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Abstract

The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and
ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies
investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle
activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger
movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1)
the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and
single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks
involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in
prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the
forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have
been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix
Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity
on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives
new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for
future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or
orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint
kinematics from sEMG is reported.
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Introduction

The human hand shows highly complex motor skills, which are

essential for many daily activities. The study of hand and finger

movement is an important topic with potential applications in

prosthetics, rehabilitation, and ergonomics [1] [2]. Electromyog-

raphy (EMG) is the gold standard for the detection and analysis of

muscle activation. Surface EMG (sEMG) signal detected with up

to eight bipolar detection systems is commonly used to control

multifunction prosthesis [1] [3] [4] [5] [6]. However, the recent

development of sophisticated hand prostheses mimicking the high

number of degrees of freedom (DOF) of the human wrist/hand

complex push forward the development of more advanced control

systems. The use of multi-channel detection systems has been

recently proposed in order to increase the informative content of

the detected sEMG [7] [8] [9] [10] [11]. Mono or bi-dimensional

electrode arrays increase the reliability and the information

content of sEMG and provide information not obtainable through

traditional detection systems. On the other hand, signals detected

with multi-channel systems show a certain degree of redundancy

and, in practical application, the number of electrodes must be

limited as much as possible [12].

It has been proven that the classification accuracy of movements

based on sEMG improves by increasing the number of electrodes,

up to a limit beyond which a plateau is reached [13] [14]. Many

works in literature evaluate the effect of 1) the electrode number

and positioning and 2) the arm positions on the classification

accuracy of movements using an exhaustive approach and

simulating electrode shift.

The aim of this work was to quantify, by means of a sEMG

multi-channel detection system, 1) whether it is possible to spatially

localize the sEMG activity related to the activation of distinct

PLOS ONE | www.plosone.org 1 October 2014 | Volume 9 | Issue 10 | e109943

http://creativecommons.org/licenses/by/4.0/
marco.gazzoni@polito.it
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0109943&domain=pdf


forearm muscles during dynamic free movements of the wrist and

single fingers, and 2) the effect of hand position (prone vs. neutral)

on the sEMG activity in terms of changes in amplitude and spatial

distribution. The study provides quantitative knowledge about

sEMG activity distribution on the forearm as a basis for future

works on the identification of optimal electrode number and

positioning for sEMG based control of prostheses, exoskeletons, or

orthoses. Preliminary tests about the use of the obtained

knowledge in the optimization of the detection system for the

estimation of joint kinematics from sEMG are shown.

Materials and Methods

Subjects and experimental procedures
Eight male healthy subjects, aged between 25 and 40 years,

participated in the study. All subjects provided written informed

consent and the protocol was within a program of research

approved by the local Regional Ethics Committee (Commissione

di Vigilanza, Servizio Sanitario Nazionale – Regione Piemonte –

ASL 1– Torino, Italy). The subjects were seated in a height

adjustable chair in a comfortable position with the shoulder

abducted and flexed ,30u, the elbow flexed ,120u and with the

elbow and the forearm resting on a horizontal surface. The

subjects were instructed to perform cyclic dynamic single DOF

tasks involving the wrist and the fingers (Table 1). The wrist tasks

consisted in the flexion/extension and adduction/abduction with

the hand in two positions (prone and neutral) (Figure 1d). The

tasks for each single finger consisted in the flexion/extension of the

metacarpophalangeal (MCP) and of the proximal interphalangeal

(PIP) joint performed with the hand in neutral position (Figure 1d).

For each task, the subject was instructed to start from the rest

position, to reach and maintain for 2 s the first target position

(maximum flexion or adduction), to reach and maintain for 2 s the

second target position (maximum extension or abduction), and

then to return to the rest position. The movement speed was

selected in order to maximize the finger movement independence

and to obtain a consistent movement pace [15] [16] [17]. Each

task was repeated cyclically (20 times for the wrist movements and

12 times for the finger movements) (Table 1). No feedback was

provided to the subjects to regulate the target positions, but the

validation of the motions was performed offline on the basis of

kinematic data recorded with a sensorized glove (see section C.
Hand kinematics recordings).

Surface electromyography recordings
sEMG signals have been acquired from the left forearm muscles

using a wearable detection system consisting of a grid of 112 silver

circular electrodes (1468, diameter: 6 mm, inter-electrode dis-

tance (IED): 15 mm LISiN unpublished internal report) integrated

into a stretchable textile sleeve (medium size, forearm circumfer-

ence: 24–28 cm) with the 14 columns of electrodes placed around

the forearm circumference (Figure 1A). Before the subject put on

the sleeve, the forearm skin was lightly wetted. The sleeve was

worn by the subject with the first column of electrodes in

correspondence of the ulna and with the more proximal electrodes

at approximately 2 cm from the elbow crease (Figure 1B). When

the sleeve was worn by the subject, the center to center distance

between two adjacent electrodes slightly varied depending on the

circumference of the forearm (forearm circumference (mean6std):

26.561.3 cm). The sEMG signals were recorded with a monopo-

lar configuration with the reference electrode placed on the wrist,

amplified with a gain of 500 (EMG-USB128, LISiN – OT

Bioelettronica, Torino, Italy), band-pass filtered (3-dB bandwidth:

10–750 Hz), sampled at 2048 samples/s per channel, and digitally

converted (12 bit A/D converter). The amplifier was connected via

USB to a PC for data storage.

Hand kinematics recordings
The sensorized hand glove HumanGlove (Humanware s.r.l.,

Pisa, Italy) was used to record the kinematics of the hand and of

the fingers. HumanGlove is a wireless sensing glove designed to

measure the hand’s posture using twenty-two Hall Effect sensors.

A glove calibration procedure was performed for each subject

using the Graphical Virtual Hand (GVH) calibration software

provided by Humanware. Kinematic data acquisition has been

performed through the GVH software (sampling frequency: 50

samples/s per channel, 12 bit A/D converter) storing the angle

values for each joint together with the sampling time. The joint

angle signals from index finger MCP and wrist flexion/extension

were acquired also through two auxiliary inputs of the EMG-USB

system in order to perform the off-line synchronization of sEMG

and kinematics signals.

Signal processing
The sEMG and kinematics signals were processed offline with

MATLAB R2010b (The Mathworks Inc., Natick, MA, USA).

Kinematic signal analysis. Kinematic signals were re-

sampled to 2048 Hz and synchronized with sEMG through the

common synchronization signals. For each task, the angular signal

detected from the joint involved in the movement was used to

identify the movement cycles. A movement cycle was defined

between the beginnings of two subsequent flexion/adduction

dynamic phases (Figure 2). The beginning of each flexion/

adduction dynamic phase was determined as the time when the

joint angle exceeded 2u the value corresponding to the maximum

extension/abduction reached during the previous isometric phase

(Figure 2). Cycles identified as outliers on the basis of the range of

motion were excluded in the following analysis.

sEMG signal analysis. The monopolar sEMG signals were

digitally filtered with a 4th order Butterworth non-causal filter (20–

450 Hz) and power line interference (50 Hz and its four higher

harmonics) was removed using spectral interpolation [19]. sEMG

channels corresponding to electrodes with bad electrode-skin

contact were identified using the outlier identification method

proposed by Marateb et al. [20]. sEMG envelopes were calculated

by rectifying and then low-pass filtering the sEMG signals using a

bidirectional 4th order Butterworth filter with 1 Hz cutoff

frequency.

The envelopes of sEMG epochs corresponding to each

movement cycle were extracted and time-normalized in order to

obtain 500 data points for each cycle. The repeatability of the

sEMG envelopes among the movement cycles was evaluated using

the Coefficient of Multiple Correlation (CMC) for all electrodes

and all tasks. The mean sEMG envelope was calculated for each

subject, task, and channel by averaging the sEMG envelopes on all

cycles.

a) Identification of sEMG clusters. Non Negative Matrix

Factorization (NNMF) has been used as a dimensionality

reduction pre-processing step for clustering. NNMF decomposes

a non-negative matrix M[Rm|n into two non-negative factors

W[Rm|k and C[Rk|n (where kvm), that is M~WCzE where

M[Rm|n represents the multi-channel measured data (m chan-

nels, n samples), W[Rm|k contains the NMF basis (each column

of W is a basis vector of length m, that represent invariant patterns

of activity across the channels), C[Rk|n represents the associated

coefficients (the columns contain the weights of each basis for each

channel: each element cij, specifies the contributions of each

Forearm Muscle Activity during Wrist and Finger Movements
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Table 1. Movements Included In The Protocol.

task id Segment Joint Movement Position N. rep.

1 flex/ext neutral

2 Hand Wrist prone

3 add/abd neutral 20

4 prone

5 All fingers MCP1, PIP2, and DIP3 neural

6 prone

7 Index

8 Middle MCP1

9 Ring

10 Little flex/ext neutral 12

11 Index

12 Middle PIP2

13 Ring

14 little

The Subjects Were Asked To Perform 14 Tasks, Tasks 1–4 Involving The Wrist Joint With The Hand In Two Positions (Neutral And Prone), Tasks (5–14) Involving The
Fingers. 1MCP: Metacarpophalangeal, 2PIP: Proximal Interphalangeal, And 3DIP: Distal Interphalangeal.
doi:10.1371/journal.pone.0109943.t001

Figure 1. Experimental setup and protocol. (A) Wearable detection system consisting of a grid of 112 silver circular electrodes (1468, diameter:
6 mm, inter-electrode distance: 15 mm) integrated into a stretchable textile sleeve with the 14 columns of electrodes placed around the forearm
circumference. (B) Approximate position of the electrode matrix on the forearm. (C) Sensorized hand and forearm. The subjects had worn the sEMG
textile detection system with the first column of electrodes in correspondence of the ulna and with the more proximal electrodes at approximately
2 cm from the elbow crease. A sensorized hand glove was used to record the kinematics of the hand and of the fingers. (D) The protocol consisted in
12 different cyclic dynamic tasks involving the wrist and index, middle, ring, and little fingers (see text for details). E) One example of wrist flexion/
extension with the hand in prone position.
doi:10.1371/journal.pone.0109943.g001

Forearm Muscle Activity during Wrist and Finger Movements
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component j to the measured activation pattern Mi), E[Rm|n is

the error [21] [22] [23]. The matrices W and C are estimated by

minimizing the Euclidean Distance between M and WC.

In the present study, the NNMF basis and the associated

coefficients were extracted, for each subject, by applying the

NNMF algorithm to the concatenation of the sEMG mean

envelopes of all channels and tasks. To avoid local minima, the

NNMF algorithm was repeated 100 times for each subject. The

result showing the lowest squared error between original and

reconstructed sEMG envelopes was kept.

The number N of modules needed for the approximation of the

sEMG envelope was assessed by repeating, for all subjects, the

NNMF analysis with the number of modules N varying between 1

and 10. The quality of envelope reconstruction with N modules

was quantified by means of the variation accounted for (VAF)

defined as the variation that can be explained by the model:

VAF = 1–SSE/SST, where SSE (sum of squared errors) is the

unexplained variation and SST (total sum of squares of M) is the

pooled variation of the data [22]. The least number of modules

that accounted for 90% of VAF was selected [22].

The segmentation algorithm proposed by Vieira et al [24] was

applied to the C maps of coefficients to identify the electrode

clusters where each module was mostly represented. The

algorithm consists in two steps: the first step identifies the areas

with different amplitude by applying watershed segmentation to

the equalized amplitude C map. In the second step, the electrodes

whose coefficients are higher than a threshold (70% of the

maximum value in the cluster) are considered as belonging to a

cluster of activity.

b) Comparison of sEMG activity areas for different movements

and conditions. In order to study the effect of different hand

positions (prone or neutral) on the sEMG activity distribution the

centre of gravity (COG) of electrode clusters was estimated. The

COG’s coordinates for each electrode cluster were defined as:

xCOG~
1

A

X

el [ cluster

xelcel , yCOG~
1

A

X

el [ cluster

yelcel

where xel is the electrode position in ulnar–radial direction (xel [ [1

14]), yel the electrode position in proximal–distal direction (yel [ [1

8]), cel the weight associated to the electrode el, and A the sum of

the weights over all the electrodes belonging to the cluster.

The degree of overlapping of the sEMG areas identified for

tasks involving different fingers or joints was calculated as the

intersection of the clusters (that is the number of electrodes

Figure 2. Example of the sEMG envelopes during a wrist flexion/extension task. The envelopes are shown for wrist flexion/extension with
the hand in prone position (top) and in neutral position (middle). For each condition, the envelopes estimated for each movement cycle are shown
superimposed (gray lines). The columns correspond to the electrode matrix columns (medio-lateral direction) while the rows corresponds to the rows
of the electrode matrix (proximal-distal direction). On the bottom, in correspondence of each sEMG column, the wrist flexion/extension angle time
courses for all movement cycles are represented superimposed. The black line represents the mean envelope/joint angle. The number near to each
sEMG envelope is the CMC value calculated on all cycles. The envelopes show a good repeatability with CMC higher than 0.8 except for the bad
channels. The missing channels are bad channels.
doi:10.1371/journal.pone.0109943.g002

Forearm Muscle Activity during Wrist and Finger Movements
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common to each pair of clusters). This number was normalized to

1) the number of channels in the smallest of the two clusters to

obtain the degree of inclusion of the smallest area into the biggest

one and 2) the number of channels in the largest of the two clusters

to obtain a measure of the area not common to both clusters.

Joint angle estimation from monopolar sEMG envelopes
In order to test the importance of identifying specific areas of

sEMG activity during hand and finger movements, preliminary

tests were performed comparing the performance in the recon-

struction of joint angles from sEMG of two sets of electrodes: a)

one ring of 14 electrodes placed around the forearm 2 cm from the

elbow crease and b) a set of electrodes whose position has been

selected corresponding to the barycenter of the identified areas of

activity.

In order to reconstruct the joint angles from monopolar sEMG

envelopes, a set of feed-forward multilayer perceptrons (MLPs),

one for each joint, were used [25]. Each MLP had one hidden

layer of six neurons connected to the input layer through a tan-

sigmoid transfer function and to the output layer through a linear

function [25]. The MLPs were trained using the Levenberg-

Marquardt back propagation algorithm. 70% and 30% of the

number of task cycles were used for the training and validation sets

respectively, according to the four-fold cross validation procedure.

The performance of joint reconstruction was evaluated using the

coefficient of determination r2.

Statistics
The Wilcoxon test was used to study the effect of the hand

position on the COG coordinates with statistics significance level

set to 0.05. Analysis of variance (ANOVA) followed by the post-

hoc Student Newman-Kelus test was applied to investigate the

effect of channel selection on the joint angle reconstruction quality

(r2).

Results

All subjects were able to perform the complete protocol. The

wearable textile detection system showed, after the first two test

sessions, 8 electrodes (mostly located on the first column positioned

near the ulna) with broken connection. On an average, 2–3

additional electrodes per subject were discarded because of bad

electrode-skin contact.

Kinematic signals showed a good repeatability among move-

ment cycles for all subjects and all movements. For three subjects a

percentage of cycles reported in the following (median (IQR 25%–

75%)) was excluded from the analysis: subject AlFa (2.5% (0.0–

33.3)), subject PaMa (8.6% (0–20%)), and subject RoSt: (5.5% (0–

30%)).

Figure 2 shows one example of sEMG envelopes during wrist

adduction/abduction task for one subject. CMC values are also

reported. Median CMC values calculated on the sEMG envelopes

were always higher than 0.90 for the wrist movements and higher

than 0.80 for finger movements.

Identification of clusters of sEMG activity
Figure 3A shows, for a representative subject, the motor

modules extracted from sEMG envelops using NNMF. Increasing

the number of modules from 2 to 10, the set with N modules is

essentially preserved in the set with N+1 modules. Figure 3B

shows one example of the analysis of the similarities among the

basis functions in the sets with N and N+1 modules. Motor module

1 is primarily active during the second half of the movement cycle;

it mainly represents extensors activity during extension/flexion

tasks and abductor activity during abduction/adduction tasks.

Motor module 2 is active during the first half of the movement

cycle; it mainly represents the extensor activity during extension/

flexion tasks and adductor activity during abduction/adduction

tasks. Figure 3C shows, overlapped, the sets of motor modules

(from 1 to 8) identified for all subjects.

The dimensionality analysis determined that three motor

modules are sufficient to reconstruct the sEMG envelopes with

VAF.0.9. Figure 3D shows VAF values as a function of the

number of modules for two movements and for two subjects.

Figure 4 shows one representative example of the weights

associated to each motor module and channel for the index

flexion/extension (left) and middle flexion/extension (right).

Increasing the number of modules from one to two, it is possible

to separate the areas of activity during extension (map of

coefficient for module 1) and flexion (map of coefficient for

module 2). By increasing the number of modules from two to

three, the maps corresponding to the first two modules remain

mainly unchanged while module 3 highlights some detail of sEMG

activity distribution. While in the case of index finger module 3 is

mainly represented in the same area than module 1 (with lower

weights), in the case of middle finger, the area where module 3 is

mainly represented corresponds to the area of activity identified

for the index finger extension (module 1). In this case module 3

highlights a small activity of index extensor needed to counteract

the biomechanical coupling between the tow fingers and then to

avoid the index flexion during middle flexion.

Distance and overlapping of the electrode areas identified

for single finger movements. Figure 5 shows a representative

example of the sEMG activity areas identified for the single fingers

using two and three modules. The positions of the barycenters and

the corresponding NNMF weights are also shown. The results

obtained with both sets of modules are very similar and will be

discussed together. For all fingers, it is possible to identify partially

not-superimposed areas of activity with respect to other fingers

suggesting the possibility to distinguish single finger movements on

the basis of sEMG activity distribution. Figure 6 shows, for all

possible pairs of fingers: A) the percentage of overlapping of sEMG

activity areas for all possible pairs of fingers (with respect to both

the smallest and the largest area) for flexion and extension

movements and B) the distance between the barycenters of these

areas.

From Figure 5 is it possible to observe, for a specific subject, the

middle finger (dotted line and triangle symbol) is the finger with

the more separated area of activity during extension; Figure 6A

confirms the result for all subjects: the median value of the

percentage of overlapping for the middle finger with respect to

each other finger is 0% for both normalizations and Figure 6B

shows the distance between the barycenter of the activity area of

the middle finger with respect to the position of the barycenters of

all other fingers is higher than 2*IED.

On the other hand, Figure 5 shows the ring finger (solid line and

square symbol) is the only finger whose area of activity during

extension intersects with the activity areas of all other fingers and

Figure 6A confirms the results for all subjects. However, the

percentage of superposition normalized with respect to the biggest

area is always lower than 50% and Figure 6B shows the distance

between the barycenter of the activity area of the ring finger with

respect to the position of the barycenters of all other fingers is

always greater than one IED. These results highlight the possibility

of identifying a specific sub-area of activity for all fingers.

Displacement of the electrode areas between prone and

supine hand positions. Figure 7 shows one representative

example of the areas of activity identified during wrist flexion/

Forearm Muscle Activity during Wrist and Finger Movements
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extension with the hand in prone and neutral positions. For

module 1 the overlapping of the areas identified for the two hand

positions is high with a shift toward the right moving from prone to

neutral position. The weight associated to module 1 is higher in

prone than in neutral position (84 vs 43 for the analysis with 2

modules and 68 vs 44 for the analysis with 3 modules). Module 2 is

present only in the case of neutral position. These results are in

accordance with the fact that in the prone position the subject has

to move the hand counter-gravity during the extension and with

the favor of gravity during flexion while in neutral position gravity

has the same effect for both movements. The Wilcoxon test

disclosed a statistical difference (p,0.01) in the position of COG in

ulnar-radial direction between the neutral and prone hand

positions while no differences were detected along the proximal–

distal direction. The distance between the COG in the two hand

postures along the ulnar-radial direction was (median (25%–

75%)): 0.8 IED (0.7–1.1) for wrist flexion/extension, 1.2 IED (0.1–

1.4) for wrist adduction/abduction, and 1.0 IED (0.5–1.6) for hand

opening/closing. Table 2 shows the barycenter weight ratio

between prone and neutral position for each module. For

flexion/extension movement it is possible to observe a ratio

higher than 1 for module 1 (associated with the extensor muscle

activity) and lower than 1 for module 2 (associated with flexor

muscles). These values are in agreement with the effect of gravity

on the movement that facilitates flexion and opposes to extension

in prone position. For adduction/abduction movement it is

possible to observe a ratio lower than 1 for module 1 (associated

with the abductor muscle activity) and higher than 1 for module 2

(associated with adductor muscles). Also in this case the values are

in agreement with the effect of gravity on the movement.

Joint angle estimation from monopolar sEMG envelopes
Statistical analysis was performed on the quality of reconstruc-

tion of joint angles from sEMG detected using two different sets of

electrodes: a) one ring of 14 electrodes equally spaced and

positioned 2 cm from the elbow crease and b) one set of electrodes

whose position has been optimally selected in correspondence of

the barycenter of the identified areas of sEMG for each finger.

Results showed the quality of joint angle reconstruction depends

on the electrode set (r2
ring: (69612%); r2

COG: (8066%); p,0.01)

Figure 3. Motor modules extracted from sEMG envelopes using NNMF analysis for one representative subject. (A) Example of the
motor modules extracted for the subject Pa (first 8 sets of modules). The modules identified in the set with N modules are essentially preserved in the
set with N+1 modules. (B) Similarities between sets with different number of modules. The nodes of each row of the triangle represent the modules
extracted from sets with a number of modules ranging from 1 to 8. The links between the nodes in two adjacent rows connect modules that are
similar (correlation coefficient above 0.7). The degree of similarity is indicated by the thickness of the link and the value shown close to each link. (C)
Superposition of the motor modules identified for all subjects. The first two modules are very similar for all subjects while differences among the
subjects are represented starting from the third module. (D) Top: variance accounted for (VAF) as a function of the number of motor modules for two
representative tasks (wrist flexion/extension and ring MCP flexion/extension). Bottom: VAF as a function of the number of motor modules for two
representative subjects. Three motor modules allow an accurate approximation of the sEMG envelopes (median VAF.0.9).
doi:10.1371/journal.pone.0109943.g003

Forearm Muscle Activity during Wrist and Finger Movements
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and the best reconstruction was obtained with the electrode set

positioned in correspondence of the barycenters of the identified

sEMG activity areas.

Discussion

In this work we have investigated, by means of a wearable

multi-channel sEMG detection system, 1) whether it is possible to

spatially identify distinct areas of sEMG activity in the forearm

during dynamic free movements of the wrist and single fingers, 2)

the effect of the hand position on the sEMG activity. The results

show that specific distinguishable areas of activity can be identified

during wrist and single finger movements suggesting the use of

targeted positioning of electrodes could improve the performances

of sEMG-based movement classification systems. Considering the

main application could be in prosthetics, these results must be

validated in amputees.

Textile detection systems
Most studies on hand prosthesis myoelectric control make use of

eight or less pairs of standard electrodes [26] [27] placed either

with reference to particular muscles or equidistant over an area of

interest. In the last years, prosthetic hands with high dexterity have

been developed and this highlighted the need for complex control

systems. In order to address this issue, recently some studies

investigated the use of multi-channel sEMG [9] [10] [28]. The

multi-channel sEMG recording provides useful information to

improve the recognition of fine movements. On the other hand it

requires a complex and cumbersome setup with the need to place

many electrodes on the forearm and to manage many connectors

[10] [29]. In order to simplify the electrode setup Farina et al. used

a textile sleeve with four grids of 565 electrodes to detect sEMG

signals from upper arm and forearm for the recognition of wrist

and forearm movements [30]. In this work a textile stretchable

sleeve with 112 electrodes has been used to detect sEMG from a

large area of the forearm. This technology allows a simplified

positioning of the sEMG detection system and a significant

reduction of the setup time without the need to target specific

muscles. Moreover, it reduces the problems due to the cumber-

some of multi-channel detection systems used in literature. The

loss of information about the sEMG activity in correspondence of

the 8 electrodes, whose connection broken during the experimen-

tal protocol, does not affect the results because mainly located near

the ulna.

Figure 4. Example of modules and weights resulting from the NMF analysis for flexion/extension of the index (on the left) and
middle (on the right) fingers for one representative subject. (A) sEMG mean envelopes estimated on all movement cycles for each channel
(black line) and their approximation obtained with three NNMF modules (gray line). Two distinct areas of activity for index and middle fingers can be
identified. (B) The three sets of modules identified for this subject varying the number of modules from one to three. (C) NNMF coefficient maps for
the identified modules. It is possible to observe that increasing the number of modules from one to two, it is possible to separate and highlight the
areas of activity during extension (map of coefficient for module 1) and flexion (map of coefficient for module 2). By increasing the number of
modules from two to three, the maps corresponding to the first two modules remain mainly unchanged while module 3 highlights some detail of
sEMG activity distribution.
doi:10.1371/journal.pone.0109943.g004
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Identification of sEMG activity areas
In literature, some studies focused on the effect of the number of

electrodes on the movement classification accuracy for prosthesis

control and on the identification of the minimum number of

sEMG electrodes that allow maintaining good classification

performances. The general approach is based on the evaluation

of the performances of a movement classifier changing the number

and set of electrodes in an iterative way. Liu and Zhou [10]

applied a straightforward sequential feedforward selection algo-

rithm, which iteratively added the most informative channels, as

determined by empirical classification performance. The results

showed that it was feasible to reduce the number of sEMG

Figure 5. Example of the areas of activity detected during isolated flexion/extension movement of all fingers (index, ring, middle,
and little). Top: areas identified using the set with two NNMF modules. Bottom: areas identified using the set with three NNMF modules. each area
the position of the barycenter and the weight of the NNMF module in that position are reported. The results obtained with both sets of modules are
very similar and will be discussed together. For all fingers, it is possible to identify partially not-superimposed areas of activity with respect to other
fingers suggesting the possibility to distinguish single finger movements on the basis of sEMG activity distribution.
doi:10.1371/journal.pone.0109943.g005

Figure 6. Percentage of overlapping and distance among the barycenters for the identified areas of sEMG activity. In A) the
percentage of overlapping between the area of sEMG activity identified for each finger with respect to the areas of sEMG activity identified for each
one of the other fingers are shown. The percentage of overlapping is calculated with respect to the number of electrodes in both the smallest (gray)
and largest (black) activity area. In B) the distance between the barycenters of the areas of sEMG activity, for all possible pairs of fingers and all
modules, are shown. The values (median (25%–75%)) are reported for MCP and PIP joints.
doi:10.1371/journal.pone.0109943.g006
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channels (down to 8) while maintaining high (.95%) classification

accuracy. In a similar way, Li et al. applied a straightforward

exhaustive search algorithm [31]. Daley et al. [28] showed that, in

healthy subjects, a ring of eight channels produced significantly

lower classification performance with respect to a subset of

electrodes each one optimally positioned longitudinally and

transversally on the forearm. This result suggests careful electrode

placement is needed to recognize fine motor tasks. Other studies

reported an improvement in classification accuracy with increasing

the number of electrodes up to a threshold, after which the

performances start to decrease [13] [34].

In this study, a different approach has been adopted; the NNMF

technique has been applied to sEMG signals recorded using a

multi-channel detection system to identify the clusters of sEMG

activity during different wrist and finger movements. Multi-

channel high density sEMG provides detailed topographical maps

of sEMG activity and allows to verify if distinguishable sEMG

spatio-temporal patterns are produced during different tasks and

to identify the electrode positions detecting the higher sEMG

activity. The use of NNMF for linear factorization of forearm

sEMG signals even without targeting specific muscles for electrode

positioning has been shown to be appropriate in a recent work

[18].

The dimensionality analysis on NNMF results showed that three

modules account for 90% of VAF and the modules identified in

the set with N modules are essentially preserved in the set with N+
1 modules. This result shows that the choice of the number of

modules is not critical and the analysis performed with a particular

number of modules will be consistent with the analysis based on

larger sets.

The first two modules extracted with NNMF show a high level

of similarity among all subjects (Figure 3). Module 1 mainly

represents extensor/abductor muscle activity; it is active during

the extension/abduction phase of the movement cycle with the

peak of activity occurring at the end of the extension/abduction

dynamic phase. Module 2 mainly represents flexors/adductor

muscle activity; it is mainly active during the flexion/adduction

phase of the movement cycle with the peak of activity occurring at

the end of the flexion/adduction dynamic phase. Module 3 is

subject specific; it represents some details of the time course of

sEMG envelope but the areas where it is mainly represented are

included in the areas where the first two modules are already

represented so it introduces limited new subject-specific informa-

tion about sEMG activity distribution on the forearm. For these

reasons, in the following analysis, the first two modules have been

considered.

Identification of specific sEMG areas for single fingers
The hand shows substantial mechanical coupling across

adjacent fingers [7] [32] [33] [34]; fully independent movements

of the fingers are not possible and the activation of antagonist

muscles is required to limit the movement of the other fingers. For

this reason, during the single finger movements, the subject was

asked to move the target finger with no constraints about the

Table 2. Ratio between the module weights Associated To the area barycenterS in prone versus neutral position.

Weight ratio (prone/neutral)
median (25%–75%)

Segment Movement Module

1 2 3

hand flex/ext 1.4 (1.3–1.7) 0.5 (0.3–0.8) 0.8 (0.4–2.0)

add/abd 0.7 (0.6–1.1) 1.9 (0.9–3.5) 0.7 (0.4–1.2)

all fingers flex/ext 0.9 (0.5–1.4) 1.1 (0.8–1.6) 1.0 (0.7–1.4)

doi:10.1371/journal.pone.0109943.t002

Figure 7. Example of sEMG areas of activity detected during the wrist flexion/extension task with the hand in neutral and prone
position. Top: areas of sEMG activity identified using the set with two NNMF modules. Bottom: areas of sEMG activities identified using the set with
three NNMF modules. For each area the position of the barycenter and the weight of the NNMF modules in that position are reported.
doi:10.1371/journal.pone.0109943.g007
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movement of the other fingers to avoid the activation of the

antagonist muscles.

Some works in literature indicate that sEMG cannot be used to

distinguish single finger muscle activity because of high levels of

crosstalk [35] [36]. However, other researchers showed that the

decoding of individual and combined finger movements and the

control of a prosthesis with complex movement dexterity can be

obtained by sEMG [26] [37]. Leijnse demonstrated, with

anatomic dissections, that the ED parts to the different fingers

show constant and widely spaced anatomical locations that

promote independent function [38]. These findings suggested

the hypothesis that single finger sEMG activity assessment should

be possible and this has been demonstrated using small (4 mm)

bipolar surface electrodes appropriately placed [25].

The results of this work about single finger sEMG activity,

showed that the use of multi-channel detection systems allows to

identify distinct areas of sEMG activity in the forearm for different

fingers, in accordance with recent findings [25] [38].

The results of the comparison of sEMG areas detected during

movement involving PIP and MCP joints show a high superpo-

sition of the activity areas and a distance between the barycenters

of the activity areas lower than one IED. This is in accordance

with Kamper et al. [39] that showed extrinsic flexor muscles

initiate MCP flexion and produce simultaneous motion at the

MCP, PIP, and DIP joints.

Effect of rotation of the hand on sEMG activity
distribution

In most studies for sEMG-based multifunctional prosthesis

control, the tests are performed with the subject in a reference

position and the training and testing sEMG signals are recorded in

a constant position of the arm. However, in daily living activities

the user’s arm position changes and different forearm muscle

activities could be observed during the same movement. The

changes in sEMG activity distribution can be due to two main

factors: 1) the electrode displacement due to skin and muscle shift

and 2) the different effect of gravity on body segments.

The works published in literature evaluate the effect of different

arm positions on the classification accuracy or simulate the shift of

the electrode. Fougler et al. [40] showed that changes in arm

position during the use of a myoelectric prosthesis could

substantially impair the sEMG-based movement recognition with

an increase of average classification error from 3.8% to 18%.

Geng et al. [41] showed that the impact of arm position on sEMG

pattern-recognition performances is a little stronger in intact arm

than in amputated arm. Boschmann and Platzner [29] showed

that, to compensate an electrode displacement of 1 cm on the

classification accuracy, the number of detection points must be

increased from 8 to 32. Hargrove et al [42] studied the effect of

1 cm electrode displacement in longitudinal and/or transversal

direction on pattern classification accuracy using an IED of 3 cm,

and proposed a classifier training strategy to accommodate

performance degradation.

In this work the use of multi-channel sEMG allowed to

investigate the changes in sEMG activity distribution during the

same movement when hand position changes (neutral and prone).

The results showed a shift of the COG of the sEMG activity areas

of approximately 1 IED for all considered wrist movements.

Moreover, we investigated if sEMG activity level was influenced

by the hand position. The ratio between the NNMF weights

associated with each module for all tasks in prone versus neutral

position highlight the influence of the hand position on the muscle

activation. For flexion/extension and adduction/abduction move-

ments the ratios reflect the influence of gravity that facilitates

flexion and opposes to extension in prone position and facilitates

abduction and opposes adduction in neutral position. These results

must be carefully considered in the development of sEMG-based

control for orthoses or prostheses. Forearm pronation-supination

is, in fact, one of the most common movements carried out in

conjunction with grasps and hand movements.

Limitations of the study
The main limitation of the present study, considering one of the

primary applications could be the control of prosthesis, is the

tested subjects are all healthy subjects while amputees may have

significantly different muscle maps than able-bodied individuals.

However, this work serves as a methodological foundation for

future work. The feasibility and real advantages of the targeted

selection of electrode positioning with respect to an electrode ring

shown in this work must be verified in amputees. Moreover, this

work could contribute in the development of orthoses and new

human-computer interfaces.

In this work the sEMG signals were recorded in monopolar

modality and are probably e affected by crosstalk. However, due to

the close interlacing of the narrow extensor muscles [38], spatial

crosstalk filtering [43] [44] cannot be applied. Moreover, Daley et

al. [9] showed no differences in classification accuracy of hand

movements using monopolar or single differential detection in

normal subjects while monopolar recordings showed slightly

higher classification accuracies in amputees. The issue requires

further investigation of the crosstalk problem.

Only a male population has been studied because of the

availability of only one size (medium) of the prototype of sleeve for

sEMG detection. However, the uniform distribution of the

electrodes around the forearm circumference, allows sampling

the sEMG activity in the same relative positions regardless of the

forearm circumference. For this reason the obtained results are

expected to be generalizable to a population with smaller or bigger

forearm.

Conclusions

The textile sleeve used in this work provided a fast setup and a

reliable detection of multi-channel sEMG signals from forearm

muscles during dynamic tasks. The effect of hand position on the

distribution and on the level of sEMG activity during wrist and

hand movements has been quantified. The results give new

information, not available in literature, that are independent from

the characteristics and robustness of a specific classification system

and provides a basis for a future work on the identification of

optimal electrode number and positioning for sEMG based

prosthesis control.
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