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Corso Duca degli Abruzzi 24, 10129 Torino, Italy 

 

Abstract 

The solutions which have been proposed for the stress state in bonded joints inevitably adopt 

a simplified description. By comparison with finite element results, it can be noticed that the 

analytical solutions reproduce in general terms the stress field, but in the end zones of the 

overlap mismatches are frequently observed. The present paper focuses the attention on the 

double lap joint. The classical solutions found by Volkersen (Construction métallique 4, 

1965) and Hart-Smith (Technical Report NASA CR-11234, 1973) are compared with a 

solution, developed in this work, which accounts for bending in the external adherends and 

axial stiffness imbalance. Several cases of adherend to adhesive elastic modulus ratio, 

thickness and overlap length are considered; finite element results are taken for reference. It is 

found that the analytical solutions give acceptable results when the elastic modulus of the 

adhesive is much lower than that of the adherends. The Volkersen’s solution, although it 

fulfils the zero-traction boundary condition, does not give better results than the others and 

often underestimates the peak values. It is likely that a better description of stress variation 

through the adhesive thickness could improve substantially the situation. 
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1 INTRODUCTION 

Although, in present times, the stress-strain state in bonded joints can be completely assessed 

by means of finite element modelling, the need for analytical solutions is still alive. Indeed, 

apart from the scientific interest (equations can give a better insight of a phenomenon than 

numerical results alone), also from the designer’s viewpoint formulae can be of quicker and 

simpler use for a first dimensioning of the joints (as for any structural part), leaving finite 

elements for a final analysis.  The interest in this subject is also witnessed by the huge amount 

of research published over more than seven decades. 

Looking back at the literature (see [1] for a recent survey) it appears that, after pioneering and 

fundamentals works as that of Goland and Reissner [2], who first accounted for both shear 

and peel stresses, the need for addressing some open issues was soon recognised. In general 

terms, the main aspects concern: 

• the accuracy of the representation of the stress-strain state in the joint, especially in the 

adhesive; 

• in case of a slender, single lap joint, the geometrical non-linearity due to the rotation. 

Regarding the latter aspect, the initial idea by Goland and Reissner of treating the bonded 

overlap as a homogenous beam, to obtain the rotation and the moment acting at the overlap 

ends, was updated by the subsequent researchers. Renton and Vinson [3] extended the study 

to the case of orthotropic adherends. Hart-Smith [4] considered the two adherends as 

uncoupled and thus obtained considerably lower moment values, tending to zero in case of 

long overlaps, and also recognised an inconsistency in the free end of the adherends. The 

same correction was subscribed by Ojalvo and Eidinoff [5]. Later on, Oplinger [6] proposed 

another correction, leading to edge moment values closer to those of Goland and Reissner and 

very different from those of Hart-Smith in case of long overlaps. Tsai and Morton [7] 

compared the edge moments given by Goland and Reissner, Hart-Smith and Oplinger with 

results obtained from geometrically non-linear finite element analyses. Their conclusion was 
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that the Hart-Smith solution is best in case of short overlaps, whilst the Oplinger solution is 

best in case of long overlaps; however, the Goland and Reissner solution is reasonably 

accurate in all cases. More recently, Luo and Tong [8] developed a sophisticated non linear 

model, for which they found a (although complicated) closed-form solution, and which 

proved to give a better edge moment prediction than all previous models. Ultimately, Zhao et 

al. [9] proposed a simpler method for determining the end moments, which overcomes the 

limitation -shared by all models previously cited- of dealing with identical adherends. This 

method assumes that the overlap zone does not deform, and the authors found that the results 

are accurate as far as the overlap is not too long (length-to-thickness ratio up to 30). 

Returning to the first of the two aspects listed above (i.e. the stress-strain state in the joint), 

the core of the problem is the inevitably simplified behaviour assumed for the adhesive and, 

to a lesser extent, also for the adherends. The classical description of the adhesive layer as 

distributed springs is incomplete, since only the peel and shear components of stress are 

considered; moreover, in this description these components are a function of the longitudinal 

coordinate only. Thus, neither the local, infinitesimal equilibrium, nor the natural boundary 

condition of zero traction on the free edges can be satisfied. Several proposals have been 

presented in the literature to remedy these shortcomings; a qualitative survey is given in this 

introduction, some analytical details are discussed in a following section. 

In 1965, Volkersen [10] (in a study related to the double lap joint, but the idea is suitable in a 

general case) proposed to assume a simple linear variation of the peel stress through the 

thickness, which allows for fulfilling local equilibrium. The work of Hart-Smith [4] on single 

lap joints dealt mostly with the elasto-plastic failure modes, thus it was not concerned with 

improving the elastic solutions. Ojalvo and Eidinoff [5] used a complete relationship between 

shearing strain and displacement, which led to a definition of the shear stress variable through 

the thickness of the adhesive. Delale et al. [11], while extending the study of the lap joint to 

the case of orthotropic and shear-deformable adherends, considered also the longitudinal 
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strain -and, implicitly, the longitudinal stress- in the adhesive. However, the assumed stress 

state in the adhesive was still constant through the thickness and, therefore, unable to fulfil 

local equilibrium and boundary conditions. Adams and Mallick [12] developed a method, 

suitable for single and double lap joints, in which all stress components (shear, peel and 

longitudinal) in the adhesive are included and vary along the thickness. Their solution 

included six unknown functions of the longitudinal coordinate, and the problem was solved 

by minimization of the complementary energy (procedure implemented in an ad hoc software, 

JOINT). Another attempt to improve the solution was done by Tsai et al. [13]. In the case of 

double lap joint, they proposed a through-thickness triangular distribution for the shear stress 

in the external adherend (here referred to as gusset for sake of brevity, see also Fig. 1a), 

varying from zero (backface) to the adhesive shear stress (interface); bending in the gusset 

was neglected. In the case of single lap joints, they proposed two solutions: one treating the 

adherend as bars under tension, deforming also in shear; the other including bending. The 

adhesive was modelled as a spring layer, reacting with shear stresses only. 

A more refined approach was given by the closed-form high-order theory developed by 

Frostig et al. [14]. In this approach it was deduced that, through the adhesive thickness, the 

shear stress must be constant, the peel stress varies linearly and the variation of the transverse 

displacement is quadratic; the longitudinal stress is neglected. Both local equilibrium and zero 

boundary conditions can be fulfilled by this stress state. In [15] Mortensen and Thomsen 

reported the formulation of a general method, implemented in the ESAComp software, in 

which the adherends are described as Kirchhoff plates and the adhesive is a spring layer 

transmitting peel and shear (in the two in-plane directions) stresses. The method was 

compared to closed-form high-order theory and finite element results, the authors remarked 

that the stresses predicted at the ends (not fulfilling the boundary conditions) could be 

regarded as conservative estimates of the actual stresses acting when spews are present at the 

overlap ends. Luo and Tuong [16] compared the behaviour of linear and higher order theories, 
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finding that in case of thick adhesive bondline the improvement given by the higher order is 

necessary. In recent times, Radice and Vinson [17] have developed another high-order elastic 

model, with the aim of clarifying the magnitude of the longitudinal stress and the actual 

stress-state (plane stress or plane strain) in the adhesive. The solution of the problem exhibits 

mathematical complications and is obtained as a series, by minimizing the potential energy 

functional. The conclusion of these authors is that the longitudinal stress in the adhesive is 

zero and that all other analytical or finite element models that find non-negligible longitudinal 

stress must be incorrect. Such a strong statement, practically denying all the related literature, 

should originate a considerable debate. 

Very recently, Wang and Zhang [18] have presented a model in which the adhesive is formed 

by two normal spring layers, interfaced to the adherends, and an intermediate shear spring 

layer. With this conceptually simple modification, the transverse displacement of the adhesive 

mid plane is no longer the average of the two adherend transverse displacement and the peel 

stress is not constant through the thickness. As a consequence, the local equilibrium and the 

boundary conditions can be fulfilled. 

Less work has been specifically dedicated to the case of the double lap joint. Apart from the 

paper by Volkersen [10] already mentioned above, the most known contribution is likely the 

Hart-Smith’s report [19]. In that work, similarly to the companion report on single lap joints 

[4], most of the attention is focussed on the failure conditions; thus, due to adhesive plasticity, 

the shear stress at the ends of the overlap is assumed to be practically constant and the most 

relevant parameter is the strain energy to failure. However, the work recognises also the 

importance of the peel stresses, which can govern the failure in case of thick adherends. The 

Hart-Smith’s elastic analysis, which neglects bending in the gussets, is recalled in short in a 

following section of the present paper. 
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Albat and Romilly [20] proposed a linear elastic solution, based on the Hart-Smith’s solution, 

suitable to describe the stress state in double lap joints and also -due to its simplicity- in 

reinforcements made of stepped patches. 

A much more sophisticated approach has been used by Bednarcyk et al. [21], Zhang et al. 

[22] who applied the “Higher Order Theory for Functionally Graded Materials” to the case of 

double lap joints and doubler joints. This theory is based on the discretization of the material 

in cells, within each of them the displacement field is approximated by a polynomial 

expansion, like in finite element modelling but without nodes. The approach can be regarded 

as an intermediate tool between analytical and finite element modelling; it has been 

implemented in a commercial software (Hypersizer®). Finally, another study of the 

orthotropic double lap joint has been presented in recent times by Gustafson et al. [23], who 

have solved with the virtual work principle two models of increasing sophistication: the first 

assumes shear stress only, while the second accounts for shear and peel components. Special 

end elements, called “end posts”, are included to fulfil the zero-traction boundary condition. 

At the end of this survey, a general remark is that models which are substantially the same as 

the first ones proposed several decades ago are still in use nowadays and coexist with more 

sophisticated and recent models. A first explanation for this is that closed-form solutions, 

which can be directly implemented at the level of a spreadsheet, are still appealing as a first 

design tool. If more complex, ad hoc programming is required (as it happens for those 

solutions based on minimization) the choice can easily turn in favour of finite element 

modelling. This is especially true in an industrial context, in which less time and expertise are 

available for mathematical or programming activities. A second explanation is that the 

sophisticated models, which fulfil the zero-traction boundary condition, nevertheless do not 

give the “exact” response in terms of peak stresses. Indeed, in most of the papers mentioned 

above the authors typically comment that the response of their models fits well the finite 

element results (the only that can be taken as a reference), except for the small regions close 
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to the overlap ends. Unfortunately, the main purpose of a stress analysis should be to predict 

stresses especially where they are more severe; if this is not the case, the mere fulfilment of 

the boundary condition is not so important for the designer. Another problem of all solutions 

which consider the through-thickness variability of the stresses is that they attempt to give a 

value also at the end of the adhesive-adherend interface, where the stress field is singular. 

Although several authors acknowledge this problem (e.g. [11],[12],[15],[16],[18],[23]), the 

only study accounting for the singularity in the through-thickness variability is that by Sawa 

et al. [24] which, however, involves a complicated mathematical solution that, again, implies 

the disadvantages of an ad hoc programming. In this perspective, it appears conceptually 

more appropriate to limit the comparison and the discussion to the situation on the adhesive 

mid plane. 

The present paper deals with the case of the double lap joint, mainly to leave apart the aspects 

related to joint rotation and focus the attention on the description of the stress field in the 

adhesive mid plane. The goal is to evaluate the approximation on the peak stresses given by a 

one dimensional model, under different combinations of overlap length, adhesive thickness 

and elastic modulus ratio. The comparison is made with finite element results, and in one case 

also with strain gauge measurements on the gusset backface. 

The paper is organised in the following way. First, some mathematical aspects concerning 

stress and strain in the adhesive are discussed, and the basic Hart-Smith solution is recalled. 

Second, the development of a more complete analytical model is explicitly presented. Then, 

the response obtained from the model is compared to finite element results. At the end, the 

conclusions and final remarks are presented. 

2 MATHEMATICAL ASPECTS 

This section presents some remarks concerning the different solutions listed above. Although 

the involved models have been stated several decades ago, it is instructive to reconsider some 

cases, noting the basic assumptions made by the different authors and their consequences on 
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the obtained stress state. For ease of comparison, symbols, reference axes, etc. are defined 

here in unique way, thus some formulae are reported in a different writing with respect to the 

corresponding original papers. It is assumed that x and y are, respectively, the longitudinal and 

transverse directions in the joint, the corresponding displacements are u and v, the stresses in 

the adhesive are τxy (shear), σy (peel) and σx (longitudinal). 

It can be recalled first that the one dimensional models (Goland and Reissner [2] and similar), 

involve the two governing equations in the form 

0;0
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where A, B are constants. In case of dissimilar adherends (see e.g. [25]), such equations 

become non homogeneous and coupled, namely τxy appears in the right end side of Eq. (1a) 

and σy appears in the right end side of Eq. (1b). In this approach, these two stresses are a 

function of x only and σx is constantly nil; therefore, considering the local infinitesimal 

equilibrium equations 
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the assumed stress state fulfils Eq. (2a) only. 

2.1 Through-thickness variation of the stress: two opposite cases 

In the work [10], Volkersen added to the peel stress a term varying linearly along the adhesive 

thickness, so that at the interfaces the peel stress is σy ± σr. To fulfil Eq. (2b) it must be 

dx

dt xy

r

τ
=σ

2
 (3) 

where t is the adhesive thickness. Furthermore, Volkersen considered an additional 

contribution γ to the adhesive shearing strain, related to the effect of the additional straining 

caused by σr (which is a function of x): 



9 

2

22

84 dx

d

E

t

dx

d

E

t xy

a

r

a

τ
−=

σ
−=γ  (4) 

where Ea is the adhesive Young’s modulus. Thus, macroscopically, the relative longitudinal 

displacements between the two adherends is 
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where u1, u2 are the displacements of the adherends (1,2) at the interfaces with the adhesive 

and Ga is the adhesive shear modulus. These assumptions originate a differential equation of 

the fifth order in the shear stress, see [10] Eq. (56), instead of the typical third order equation 

(Eq. (1b) or its equivalent): 
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where the constants λ2, λ3, u, v (note that here u and v are not displacements) are defined in 

the procedure and the bars simply indicate a normalization of the stresses. Having previously 

solved the peel stress, the solution of Eq. (6) is obtained by summing to the homogeneous 

solution a particular solution of the complete equation, related to the peel stress. The higher 

order of the problem allows fulfilling the condition of zero shear stress at the ends. The 

procedure is developed in the case of gussets as thick as half of the main (i.e. inner) adherend; 

unfortunately, in the article [10], several intermediate assumptions and simplifications are not 

reported explicitly, so that it is not possible to reconstruct easily the method in a general case. 

However, the Volkersen’s assumption of peel stress varying through the thickness is valuable 

and is consistent with the high order theory developed years later [14]. 

A completely different approach was adopted by Ojalvo and Eidinoff [5], who started from 

the kinematic assumptions of displacements u, v varying linearly through the thickness: 
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where, again, ui, vi (i = 1,2) are the displacements of the adherends at the interfaces with the 

adhesive, which are a function of x only. It follows that the shearing strain in the adhesive is 


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The first term in (8) is the usual “mean” shearing strain, appearing in most models, the 

following terms exhibit the dependence on y. As a consequence, the shear stress τxy = Ga γxy 

varies through the thickness. On the contrary, from Eq. (7b) it follows that the transverse 

direct strain is constant through the thickness 

t
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and, therefore, also the peel stress σy = Ea εy is constant. Thus this model does fulfil neither the 

longitudinal Eq. (2a), nor the transverse Eq. (2b) equilibrium. It is worth of note that none of 

the models proposed later in the literature adopted the assumptions of Ojalvo and Eidinoff. 

2.2 Hart-Smith’s solution for the double lap joint under axial load 

The solution reported in [19]-Appendix A.1.1 for the elastic case assumes initially that the 

adherends are subjected to pure tension and the adhesive is subjected to shear stress and 

deforms consequently. Omitting here the thermal effects (included in the original work), the 

shear stress in the adhesive is 

t
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Differentiating Eq. (10) twice yields 
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Considering the deformability of the adherends it can be written 
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where, respectively, T1 and h1 are the tensile force per unit width and thickness related to the 

gusset (index 1), T2 and h2 are the half tensile force per unit width and the half thickness 

related to the main adherend (index 2). Differentiating Eqs. (13a,b) yields 
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The longitudinal equilibrium of the adherends implies that 
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By combining Eqs. (12), (14), (15) the following differential equation is obtained: 
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Ga ,  the solution of Eq. (16) can be rewritten in the form 
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where B1 and B2 are integration constants which can be found by noting that at each end 

section of the overlap one of the forces T1, T2 vanishes and the other equals half of the total 

load carried by the joint. 

To account also for the peel stress, Hart-Smith’s analysis considers bending of the gusset. The 

related rotational and transverse equilibrium equations (Eqs. (64,65) in [19]) read: 

yxy dx

dVh
V

dx

dM σ−=τ−= ;
2
1  (18a,b) 

where M and V are, respectively, bending moment and shear force per unit width in the 

gusset. To eliminate the coupling with the shear stress introduced by Eq. (18a), Hart-Smith 

admits that in the end regions of the overlap the shear stress is practicallyconstant due to 
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adhesive plasticity. Thus, when Eq. (18a) is differentiated in the subsequent mathematical 

passages the shear stress disappears and the problem uncouples. This argument implies that 

the adhesive is in plastic regime regarding the shear stress and in elastic regime regarding the 

peel stress. It can be also remarked that, admitting bending in the gusset contradicts the 

displacement assumed in Eqs. (13a,b) to obtain the shear stress. 

3 DOUBLE LAP JOINT MODEL 

The model developed within this work considers a double lap joint (Fig. 1a) symmetrical with 

respect to its mid plane; the two gussets are identical but can be of any thickness and material. 

Due to the symmetry, the main (central) adherend is subjected to tension only, whilst the 

gussets undergo tension, shear and bending. For the reason stated at the end of the section 1, 

no attempt is made to account for the transverse variability of the shear stress τxy and the peel 

stress σy in the adhesive. The derivation of the model is very close to the procedure assumed 

by [25] for the single lap joint, the notation also has been kept similar for ease of comparison, 

the main difference being the behaviour (tension only) of the main adherend. Another 

difference is that the free body diagram assumed for equilibrium include, respectively, the 

upper or lower adherend and half of the adhesive thickness; this is consistent with considering 

the obtained solutions for the shear and peel stress as representative of the stress state in the 

mid-thickness plane of the adhesive layer. 

3.1 Model equations 

Considering Fig. 1b, the following equilibrium equations can be written for the gusset 

(subscript 1), involving axial force T1, shear force V1 and bending moment M1 per unit width: 

01 =τ− xydx
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The longitudinal strain εx1 at the inner surface of the gusset (interface with the adhesive) can 

be written as 
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where u1 is the longitudinal displacement, E1 and ν1 are respectively the Young’s modulus 

and the Poisson’s ratio of material 1. In addition, the usual relationship between curvature and 

bending moment can be written: 
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where v1 is the transverse displacement and )1(12 2
1

3
111 ν−= hED  is the bending stiffness. 

In a similar way, but considering only the tension, the following equations can be written for 

the main adherend (subscript 2), which involve axial force per unit width T2 and strain εx2 at 

the upper surface (interface with the adhesive): 
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where u2 is the longitudinal displacement, E2 and ν2 are respectively the Young’s modulus 

and the Poisson’s ratio of material 2. 

The derivation of the first governing equation starts from the relationship between shear stress 

and relative longitudinal displacement: 

( )21 uu
t
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xy −=τ  (26) 

where Ga is the shear modulus of the adhesive. By differentiating Eq. (26) three times and 

considering Eqs. (19), (20), (21), (24), the shear stress can be related to the peel stress as 

follows: 
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The second governing equation is obtained starting from the relationship between peel stress 

and transverse displacement of the gusset (as previously stated, the main adherend does not 

undergo transverse displacement): 

12)1(
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where Ea and νa are, respectively the Young’s modulus and the Poisson’s ratio of the 

adhesive. It can be remarked that in writing Eq. (28) a plane strain condition in the adhesive 

has been assumed, unlike most of the known models which neglect the effect of the Poisson’s 

ratio. By differentiating Eq. (28) four times and considering Eqs. (20), (21), (23), the peel 

stress can be related to the shear stress as follows: 
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Since K2 and K4 can never be zero, Eqs. (27) and (29) are coupled; again as in [25] the 

problem is uncoupled by substituting Eq. (27) and its fourth derivative in Eq. (29), which 

gives: 
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where 42315 KKKKK −= . Once the solution for τxy has been found, σy can be obtained from 

Eq. (27). 

3.2 Solution and boundary conditions 

Eq. (30) can be regarded as a sixth order differential equation, whose unknown function is the 

first derivative of τxy; searching the solution in exponential form xa λe , the following 

characteristic equation is found: 
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Terming 2λ=Λ , the following third degree equation is obtained 
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that admits one real root Λ1 and two complex conjugate roots YX i3,2 ±=Λ . Summarising, 

the six roots are: 
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and the unknown function is in the form (in which a1-a6 indicate generic constants): 
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 (33) 

A further additional integration is required to obtain τxy, but, thanks to the exponential form of 

the terms, the only practical consequence on the structure of the solution is that of adding a 

constant. Thus, terming the new constants C1-C7, the solution can be written as: 

7216215

2142131211

)sin()sinh()cos()sinh(

)sin()cosh()cos()cosh()sinh()cosh(

CxnxnCxnxnC

xnxnCxnxnCxmCxmCxy

+++

++++=τ
 (34) 

Explicit formulae for the coefficients m1, n1, n2 are given in Appendix. The determination of 

C1-C7 is based on the edge loads applied at the ends of the bond, shown in Fig. 1c (subcripts l, 

r indicate the left, right end). At the right end of the gusset and at the left end of the main 

adherend (free ends) all loads are obviously zero; at the right end of the (half) main adherend 

the axial load per unit width is P/2, as well as at the left end of the gusset. Regarding the latter 

condition, usually in the literature [10],[13],[19],[20] only the presence of the axial load is 

considered. In [26] it was recognized that, due to the offset between the line of action of the 

axial load in the gusset and the resultant of the shear stress transmitted by the adhesive, a 

bending action can arise, as schematized in Fig. 2. By simple arguments, based on symmetry 

and equilibrium, it can be noticed that in the unbonded length of the gusset the shear force is 

certainly zero and a constant bending moment, of unknown value, can exist. The latter is the 
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moment M1l that in this work is regarded as a further unknown, in addition to C1-C7; 

therefore, eight conditions are required in total. 

The first six of these are obtained as three pairs, by evaluating equations based on the 

derivatives of τxy both in x = 0 and in x = L. 
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The two remaining conditions are obtained by considering respectively the longitudinal and 

rotational equilibrium of the gusset: 

- condition 7) 
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The set of eight conditions is rewritten in matrix form 

[ ]{ } { }BXA =  (39) 

where [A] is the 8×8 coefficient matrix, vector {B} contains the known terms (related to P) 

and vector {X} contains the unknown constants C1-C7, M1l.  The definitions of all terms of 

[A] and {B} are given explicitly in Appendix. Although the expressions are long, the set of 

equation (39) can be easily implemented and solved, even by means of a spreadsheet. 



17 

4 RESULTS 

4.1 Comparison between analytical solutions 

An initial comparison has been carried between the solution for the double lap joint developed 

in this paper and the most significant literature solutions, namely those by Volkersen [10] and 

Hart-Smith [19]. For the application of the latter, instead of uncoupling the peel from the 

shear stress as done in the original work, the peel stress has been obtained from the shear 

stress given by Eq. (17) by means of Eq. (27) (for this reason such stress is labelled “adapted” 

in the related graphs). Three sample cases have been considered, in the first (“stiff” adherend) 

the ratio Eadher / Eadhes (the elastic moduli of adherend and adhesive respectively) is equal to 

100, e.g. as for a steel / epoxy bond, in the second (“intermediate” adherend) this ratio equals 

20, e.g. as for a composite / epoxy bond, in the third (“soft” adherend) the ratio equals 5, e.g. 

as for a reinforced polymer / epoxy bond. In all cases, the Poisson’s ratio of the adhesive is 

0.4, that of the adherends 0.29. The thickness of the gusset h1 and the half-thickness of the 

main adherend h2 are 1.5 mm, the thickness of the adhesive layer t is 0.25 mm, the overlap 

length is 30 mm. This length value is high enough to distinguish the behaviours of the 

different solutions, but not so high to cause numerical troubles to the calculation of the 

hyperbolic and harmonic functions appearing in the solutions. The applied loading 

corresponds to an average shear stress of 1 MPa in the adhesive. Fig. 3a shows the stresses in 

the adhesive mid-plane in the case of “stiff” adherend material. Regarding the shear stress, it 

can be noticed that the Volkersen’s solution drops to zero at the ends, fulfilling the boundary 

conditions, whilst the remaining solutions do not. In comparison, the Hart-Smith’s solution 

gives higher values at the ends (peaks) and lower values in the middle; the solution developed 

in this paper is generally between the other two. Regarding the peel stress, the three solutions 

give similar answers; the peaks of the Volkersen’s solution are slightly lower. 

The situation already changes noticeably in case of “intermediate” adherend material shown 

in Fig. 3b, where the stress peaks are approximately double than in the previous case. The 
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shear stresses predicted by the three solutions are clearly different; the Volkersen’s solution 

gives peaks which are lower than the solution developed in this paper, which is, in turn, lower 

than that of Hart-Smith. For the peel stress the Volkersen’s solution gives values slightly 

lower than the other two. 

A further change occurs in the case of “soft” adherend material, shown in Fig. 3c; here the 

highest stress peaks reach about 10 times the average stress. Regarding the shear stresses, the 

Volkersen’s solution gives peaks which are less than half of the other two solutions; again, the 

Hart-Smith’s solution gives the highest prediction. Conversely, for the peel stress the three 

solutions give similar results, also in this case the Volkersen’s solution gives values slightly 

lower than the other two. 

An additional result of the solution developed in this paper is that the bending moment in the 

gusset at its loaded end (M1l, here treated as an unknown) is nil, this confirms the assumption 

usually adopted by the other solutions of the literature. 

4.2 Comparison with finite element results 

A large part of this work concerned the comparison of the analytical predictions with finite 

element results, in a series of cases which includes different combinations of overlap length, 

adhesive thickness and elastic modulus ratio. Keeping constant the gusset thickness (1.5 mm) 

and the main adherend thickness (2×1.5 mm), the remaining parameters have been varied as 

follows: 

• elastic modulus ratio Eadher / Eadhes = 100, 20, 5; the Poisson’s ratio of the adhesive is 0.4, 

that of the adherends 0.29 (as in the previous section); 

• adhesive thickness t = 0.25, 0.50 mm; 

• overlap length L = 10, 30, 50 mm in the case of “stiff” adherend material, L = 10, 20, 30 

mm in the case of “intermediate” and “soft” adherend material (in these cases the 
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eigenvalues m1, n1 and n2 are larger, thus the numerical troubles concerning the 

hyperbolic and harmonic functions start to appear at lower values of L). 

In relative terms, the combinations of thickness and length can be regarded as t/h1 = 1/6, 1/3 

and L/h1 = 20/3, 20, 100/3 for the “stiff” adherend, L/h1 = 20/3, 40/3, 20 for the “soft” 

adherend. 

The finite element models have been built using 8 node isoparametric elements in plane strain 

conditions; the minimum element size for the adhesive (and for the zones of the adherends 

near to the bond) is 0.05 mm. It has been found by comparison with more refined meshes that 

this size is enough for the scope of this work; obviously a much smaller size (10-5 mm) would 

be required to describe the singularity at the interface end [27]. A detail view of the mesh is 

shown in Fig. 4. 

Fig. 5 show, as an example, the stress distribution in the mid plane of the adhesive in the case 

Eadher / Eadhes = 100 and t = 0.25, for all considered overlaps. The stress distributions given by 

the solution developed in this paper and the Volkersen’s solution are compared to the finite 

element results. As far as the shear stress is concerned, the solution developed here, although 

simpler than that of Volkersen, reproduces quite well the finite element results, also for the 

maxima, even if the boundary condition is not fulfilled. For the longest overlap the 

Volkersen’s solution underestimates the peak value. Regarding the peel stress, the two 

solutions are almost indistinguishable; none of them can reproduce the fall of the curve given 

by finite element at the overlap end. The same graphs report also the distribution of the 

longitudinal stress σx; it can be noticed that this component is smaller than the other two, but 

is not actually negligible (about one half of the peel stress σy). 

The rather different situation of the case Eadher / Eadhes = 5 and t = 0.25, again for all 

considered overlaps, is shown in Fig. 6. It is apparent that the stress distribution given by the 

finite element model is markedly non-symmetric from left to right: at the left end (where the 
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main adherend is loaded and the gusset is unloaded) the stresses are lower. Moreover, the 

longitudinal stress is no longer nil in the central zone of the bondline. The analytical solutions 

still predict a symmetric distribution; therefore, at the left end the error is high (only the 

Volkersen’s solution behaves better). Also along the overlap the related graphs do not 

reproduce accurately the finite element results. 

A synthesis of the results corresponding to all cases is reported in Tabs. 1-3, which contain 

the peak values of peel and shear stress given by analytical solutions and finite element 

models, as well as their relative difference expressed in percent (the difference is positive 

when the solution overestimates, and negative when underestimates, in absolute value, the 

finite element results). In general terms, the analytical solutions approximate the shear stress 

better than the peel stress and the situation at the right end better than that at the left end. In 

the case Eadher / Eadhes = 100 (Tab. 1) the difference reaches 18% and -19.1% for the peak peel 

stress. For the peak shear stress in most cases the difference is of some unit percent, but the 

Volkersen’s solution exhibits differences around -15.3% and -17.6% in the case L =  50 mm.  

The situation progressively worsens in the cases Eadher / Eadhes = 20 (Tab. 2) and 

Eadher / Eadhes = 5 (Tab. 3), for which the difference of the left peak peel stress respectively 

exceeds 50% and almost attains 150%. The estimate of the right peak shear stress is never so 

poor, but the Volkersen’s solutions gives the highest differences, namely -16.6% and -45.5% 

instead of 6.4% and 22.9% given by the solution developed in this work, respectively for 

elastic modulus ratio equal to 20 and 5. 

Therefore, it can be remarked that, even if the Volkersen’s solutions appears conceptually 

more satisfactory for it fulfils the boundary condition, the results that it gives are in many 

instances worse and underestimate the peak stress. 

4.3 Comparison with experimental measurements 

A specimen formed by a double lap joint, with characteristic dimensions h1 = h2 = 1.5 mm, 

t = 0.50 mm, L = 30 mm, has been prepared from sheets of structural steel bonded with 
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adhesive Hysol 9466 (Henkel Loctite, Düsseldorf, Germany) and instrumented with strain 

gauges (Fig. 7). The gussets have been manufactured long enough to allow for a central 

unbonded length of 80 mm (between the unloaded ends of the main adherends), to allow 

space for placing a pair of gauges (one at mid-span and another at quarter-span) on the outer 

surface of a gusset and, correspondingly, another pair on the inner surface. A chain of 

longitudinal strain gauges with 10 elements and pitch 1 mm has been applied on the backface 

of a gusset in the bonded zone. The specimen has been suspended vertically and loaded 

axially with known weights. 

Tab. 4 reports the strain obtained from the gauges (mean of two measurements) in the 

unbonded zone of the gusset and the theoretical value corresponding to a state of pure tension, 

at the loading level 30 N/mm. The slight differences among the measurements are likely due 

to the experimental error, thus the state of pure tension in the gusset is confirmed. Fig. 8 

shows the values of longitudinal strain measured by the strain gauge chain on the back face of 

the gusset, compared to the strain distribution given by the finite element results and the 

solution developed in this work. In addition, also the strain distribution obtained by 

considering only the membrane behaviour of the gusset is plotted for comparison. Although 

some of the experimental values appear slightly lower than expected, the agreement is more 

than satisfactory. Finally, it is apparent that ignoring the effect of gusset bending (as, in 

practice, assumed by the Hart-Smith solution) leads to ignore the peaks at the ends of the 

overlap. 

4.4 Cases of stiffness unbalance  

The study has been extended also to cases in which (keeping the symmetry of the joints) the 

main adherend is no longer thick twice the gusset and the materials of the adherends are 

different. Thus, the axial stiffness of the main adherend differs from the sum of the stiffness 

of the two gussets; it is known [19] that in such a case the adhesive is more stressed at the 

overlap end corresponding to the loaded end of the less stiff adherend. Fig. 9 shows the stress 
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distribution in the adhesive mid-plane for the two cases of unbalance ratio E1h1 / E2h2 = 2.3, 

and E1h1 / E2h2 = 0.4. The elastic modulus ratios (adherend to adhesive) are approximately 19 

and 34; the adhesive thickness and bond length are always 0.25 mm and 30 mm respectively. 

It is apparent that the analytical solution developed here (note that in these cases the 

Volkersen’s solution is not available) reproduces generally well the finite element results, but 

a relevant discrepancy occurs at the left end. Tab. 5 reports the peak values and the relative 

difference, the inaccuracy concerns the peel stress (40-50%) and, to a lesser extent, the shear 

stress (around 15%). It is interesting to notice that the problems occur once again at the left 

end, independently of the unbalance ratio, i.e. independently of where the stresses are highest. 

5 CONCLUSIONS 

The performance of a one dimensional solution for the double lap joint -accounting for 

bending of the gussets- has been compared to the corresponding Volkersen’s solution (not 

available in case of stiffness unbalance) and to finite element results. 

• The analytical solutions give acceptable results when the elastic modulus of the adhesive 

is much lower than that of the adherends; this can be explained by the fact that when the 

elastic moduli are comparable the description of the adhesive as a spring layer is no 

longer adequate. 

• The Volkersen’s solution, to fulfil the zero traction boundary condition, assumes a linear 

through-thickness variation of the peel stress. However, the results for the stresses in the 

mid plane that it gives are not better that those of the one dimensional solution and they 

often underestimate the values. 

• Considering the literature, an issue that still has not been addressed is how to include 

properly (keeping the description of the adherends as plates) the through-thickness 

variation of the stresses, accounting also for the problem of the stress singularity at the 

end of the adhesive / adherend interface. The linear variation that has been adopted by 
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several authors (including Volkersen) is not sufficient, in the sense that it merely fulfils 

local equilibrium and boundary condition, but it does not give correct results, neither for 

the peak, nor for the interface end. It is likely that an advance regarding this topic could 

improve the description of the stress distribution at the ends of the overlap and fulfil the 

boundary condition as well. 
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APPENDIX  

- Roots of the characteristic equation (31) 
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- Equation set (39): coefficients aij of matrix [A] and bj of vector {B} ( i,j = 1,..,8) 
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Table 1. Comparison of the stress peaks given by the solution developed in this paper (this 

sol.) and the Volkersen’s solution (Volk. sol.) with finite element models (FE), for 

all cases of adhesive thickness (t) and overlap length (L); elastic modulus ratio 

Eadher / Eadhes = 100. 

 

 

t (mm)   0.25     0.50   

L (mm) 10 30 50 10 30 50 

σpeak 
left 

(MPa) 

this sol. -0.786 -1.328 -2.123 -0.763 -1.023 -1.517 
Volk. sol. -0.773 -1.185 -1.649 -0.746 -0.949 -1.252 

FE -0.692 -1.138 -1.815 -0.649 -0.869 -1.285 

 ∆t.s.-FE % 13.5% 16.6% 17.0% 17.6% 17.7% 18.0% 
 ∆Volk.-FE % 11.7% 4.1% -9.1% 14.9% 9.3% -2.6% 

σpeak 
right 

(MPa) 

this sol. 0.786 1.328 2.123 0.763 1.023 1.517 
Volk. sol. 0.773 1.185 1.649 0.746 0.949 1.252 

FE 0.776 1.279 2.039 0.688 0.911 1.343 
 ∆t.s.-FE % 1.3% 3.8% 4.1% 11.0% 12.2% 12.9% 
 ∆Volk.-FE % -0.4% -7.4% -19.1% 8.4% 4.2% -6.8% 

τpeak 
left 

(MPa) 

this sol. -1.101 -1.957 -3.148 -1.046 -1.516 -2.280 
Volk. sol. -1.091 -1.870 -2.652 -1.044 -1.455 -2.119 

FE -1.116 -1.952 -3.132 -1.076 -1.522 -2.275 
 ∆t.s.-FE % -1.3% 0.3% 0.5% -2.8% -0.4% 0.2% 
 ∆Volk.-FE % -2.2% -4.2% -15.3% -3.0% -4.5% -6.9% 

τpeak 
right 

(MPa) 

this sol. -1.101 -1.957 -3.148 -1.046 -1.516 -2.280 
Volk. sol. -1.091 -1.870 -2.652 -1.044 -1.455 -2.119 

FE -1.150 -2.006 -3.219 -1.092 -1.542 -2.306 
 ∆t.s.-FE % -4.2% -2.4% -2.2% -4.2% -1.7% -1.1% 

 ∆Volk.-FE % -5.1% -6.8% -17.6% -4.4% -5.7% -8.1% 

 

 

  



 

 

Table 2. Comparison of the stress peaks given by the solution developed in this paper (this 

sol.) and the Volkersen’s solution (Volk. sol.) with finite element models (FE), for 

all cases of adhesive thickness (t) and overlap length (L); elastic modulus ratio 

Eadher / Eadhes = 20. 

 

t (mm)   0.25     0.50   

L (mm) 10 20 30 10 20 30 

σpeak 
left 

(MPa) 

this sol. -1.465 -2.595 -3.870 -1.228 -1.906 -2.771 
Volk. sol. -1.441 -2.168 -2.904 -1.193 -1.650 -2.122 

FE -0.978 -1.661 -2.468 -0.901 -1.350 -1.952 

 ∆t.s.-FE % 49.8% 56.2% 56.8% 36.4% 41.1% 41.9% 
 ∆Volk.-FE % 47.4% 30.5% 17.6% 32.4% 22.2% 8.7% 

σpeak 
right 

(MPa) 

this sol. 1.465 2.595 3.870 1.228 1.906 2.771 
Volk. sol. 1.441 2.168 2.904 1.193 1.650 2.122 

FE 1.362 2.315 3.440 1.042 1.537 2.216 
 ∆t.s.-FE % 7.6% 12.1% 12.5% 17.8% 24.0% 25.0% 

 ∆Volk.-FE % 5.8% -6.3% -15.6% 14.4% 7.3% -4.3% 

τpeak 
left 

(MPa) 

this sol. -1.510 -2.737 -4.086 -1.252 -2.007 -2.935 
Volk. sol. -1.408 -2.356 -3.225 -1.201 -1.812 -2.370 

FE -1.282 -2.270 -3.383 -1.135 -1.751 -2.547 
 ∆t.s.-FE % 17.8% 20.6% 20.8% 10.3% 14.6% 15.2% 
 ∆Volk.-FE % 9.9% 3.8% -4.7% 5.9% 3.4% -6.9% 

τpeak 
right 

(MPa) 

this sol. -1.510 -2.737 -4.086 -1.252 -2.007 -2.935 
Volk. sol. -1.408 -2.356 -3.225 -1.201 -1.812 -2.370 

FE -1.475 -2.595 -3.864 -1.231 -1.899 -2.759 
 ∆t.s.-FE % 2.3% 5.5% 5.7% 1.7% 5.7% 6.4% 

 ∆Volk.-FE % -4.6% -9.2% -16.6% -2.4% -4.6% -14.1% 

 

 

  



 

 

Table 3. Comparison of the stress peaks given by the solution developed in this paper (this 

sol.) and the Volkersen’s solution (Volk. sol.) with finite element models (FE), for 

all cases of adhesive thickness (t) and overlap length (L); elastic modulus ratio 

Eadher / Eadhes = 5. 

 

t (mm)   0.25     0.50   

L (mm) 10 20 30 10 20 30 

σpeak 
left 

(MPa) 

this sol. -3.094 -6.142 -9.280 -2.326 -4.458 -6.682 
Volk. sol. -2.969 -5.112 -7.259 -2.168 -3.413 -4.670 

FE -1.269 -2.472 -3.706 -1.391 -2.693 -4.038 

 ∆t.s.-FE % 143.8% 148.5% 150.4% 67.2% 65.6% 65.5% 
 ∆Volk.-FE % 134.0% 106.8% 95.9% 55.9% 26.7% 15.6% 

σpeak 
right 

(MPa) 

this sol. 3.094 6.142 8.992 2.326 4.458 6.683 
Volk. sol. 2.969 5.112 7.259 2.168 3.413 4.670 

FE 2.337 4.542 6.813 1.573 2.888 4.324 
 ∆t.s.-FE % 32.4% 35.2% 32.0% 47.8% 54.4% 54.5% 

 ∆Volk.-FE % 27.1% 12.6% 6.6% 37.8% 18.2% 8.0% 

τpeak 
left 

(MPa) 

this sol. -2.534 -5.041 -7.587 -1.868 -3.619 -5.426 
Volk. sol. -1.694 -4.269 -3.346 -1.562 -2.874 -5.137 

FE -1.507 -2.966 -4.448 -1.263 -2.376 -3.560 
 ∆t.s.-FE % 68.1% 70.0% 70.6% 48.0% 52.3% 52.4% 
 ∆Volk.-FE % 12.4% 43.9% -24.8% 23.7% 21.0% 44.3% 

τpeak 
right 

(MPa) 

this sol. -2.534 -5.041 -7.504 -1.868 -3.619 -5.427 
Volk. sol. -1.694 -4.269 -3.346 -1.562 -2.874 -5.137 

FE -2.089 -4.096 -6.143 -1.572 -2.948 -4.416 
 ∆t.s.-FE % 21.3% 23.1% 22.2% 18.9% 22.8% 22.9% 

 ∆Volk.-FE % -18.9% 4.2% -45.5% -0.6% -2.5% 16.3% 

 

 

  



 

 

Table 4. Results from the strain gauges in the unbonded zone of the gusset and theoretical 

value corresponding to a tensile loading of 30 N/mm. 

 

Outer surface, 

mid-span gauge 

Outer surface, 

quarter-span gauge 

Inner surface, 

mid-span gauge 

Inner surface, 

quarter-span gauge 

Theoretical 

(tension) 

8.4⋅10-5 9.0⋅10-5 8.9⋅10-5 8.7⋅10-5 8.9⋅10-5 

 

 

 



 

 

Table 5. Comparison of the stress peaks given by the solution developed in this paper (this 

sol.) and finite element models (FE), 

 

t (mm) 0.25 L (mm) 30 

E1h1 / E2h2 0.4 2.3 

E1 / Ea 19.2 33.7 

E2 / Ea 33.7 19.2 

σpeak left 
this sol. -4.70 -1.67 

FE -3.30 -1.11 

∆t.s.-FE % 42.5% 49.5% 

σpeak right 
this sol. 1.98 3.96 

FE 1.826 3.69 

∆t.s.-FE % 8.4% 7.3% 

τpeak left 
this sol. -4.79 -2.08 

FE -4.17 -1.77 

∆t.s.-FE % 14.7% 17.3% 

τpeak right 

this sol. -2.01 -4.94 

FE -1.94 -4.77 

∆t.s.-FE % 3.8% 3.6% 
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Figure 1. Double lap joint: a) dimensions and symmetry conditions; b) infinitesimal 

equilibrium; c) boundary conditions. 

  



 

 

 

 

Figure 2.   Bending action on the gussets of a double lap joint (from [26], copyright Elsevier). 
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Figure 3.  Stress distribution in a double lap joint; comparison between present, Volkersen’s 

and Hart-Smith’s solutions for three different materials of the adherends: a) 

“stiff”; b) “intermediate”; c) “soft”. 
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Figure 4.  Detail of the mesh of a finite element model used for comparison. 
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Figure 5.  Stress distribution in a double lap joint, case of a “stiff” material of the adherends; 

comparison between finite element results and present solution for three different 

overlap lengths: a) 10 mm; b) 30 mm; c) 50 mm. 
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Figure 6.  Stress distribution a double lap joint, case of a “soft” material of the adherends; 

comparison between finite element results and present solution for three different 

overlap lengths: a) 10 mm; b) 20 mm; c) 30 mm. 
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Figure 7.  Strain gauge installation on a double lap joint. 
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Figure 8.  Longitudinal strain in the back face of the gusset. 
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Figure 9.  Stress distribution in an unbalanced double lap joint, comparison between finite 

element results and present solution for two different stiffness ratios E1h1 / E2h2: a) 

2.3; b) 0.4. 
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