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ABSTRACT. The thermal transport of a dielectric solid can be determined by means of the Boltzmann equation 

regarding its distribution of phonons subjected to a thermal gradient. After solving the equation, the thermal 

conductivity is obtained. A largely used approach for the solution is that of considering a relaxation time approximation, 

where the collisions of phonons are represented by relaxation times. This approximation can be questionable, but its use 

is able of providing reliable information on thermal conductivity and on the role of impurities and lattice defects in the 

thermal transport. Here we start a discussion on the thermal conductivity in dielectric solids. The discussion is divided 

in two parts. In the first part, which is proposed in this paper, we analyse the Boltzmann equation and its solution in the 

relaxation time approximation. In a second part, which will be the subject of a next paper, we will show comparison of 

calculated and measured thermal conductivities. 

 

Introduction. The thermal transport of dielectric solids can be determined, in a semiclassical 

approach, by means of the Boltzmann equation, a well-known equation of statistical mechanics 

used to describe a system not in thermodynamic equilibrium [1-3]. In the case of a dielectric solid, 

the system is an assembly of phonons, quasiparticles originated from quantization of lattice 

vibrations, subjected to a thermal gradient. The Boltzmann equation contains a non-equilibrium 

distribution )( tg ,,kr , in which arguments )( t,,kr  are position, wave-vector and time for the 

considered particles. The problem of transport is solved when distribution )( tg ,,kr  is determined 

and, from it, the thermal conductivity evaluated. 

Solving the Boltzmann equation to have the phonon non-equilibrium distribution is a non-trivial 

task. In particular, it requires the evaluation of phonon scattering mechanisms, which are rendering 

the equation an integro-differential equation [4-14]. A simple approach to the solution is that of 

using the relaxation time approximation. This approximation can be questionable because it is not 

considering the real microscopic properties of the lattice [6,7]; however, its use is able of providing 

good information on thermal conductivity and on the role impurities and defects in thermal 

transport. For this reason, the use of relaxation time approximation for solving the Boltzmann 

equation is an approach, which is still largely used. 

The core of a relaxation time approximation is the following. Let us have a particle or a quasi-

particle, a phonon for instance, that in the time interval dt, is subjected to a collision with 

probability td . We can assume that the time parameter  is depending on the phonon 

properties: ),( kr  . We assume the variation of the distribution be given by: 
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In Eq.1, )kr,(og  is the equilibrium Bose-Einstein distribution. Approximation (1) tells that we 

assume, for solving the Boltzmann equation, that the distribution of phonons emerging from 

collisions does not depend on the non-equilibrium distribution )( tg ,,kr , which we have before the 

collision. This assumption is reasonable if we are not too far from equilibrium.  

As told previously, the relaxation time approximation is still largely used and therefore its 

discussion can be relevant for researchers who are investigating the thermal transport of solids. 

Here, we propose a first paper where we discuss how the thermal conductivity of a dielectric solid is 

determined from the Boltzmann equation. In a next paper, we will continue our analysis, comparing 

the thermal conductivity evaluated using the relaxation time approximation to experimental data.  

Boltzmann equation and thermal conductivity. Phonons, such as electrons, move changing their 

position and momentum because subjected to diffusion, external fields and collisions. They obey to 

a general equation, which is the Boltzmann equation. 

Let us consider a distribution of particles )( tg ,,kr . Its general equation is [1]: 
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The second term on the left is coming from the migration of particles and the third term is produced 

by the drift of particles due to an external action, for instance a generalized force F . Equation (2) 

becomes the Boltzmann equation:  

 

collis
 

 

 

 1g




























t

gg

t

g

k
F

r
v


  (3) 

 

When the collision terms are written explicitly, the Boltzmann equation turns out in an integro-

differential form. As previously told, this equation is often solved in the relaxation time 

approximation for an easy comparison to experimental data. Before discussing in detail this 

approximation, let us describe the Boltzmann equation for phonons. 

Phonons are quasiparticles introduced in the harmonic approximation of lattice vibrations by the 

quantization of vibrational modes. Let us remember that quasiparticles occur when a microscopic 

system, such as a solid, is modelled by an assembly of different weakly interacting particles in a 

free space corresponding to the volume occupied by the system. Therefore, the assembly of 

phonons is a gas where quasiparticles are interacting, producing the thermal transport in the lattice. 

The cubic terms of the corresponding Hamiltonian function are giving the three-phonons processes, 

which are distinguished in normal and umklapp processes. The umklapp processes can transfer 

momentum to the lattice as a whole, degrading the thermal current.  

To solve the Boltzmann equation of phonons, let us suppose a distribution ),( tn p rq , for phonon 

state (q, p) about position r and time t, where q is the wave-number and p the polarization. Let us 

suppose a gradient T of temperature T = T (r) giving origin to a diffusion process. In this manner, 

we have a scalar term of the form:  
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In it, vp(q) is the group velocity of phonon (q, p). The distribution nq p depends on position through 

the temperature T = T (r). Moreover, scattering processes are changing the distribution. 

If we have a stationary condition, the total variation must be equal to zero:  
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Eq.4 is the general form of Boltzmann equation for phonons subjected to a thermal gradient [1-3]. It 

becomes an integro-differential equation, when the scattering term representing the collisions of 

quasiparticles is explicitly given. 

In the case of a small thermal gradient, the equation is solved linearizing it, by considering just 

small deviations from equilibrium. The deviation is given by pnq  − o
pnq , where o

pnq  is the 

equilibrium distribution. To illustrate the approach, let us consider the case of elastic scattering of 

phonons, where the phonon process is given by ),(),( pp  qq , with conservation of energy. The 

probability of a transition from ),( pq  to )','( pq , in the time unit, is [1]:  
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In (5), p
pZ
q

q  is the intrinsic probability, which does not depend on the occupation of phonon states 

),( pq  and ),( pq . The transition probability from ),( pq  to ),( pq  is [1]: 

 

p
p

p
p

p
ppp

p
p

ZZ

ZnnP










q
q

q
q

q
qqq

q
q )1(

  (6) 

 

In this manner, we can write the scattering term as [1]: 
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And, linearizing it [1]: 
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Let us remember that we have, for the equilibrium distribution, 
o

p
o
p nn ''qq   , because 

o
pnq  depends 

on energy only. For the conservation of energy, in the elastic process, ''  pp qq    . 

The linearized Boltzmann equation becomes: 
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In the equation, (nq p / T ) is given only by the contribution of the equilibrium distribution o
pnq . 

To have the Boltzmann linearized equation in the general case, let us define q p as:  
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Let us remember that ( Tkx Bpq ; kB is the Boltzmann constant):  
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Then, in the case of elastic scattering, the linearized equation is [7]:  
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In the case of three-phonon scattering, the linearized equation is [7]:  
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Summations on q  and q   concern phonons in the Brillouin Zone of the lattice. However, it is 

better to change the summation into an integration as: 
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 = NV is the volume of the crystal, N the number of primitive cells of it, having volume V. Once 

function qp is evaluated, with the iterative method [6,7] for instance, the density of the thermal 

current U can be determined. This density current is defined as:  
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In a Cartesian frame having unit vectors ui , current U is:  
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Tensor ij is the thermal conductivity tensor, that, in a isotropic crystal is having non-null terms 

xx= yy = zz = . 

 

'''    . Note that, in the conservation of momentum we find g, which is a vector of the 

reciprocal lattice. For this reason, q” must be large enough to fulfil the conservation of energy, with 

an energy equal to the sum of the energies of phonons q and q’, whereas the momentum is supplied 

by lattice. However, to have a population of high-energy phonons we must be at high temperatures. 

When temperature is low, the mean free path of phonons corresponds to the size of the crystal. Let 

us suppose a cylindrical sample having diameter D; the mean free path is Λ= D and then the 

thermal conductivity κ has the following proportionality: 

 

DT 3   (16) 

 

It is caused by the behavior of the specific heat, which is proportional to the cube of temperature. 

However, normal and umklapp processes become relevant at high temperature, and then we need a 

different proportionality to cover all the range of temperature. 

This proportionality is given by: 

Phonon collisions.  Phonons  are interacting among them through  normal  and  umklapp processes. 
Normal processes do not produce thermal resistance, but are mixing the phonon states. The 

umklapp processes are producing resistivity and, for this reason, are important at high temperatures. 

For these processes, we have the conservation rules of momentum q  q'q ' 'g and energy 
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Therefore, (17) tells us that, in the range of low temperatures, the thermal conductivity increases 

with temperature, because the number of phonons is increasing with it. After reaching a maximum 

value, the conductivity starts decreasing because the number of scattering processes is increasing 

with temperature.  

Besides the effect of the size of the sample and of phonon-phonon interaction, other mechanisms 

are scattering phonons. For instance, in a perfect lattice made of atoms of the same element, we can 

have atoms with different isotopic masses. Mass differences are small but they are sources of 

phonon scattering. Using a simple elastic theory, it is possible to find a Rayleigh scattering formula 

for the cross section σ of the diffusion from a point-like mass δM in a medium having density ρ, for 

waves with wave-number q [1]: 
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The cross section is linked to the mean free path as 3a , where a is the lattice constant. If each 

atom can differ of the same quantity, we have:  
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Λ(q) is strongly depending on q. The thermal conductivity κ can be evaluated as [1]: 
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The integration runs on all the values of the wave-number.  

Integral (20) is divergent when q goes to zero. This happens because specific heat and velocity are 

constant when q goes to zero, then we have:  
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However, phonon-phonon normal processes exist at low temperatures. These processes are not 

resistive, but they are mixing the phonon states. In this manner, the long-wavelength modes, which 

are modes scarcely diffused by isotopic defects, are transformed by the normal processes in modes 

having shorter wavelengths and then easily diffused. 
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Let us consider a specific wavenumber, given by: 
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In (22), we find the Debye wave-number qD and the Debye temperature Θ. We have that [11]:  
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Then, the thermal conductivity κ influenced by the isotopic scattering has the following decreasing 

behavior with temperature:  
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Thermal current and relaxation times. Let us consider again the thermal current density, given by 

the microscopic relation [15]:  
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Since the group velocity is given as  

 

q
v

q

q





p

p


  (26) 

  

we have that, for acoustic phonons, (26) is simply qvq


pp c , where pc  is the speed of the sound 

for the given polarization of the wave and q

 is the unit vector of q. In the general case, to evaluate 

the thermal conductivity we need the dispersion of angular frequency pq , in reference to the wave-

number. The main difficulty in evaluating (25) is the determination of the phonon distribution pn q . 

Let us try to use relaxation times for this task. 

The relaxation time approximation consists in writing the derivative of the distribution with respect 

to time as [1]:  
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o
pn q  is the equilibrium distribution. In (27) we see the relaxation time for the mode (q, p). If there is 

a thermal gradient, from the Boltzmann equation: 
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In a further approximation:  
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In (29), the variation of the distribution with respect to the temperature is evaluated through the 

equilibrium distribution. This is possible if we are considering a small gradient of temperature. 

From (27) and (28), Joseph Callaway defined the difference between the distribution existing when 

there is a temperature gradient and that of equilibrium as [16-18]: 
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In (30), we used again the dimensionless variable Tkx Bpq  . The thermal current is given by: 
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In the case of anisotropic solids, we have a tensor for the thermal conductivity:  
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α and β are corresponding to spatial components x,y,z. If we use the specific heat:  
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We have: 
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In the isotropic case, θ is the angle between the group velocity and the thermal gradient. Instead of 

the summation on the phonon states, we use an integration [15]: 
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Ω is the volume of crystal. Then: 
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Let us assume a general relaxation time )(q  as a function nAqq )( , then the thermal 

conductivity that we obtain is: 
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In the next section, we will discuss in detail how Callaway used the relaxation times, to evaluate the 

thermal conductivity in dielectric solids. 

Callaway theory. In 1959, Joseph Callaway proposed his model of thermal conductivity based on 

the relaxation time approximation, for investigating, in particular, the role of isotopic defects. This 

model is still used today to fit the experimental data of thermal conductivity; in it, also the phonon-

phonon normal and umklapp processes are considered. Here, our discussion of Callaway model is 

based on his papers published in the Physical Review [16-18]. The formula for thermal conductivity 

that Callaway obtained is the following: 
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c  is a combination of relaxation times coming from the different scattering processes of phonons: 

boundary scattering, isotope effects, normal and umklapp processes for instance. Cph is specific 

heat. N  is the relaxation time approximation coming from normal processes. β is given by the 

following formula: 
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ϴ is the Debye temperature and Tkx Bpq . Let us consider a relaxation time given by:  
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Term 4A  represents a phonon scattering from point-like impurities and isotope defects. Term 
23

1 TB  concerns the umklapp processes (B1 contains the exponential factor in (17), which depend 

on temperature); Lc  is the scattering from the boundary of the sample (c is the speed of the sound 

and L the size of the sample). In the case of a pure sample, A=0. 

Let us assume for normal scattering:  

 

23
2

1
 TB

N



  (40) 

 

2B  does not depend on temperature. Combining (39) and (40), we have: 

 

 
L

c
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41     (41) 

 

Callaway gives the thermal conductivity as:  
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Let us use dimensionless variable Tkcqx B . We have: 
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In (45), we have: 
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At low temperatures, it is the boundary scattering which is dominating with its relaxation time Lc ; 

in this manner, approximating (45) with an integral from 0 to infinite, Callaway obtained:  
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   (46) 

 

Neglecting 2I , the thermal conductivity is approximated as (Equation 23 of Ref.18): 
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And also, in the case that D=0, we can have (Equation 26 of Ref.18):  
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From this integral, Callaway deduced the following formula [18]: 
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  (49) 

 

As a consequence, the thermal conductivity in isotopically pure materials has a behaviour with 

temperature as 2T , at low temperatures. The Callaway’s theory was applied in [18], to the analysis 
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of experimental data of thermal conductivity in Germanium, in the case of normal Ge and in the 

case of single isotope Ge [19], showing a remarkable agreement between theory and experiments. 

In fact, Callaway’s paper was among the first works to point out the importance of the isotope 

scattering in reducing the thermal conductivity. 

After this discussion on the theory concerning the Boltzmann equation for phonons and its solution 

in the relaxation time approximation, in a next paper, we will address how the thermal conductivity 

evaluated in this framework is in agreement with experimental data. 
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