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THE RELATIVE NULLITY OF COMPLEX SUBMANIFOLDS AND THE GAUSS

MAP

ANTONIO J. DI SCALA AND CARLOS OLMOS

1. Introduction

In this paper we denote by CPn the complex projective space endowed with its Fubini-Study metric
gFS of constant holomorphic sectional curvature. By a complete submanifold M ⊂ CPn we mean that
the induced Riemannian metric gFS on M is complete.

Let α be the second fundamental form of M ⊂ CPn. The index of relative nullity

µ̄(p) = dimC(RNp)

at p ∈M is the dimension of the relative nullity subspace RNp:

RNp := {X ∈ TpM : α(X,Y ) = 0 for all Y ∈ TpM} .
The minimum µ of {µ̄(p) : p ∈M} is called the index of relative nullity of M .

The following theorem was first stated in [2, Corollary 5].

Theorem 1.1. Let Mm ⊂ CPn be a m-dimensional complex submanifold. If M is complete then the
index of relative nullity µ of M is either zero or M is a totally geodesic complex submanifold of CPn.

The proof of Abe [2] uses the so called conullity operator (also called splitting tensor [5, p. 761]). The
idea of the Riccati type differential equation for the conullity operator comes back to Ferus [6].

If the submanifold M ⊂ CPn is compact, then it is algebraic due to a well known theorem of W-L.
Chow. In this case the above theorem is phrased, in algebraic geometry, by means of the Gauss map [8,
p. 393, (2.29)] and [12, Corollary 2.8]. Indeed, the second fundamental form α is the differential of the
Gauss map [8, p. 379] which is degenerated, in the sense of [8], if and only if µ > 0.

One of the goals of this paper is to give a short and geometric proof of Theorem 1.1 based on Jacobi
fields.

For complex submanifolds of the complex Euclidean space Cn Theorem 1.1 does not hold. Indeed,
cylinders in C3 over complete curves of C2 are examples showing that µ can be different from zero. A more
interesting example is the hypersurface H of C4 defined by the equation w = xz2 − yz, where (x, y, z, w)
are the standard complex coordinates of C4. The hypersurface H is not a cylinder but it is complete and
its index of relative nullity µ = 1. So in order to generalize Theorem 1.1 to complex submanifolds of Cn
one needs further assumptions. In this direction, Abe [2, Theorem 7] proved a splitting result under a
non vanishing assumption of the holomorphic sectional curvatures.

By imposing conditions on the Ricci curvatures we have the following splitting theorem.

Theorem 1.2. Let Mm ⊂ Cn be a m-dimensional complex submanifold and let RicM be its Ricci tensor
w.r.t. the induced Riemannian metric. Let U be the open subset of M where µ̄(x) = µ. Assume that
there is a point q ∈ U such that for any sequence of unit tangent vectors Xpj ∈ RN⊥pj , where pj ∈ U is
an unbounded sequence of points, the following holds:

(1) lim sup
j→∞

|RicM (Xpj , Xpj )|dist2(pj , q) =∞
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2 ANTONIO J. DI SCALA AND CARLOS OLMOS

If M is complete then M splits as an extrinsic product of a leaf of the relative nullity distribution by a
complex complete submanifold, i.e. M is cylindrical.

In the special case that the Ricci tensor has a pinching we have the following corollary.

Corollary 1.3. Let Mm ⊂ Cn be a m-dimensional complex submanifold and let RicM be its Ricci tensor
w.r.t. the induced Riemannian metric. Let U be the open subset of M where µ̄(x) = µ. Assume that
there is a constant c < 0 such that for all Xp ∈ TpU perpendicular to RNp the following holds:

RicM (Xp, Xp) ≤ c‖Xp‖2 .

If M is complete then M splits as an extrinsic product of a leaf of the relative nullity distribution by a
complex complete submanifold M ′ with RicM ′ ≤ c < 0 (in particular, M is cylindrical).

Observe that any complex submanifold of Cn is minimal and so its Ricci curvatures are non-positive.
Moreover, there are examples of complete complex submanifolds M ′ ⊂ Cn with RicM ′ ≤ c < 0 (see
Section 5.1).

2. Preliminaries

We will follow the usual notation of submanifold geometry in [3]. The Riemannian metric will be
denoted by 〈 , 〉. The symbols ∇ and R will denote the Levi-Civita connection and its curvature tensor
of either the Fubini-Study metric of CPn or the flat standard metric of Cn. The curvature tensor R is
explicitly given by (see [9, Proposition 7.3]):

(2) RX,Y Z =
c

4
((X ∧ Y )Z + (JX ∧ JY )Z − 2〈JX, Y 〉JZ)

where J is the complex structure and c ≥ 0 is the holomorphic constant curvature. If c > 0, then the
Jacobi operator Jξ = R ·,ξξ, when restricted to the orthogonal complement W of Rξ, has two different
eigenvalues λ1, λ2. Namely, λ1 = c‖ξ‖2, associated to the (real) eigenspace RJξ and λ2 = c

4‖ξ‖
2,

associated to the eigenspace V = (Cξ)⊥.
Let γ(t) = exp(tξ) be a geodesic of CPn. A Jacobi vector field X(t) along γ(t) is a solution of the so

called Jacobi equation (for details see [9, Chapter VIII]):

X ′′(t) + RX(t),γ′(t)γ
′(t) = 0 ,

where X ′′(t) = (Ddt )
2X(t) and D

dt is the covariant derivative along γ(t) associated to ∇.
If both initial conditions X(0), X ′(0) of a Jacobi vector field X(t) are in V, then

(3) X(t) = cos(ωt)a + sin(ωt)b

where ω2 = c‖ξ‖2
4 and a,b are parallel vector fields along γ(t) with initial conditions X(0) = a(0), X ′(0) =

ωb(0).

Let M,N be Riemannian manifolds and let f : M → N be an smooth map of constant rank. We use
the language of fiber bundles, although f need not be a fiber bundle. In particular, V = ker(df) is the
vertical distribution and H = V⊥ the so called horizontal distribution. A vector field X of M (resp. Y)
is called vertical (resp. horizontal) if it is tangent to V (resp. if it is tangent to H). A vector field X of
M is basic if it is horizontal and locally it is f -related to a vector field v (locally) defined on the image
of f .

For us f will be the well-known Gauss map of a submanifold M . For the convenience of the reader we
explain it for CPn. Let M ⊂ CPn be a complex submanifold of CPn. The Gauss map

f : M → G(m,n)

where G(m,n) is the Grassmannian of all totally geodesic CPm in CPn [8, p. 363] f is the map

p→ f(p) := exp(TpM)

where exp(TpM) is the totally geodesic projective subspace of CPn tangent to TpM at p ∈ CPn. The
Grassmannian G(m,n) is identified with the usual Grassmannian G(m+ 1, n+ 1) of (m+ 1)-dimensional
complex subspaces of Cn+1. Let U be the open subset of M where µ̄(x) = µ. Observe that for p ∈ U the
vertical distribution Vp is the relative nullity distribution RNp defined in the introduction.

The following result is well-known.



THE RELATIVE NULLITY OF COMPLEX SUBMANIFOLDS AND THE GAUSS MAP 3

Theorem 2.1. [6] The nullity distribution RN in U is autoparallel. If M is complete then the (totally
geodesic) fibers of f|U are also complete submanifolds.

The first part of the above theorem is a simple consequence of the Codazzi equations (see e.g. [1,
Proposition 5]). The second part was first proved in [6] by using the conullity operator. Recently, in [11]
C. Olmos and F. Vittone gave a conceptual proof without using the conullity operator. It is interesting
to notice that in complex or algebraic geometry the above theorem is stated and proved by using quit
different language and methods (e.g. [8, p. 388, (2.19)], [12, c), Theorem 2.3]).

3. Proof of Theorem 1.1

The proof is by contradiction. So assume that M is not a totally geodesic submanifold of CPn and that
µ > 0. We will show that this is not possible hence either µ = 0 or M is a totally geodesic submanifold
i.e. µ = dimC(M).

Fix p0 ∈ U and let Hp0 := (RNp0)⊥ ⊂ Tp0M be the horizontal distribution at p0. Let, for ξ ∈
RNp0 \ {0}, γξ(t) := expp0(t.ξ) be the geodesic starting at p0 in the ξ-direction. For v ∈ Hp0 let
X(t) be the Jacobi vector field along γξ(t) obtained by the horizontal lift, along γξ(t), of the vector
df(v) ∈ Tf(p0)f(U) (see [11, p. 91]). We define a map T : RNp0 ×Hp0 → Hp0 as follows:

T(ξ, v) := X ′(0) =
D

d t

∣∣∣∣
t=0

X(t) .

That T(ξ, v) lands in Hp0 is due to the the first part of Lemma 2.1 (cf. with the example of the Segre
embedding of the last section where X ′(0) is not horizontal w.r.t. the projection f to a factor).

Observe that T(ξ, v) can be defined as

(4) T(ξ, v) := (∇ξX)p0

where X the horizontal lift of df(v) ∈ Tf(p0)f(U) along the whole fiber f−1(f(p0)).

Lemma 3.1. The map T : RNp0 ×Hp0 → Hp0 is C-bilinear.

Proof. The C-linearity in v is clear due to the facts that the Riemannian metric of CPn is Kähler and
f is holomorphic. The R-linearity in ξ follows from Equation (4). Let v be vector field defined around
f(p0) ∈ f(U) such that vf(p0) = df(v). Let X be the horizontal lift of v and let ξ be a vertical local
extension of ξ around p0 ∈M . Let J be the complex structure of CPn. Then a direct computation shows

∇JξX = J∇ξX + J [X, ξ] + [Jξ,X] .

Since T(ξ, v) is horizontal we conclude that

(∇JξX) = J∇ξX and J [X, ξ] + [Jξ,X] = 0

(we have used that the Lie bracket of basic vector field by a vertical one is vertical).
This shows that T(ξ, v) is also C-linear in ξ. �

For fixed ξ ∈ RNp0 \ {0} let us denote by Tξ := T(ξ, · ). The proof of Theorem 1.1 is based on the
following lemma:

Lemma 3.2. Assume that 0 < µ < dimM . Then, for any 0 6= ξ ∈ RNp0 \ {0}, the linear map Tξ has
no real eigenvalues.

Proof. Assume that there is λ ∈ R and v ∈ H \ {0} such that

Tξ(v) = λv .

Let X(t) be the Jacobi vector field along γξ(t) obtained by the restriction to γξ(t), of the horizontal lift
of the vector df(v) ∈ Tf(p0)f(U). Observe that both initial conditions of X(t) are proportional to v and
that X(t) is a Jacobi vector field of CPn along γξ(t). Then from Equation (3) we get

X(t) = cos(ωt)v + sin(ωt)
λ

ω
v =

(
cos(ωt) + sin(ωt)

λ

ω

)
v .

Since the fibers of the Gauss map are complete the vector field X(t) is defined for all values of t ∈ R.
So if we take t0 ∈ R such that cos(ωt0) + sin(ωt0) λω = 0 then X(t0) = 0. But this contradicts the
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construction of X(t) as the horizontal lift of a non-zero vector df(v) ∈ Tf(p0)f(U). �

Let us now prove Theorem 1.1. Choose any ξ ∈ RNp0 \ {0}. Let λ be a complex eigenvalue of Tξ. So
there is v 6= 0 such that T(ξ, v) = λv. From Lemma 2.1 λ /∈ R and so λ 6= 0. Then T(λ−1ξ, v) = v. Hence
1 is an eigenvalue of Tλ−1ξ contradicting Lemma 2.1. This completes our proof of Theorem 1.1. �

4. Proof of Theorem 1.2

Let M ⊂ Cn be a complex submanifold and let f : M → G(m,n) be its Gauss map. Let gG be the
standard Riemannian metric of G(m,n). The following identity is crucial for the proof:

(5) RicM = −f∗gG
where RicM is the Ricci tensor of M . That is, the Ricci tensor is minus the pull-back, via the Gauss
map, of the canonical metric of the Grassmannian.

Then if X(t) is the basic Jacobi vector field along the geodesic γξ(t) := expp0(t.ξ), defined in the proof
of Theorem 1.1, we get

−RicM (X(t), X(t)) = f∗gG(X(t), X(t)) = gG(df(X(t)),df(X(t))) = gG(df(v),df(v))) .

So gG(df(v),df(v))) is a constant hence RicM (X(t), X(t)) does not depends on t.

On the other hand, the Jacobi vector field X(t) along the geodesic γξ(t) of Cn has the form

X(t) = X(0) + tX ′(0) .

So if X ′(0) 6= 0 we get that ‖X(t)‖2 = o(dist2(γξ(t), q)) as t→∞. Then

|RicM (X(t), X(t))| = ‖X(t)‖2|RicM (
X(t)

‖X(t)‖
,
X(t)

‖X(t)‖
)|

= o(dist2(γξ(t), q))|RicM (
X(t)

‖X(t)‖
,
X(t)

‖X(t)‖
)|

as t → ∞. If we now assume equation (1), then |RicM (X(t), X(t))| goes to infinity. A contradiction,
since it is constant as explained above. Thus, we must have X ′(0) = 0 for any basic Jacobi vector field
constructed as in the proof of Theorem 1.1. So ∇ξX = 0 for any ξ vertical and X basic vector field.

This implies that M is a local product Cµ×M ′ around each point of the open subset U ⊂M . Let M̃ be
the universal cover of M endowed with the pull-back Riemannian metric. Since the Riemannian metric
is real analytic the local Riemannian product (of an open subset) implies that also the global holonomy

group of M̃ has a flat factor Cµ. Then by De Rham’s splitting Theorem M̃ splits as Cµ×M ′. Then also
the submanifold M is an extrinsic product as it follows by using either Moore’s Lemma [1, Theorem 16]
or Calabi’s rigidity theorem [4, Theorem 2]. �

5. Examples

In the first part we construct an example of a complete complex submanifolds M ′ ⊂ Cn with RicM ′ ≤
c < 0. In the second part, by using the Segre embedding CP1 × CP1 ⊂ CP3 we will see the importance
of various ingredients of our proof of Theorem 1.1.

5.1. Example of complete complex submanifold M with RicM ′ ≤ c < 0. Let S be a non hyper-
elliptic compact Riemannian surface of genus g ≥ 3. That S is non hyperelliptic means that any non
constant holomorphic map f : S → CP1 has degree greater than 2. Here we follow the notation in [7, p.
228]. Let J (S) := Cg/Λ be the Jacobian variety of S. Then there is a natural embedding

τ : S → J (S) .

The map τ is usually called the Abel-Jacobi map. Then the flat metric of the torus J (S) induces a
metric ρ0 on S called the Bergmann metric in [10, p. 317] (ρ0 is also called the theta metric by other
authors). Since S is non hyperelliptic the theorem in [10, p. 317] implies that the Gauss curvature κ(p)
of the metric ρ0 is different from zero at all points p ∈ S. Thus, since S is compact, there are constants
a < b < 0 such that

a < κ(p) < b < 0
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for all points p ∈ S.

Let S̃ be the universal cover of S. Then, by a basic property of universal covers concerning the lifting

of mappings, we have a map τ̃ : S̃ → Cg making the following diagram commutative:

S̃ Cg

S J (S)

τ̃

π π

τ

Then M ′ := τ̃(S̃) is a complex submanifold of Cg such that the induced metric is complete and
RicM ′ = 2κ < 2b = c < 0 on M ′.

Remark 5.1. The immersion τ̃ : S̃ → M ′ is not injective. Indeed, the fundamental group of M ′ is the
commutator group [π1(S), π1(S)], i.e. M ′ is the Galois covering of S associated to the commutator group
[π1(S), π1(S)].

5.2. The Segre embedding. The Segre embedding CP1 × CP1 ⊂ CP3 is defined in homogeneous
coordinates as

([x, y], [u, v])→ [xu : xv : yu : yv] .

It is standard to check that the above map is isometric w.r.t. the Fubini-Study metrics. Let f : CP1 ×
CP1 → CP1 be the projection to the first factor. We can regard as vertical distribution the tangent spaces
to the fibers of f i.e. the tangent spaces to the second factor. The horizontal distribution coincides with
the distribution associated to the first factor. Observe that both horizontal and vertical distributions are
totally geodesic. Then any tangent vector vp, where p is a point of the first factor, can be horizontally
lifted to Jacobi vector field X along the fiber f−1(p). In this case the initial condition X ′(0) can not
be horizontal for all such Jacobi vector fields. Indeed, if for all horizontal lifts X the initial condition
X ′(0) is horizontal then the shape operator of CP1 × CP1 preserves the factors. But this is not possible
as proved in [1, Theorem 17].

Then it is crucial, in Theorem 1.1, that the totally geodesic fibers are given by the Gauss map.

References

[1] Alekseevsky, D. V. and Di Scala, A. J. The normal holonomy group of Kähler submanifolds Proc. London Math.

Soc. (3) 89 (2004), 193-216.

[2] Abe, Kinetsu Applications of a Riccati type differential equation to Riemannian manifolds with totally geodesic
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