POLITECNICO DI TORINO
Repository ISTITUZIONALE

Precision of the one-dimensional solutions for bonded double lap joints

Original

Precision of the one-dimensional solutions for bonded double lap joints / Goglio, Luca; Rossetto, Massimo. - In:
INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES. - ISSN 0143-7496. - STAMPA. - 31:5(2011), pp. 301-
314. [10.1016/j.ijadhadh.2010.10.004]

Availability:
This version is available at: 11583/2421944 since: 2016-02-16T18:04:24Z

Publisher:
Elsevier

Published
DOI:10.1016/j.ijadhadh.2010.10.004

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

19 April 2024



PRECISION OF THE ONE-DIMENSIONAL SOLUTIONS

FOR BONDED DOUBLE LAP JOINTS

L. Goglio*, M. Rossetto
Dipartimento di Meccanica, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

The solutions which have been proposed for theststate in bonded joints inevitably adopt
a simplified description. By comparison with finkéement results, it can be noticed that the
analytical solutions reproduce in general termsdfness field, but in the end zones of the
overlap mismatches are frequently observed. Theeptepaper focuses the attention on the
double lap joint. The classical solutions found Wglkersen (Construction métallique 4,
1965) and Hart-Smith (Technical Report NASA CR-14,23973) are compared with a
solution, developed in this work, which accounts bending in the external adherends and
axial stiffness imbalance. Several cases of addetenadhesive elastic modulus ratio,
thickness and overlap length are considered; felgenent results are taken for reference. It is
found that the analytical solutions give acceptakkults when the elastic modulus of the
adhesive is much lower than that of the adheremts. Volkersen’s solution, although it
fulfils the zero-traction boundary condition, dosst give better results than the others and
often underestimates the peak values. It is likkht a better description of stress variation

through the adhesive thickness could improve sohatly the situation.
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1 INTRODUCTION

Although, in present times, the stress-strain stateonded joints can be completely assessed
by means of finite element modelling, the needaoalytical solutions is still alive. Indeed,
apart from the scientific interest (equations care @ better insight of a phenomenon than
numerical results alone), also from the designeesvpoint formulae can be of quicker and
simpler use for a first dimensioning of the joifgs for any structural part), leaving finite
elements for a final analysis. The interest is gubject is also withessed by the huge amount
of research published over more than seven decades.

Looking back at the literature (see [1] for a racgurvey) it appears that, after pioneering and
fundamentals works as that of Goland and Reiss2lemjho first accounted for both shear
and peel stresses, the need for addressing someissuees was soon recognised. In general
terms, the main aspects concern:

» the accuracy of the representation of the streafsstate in the joint, especially in the

adhesive;

* in case of a slender, single lap joint, the geoicatnon-linearity due to the rotation.
Regarding the latter aspect, the initial idea byaGod and Reissner of treating the bonded
overlap as a homogenous beam, to obtain the rotatid the moment acting at the overlap
ends, was updated by the subsequent researchetenRend Vinson [3] extended the study
to the case of orthotropic adherends. Hart-Smith ddnsidered the two adherends as
uncoupled and thus obtained considerably lower nmbmalues, tending to zero in case of
long overlaps, and also recognised an inconsistémndiie free end of the adherends. The
same correction was subscribed by Ojalvo and Effijbp. Later on, Oplinger [6] proposed
another correction, leading to edge moment vallesecto those of Goland and Reissner and
very different from those of Hart-Smith in case lohg overlaps. Tsai and Morton [7]
compared the edge moments given by Goland and riegjsdart-Smith and Oplinger with

results obtained from geometrically non-linearténelement analyses. Their conclusion was
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that the Hart-Smith solution is best in case ofrsbwerlaps, whilst the Oplinger solution is
best in case of long overlaps; however, the Goland Reissner solution is reasonably
accurate in all cases. More recently, Luo and Ti@pgleveloped a sophisticated non linear
model, for which they found a (although complicatetbsed-form solution, and which
proved to give a better edge moment prediction #iaprevious models. Ultimately, Zhab

al. [9] proposed a simpler method for determining ¢éimel moments, which overcomes the
limitation -shared by all models previously citeaf-dealing with identical adherends. This
method assumes that the overlap zone does notdedmd the authors found that the results
are accurate as far as the overlap is not too (length-to-thickness ratio up to 30).

Returning to the first of the two aspects listed\ab(i.e. the stress-strain state in the joint),
the core of the problem is the inevitably simptifisehaviour assumed for the adhesive and,
to a lesser extent, also for the adherends. Tlesickl description of the adhesive layer as
distributed springs is incomplete, since only tlezlpand shear components of stress are
considered; moreover, in this description thesepmrants are a function of the longitudinal
coordinate only. Thus, neither the local, infiniteal equilibrium, nor the natural boundary
condition of zero traction on the free edges cars#isfied. Several proposals have been
presented in the literature to remedy these shwmitays; a qualitative survey is given in this
introduction, some analytical details are discussefollowing section.

In 1965, Volkersen [10] (in a study related to tfmaible lap joint, but the idea is suitable in a
general case) proposed to assume a simple lingativa of the peel stress through the
thickness, which allows for fulfilling local equiliium. The work of Hart-Smith [4] on single
lap joints dealt mostly with the elasto-plasticdee modes, thus it was not concerned with
improving the elastic solutions. Ojalvo and Eidingl] used a complete relationship between
shearing strain and displacement, which led tofimitlen of the shear stress variable through
the thickness of the adhesive. Deldalel. [11], while extending the study of the lap joiot t

the case of orthotropic and shear-deformable adHdsreconsidered also the longitudinal



strain -and, implicitly, the longitudinal stressr the adhesive. However, the assumed stress
state in the adhesive was still constant throughthickness and, therefore, unable to fulfil
local equilibrium and boundary conditions. Adamgl aallick [12] developed a method,
suitable for single and double lap joints, in whigh stress components (shear, peel and
longitudinal) in the adhesive are included and valgng the thickness. Their solution
included six unknown functions of the longitudirtalordinate, and the problem was solved
by minimization of the complementary energy (pragedmplemented in aad hoc software,
JOINT). Another attempt to improve the solution vdame by Tsaet al. [13]. In the case of
double lap joint, they proposed a through-thickrntessigular distribution for the shear stress
in the external adherend (here referred to as gussesake of brevity, see also Fig. la),
varying from zero (backface) to the adhesive slsé@ss (interface); bending in the gusset
was neglected. In the case of single lap jointsy throposed two solutions: one treating the
adherend as bars under tension, deforming alsdearsthe other including bending. The
adhesive was modelled as a spring layer, reactitigshear stresses only.

A more refined approach was given by the closetiftrigh-order theory developed by
Frostiget al. [14]. In this approach it was deduced that, tgtothe adhesive thickness, the
shear stress must be constant, the peel strees Viaearly and the variation of the transverse
displacement is quadratic; the longitudinal stiesgeglected. Both local equilibrium and zero
boundary conditions can be fulfilled by this strestate. In [15] Mortensen and Thomsen
reported the formulation of a general method, iiTq@eted in the ESAComp software, in
which the adherends are described as Kirchhoffeplaind the adhesive is a spring layer
transmitting peel and shear (in the two in-planesations) stresses. The method was
compared to closed-form high-order theory and dimtement results, the authors remarked
that the stresses predicted at the ends (not lifudfithe boundary conditions) could be
regarded as conservative estimates of the actamissts acting when spews are present at the

overlap ends. Luo and Tuong [16] compared the hehawf linear and higher order theories,



finding that in case of thick adhesive bondline itn@rovement given by the higher order is
necessary. In recent times, Radice and Vinsonhavg developed another high-order elastic
model, with the aim of clarifying the magnitude thle longitudinal stress and the actual
stress-state (plane stress or plane strain) iadhesive. The solution of the problem exhibits
mathematical complications and is obtained as i@seby minimizing the potential energy
functional. The conclusion of these authors is thatlongitudinal stress in the adhesive is
zero and that all other analytical or finite eletnerdels that find non-negligible longitudinal
stress must be incorrect. Such a strong staterpeatdtically denying all the related literature,
should originate a considerable debate.

Very recently, Wang and Zhang [18] have presentatbdel in which the adhesive is formed
by two normal spring layers, interfaced to the adhds, and an intermediate shear spring
layer. With this conceptually simple modificatidhe transverse displacement of the adhesive
mid plane is no longer the average of the two agtigetransverse displacement and the peel
stress is not constant through the thickness. Asngequence, the local equilibrium and the
boundary conditions can be fulfilled.

Less work has been specifically dedicated to tise cd the double lap joint. Apart from the
paper by Volkersen [10] already mentioned above,ntiost known contribution is likely the
Hart-Smith’s report [19]. In that work, similarlp the companion report on single lap joints
[4], most of the attention is focussed on the failoonditions; thus, due to adhesive plasticity,
the shear stress at the ends of the overlap isn@skto be practically constant and the most
relevant parameter is the strain energy to failldtewever, the work recognises also the
importance of the peel stresses, which can goverrailure in case of thick adherends. The
Hart-Smith’s elastic analysis, which neglects bagdn the gussets, is recalled in short in a

following section of the present paper.



Albat and Romilly [20] proposed a linear elastitusion, based on the Hart-Smith’s solution,
suitable to describe the stress state in doublgdeas and also -due to its simplicity- in
reinforcements made of stepped patches.

A much more sophisticated approach has been usd&@kebtgarcyket al. [21], Zhanget al.

[22] who applied the “Higher Order Theory for Funaially Graded Materials” to the case of
double lap joints and doubler joints. This the@ypased on the discretization of the material
in cells, within each of them the displacementdfieéé approximated by a polynomial
expansion, like in finite element modelling but natit nodes. The approach can be regarded
as an intermediate tool between analytical andtefirmlement modelling; it has been
implemented in a commercial software (HyperSixerFinally, another study of the
orthotropic double lap joint has been presentegkaent times by Gustafsabal. [23], who
have solved with the virtual work principle two n&sl of increasing sophistication: the first
assumes shear stress only, while the second ascfuurghear and peel components. Special
end elements, called “end posts”, are includedilfd the zero-traction boundary condition.

At the end of this survey, a general remark is thatlels which are substantially the same as
the first ones proposed several decades ago drensise nowadays and coexist with more
sophisticated and recent models. A first explamafmr this is that closed-form solutions,
which can be directly implemented at the level apaeadsheet, are still appealing as a first
design tool. If more complexad hoc programming is required (as it happens for those
solutions based on minimization) the choice canlyedsrn in favour of finite element
modelling. This is especially true in an industgahtext, in which less time and expertise are
available for mathematical or programming actigtiéA second explanation is that the
sophisticated models, which fulfil the zero-trantibboundary condition, nevertheless do not
give the “exact” response in terms of peak stredséeeed, in most of the papers mentioned
above the authors typically comment that the respasf their models fits well the finite

element results (the only that can be taken aseaerece), except for the small regions close



to the overlap ends. Unfortunately, the main puepaisa stress analysis should be to predict
stresses especially where they are more sevett@sifs not the case, the mere fulfilment of
the boundary condition is not so important for tlesigner. Another problem of all solutions
which consider the through-thickness variabilitytioé¢ stresses is that they attempt to give a
value also at the end of the adhesive-adherendante where the stress field is singular.
Although several authors acknowledge this probleng.([11],[12],[15],[16],[18],[23]), the
only study accounting for the singularity in theaigh-thickness variability is that by Sawa
et al. [24] which, however, involves a complicated matlécal solution that, again, implies
the disadvantages of ad hoc programming. In this perspective, it appears cpualy
more appropriate to limit the comparison and treeuksion to the situation on the adhesive
mid plane.

The present paper deals with the case of the ddapl@int, mainly to leave apart the aspects
related to joint rotation and focus the attentiontbe description of the stress field in the
adhesive mid plane. The goal is to evaluate thecxppation on the peak stresses given by a
one dimensional model, under different combinatioh®verlap length, adhesive thickness
and elastic modulus ratio. The comparison is maitie fimite element results, and in one case
also with strain gauge measurements on the guasktdre.

The paper is organised in the following way. Fisime mathematical aspects concerning
stress and strain in the adhesive are discussddtharbasic Hart-Smith solution is recalled.
Second, the development of a more complete analytiodel is explicitly presented. Then,
the response obtained from the model is comparduhite element results. At the end, the

conclusions and final remarks are presented.

2 MATHEMATICAL ASPECTS

This section presents some remarks concerningitfeeeht solutions listed above. Although
the involved models have been stated several de@ate it is instructive to reconsider some

cases, noting the basic assumptions made by tfeatif authors and their consequences on



the obtained stress state. For ease of comparsyompols, reference axes, etc. are defined
here in unique way, thus some formulae are repant@ddifferent writing with respect to the
corresponding original papers. It is assumedxlaatdy are, respectively, the longitudinal and
transverse directions in the joint, the correspogdlisplacements areandv, the stresses in

the adhesive argy (shear)poy (peel) andy (longitudinal).

It can be recalled first that the one dimensionatlats (Goland and Reissner [2] and similar),

involve the two governing equations in the form

d‘c d3t dt
Y+ Ao, =0; Y +B—2 =0 1a,b
dx* y dx® dx (1a.b)

where A, B are constants. In case of dissimilar adherends ¢sg. [25]), such equations
become non homogeneous and coupled, namgBppears in the right end side of Eq. (1a)
and oy appears in the right end side of Eq. (1b). In #pproach, these two stresses are a
function of x only and oy is constantly nil; therefore, considering the loodinitesimal

equilibrium equations

ot do, Ot
ao-x_'_ Xy =0 y 1 — Y4+ ¥ =0 (2a,b)
ox oy ay 0X

X -

the assumed stress state fulfils Eq. (2a) only.

2.1 Through-thickness variation of the stress: two oppsite cases
In the work [10], Volkersen added to the peel sti@$erm varying linearly along the adhesive

thickness, so that at the interfaces the peelssiseg + o,. To fulfil Eq. (2b) it must be

t dt,,
g =——2 3
"2 dx @)

where t is the adhesive thickness. Furthermore, Volkersensidered an additional
contributiony to the adhesive shearing strain, related to tfeciedf the additional straining

caused by, (which is a function ok):



_ t dOr _ t2 dszy (4)
4E, dx  8E, dx?

wherek, is the adhesive Young's modulus. Thus, macrosedigicthe relative longitudinal

displacements between the two adherends is

2
U=ty Ty Ty 10O Dy (5)
t G, G, 8E, dx

whereuy, U, are the displacements of the adherends (1,2)eainterfaces with the adhesive
and G, is the adhesive shear modulus. These assumptigisate a differential equation of
the fifth order in the shear stress, see [10] Bf),(instead of the typical third order equation

(Eqg. (1b) or its equivalent):

dt d’t dt _
aF Mg tUNsg = VAT, (6)

where the constans, As, u, v (note that here andv are not displacements) are defined in
the procedure and the bars simply indicate a nazatan of the stresses. Having previously
solved the peel stress, the solution of Eq. (6)b&ined by summing to the homogeneous
solution a particular solution of the complete doum related to the peel stress. The higher
order of the problem allows fulfilling the conditioof zero shear stress at the ends. The
procedure is developed in the case of gussetsaksath half of the main (i.e. inner) adherend;
unfortunately, in the article [10], several intedrete assumptions and simplifications are not
reported explicitly, so that it is not possiblerézonstruct easily the method in a general case.
However, the Volkersen’s assumption of peel stwasging through the thickness is valuable

and is consistent with the high order theory dewetbyears later [14].

A completely different approach was adopted by v@yand Eidinoff [5], who started from

the kinematic assumptions of displacementsvarying linearly through the thickness:

SEY V)= Vl;VZ # Sy (7a,b)

u(x,y) = ulzuz +



where, againy;, v; (i=1,2) are the displacements of the adherends antbgaces with the
adhesive, which are a functionxbnly. It follows that the shearing strain in thdhasive is

v :0_u+@:u+%(1+zj+%[1_zj ®)
Yooy ox dx\2 t) dx\2 t

The first term in (8) is the usual “mean” shearsigain, appearing in most models, the
following terms exhibit the dependence pnAs a consequence, the shear stigssG, Yy
varies through the thickness. On the contrary, fiegq (7b) it follows that the transverse

direct strain is constant through the thickness

ov _V,—V,
E =—=—=—=< 9
vyt (9)
and, therefore, also the peel stregs E, €, is constant. Thus this model does fulfil neither t

longitudinal Eqg. (2a), nor the transverse Eq. @pilibrium. It is worth of note that none of

the models proposed later in the literature adofitechissumptions of Ojalvo and Eidinoff.

2.2 Hart-Smith’s solution for the double lap joint under axial load

The solution reported in [19]-Appendix A.1.1 foretlelastic case assumes initially that the
adherends are subjected to pure tension and thesiaghis subjected to shear stress and
deforms consequently. Omitting here the thermaaéf (included in the original work), the

shear stress in the adhesive is

1, =Gy =Gﬁ (20)

Xy a

Differentiating Eq. (10) twice yields

df_wzg(ﬂ_%j 11)
dx t {dx dx

d’t, G,(d, d&

dx2Xy =T( dle_ dx22 12)

Considering the deformability of the adherendsit be written
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%: T . dU2 = T,
dx Eh’ dx E,h,

(13a,b)

where, respectivelyl; andh; are the tensile force per unit width and thicknetated to the
gusset (index 1)T, andh, are the half tensile force per unit width and Htadf thickness

related to the main adherend (index 2). DifferdimgEqs. (13a,b) yields

d’u, _ 1 dT,. d°u, _ 1 dT,

5 = —; = = (14a,b)
dx® Eh dx dx* E,h, dx
The longitudinal equilibrium of the adherends imeplihat
dT, dT,
b1 el R 15a,b
ax Y dx Y ( )
By combining Egs. (12), (14), (15) the followindgfdrential equation is obtained:
d’t

:y = G, | 1 + L Ty (16)

dx t \Eh E)h,

Terming A = Ga| L + 1 , the solution of Eq. (16) can be rewritten in ttvn

T, (X) =B +Be™ (17)
where B; and B, are integration constants which can be found byngahat at each end

section of the overlap one of the forées T, vanishes and the other equals half of the total

load carried by the joint.

To account also for the peel stress, Hart-Smithayasis considers bending of the gusset. The

related rotational and transverse equilibrium eiguat(Egs. (64,65) in [19]) read:

avM _,, h_ . dv _
w T ™ -

whereM andV are, respectively, bending moment and shear fpereunit width in the
gusset. To eliminate the coupling with the sheegsstintroduced by Eq. (18a), Hart-Smith

admits that in the end regions of the overlap theas stress is practicallyconstant due to

11



adhesive plasticity. Thus, when Eq. (18a) is ddferated in the subsequent mathematical
passages the shear stress disappears and thenpratdeuples. This argument implies that
the adhesive is in plastic regime regarding thessbfess and in elastic regime regarding the
peel stress. It can be also remarked that, adgitbending in the gusset contradicts the

displacement assumed in Egs. (13a,b) to obtaishbar stress.

3 DOUBLE LAP JOINT MODEL

The model developed within this work considers alde lap joint (Fig. 1a) symmetrical with
respect to its mid plane; the two gussets are iickdriut can be of any thickness and material.
Due to the symmetry, the main (central) adherensulgected to tension only, whilst the
gussets undergo tension, shear and bending. Foedlsen stated at the end of the section 1,
no attempt is made to account for the transversahibity of the shear stress, and the peel
stressoy in the adhesive. The derivation of the model ig/\@ose to the procedure assumed
by [25] for the single lap joint, the notation alsas been kept similar for ease of comparison,
the main difference being the behaviour (tensioty)oonf the main adherend. Another
difference is that the free body diagram assumecdedilibrium include, respectively, the
upper or lower adherend and half of the adhesiwviriess; this is consistent with considering
the obtained solutions for the shear and peelst@isgepresentative of the stress state in the

mid-thickness plane of the adhesive layer.

3.1 Model equations
Considering Fig. 1b, the following equilibrium edioas can be written for the gusset
(subscript 1), involving axial forc&;, shear forc&/; and bending momei; per unit width:

dr, __

%—oy =0 (20)
M +t
dxl RV h12 T, =0 (21)
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The longitudinal strairg,; at the inner surface of the gusset (interface withadhesive) can

be written as

& E (h N

whereu; is the longitudinal displacemeri; andv; are respectively the Young’'s modulus
and the Poisson’s ratio of material 1. In addititwe, usual relationship between curvature and

bending moment can be written:

2
d = —& (23)

<

wherev; is the transverse displacement dbd= E,h?/12(1-v?) is the bending stiffness.
In a similar way, but considering only the tensithre following equations can be written for
the main adherend (subscript 2), which involve lafaece per unit widthT, and straire,, at

the upper surface (interface with the adhesive):

dT,

—<4+1. =0 24
oL (24)
g =0 _1-viT, (25)
“ dx E, h,

whereu, is the longitudinal displacemert, andv, are respectively the Young's modulus
and the Poisson’s ratio of material 2.
The derivation of the first governing equation tsdrom the relationship between shear stress

and relative longitudinal displacement:

T, = G, (u1 —uz) (26)

YT
where G, is the shear modulus of the adhesive. By diffea¢éing Eq. (26) three times and

considering Egs. (19), (20), (21), (24), the sh&ta@ss can be related to the peel stress as

follows:
d3tXy dr,,
v -K; y =-K,0, (27)
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—y?2 —u2 Y
where Kﬁg{l s (1+3hl+tJ+1 VZ} : K2:6Ga1 L
t| Eh h ) Eh t Eh
The second governing equation is obtained startioig the relationship between peel stress
and transverse displacement of the gusset (asopiyistated, the main adherend does not

undergo transverse displacement):

o =B
YT a-vd)t
a

v (28)
where E; and v, are, respectively the Young’'s modulus and the deois ratio of the
adhesive. It can be remarked that in writing Eq) @®lane strain condition in the adhesive
has been assumed, unlike most of the known modakhweglect the effect of the Poisson’s

ratio. By differentiating Eqg. (28) four times andnsadering Eqgs. (20), (21), (23), the peel

stress can be related to the shear stress as $ollow

‘o dt
A 29
E E +1
where K;=——7—, K4:L2).
@-v )b, 20-v)tD,

SinceK; and K, can never be zero, Egs. (27) and (29) are couplgdin as in [25] the

problem is uncoupled by substituting Eq. (27) amdfdurth derivative in Eq. (29), which

gives:
d’t d°t d3t dt
Y oK —F +Kyg—L —Kg—2 =0 (30)
dx’ dx° dx® dx

where K = KK, - K,K,. Once the solution for, has been found, can be obtained from
Eq. (27).

3.2 Solution and boundary conditions
Eqg. (30) can be regarded as a sixth order diffeakatjuation, whose unknown function is the

first derivative of 1y, searching the solution in exponential foree™ , the following

characteristic equation is found:
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A —KA* +KA2 -Kg =0 (31)
Terming A\ = A2, the following third degree equation is obtained

A3 =K A2 + KA =Kg =0 (32)
that admits one real rodt; and two complex conjugate roofs,; = X £iY . Summarising,

the six roots are:
)\lzziﬂ/\ , )\3’4=iﬂ/\ =i\/X+iY, )\5,6=i",/\ =i\lx_iY

and the unknown function is in the form (in whighas indicate generic constants):

dt : : . _
de — a1e+\//\71>< + aze—\//TlX + age+VX+|Yx + a4e—x/ X+iYx +a5e+v X=iYx +a6e—x/X—|Yx (33)
X
A further additional integration is required to aiptt,,, but, thanks to the exponential form of
the terms, the only practical consequence on tletate of the solution is that of adding a

constant. Thus, terming the new consta&t-, the solution can be written as:

T,, = C, coshm x) +C, sinh{n x) + C, cosh(, x) cos,x) + C, cosh(, x) sin(n,x) +

34
+ C, sinh, x) cosf, x) + C, sinhfy,x)sin(,x) +C, (34)

Explicit formulae for the coefficientsy, nq, n, are given in Appendix. The determination of
C,-C; is based on the edge loads applied at the ertie dond, shown in Fig. 1c (subcripts

r indicate the left, right end). At the right endtbe gusset and at the left end of the main
adherend (free ends) all loads are obviously zarthe right end of the (half) main adherend
the axial load per unit width B/2, as well as at the left end of the gusset. Rizggithe latter
condition, usually in the literature [10],[13],[10] only the presence of the axial load is
considered. In [26] it was recognized that, du¢ht offset between the line of action of the
axial load in the gusset and the resultant of theas stress transmitted by the adhesive, a
bending action can arise, as schematized in FiByX&imple arguments, based on symmetry
and equilibrium, it can be noticed that in the umibed length of the gusset the shear force is

certainly zero and a constant bending moment, khown value, can exist. The latter is the
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moment My that in this work is regarded as a further unknown addition toC;-C;
therefore, eight conditions are required in total.

The first six of these are obtained as three pdiysevaluating equations based on the
derivatives oft,, both inx=0 and inx=L.

- conditions 1), 2)

aty _Ga|1-Vi(T, _6M, | 1-vi T, (35a,b)
dx t| E |\h K E, h, |

- conditions 3), 4)

d°t d’t E M
= K ——5" =K, ~ : (36a,b)
dx dx @-v)t D,

- conditions 5), 6)

d°t,, d4TXy+K E.(h +1) _

K =0 37a,b
d®x " d*x  ?20-vi)D, ¥ ( )

The two remaining conditions are obtained by cograid) respectively the longitudinal and

rotational equilibrium of the gusset:

- condition 7)
L

I Tydx=-P/2 (38a)
0

- condition 8)
L L d3t dt

onyxdxzf S ST Ve VO B (38b)
0 ol K, dx K, dx 2 2

The set of eight conditions is rewritten in mafiexm

[A[[x}={B} (39)

where P is the 8x8 coefficient matrix, vectoB} contains the known terms (related R

and vector ¥} contains the unknown constan@;-C,, My. The definitions of all terms of

[A] and {B} are given explicitly in Appendix. Although the pressions are long, the set of

equation (39) can be easily implemented and sokeeh by means of a spreadsheet.
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4 RESULTS

4.1 Comparison between analytical solutions

An initial comparison has been carried betweerstietion for the double lap joint developed
in this paper and the most significant literatuskigons, namely those by Volkersen [10] and
Hart-Smith [19]. For the application of the lattemstead of uncoupling the peel from the
shear stress as done in the original work, the peetss has been obtained from the shear
stress given by Eq. (17) by means of Eq. (27)tit¥ reason such stress is labelled “adapted”
in the related graphs). Three sample cases havedoasidered, in the first (“stiff” adherend)
the ratioEagner/ Eadnes(the elastic moduli of adherend and adhesive misdy) is equal to
100, e.g. as for a steel / epoxy bond, in the s¢ontermediate” adherend) this ratio equals
20, e.g. as for a composite / epoxy bond, in tirel {fisoft” adherend) the ratio equals 5, e.g.
as for a reinforced polymer / epoxy bond. In abes the Poisson’s ratio of the adhesive is
0.4, that of the adherends 0.29. The thicknessi®fgusseh; and the half-thickness of the
main adherendh, are 1.5 mm, the thickness of the adhesive layer0.25 mm, the overlap
length is 30 mm. This length value is high enoughdistinguish the behaviours of the
different solutions, but not so high to cause nucaértroubles to the calculation of the
hyperbolic and harmonic functions appearing in th&lutions. The applied loading
corresponds to an average shear stress of 1 Miha edhesive. Fig. 3a shows the stresses in
the adhesive mid-plane in the case of “stiff” adimer material. Regarding the shear stress, it
can be noticed that the Volkersen’s solution drimpgero at the ends, fulfilling the boundary
conditions, whilst the remaining solutions do nat.comparison, the Hart-Smith’s solution
gives higher values at the ends (peaks) and loalees in the middle; the solution developed
in this paper is generally between the other twegdRding the peel stress, the three solutions
give similar answers; the peaks of the Volkerseplsition are slightly lower.

The situation already changes noticeably in caséntédrmediate” adherend material shown

in Fig. 3b, where the stress peaks are approxignai@lble than in the previous case. The
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shear stresses predicted by the three solutionsleady different; the Volkersen’s solution
gives peaks which are lower than the solution dge in this paper, which is, in turn, lower
than that of Hart-Smith. For the peel stress thék&sen’s solution gives values slightly
lower than the other two.

A further change occurs in the case of “soft” aghdrmaterial, shown in Fig. 3c; here the
highest stress peaks reach about 10 times thegevetiess. Regarding the shear stresses, the
Volkersen’s solution gives peaks which are less thalf of the other two solutions; again, the
Hart-Smith’s solution gives the highest predicti@onversely, for the peel stress the three
solutions give similar results, also in this case Volkersen’s solution gives values slightly
lower than the other two.

An additional result of the solution developedhistpaper is that the bending moment in the
gusset at its loaded enlll{, here treated as an unknown) is nil, this confithesassumption

usually adopted by the other solutions of the ditiere.

4.2 Comparison with finite element results

A large part of this work concerned the comparisbthe analytical predictions with finite
element results, in a series of cases which inglutiiéerent combinations of overlap length,
adhesive thickness and elastic modulus ratio. Kepponstant the gusset thickness (1.5 mm)
and the main adherend thickness (2x1.5 mm), thaireny parameters have been varied as

follows:

e elastic modulus rati®agner/ Eaghes= 100, 20, 5; the Poisson’s ratio of the adhesiv@4s

that of the adherends 0.29 (as in the previousosggt
» adhesive thicknegs= 0.25, 0.50 mm;

» overlap lengthL = 10, 30, 50 mm in the case of “stiff” adherend matet =10, 20, 30

mm in the case of “intermediate” and “soft” adhetrematerial (in these cases the
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eigenvaluesmy, n; and n, are larger, thus the numerical troubles concerrtimg

hyperbolic and harmonic functions start to appédovaer values ot).

In relative terms, the combinations of thicknesd &Ength can be regarded t#s =1/6, 1/3
and L/h,=20/3, 20, 100/3 for the “stiff” adherend/h,=20/3, 40/3, 20 for the “soft”

adherend.

The finite element models have been built using@nisoparametric elements in plane strain
conditions; the minimum element size for the adleegand for the zones of the adherends
near to the bond) is 0.05 mm. It has been founddoyparison with more refined meshes that
this size is enough for the scope of this work;iobsly a much smaller size ($6nm) would

be required to describe the singularity at therfatee end [27]. A detail view of the mesh is

shown in Fig. 4.

Fig. 5 show, as an example, the stress distributidhe mid plane of the adhesive in the case
Eadner/ Eadnes= 100 andt = 0.25, for all considered overlaps. The stressidigions given by
the solution developed in this paper and the Vaeleis solution are compared to the finite
element results. As far as the shear stress isscoed, the solution developed here, although
simpler than that of Volkersen, reproduces quitd e finite element results, also for the
maxima, even if the boundary condition is not fldfi. For the longest overlap the
Volkersen’s solution underestimates the peak vaRegarding the peel stress, the two
solutions are almost indistinguishable; none ofrttean reproduce the fall of the curve given
by finite element at the overlap end. The same lggraeport also the distribution of the

longitudinal stresy; it can be noticed that this component is smahan the other two, but

is not actually negligible (about one half of treepstress).

The rather different situation of the ca&Rgher/ Eadhes=5 and t=0.25, again for all
considered overlaps, is shown in Fig. 6. It is appathat the stress distribution given by the

finite element model is markedly non-symmetric fréaft to right: at the left end (where the

19



main adherend is loaded and the gusset is unlodedytresses are lower. Moreover, the
longitudinal stress is no longer nil in the cenwahe of the bondline. The analytical solutions
still predict a symmetric distribution; thereforat the left end the error is high (only the
Volkersen’s solution behaves better). Also along thverlap the related graphs do not

reproduce accurately the finite element results.

A synthesis of the results corresponding to alksas reported in Tabs. 1-3, which contain
the peak values of peel and shear stress givennalytecal solutions and finite element
models, as well as their relative difference exgedsin percent (the difference is positive
when the solution overestimates, and negative wheterestimates, in absolute value, the
finite element results). In general terms, the @il solutions approximate the shear stress
better than the peel stress and the situationeatigfht end better than that at the left end. In
the casdagner/ Eadhes= 100 (Tab. 1) the difference reaches 18% and -19at%ne peak peel
stress. For the peak shear stress in most caselfférence is of some unit percent, but the
Volkersen’s solution exhibits differences aroun8.326 and -17.6% in the cake= 50 mm.
The situation progressively worsens in the ca$@gher/ Eaghes=20 (Tab. 2) and
Eadner/ Eadnes= 5 (Tab. 3), for which the difference of the leftapepeel stress respectively
exceeds 50% and almost attains 150%. The estimaite oight peak shear stress is never so
poor, but the Volkersen’s solutions gives the hgjltifferences, namely -16.6% and -45.5%
instead of 6.4% and 22.9% given by the solutionetigyed in this work, respectively for

elastic modulus ratio equal to 20 and 5.

Therefore, it can be remarked that, even if thek¥iden’s solutions appears conceptually
more satisfactory for it fulfils the boundary cotialn, the results that it gives are in many

instances worse and underestimate the peak stress.

4.3 Comparison with experimental measurements
A specimen formed by a double lap joint, with cleéeastic dimension$y; =h,=1.5 mm,

t=0.50 mm,L=30 mm, has been prepared from sheets of structiieal bonded with
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adhesive Hysol 9466 (Henkel Loctite, Dusseldorfyr@mny) and instrumented with strain
gauges (Fig. 7). The gussets have been manufackoingdenough to allow for a central
unbonded length of 80 mm (between the unloaded ehdse main adherends), to allow
space for placing a pair of gauges (one at mid-gjp@hanother at quarter-span) on the outer
surface of a gusset and, correspondingly, anotlér gn the inner surface. A chain of
longitudinal strain gauges with 10 elements andhpit mm has been applied on the backface
of a gusset in the bonded zone. The specimen has fiespended vertically and loaded

axially with known weights.

Tab. 4 reports the strain obtained from the gaugesan of two measurements) in the
unbonded zone of the gusset and the theoretica¢ \arresponding to a state of pure tension,
at the loading level 30 N/mm. The slight differee@nong the measurements are likely due
to the experimental error, thus the state of peresion in the gusset is confirmed. Fig. 8
shows the values of longitudinal strain measurethbystrain gauge chain on the back face of
the gusset, compared to the strain distributioremgiby the finite element results and the
solution developed in this work. In addition, alsee strain distribution obtained by

considering only the membrane behaviour of the guissplotted for comparison. Although

some of the experimental values appear slightlyelothan expected, the agreement is more
than satisfactory. Finally, it is apparent thatagng the effect of gusset bending (as, in
practice, assumed by the Hart-Smith solution) le@dgnore the peaks at the ends of the

overlap.

4.4 Cases of stiffness unbalance

The study has been extended also to cases in keelping the symmetry of the joints) the
main adherend is no longer thick twice the gusset the materials of the adherends are
different. Thus, the axial stiffness of the mairhaknd differs from the sum of the stiffness
of the two gussets; it is known [19] that in suchase the adhesive is more stressed at the

overlap end corresponding to the loaded end ofetbe stiff adherend. Fig. 9 shows the stress
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distribution in the adhesive mid-plane for the teases of unbalance ratigh; / Ech, = 2.3,
andE;h; / Exhy = 0.4. The elastic modulus ratios (adherend tesidie) are approximately 19
and 34; the adhesive thickness and bond lengthlagys 0.25 mm and 30 mm respectively.
It is apparent that the analytical solution devebbphere (note that in these cases the
Volkersen’s solution is not available) reproduceseyally well the finite element results, but
a relevant discrepancy occurs at the left end. bateports the peak values and the relative
difference, the inaccuracy concerns the peel s{lEs$0%) and, to a lesser extent, the shear
stress (around 15%). It is interesting to noticat the problems occur once again at the left

end, independently of the unbalance ratio, i.eej@hdently of where the stresses are highest.

5 CONCLUSIONS

The performance of a one dimensional solution far tlouble lap joint -accounting for
bending of the gussets- has been compared to tinesponding Volkersen’s solution (not

available in case of stiffness unbalance) andnitefielement results.

» The analytical solutions give acceptable resultemtie elastic modulus of the adhesive
is much lower than that of the adherends; thisbhmexplained by the fact that when the
elastic moduli are comparable the description ef #lihesive as a spring layer is no

longer adequate.

» The Volkersen’s solution, to fulfil the zero tramti boundary condition, assumes a linear
through-thickness variation of the peel stress. ey, the results for the stresses in the
mid plane that it gives are not better that thosthe one dimensional solution and they

often underestimate the values.

» Considering the literature, an issue that still has been addressed is how to include
properly (keeping the description of the adhereadsplates) the through-thickness
variation of the stresses, accounting also forptublem of the stress singularity at the

end of the adhesive / adherend interface. Theriaadation that has been adopted by
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several authors (including Volkersen) is not sugint, in the sense that it merely fulfils

local equilibrium and boundary condition, but itedonot give correct results, neither for
the peak, nor for the interface end. It is likdiattan advance regarding this topic could
improve the description of the stress distribut@drithe ends of the overlap and fulfil the

boundary condition as well.
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APPENDIX

- Roots of the characteristic equation (31)

3[21/3 3 3cl/3

m =\/ C¥® Ky _2%(-KZ+3K,)

X“+Y
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—4 X2 +Y?2 sin[% arccog%n
X“+Y

where

C = 2K3 ~9K,K + 27K +1 - 42 = 3K, +(2K3 9K K, + 27K, ),

_22/3C2/3 +4C1/3K1 _2[21/3 K12 +6|Il/3 K3 21/3C2/3 _2K12 +6K3

X = 1213 Y= 2p2/3./3c13

- Equation set (39): coefficientg of matrix [A] andb; of vector B} (i,j=1,..,8)
a;=0, a,=m, a3=0, a,=n,, as=n, a,=0, a,=0,

ay=Ce Vi) _Gii-viP,

t ER t Eh 2’
a,; =msinh(mL), a,, =m,coshfmL), a,; =n, cosp,L)sinh{,L)-n,sin(n,L)cosh@,L)
, &y, =Ny sin(n,L)sinh(L) +n, cosf,L)coshf,L),
a,s = n, cosf,L)cosh@,L) —n, sin(n,L)sinh(yL),
a,s = Ny sin(n,L) cosh@,L) + n, cosf,L)sinh(h, L), a,;=0, a,3=0,

G, fi-v?)

P.
tE,h, 2

a,, = sinh(mlL)(— Klmf + mf) = cosh(’nlL)(— Klmf + mf)

a,3 = cosf, L)sinh(nlL)(— K, +n> +3K,nn3 -10n’n3 + 5n1n§)+
sin(n,L) coshhlL)(?aKlnfn2 -5n'n, —K,n3 +10nZn3 - 5)

a,, =sin(n, L)sinh(nlL)(— K2 +n? +3K,nn —10nn3 +5n1n§')
—cosf,L) cosh(11L)(?>Klr112n2 -5n'n, — K,n3 +10n2n3 - nz) '

a,5 = cosf,L) coshhlL)(— K2 +n +3K,nn3 —10n2n; + 5n1n§)+
sin(nzL)sinh(nlL)(SKlnfn2 -5n'n, - K;n3 +10n2n; - ng)
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a,s =sin(n,L) coshhlL)(— K,n2 +n? +3K,nn3 —10n°ns + 5nln§)+
- cos@zL)sinh(nlL)(IBKlnfnz -5n'n, - K;n3 +10n2n; - ng)

E.(h +DK,

B = Ty 202D, ' =7

85, = N ~15nnZ +15n2nf —n — K, (n! —6nZn? + ng)ﬂia((lhl_—:;:;z, 8, =0, a.=0,
asg = 6n°n, —20n°n3 +6n,n; —4K1(n13n2 - nlng’), as, :EZ?((P——\J:;}[;Z , a5 =0, b, =0;
aﬁlzcosh(nlL)(— K,m +m? +Z?((1m——\-g:§j

ag, =sinh(mlL)(— K,my +m? +Z§i((1hl_—:3:;2j ,

ag3 = sin(n, L)sinh(nlL)(4K1nf‘n2 —6n’n, — 4K ,n,n3 +20nn3 - 6n1n§)+

cosf,L)coshpyL)| - K;n! +nf +6K,n’n3 —15n'ns — K,ns +15n7n; —ns + >
2@1-v;)D,

ag, = —cosf, L)sinh(nlL)(4K1n13n2 -6n’n, — 4K nn; +20n°n3 - 6n1n§)+

sin(n,L) coshyL)| — K,n! +nf +6K,nZn7 —15nn3 — K,ng +15n2n; —nJ + -
2@1-vy)D,

ags =sin(n,L) cosh(11L)(4K1nl3n2 -6n’n, — 4K nn; +20n°n3 - 6n1n§)+

cosf,L)sinh(,L)| - K,y +nf + 6K,nZn5 —15n'n3 — K,n; +15n7n; —n3 + >
2(1-v2)D,

g = —COSf,L) cosh(11L)(4K1nf’n2 -6n7n, —4K,n,n; +20n’n3 - 6n1n§)+

sin(n,L)sinh(,L)| - K,n}' +n® +6K,n?n7 —15n'n3 — K,ny +15n7n; —ns + -

Ea(h1+t)K2]

CEWHOK, o

" 2a@-v3)D,
_ sinh(m,L) _ coshfmlL) -1 _n cosf,L)sinh(yL) + n, sin(n,L) coshfy, L)
71 rnl ' 72 n'h_ ' 73 nf 4 ng )
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_ nysin(n,L)sinh(nL) +n, (1-cosf,L)coshfyL))

2 2
N, +n2

74

_ny(-1+cosf,L) coshfyL))+n, sin(n,L)sinh(n, L)
- 2 2 !
n +n,

a5

_ n;sin(n,L)coshfyL) —n, cosf,L)sinh(nL)

n +n;

76

8, = (sinhmL) - mchosh(nlL))(— K, + rrf)
1~ )

Komy

o = (~1+ coshgn,L) - mLsinhm, L))~ K, +m?)
2 - ]

Komy

1 .
200 oSt s L cos L coshiyl) +

+n, coshfyL)(-sin(n,L) + n,L cos,L))] + (nl2 + nﬂ— Ln? cosf,L)coshfyl) +
+n, coshhlL)(—sin(nzL) +n,L cos@zL)) + nlsinh(nlL)(cos(n2 L)+ 2n2Lsin(n2L))]}

1 . ) o0 .
= K, |- n, sin(n,L)sinh(n,L) + n-Lsin(n,L) coshf,L) +
Agy W{ 1[ , sin(n,L) (ML) +n (n,L) (L)

+n,(~1+cosf,L) coshfyL) + n,Lsin(n,L) coshfyL))] + (nl2 + nﬂ— Ln? sin(n,L)coshf,L) +
+n, sinh(n L)(sin(n,L) - 2n,L cosf,L)) + n, (- 1+ cosf,L) coshfy L) + n, L sin(n,L) coshhlL))]}

1 ) .
Ags = K, [n (L-cosf,L)coshf,L))+n;Lcosh,L)sinh(nL)+
85 KZ(n12+n§){ l[ 1( 2 1 ) 1 2 1

n, sinh(, L)(~sin(n,L) + n,L cosf,L))] - (nf +n3 anL cos,L)sinh(n, L) + :
+n, sinh(n, L)(sin(n, L) - n,L cos,L)) - n, (~1+cosf,L) coshy, L) +2n, L sin(n,L) coshf, L)) ]}

1 . o0 . .
= K, |- n, sin(n,L) coshf, L) + n L sin(n,L)sinh(n,L) +
Age ‘(—)K2n12+n§{ 1[ , sin(n,L) 6,L) +n; (n,L) (L)

n, sinh(,L)(cosf,L) + n,Lsin(n,L))] + (nl2 + nﬂ— LnZ sin(n,L) sinh(n, L) + ,

+n, coshfy,L)(sin(n, L) - 2n,L cosf,L)) + n, sinh(n,L)(cosh,L) + n,Lsin(n, L))]}

hy +t
2

N T

a5, =0, agg=-1, bg=
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Table 1. Comparison of the stress peaks given by the soludeveloped in this paper (this
sol.) and the Volkersen’s solution (Volk. sol.) lwiinite element models (FE), for

all cases of adhesive thicknegy #nd overlap lengthL); elastic modulus ratio

Eadner/ Eadhes= 100.

t (mm) 0.25 0.50
L (mm) 10 30 50 10 30 50
Opeak this sol. -0.786 -1.328  -2.123|| -0.763 -1.023 -1.517
left Volk. sol. -0.773 -1.185 -1.649 -0.746 -0.949 -1.252
(MPa) FE -0.692 -1.138 -1.815 -0.649 -0.869 -1.285

Acsre % 135%  16.6%  17.0%| 17.6% 17.7% 18.0%
Dvoik-re % 11.7% 4.1% 9.1%| 14.9% 9.3% -2.6%

Opeac  this sol. 0.786 1.328 2.123 0.763 1.023 1.517
right  Volk. sol. 0.773 1.185 1.649 0.746 0.949 1.252
(MPa) FE 0.776 1.279 2.039 0.688 0.911 1.343
Dis.re % 1.3% 3.8% 4.1%| 11.0% 12.2% 12.9%

Avoi-re % -0.4% 7.4%  -19.1% 8.4% 4.2% -6.8%

Tpeak this sol. -1.101  -1.957  -3.148| -1.046 -1.516  -2.280
left Volk. sol. -1.091 -1.870  -2.652| -1.044  -1.455 -2.119
(MPa) FE 1116  -1.952  -3.132| -1.076 -1.522  -2.275
Disre % -1.3% 0.3% 0.5% -2.8% -0.4% 0.2%

Dvoik-re % -2.2% -42%  -15.3% -3.0% -4.5% -6.9%

Tpeak this sol. -1.101  -1.957  -3.148| -1.046 -1.516  -2.280
right  Volk. sol. -1.091  -1.870 -2.652| -1.044  -1.455  -2.119
(MPa) FE -1.150 -2.006 -3.219 -1.092 -1.542 -2.306
Dis.re % -4.2% -2.4% -2.2% -4.2% -1.7% -1.1%

Avoik -re %0 -5.1% -6.8%  -17.6% -4.4% -5.7% -8.1%




Table 2. Comparison of the stress peaks given by the soludeveloped in this paper (this
sol.) and the Volkersen’s solution (Volk. sol.) lwiinite element models (FE), for

all cases of adhesive thicknesy #nd overlap lengthL); elastic modulus ratio

Eadner/ Eadhes= 20.

t (mm) 0.25 0.50
L (mm) 10 20 30 10 20 30

Opeak this sol. -1.465  -2.595  -3.870( -1.228  -1.906 2,771

left Volk. sol. -1.441 -2.168 -2.904 -1.193 -1.650 -2.122

(MPa) FE -0.978 -1.661 -2.468| -0.901 -1.350  -1.952

Ats-re % 49.8%  56.2%  56.8%| 36.4%  41.1% = 41.9%
Dvoik-re % 47.4%  305%  17.6%| 32.4%  22.2% 8.7%

Opeax this sol. 1.465 2.595 3.870 1.228 1.906 2.771
right  Volk. sol. 1.441 2.168 2.904 1.193 1.650 2.122
(MPa) FE 1.362 2.315 3.440 1.042 1.537 2.216
Disre % 76%  12.1%  125%| 17.8% = 24.0% = 25.0%

Avoik-re % 5.8% -6.3%  -15.6%| 14.4% 7.3% -4.3%

Tpeak this sol. -1510 -2.737  -4.086| -1.252  -2.007 -2.935
left  volk. sol. -1.408  -2.356  -3.225| -1.201  -1.812  -2.370
(MPa) FE 1282 2270  -3.383| -1.135 -1.751  -2.547
Dysre %0 17.8%  20.6%  20.8%| 10.3%  14.6%  15.2%

Dvoik-re % 9.9% 3.8% -4.7% 5.9% 3.4% -6.9%

Toeax  this sol. -1.510  -2.737  -4.086| -1.252  -2.007 -2.935
right  Volk. sol. -1.408  -2.356  -3.225| -1.201  -1.812  -2.370
(MPa) FE -1.475 -2.505 -3.864 -1.231 -1.899 -2.759
Ds-re % 2.3% 5.5% 5.7% 1.7% 5.7% 6.4%

Avoik -Fe %0 -4.6% -9.2%  -16.6% -2.4% -4.6% -14.1%




Table 3. Comparison of the stress peaks given by the soludeveloped in this paper (this
sol.) and the Volkersen’s solution (Volk. sol.) lwiinite element models (FE), for

all cases of adhesive thicknesy #nd overlap lengthL); elastic modulus ratio

Eadner/ Eadhes= 5.

t (mm) 0.25 0.50
L (mm) 10 20 30 10 20 30

Opeak this sol. -3.094  -6.142  -9.280| -2.326  -4.458 -6.682

left Volk. sol. -2.969 -5.112 -7.259 -2.168 -3.413 -4.670

(MPa) FE -1.269 -2.472 -3.706 -1.391 -2.603 -4.038

Ats-re % 143.8% 148.5% 150.4%| 67.2%  656%  65.5%
DAvor-re % | 134.0% 106.8%  95.9%]| 55.9%  26.7%  15.6%

Opea  this sOL. 3094 6142 8992 2326 4458  6.683
right  Volk. sol. 2969 5112  7.259| 2168  3.413 4670
(MPa) FE 2337 4542  6813| 1573  2.888  4.324

Acsre % 32.4% 35.2% 32.0% 47.8% 54.4% 54.5%
Avoik-re % 27.1% 12.6% 6.6% 37.8% 18.2% 8.0%

Toeak  this sol. 2534 5041 -7.587| -1.868 -3.619  -5.426
left  volk. sol. -1.694  -4269  -3.346| -1562 -2.874  -5.137
(MPa) FE 1507 -2.966  -4.448| -1.263 -2.376  -3.560

Dis.re % 68.1% 70.0% 70.6% 48.0% 52.3% 52.4%
Avoik-re %0 12.4% 43.9%  -24.8% 23.7% 21.0% 44.3%

Tpeak this sol. 2534  -5041  -7.504( -1.868  -3.619 -5.427
right  Volk. sol. -1.694  -4.269  -3.346| -1.562 -2.874  -5.137
(MPa) FE -2.089 -4.096 -6.143 -1.572 -2.948 -4.416

Acsre % 21.3% 23.1% 22.2% 18.9% 22.8% 22.9%
Avoik -Fe %0 -18.9% 4.2%  -45.5% -0.6% -2.5% 16.3%




Table 4. Results from the strain gauges in the unbonde@ odrihe gusset and theoretical

value corresponding to a tensile loading of 30 N/mm

Outer surface, Outer surface, Inner surface, Inner surface, | Theoretical

mid-span gauge quarter-span gauge mid-span gauge quarter-span gauge (tension)

8.410° 9.010° 8.910° 8.7110° 8.910°




Table 5. Comparison of the stress peaks given by the soludeveloped in this paper (this

sol.) and finite element models (FE),

t (mm) 0.25 L (mm) 30

Eih; / Exh, 0.4 2.3
E:/E, 19.2 33.7

E,/E, 33.7 19.2

this sol. -4.70 -1.67

Opeak left FE -3.30 -1.11
Disre % || 42.5% 49.5%

this sol. 1.98 3.96

Opeak Might FE 1.826 3.69
Disre % 8.4% 7.3%

this sol. -4.79 -2.08

Tpea left FE -4.17 -1.77
Disre% | 14.7% 17.3%

this sol. -2.01 -4.94

Tpeak right FE -1.94 -4.77
Asre% | 3.8% 3.6%
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Figure 1. Double lap joint: a) dimensions and symmetry conditions; b) infinigsi

equilibrium; c) boundary conditions.
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Figure 2. Bending action on the gussets of a double lap joint (from [26], copyright E)sevie
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Figure 3. Stress distribution in a double lap joint; comparison betweeermiregolkersen’s
and Hart-Smith’s solutions for three different materials of ddkerends: a)

“stiff”; b) “intermediate”; c) “soft”.
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Figure 5. Stress distribution in a double lap joint, case of a “stiffitenal of the adherends;
comparison between finite element results and present solutidmréer different

overlap lengths: a) 10 mm; b) 30 mm; ¢) 50 mm.
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Figure 6. Stress distribution a double lap joint, case of a “soft” natef the adherends;
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