
the flat joints, the only extension being the usexisymmetric conditions instead of
plane strain. Unfortunately, such extension imphemore complicated mathematical
coupling of the variables, compared to the casdlaifjoints; thus it is no longer
possible to obtain separate differential equatfonshe shear and peel stresses (as done,
for instance, in [11]).

Another important consequence of the assumptiotizatsalso the regions of the
tubes near the overlap are subjected to bendingsledr, which progressively vanish
moving from the overlap end, like the case of anclyical vessel in the region near the
end [12]. The implication is that the boundary atinds at the ends of the overlap are
not of simple axial loading (which is true for thébes at sufficient distance from the
joint) and must be found by imposing continuityfofce, moment, displacement and

rotation at the transition section between the lapging and non-overlapping parts of



each tube.
The analytical treatment is outlined in brief ire tAppendix of the original work
[1]; considering the free body diagrams of Fig.tde equilibrium equations are the

following (the plus or minus sign is associatedwite tube indekx= 1,2 respectively):

a Shear=0 1)
a-%—N-iaG:O (2)
1 dX |

a ST i-av +alt=0 @)

whereT;, N;, M; are, respectively, the axial force per unit lengjtie hoop force per unit
length and the bending moment per unit length eiith tube;a anda; are the mean
radii of the adhesive layer and of th¢h tube. The related elasticity equations are

written in the form:

d®w M
=——t 4
v D 4)
du; _ T —v;iN (5)
dx Eit;
ﬂ: Ni _ViTi (6)
a Eit;
where D, = E;t}/12(1-v?) is the bending stiffness.
The list of equations is completed by the adhesikess-strain relationships:
E
o=—2(w, —w,) (7)
n
:% u2+t_2% - ul—t_]-% (8)
n 2 dx 2 dx

The analytical treatment leads to a set of thréferéntial equations, two of the
fourth order and one of the second order, in theetllimensionless functiogs, gz, gs

(which correspond, respectively, to the normaliziisplacementsvy, w, and to the



difference of axial forces in the tubes). Althougle authors conclude that the solution
is possible by standard methods, they report ndic#xform of it. Instead, a table
collecting the results in terms of normalized sharadt peel stresses is given for a set of
48 cases, under varying values of input data ébpect will be reconsidered in detail in
a section 4.2). It is noticed that the stress figldualitatively similar to the case of flat
single lap joint: the stress distribution is relaty flat in the central part of the overlap
and peaks at the ends; it is more uniform in caAshart overlap and/or “soft” adhesive.
In all models of the joints defined in this way, attempt is made to account for the
stress singularity at the end corners; the stresskdition obtained can be regarded as

representative of the situation at mid-thicknesthefadhesive.

2.2. Shi and Cheng model

This work [3] approaches the case of the tubulit jo a wider perspective than
[1], to include also cases of thick tubes. The nsaé@mting assumptions of this model are
(stress components expressed in the reference fr@Bmevhich are respectively the
radial, hoop and axial coordinates):

e Al axisymmetric stress components, namely(normal, radial),os (normal,
hoop), o, (normal, axial) andt,, (shear, radial-axial) are present in the
adherends;

« The stresg; in the adhesive is negligible.

Since the loading state of the tubes is not desdriby in-plane (membrane)
forces and bending moments (typical of shells),dbl@tion is sought directly in terms
of stresses. For each part, the radial and axialiegum equations are written as:

do, L0 =0g o1,
or r 0z




00, +6T2r NP (10)
r

0z or
The compatibility equations are expressed in teshstresses as:

O, =0g _

)%

(;lr[o-e _V(Or + O-z)] =0 (11)

a,
0z

Regarding the boundary conditions of the stress@srt from the obvious

2o, ~vlo, +aull+r 2 [og-wlo, +o,)=21+v) @)
continuity at the interfaces and zeroing at theoadéd surfaces, it is assumed that at the
loaded ends of the overlap the axial stressesappdir continuity by the tubes out of
the overlap are respectively in the inner tube ané in the outer tube, given by the
following equations:

fl(r) =Pyt Paf (13)

fz(r) = P3 + Pyr (14)

whereps, P2, P3, P4 are constants. This assumption accounts for bgndithe tubes.

The axial stresseas,; in the inner tube and,, in the outer tube are as follows:

On=@ (Z) tro, (Z) (15)
0, =Py (2)+rw,(2) (16)

where@(2), ¢(2), Y1(2), W2(2) are unknown functions &fto be determined. By means
of long mathematical manipulations, the authorsasttwat it is possible to express all
joint stresses, in the adherends and in the adhesiverms of the two functiong(z),
@®(2) only. These functions are determined by minimaratof the complementary
energy (as defined in [13], pp. 29-31), which leddsthe set of two differential

equations

OF d oF d? oF _
+

-2 = 17
0, 0z0@, 0z° 0@, a7




OF _doF  d® oF _
0p, 0z0@, 0z° 0@,

where the primes indicate differentiation with resptoz andF is a known function of

(18)

®(2), ®(2 and their first and second derivatives. The sotutof the differential
equations, linear with constant coefficients, letma characteristic equation which has
eight solutions (i.e. eigenvalues).

Although the authors remark that their method wedthsed-form solutions, these
are not reported explicitly. Numerical results gieen for two examples corresponding

to cases of joints involving thin and thick tubespectively.

2.3. Nayeb-Hashemi, Rossettos and Melo model

In this work concerned with the behaviour of tubytants under tension/torsion
fatigue [4], the authors search for a solutiontfer stress due to axial loading (the case
of torsional loading, developed as well in [4],aat of scope of the present paper),
based on a shear lag model (Fig. 2). The starssgraptions in this case are:

« The adherends are subjected only to tension, cgusinstant axial stress over
the thickness;

* The adhesive is an elastic medium, only transngitshear stress, which is a
function of the axial and radial positions (i.eisihot constant over the thickness).

In addition, the authors deal with the case of mptete bonding, by assuming
that an annular region is not connected by the sidbeThis case is out of our scope
and will not be considered here. Considering amnitelsimal length of joint, the
equations for axial equilibrium expressed in termfs axial displacements are,

respectively for tube 2 and 1:

10



d?u
EZTI(R4 ) 2 - 21R,T,,, =0 (19)

E,m{R? - )d " omR,T,, =0 (20)
whereRy, Ry, Rs, Ry, are the inner and outer radii of the tubes ($®®Rg. 2),u; andu;

the axial displacementg; andE; the elastic modulit,y andt.x, the tangential stresses
at the interfaces with the adhesive (note thahedriginal article the termrR;1,,; in
(20) is mistakenly written with a—* sign, which propagates through the mathematical
derivations). The axial equilibrium of an infinitesal annular element of adhesive reads

1,dr+rdt, =0 (21)

Relating the shear stress in the adhesive to thi@adiements by means of the elastic
modulusG,, two simultaneous differential equationsunandu, are found from (19)

and (20); the related solutions are written as:

uy(€) = [C1€+C2 Ez(R4 R3)U2] (22)
Ei(Rz R?)

U,(E) = Coe™F +Cue™ - ? B(CE+C,) (23)

a

where £ =x/L is the dimensionless abscis€®, — C, are the integration constants
obtained from the known loading conditions at thdsof each tube (respectivétyor

zero, see Fig. 2§, is the solution of the eigenequation given by

2
0, = 2G, {1 LB (R? - R2 )} L - (24)
NR,-INR, | E,(R2-R?)|E,(RE-Re)
andB is a constant defined as
2G, L
B=- a 25
(In R; —In Rz)E1E2(R§ - RS?XRZZ - Rlz) )

Once the displacements, u, are known, the stress in the adhesive is calalikde

11



_ G, U~y
INR; -InR, r

(26)
Thus, the stress distribution given by equatior) (26

* In the axial direction, a direct consequence ofgkgonential and linear variations
along the overlap of the displacements (22), (23);

* Inthe radial direction, inversely proportionaltte local radius.

2.4. Pugno and Carpinteri model

The work by Pugno and Carpinteri [5] proposes atgmt for the tubular joint,
again based on a shear lag model, which is theledp the optimization of the joint
geometry (variation of the tube cross sectionth® analysis of crack propagation and
to crack detection by vibration frequency measur@merhe related starting
assumptions are:

* The adherends are subjected only to tension, cgusinstant axial stress over
their thickness;

* The adhesive is a thin elastic medium, therefoee diiess state is considered
constant over its thickness; the predominant terthé shear stress, but also the
other stress components are considered.

Also in this model (Fig. 3) the study starts frame &axial equilibrium, considering
tube 1:

_ 1 d\;

'[ = —_
" 21TR dx

whereN; is the axial force in the tube (note that, to dvpossible confusion with the

(27)

model in [1], here the symb®l is used to designate the axial force in the tubEsg

shear stress in the adhesive is related to the strain by

T rx = Gaer (28)

12



Considering the elasticity of the tubes, their briastic displacements;, u, are

written as
Nl
u, = dx (29)
tJEA
N
u, = 2_dx (30)
EA

whereN;, E;, A, are, respectively, axial force, Young’s modulogss section of the
tubei=1,2. Thus, the shear strain can be related tauthedisplacements by

u, —u, =hy, (31)
Introducing the auxiliary functiof(x), such thatN; =Nf(x) andN,=N (1 - f(x)), a

differential equation is written, the solution ohieh is

f(x)=Ce™ +C,e™ +B (32)

where the integration constar@s, C, are obtained from the loading at the ends of the

joint (axial force eitheN or zero, see Fig. 3), amndis given by the eigensolution

o= (TS EAER) )
h EAEA
and the constaif is
__ EA
= 34
P E.A +EA 59

Then, the adhesive shear stress is obtained bggbh#ibrium equation (27). In
addition, the remaining stress components are rdxady assuming that the adhesive is
subjected to the strains imposed by the adheredbdeaotingv; (i =1, 2) the radial
displacements of the tubes (produced by the axiats because of Poisson’s effect),
the radial §), hoop €g) and axial ) strains in the adhesive are, respectively:

vV

i (35)

13



_lv+y,

€ 36

® 2 R (36)
1 d(u1 + u2)

g =z——\1 72) 37

X2 dx 37)

Thus, the corresponding radiab;), hoop €g) and axial ¢x) stresses in the

adhesive are obtained by using standard three-dimeal elasticity equations.

2.5. Nemey, Lachaud and Mojtabi; Nemes and Lachaud models

These two works [6,7] assume a more complicatexbststate in the parts (tubes
and adhesive layer) of the joint, as well as natripic elastic behaviour of the tubes.
The basic assumptions are:

» the adherends are subjected to axial stress (ateginby the tension) constant
over the thickness, as well as to shear (longitieiadial) and hoop stresses,
both variable over the thickness;

e the adhesive is subjected to shear and hoop sttebséh variable over the
thickness.

In [6], the analytical treatment starts from theng®l equilibrium equations in

cylindrical co-ordinates, which in radial) (@nd axial £) directions read respectively:

or,, 1
—=0g =0 38
5 700 (38)
0o, ot, 1
—Z 424717 =0 39
0z o r " (39)

Hence for the inner tube (superscript 1), the aghgsuperscript c) and the outer
tube (superscript 2) the related equilibrium eduregi are written (see Fig. 4 for

dimensions and axes).

Inner tube (1). The equilibrium of an infinitesimahgth gives

14



2 2 o)
o _h-r doj; _
=" =0 40

Z 2r dz (40)

Replacing the latter result in eq. (38), also tlhemstress can be related to the axial

stress:
2_ .2 42 (1)
r“—r<do
o =1 ———2=0 (41)

2 dZ
Adhesive (c). Considering eq. (39) and assumingticortly of shear stress at the

interface between inner tube and adhesive, a oekttip between shear stress in the

adhesive and axial stress in the inner tube ismdxda

2 2 1 @)
© _Ni —rcdoy _

1@ =1 "Nie 97 _ 42
rz 2r dz (42)

In the same way as for the inner tube, also anessjon for the hoop stress in the

adhesive is found:

5O = ri2 - ric2: dzcglz) - (43)

Outer tube (2). Considering twice the axial equili;y of an infinitesimal length of

joint (in one case taking the whole cross sectiod & the other case taking only the

zone exceeding the generic radius the outer tube) gives

1@ = (re2 ‘r,z e _\riz) do?) -0 (44)
rz 2 2
2r(rec -rg ) dz

Applying once again eq. (38) the hoop stress careladed to the axial stress in the

inner tube:

(r2 —rz)(r-2 —r-z)dzo(l) _
Fi-rd)  a )

After all stresses have been expressed as a fanatithe axial stress in the inner

@ _
Ogg =

tube, the potential energy is written and, by mimation, the following final

differential equation is obtained

15



d*c® d?c¥® D
E—Z +(B-C)—Z+Ac% +==0 46
i (BC)= St Aoy (46)

in which A, B, C, D andE are constants.

In the rest of the paper [6] no further analytidatail is given, the authors show
graphically the results in terms of distributionStbe various stresses, studying the
influence of overlap length, thickness and elastadulus of the adhesive, and ratio of
the elastic moduli of the tubes.

This model is refined by Nerg@and Lachaud in [7], by including in the joint also
the radial stress, which is assumed to be constahe adhesive and a function of the
radial coordinate alone in the tubes. The authotg@ that adding this component has
also a significant influence on the distribution§ the shear (longitudinal) and
circumferential stresses; in their results thewréerential component is the highest.

An analytical treatment developed on the same lzsstie model in [6] has been
used by Kumar [8] and Kumar and Scanlan [9] to yttwlo cases of functionally
graded adhesive modulus, with different formulasiohhe model in [6] has also been
applied by Martinez et al. [14] to evaluate the ahetresses in a pin-and-collar

specimen.

3. Case studies

3.1. Test configurations

With reference to the general configuration in FEigTable 1 lists the dimensions,
the elastic properties and the axial load of te fpbints used as case studies. These
configurations are taken from the set of 48 joifmiswhich Lubkin and Reissner [1]
provide numerical results (note that the symbolsdus Table 1 and in the following

presentation of the results are those adopted Jin ;s assumed by [1], the tubular

16



joints in Table 1 relate to the condition of “symin& adherends, i.e. adherends with
the same thickness Et, =t) and the same elastic properti&s € E; = E, vi = v, = V).
Apart from this simplification, necessary for theongparison of results, the
configurations in Table 1 were chosen to explom widest range of configurations
offered by [1] in terms of geometry and materiaperties. In particular, Table 1 covers
all the values investigated in [ namely 4, 20, 106 for the *“elastothickness”
paramete3 = nE/ME,, which is a measure of the relative stiffness diieaends and
adhesive. Paramet cannot be too small, otherwise the underlying mgdion of
Lubkin and Reissner’'s model (comparatively flexiathesive layer) is violated.

The axial forced- in Table 1 were defined so as to produce a undnrehear
stress {n=F/4mac =1 MPa) at mid-thickness of the adhesive. Thisicghallowed
straightforward normalization of the stress reswlith respect to the mean shear stress.
The joints in Table 1 were also analyzed underldwi@es corresponding to a mean
shear stress of 50 MPa. These analyses were pedotontest the effect of geometric
non-linearity (large deflections and rotations) e stress response of the joint as

described in Section 3.2.

3.2. FE modeling

Figure 6 shows the overall geometry with detailshef FE mesh for the model of
joint 1. Similar models were used also for the ojbats in Table 1. The lengths of the
tubes outside the overlaC andDI in Fig. 6) were 20 times the thicknesef each
joint. According to the flexural theory for thin laydrical shells [12], this condition
ensured that the axial stress applied to the jouats perceived as a purely axial tension

as assumed by the theoretical models in the lusratThe FE models were

17



implemented with the Lusas software (LUSAS, Kingstgpon Thames, UK), version
14.0.

Adherends and adhesive were discretized by 8-nodeddratic axisymmetric
solids with the elastic properties reported in €abl In all models, square elements
were used for adherends and adhesives in the pvertaon ABCD in Fig. 6a,b). In
this region the size of the squares was one-faofrthe adhesive thickness (0.25 mm).
In the tube portions outside the overlap, the el@sbad a horizontal length increasing
geometrically in the outward direction such that tutermost elements (close to lines
GH andIL in Fig. 6a) were about six times the innermostsoridne optimal element
size was identified with a mesh convergence prowedarried out on joint 1. Four
models were analyzed with one, two, four and eigbments through the adhesive
thickness (lineEF in Fig. 6b,c) and keeping the square shape thimuigthe overlap.
The stress results at mid-thickness (linein Fig. 6¢), which are the natural counterpart
for comparison of the stresses given by models agdhubkin and Reissner’s, changed
negligibly on passing from two elements (Fig. 6)eight elements. Consequently, the
mesh density shown in Fig. 6 with four elementdioa EF was retained as a trade-off
between accuracy and efficiency.

The models were constrained by suppressing thé degee of freedom of the
nodes along the sideH in Fig. 6 and were loaded by applying a constaral stress to
the linelL. The value of the axial traction was defined stoagroduce a total force on
the tubes equal to the values shown in Table 1.

The models in Table 1, with the forces listed ie gecond last column, were
analyzed within the linear elasticity framework. particular, any non-linear effects

arising from large deflections or rotations of then tube walls were neglected, exactly

18



as they are disregarded in the above-mentionedtites theoretical models. The results
of these linear analyses were used for the congangth the literature models. The
joints loaded under a mean shear stress in thesaghep to 50 MPa (see above) were
analyzed by including geometrically non-linear effe with a total Lagrangian
approach. These analyses were used only to seeedtheeffect of geometric non-
linearities on the stress results.

Figure 7 shows the distribution of axial stresses) (on the deformed
configuration of joint 1 (linear analysis). The plscements are enlarged 500 times with
respect to the actual values. Figure 8 displaysctiv@our plot of the primary shear
stressest(y) in the magnified region of the joint close to te& end of the overlap. The
distributions of all available stresses (sheay, peel, a,; hoop, o, axial, oy the
subscripts refer to the coordinate system showRign6a) are plotted in Fig. 9 for the
five joints of Table 1. For the particular choicketloe forces applied to the models (see
Table 1), the stresses in Fig. 9 can be regardedhla®s normalized over the mean
shear stress acting on the adhesive. These stressesread along the mid-thickness
(line mn in Fig. 6) of the adhesive layer. Table 2 displthes stress results as a function
of the applied load for the geometrically non-lineanalysis on Joint 114 =1,
10, 20, 30, 40, 50 MPa), together with the resintisn the linear modelt(, = 1 MPa).
Table 3 presents the ratios of non-linear to linesak stresses in all joints under mean

shear stresses of 1 and 50 MPa.

3.3. Theoretical results

For the same joint configurations considered in FERemodeling, in addition to

the Lubkin and Reissner results, the stress stae ®alculated by means of the

19



analytical models by Nayeb-Hashestial. [4] and by Pugno and Carpinteri [5], for
which the authors give a description detailed ehotg allow for a (relatively)
straightforward implementation. Using the model[4f, which accounts only for the
shear stress including through-thickness variattbme, values were calculated at mid-
thickness of the adhesive. With the model in [5lcamponents- shear, peel, axial and
hoop— were considered (in this case, constant overhic&riess).

Figure 10 shows, in the same way as Fig. 9, thdteefor the five joints; the lines
correspond to the various solutions (formulae),isiodated symbols are the values from
the tables by Lubkin and Reissner. Regarding ttterJat must be pointed out that in
the case of joint 2 for which Z/t =2, R=0.1 andp =4 according to Lubkin and
Reissner it has been noticed that the values published jrcrrespond in reality to
B = 5. This finding has been made possible becawséubkin and Reissner approach
has been reconsidered and solved analytically antfalternative method, presented in

detail in the part Il of the present work [15].

4. Discussion
4.1. FE modeling

In the deformed shape shown in Fig. 7 it can b&edtthat in the far ends of the
non-overlapping zones of the tube the bending effae small, because the profile of
the wall remains straight and the axial stressasstant over the thickness. This
argument confirms that the tube lengths adoptethenmodels outside the overlap are
adequate. Obviously, the stress contour map ingayidences the elastic singularity in
the cornef, well known in the literature (e.g. [16]), thainche limited by means @id

hoc local geometries as shown in [17] for the cylicdliassemblies. Apart from this,
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the attention is focused here on the non-singutasses in the mid-thickness ling
(Fig. 6), which in recent times have been recomsiido formulate a criterion [18]

which has given satisfactory results for prelimyngint design [19] (see Section 4.3).

Table 2 (non-linear analysis) shows that linear nod-linear stresses in Joint 1
are almost identical for a mean shear stress oP#a Bhd that the normalized non-linear
stresses change only slightly as the load increfasgsthe minimum to the maximum
load level. The shear stress decreases by 2.68@ asdan load value changes from 1 to
50 MPa. All normal stresses increase, with a marinvariation of 7.7% for the peel

component and slightly more than 5% for the othr. t

Table 3 shows a similar pattern for all the joietsamined, with the linear and
non-linear stresses being nearly the same underaa shear stress of 1 MPa. The effect
of non-linearity on the stresses is generally doethwithin a few percent of the linear
stresses up to the maximum applied stress (50 M@&) only exception is represented
by Joints 3 and 5 in which the non-linear normedstes exceed the linear predictions
by 20-30 percent under a mean shear stress of Z0 Mi&vever, since 50 MPa of mean
average shear is a huge stress level, much higheri$ sustainable by real adhesives, it
can be concluded that the geometrically non-lireggacts are negligible and, therefore,

the linear analysis is adequate for this type witjo

This latter aspect can be considered in a diffepenspective by comparison with
the flat lap joint. Indeed, the case of a flat jaint can be regarded as a limit condition
achieved when the radii of the tubes become mugeidahan the thickness of the tubes,
as it appears from the equations of Lubkin and $®eis[1] and from the numerical FE
results of Hosseini and Oechsner [20]; the lattieh@rs remark also that the cylindrical

overlap approaches the behaviour of the TAST (TWhidkerend Shear Test) specimen,
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with higher joint stiffness and stress uniformityah the single lap. Therefore, if for
given thicknesses, moduli and overlap, the geon®tnon-linearity is limited in the
case of flat joint,a fortiori it becomes negligible in the case of cylindricainf. A
simple way to evaluate analytically the geometriwath-linearity for the flat lap joint is
given by the moment factdr defined by Goland and Reissner [2], which accofmits
the reduction in bending moment in the joint redate the self-alignment due to the

joint rotation and is given by the expression

‘= cosHu,c)
cosHu,c)+2v2sinh(u,c)

(47)

where:u, =,/T/D, , T is the tensile force per unit widtb, is the bending stiffness of

the joint, ¢ is the half overlap length. Applying equation (49)the five cases, as
reported in the bottom line of Table 3, it is foutlcht in the case of 1 MPa mean shear
stressk ranges between 0.90 and 0.98, thus close to umitgrefore, it can be
concluded that also from this viewpoint the geomatrnon-linearity is negligible. In
contrast, thek factor for a mean shear stress of 50 MPa implisgess variation with

respect to the linear assumption much higher thdound for cylindrical joints.

4.2. Comparison between FE and theoretical results

Considering the convergence analysis and the maaulicase mentioned above,
the FE results cast no doubt on the adequacy ofndeh, thus the stresses at mid-
thickness of the adhesive can be considered coaretused as a reference to validate
those given by the theoretical models. Considdiimstthe stress distributions in Fig. 9,
in which the FE results are compared with the valgigen by Lubkin and Reissner [1],

it appears that in general terms this analyticalehaeproduces reasonably well the
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stress distribution, with the stress peaks at betrlap ends (the maximum of which is
at the end of the outer tube). This is particulamie regarding the shear stresses, for all
considered joints 1-5. Clearly, the solution by kimband Reissner cannot fulfil the zero
boundary conditions at the ends of the overlap; ew@as, the peak values are correct.
Conversely, some discrepancies affect the peakesati the peel stress that are in
general slightly underestimated by the model, dafigdor joint 2, which is relatively
thick-walled. This is a typical limitation of thisnd of models (based on the assumption
of thin plates or shells), evidenced for instantg2il] for the case of double lap joints.
Indeed, the peel stresses given by the Lubkin agidsRer’s solution fit better the FE
results for joints 1 and 4, which are thin-walledoreover, in the case of joint 2 the
“elastothickness” parameter is small, and thidss anfavourable to the precision. The
FE model gives also the values of the axial andohgicesses; it is apparent that in all
cases their values, although not negligible, agaiicantly lower (about one half) than
the peel stress.

Extending the comparison to the models by NayelhElms et al. [4] and by
Pugno and Carpinteri [5], shown in Fig. 10, takimayv the Lubkin and Reissner results
as reference, a large difference in behaviour t&ced between the cases of shear and
peel stresses. Indeed, the shear stress is debwvithehigher precision by both models,
which reproduce precisely the Lubkin and Reissmsults and are indistinguishable
from each other (the curves are exactly superingjoseegarding the latter aspect, it
can be remarked that, even if the analytical foatiahs [4] and [5] appear different, the
behaviour of the tubes is described in the same (gayple tension, axial stress
constant in the cross section); consequently, liearslag is the same as well. Moreover,

the variation of the shear stress in the adhebie&riess assumed by Nayeb-Hashemi

23



al., proportional to X/ is in practice limited and the values at the rilatees of the
adhesive with the inner or outer tubes are similar.

Considering now the peel stress, it is evident that distribution given by the
Pugno and Carpinteri model is, even qualitativelymnpletely different from that of
Lubkin and Reissner and, as a consequence, also Fi®. In Fig. 10, the values by
Pugno and Carpinteri are positive at the left ehthe distribution, i.e. the end of the
outer tube, and negative at the right end, i.e et of the inner tube. The explanation
for this fact can be found by observing that in tik@del in [5] the tubes are subjected to
simple tension; therefore the radial displacememés due to shrinkage by Poisson’s
effect. At the left end, the outer tube is unloaded does not shrink, the inner tube is
loaded and shrinks, thus the radial gap betweenuthes tends to increase and the peel
stress is positive. At the right end, the innertigounloaded and does not shrink, whilst
the outer tube is loaded and shrinks, thus thetgyagis to decrease and the peel stress is
negative. This kind of behaviour is contradictedtlhy present FE results, as well as by
those shown by Adams and Peppiatt [10], which eklpbsitive peel stress at both
ends. The inadequacy of the model in [5] in predgcthe peel stress is explained by the
fact that bending in the tubes, which gives a s$icgmt effect on the radial displacement
of the wall, is not included. Similarly, in the papby Shi and Cheng [3] a peel stress
distribution with opposite end signs is shown adl;vileis is surprising, since the axial
stress corresponding to egs. (15) and (16) shaidduat for bending. To have a better
insight on this fact, a FE analysis of the examip&hown by these authors on page 594
and following of their work [3] was carried out. @hobtained results are shown
graphically in Fig. 11, this stress distribution irs accordance with the behaviour

predicted by Lubkin and Reissner's model and thevBlkies of Adams and Peppiatt
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[10], with positive peaks of peel stress at botkertap ends. Conversely, the peel stress
distribution shown by Shi and Cheng in Figs. 3-§3jfchanges monotonically along
the overlap from positive (end of inner tube) tgyaieve (end of outer tube) values,
similar to the results given by [5] commented abo&epossible explanation of this
inadequacy could be that, although in [3] the begdbehaviour is included, the
transition from the overlap to the far ends of tiwes (included in Lubkin and
Reissner’'s model as a harmonic, exponentially dagageflection) is not considered by
the Shi and Cheng’s model.

The model by Pugno and Carpinteri [5] includes dlshoop and axial stresses
in the adhesive, reported in Fig. 10 for the comsd cases. Their values are always
smaller (as absolute values) than the peel sthesgever their distributions are similar
to the peel stress profile, with opposite signsthet ends, in contrast with the FE
findings in Fig. 9. An additional remark on the postress is that in the model by
Neme et al. [6] such component is even higher than the skaass. This finding,
confuted by all FE results, is a likely consequeotaeglecting the peel stress, so that
the hoop stress must increase to ensure equilibanoncompatibility. Nonetheless, also

in the model in [7] the circumferential stresshis highest.

4.3. Relevance of the results and further work

With present FE software it is relatively easy tiain the stress distribution in a
cylindrical joint of this type. However, analyticalodelling can still be useful because
on the one hand a closed form solution implemente@ spreadsheet (or similar
software tool) is faster in giving immediate anssverhen different design solutions
must be tried (e.g. changing overlap, thickness),aedn the other hand it gives a better

insight about the governing parameters than numalergsults.
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In the case of failure analysis of a joint, it wabwertainly be unavoidable to
account for the adhesive behaviour including materon-linearity (plasticity, or even
viscosity). Rational tools to this aim are fractiaed/or damage mechanics (e.g. a
cohesive model) to describe or predict separatiothe® substrates. Nonetheless, from
the designer’s viewpoint, a less sophisticated,smpler and quicker, tool is useful in
the preliminary design of the joint, and this candbtained only by means of an elastic
approach as adopted in this paper. In two prevysers [18,19] the authors have
proposed a design criterion based on elastic, mgukar stresses, which was
implemented in a computational tool [19] and applie practical cases with a good
degree of success. The present work is based osathe premises and is expected to
give better results for more brittle than for mdrectile adhesives. By pointing out the
limitations of the literature models, the disclogedults provide a useful reference for
first-approximation designs and to establish aemirstarting point for further, more
refined, theories. These arguments point out thed nier an explicit, closed-form

solution, which is presented in the second pattisfwork [15].

5. Conclusions

The classical case of a tubular bonded joint uad&l load has been reconsidered
and the stress solutions given by five literaturedeis have been checked against
expressly generated FE results for a range of gmnfigurations. The main conclusions

are the following:

* The shear stress is in practice evaluated corregtBll models (apart from some
discrepancies in the peak values, which is a gémpeablem for the models

based on plates);
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The peel stress is predicted correctly only bylthlekin and Reissner [1] model,
all the other models predict a negative peak aetiteof the inner tube;

The axial and hoop stress components are of simitier of magnitude and are
about one half of the peel stress;

The model by Lubkin and Reissner gives the begporese and, therefore,

deserves to be developed to achieve an expligeddorm solution.
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TABLE CAPTIONS

Table 1. Characteristic dimensions, elastic proge and loading of the five

joints used as case studies.

Table 2. Stress results from the linear and noedr analyses of joint 1 under

increasing loads.

Table 3. Comparison of linear and non-linear stessfor all joints under mean

shear stresses of 1 and 50 MPa. The last row shbg<orresponding

values of the moment fact&r2] for planar lap shear joints.

FIGURE CAPTIONS

Figure 1. Infinitesimal free body diagrams for thebkin and Reissner [1] model:

longitudinal section (to left) and cross sectiom right).

Figure 2. Schematic for the model of Nayab-Hashetral. [4].

Figure 3. Schematic for the model of Pugno and @éep [5].

Figure 4. Schematic for the model of Neneeal. [6].

Figure 5. Schematic drawing of the axially-loadetular joint with characteristic

dimensions and elastic properties of the parts daie thickness shown
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exaggerated).

Figure 6. Outline of the geometry of joint 1 (a)thvidetails of the overlap portion

(b) and of the FE mesh (c).

Figure 7. Contour plot of normal axial stresseg) Guperimposed on the deformed

configuration &€500) of joint 1.

Figure 8. Contour plot of shear stressgg) (in adherends and adhesive close to the

left end of the overlap.

Figure 9. Normalized stress distributions (lines)nad-thickness of the adhesive
given by finite elements (FE) for the five jointsf dable 1. The
corresponding results of the Lubkin and Reissn&R). model (symbols)
are superposed for comparison. All stresses amaltwed over the mean

shear stressry) given in Table 1.

Figure 10. Normalized stress distributions (linas)mid-thickness of the adhesive
given by the analytical models by Nayeb-Hashetral. [4] (N-H et al.)
and by Pugno and Carpinteri [5] &C), for the five joints of Table 1.
The corresponding results of the Lubkin and ReisgheX R) model
(symbols) are superposed for comparison. All sggsare normalized

over the mean shear stress)(given in Table 1.
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Figure 11. Normalized stress distributions at nfigtktness of the adhesive
obtained by finite element analysis of the exambleeported by Shi
and Cheng [3].
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Table 1. Characteristic dimensions, elastic prapgerand loading of the five joints used as casdistu

(the number of significant digits for radii anda, is needed to give the correct value of the adleeiickness)).

No. & t1 a t, a n 2c E; vV, E, Vo E. G, B F Tm
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (GPa) --- (GPa) --- (MPa) (MPa) --- (N) (MPa)
1 48.625 2.5 51.375 2.5 50 0.25 25.0 200 0.3 200 0.3 1000 375 20 7854 1.0
, 22375 50 27625 50 25 025 100 80 03 80 03 1000 375 4 1571 10
3 4.625 0.5 5.375 0.5 5 0.25 5.0 200 0.3 200 0.3 1000 375 100 157 1.0
4 123.625 2.5 126.375 2.5 125 0.25 125 200 0.3 200 0.3 1000 375 20 9818 1.0
4625 05 5375 05 5 025 25 200 03 200 03 1000 375 100 78 1O




Table 2. Stress results from the linear and noediranalyses of joint 1 under increasing loads.

Analysis type

Stress Linear Non-linear

Tm (MPa) 1 1 10 20 30 40 50

T
Xy mex 1.40 1.40 1.40 1.40 1.38 1.38 1.37
Tm

o
ymex 1.03 1.03 1.04 1.06 1.07 1.09 1.11
Tm

o)
ZImex 0.48 0.48 0.48 0.49 0.49 0.50 0.50
Tm

(02
XX 0.47 0.47 0.47 0.48 0.48 0.49 0.49
Tm
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Table 3. Comparison of linear and non-linear stresses for all joints under mean shear stresses of 1 and 50 MPa. The last row

shows the corresponding values of the moment factor k [2] for planar lap shear joints.

Joint No.
Stress 1 2 3 4 5
Tm (MPa) 1 50 1 50 1 50 1 50 1 50
T
( Xymax)Non"near 0.999 0.974 0.999 0.958 1.000 0.978 0.999  0.968 1.000 0.972
(Txymx)Linear
(”vmaX)Nonnnear 1.001 1.077 1.001  1.074 1.007  1.282 1.000 1.018 1.007 1.262
(O'ymax Linear
(Uzm""x)Non'inear 1.002  1.052 1.000 1.055 1.005  1.209 1.002  1.010 1.000 1.195
(Uzmax)Linear
(Uxmx)Nonlinear 1.002  1.056 1.000  1.053 1.006  1.228 1.002  1.013 1.007 1.261
(Uxmax Linear
K 0.90 0.56 0.98  0.90 092  0.62 096  0.78 097 082
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Figure 5. Schematic drawing of the axially-loadediular joint with characteristic
dimensions and elastic properties of the parts d€afe thickness shown

exaggerated).
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Figure 6. Outline of the geometry of joint 1 (a)thvidetails of the overlap portion
(b) and of the FE mesh (c).
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Normalized stress

Figure 9.
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for comparison. All stresses are normalized overrttean shear stress,)

given in Table 1.
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Normalized stress distributions (linea) mid-thickness of the
adhesive given by the analytical models by NayekHémiet al. [4]
(N-H et al.) and by Pugno and Carpinteri [5]&F), for the five
joints of Table 1. The corresponding results of thebkin and
Reissner (& R) model (symbols) are superposed for comparison.
All stresses are normalized over the mean sheasstf;) given in
Table 1.
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Figure 11. Normalized stress distributions at nhittkness of the adhesive
obtained by finite element analysis (FE) of therapée 1 reported by
Shi and Cheng (S&C) [3].
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