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Abstract  This paper deals with the problem of evaluating the 
electromagnetic field of a perfect electrical conducting (PEC) 
wedge over dielectric substrate. In this paper the directions of 
the two faces of the wedge are arbitrary. We formulate the 
problem in terms of generalized Wiener-Hopf equations 
(GWHE) and we propose a possible method of solution based 
on the reduction of the GWHE to Fredholm integral equations 
of second kind 

1 INTRODUCTION 

In this paper we consider the problem constituted by 
the evaluation of the electromagnetic field in the 
physical structure shown in Fig.1.  
The faces of the perfect electrical conducting (PEC) 
wedge are defined by =a (face a) and =--b 
(face b). The half-space y>0 is free space and 
constituted by two angular regions: region 1 0≤ ≤a 

and region 3 b ≤ ≤. The half-space y<0 
(region 2) is constituted by a homogenous dielectric 
infinite layer with permittivity r at a distance d from 
the edge of the wedge.  
A plane wave with direction  (0≤ ≤a) is 
incident on a PEC wedge located in region 1. For the 
sake of simplicity the direction of the incident plane 
wave is taken at normal incidence on the wedge; the 
skew incidence case is a possible extension.  
Preliminary studies on this topic have been carried out 
in [1] where the structure was simplified and only 
GTD coefficients were explored: the PEC wedge was 
with face b parallel to the dielectric layer and the 
angular region 1 was obtuse. The unaligned PEC 
wedge problem is formulated in [2]. 
The literature shows apparently few works on this 
problem. However the problem considered in this 
paper is close to several topics of great interest that 
have been studied by many authors: for instance the 
diffraction by a buried body.  
Particular cases of a wedge immersed in a stratified 
medium were studied in [3]-[4] by using the Uniform 
Theory of Diffraction (UTD). However the application 
of this method is limited to edges not close to the 
stratified regions. 
Moreover waves in layered media are studied in depth 
in [5],[18].  
A lot of effort has been done in numerical method. In 
particular [6] investigates integral equations 
formulations for current induced by a known 
excitation on a conducting cylinder/strip located near 
(at least in contact) to the planar interface between two 
semi-infinite homogeneous half-spaces of different 
electromagnetic properties.  

 

  

Figure 1: The physical structure of the problem. 

Reference [7] presents a compact representation of 
dyadic Green's functions for plane-stratified media and 
mixed-potential integral equations for arbitrarily 
shaped, conducting or penetrable objects embedded in 
the multi-layered medium. These papers were source 
of numerous works on scattering by buried perfectly 
conducting structure 
We recall that the use of Finite methods should be 
combined by suitable singular basis functions capable 
to model the singularity of the physical quantities [8]. 
The proposed formulation of the problems is based on 
the use of generalized Wiener-Hopf equations 
(GWHE) whose introduction an development starts on 
[9] and subsequence works for example [10]-[13] 
Following the method proposed in [1]  

1. first we formulate the entire problem with 
coupled generalized Wiener-Hopf equations 
(GWHE),  

2. second we reduce them using Fredholm 
factorization [14], 

3. in order to numerically obtain [15] estimates 
of the spectra, 

4. to asymptotically evaluate the 
electromagnetic field. 

This procedure has been effectively used in previous 
works in particular in [16],[17] where the diffraction 
by impenetrable and penetrable wedges have been 
studied. 



In this work, the notation and the terminology of [1] 
are applied  

2 FORMULATION AND SOLUTION 

With reference to Fig.1, we consider time harmonic 
electromagnetic fields with a time dependence 
specified by the factor j te   which is omitted. 
Cartesian coordinates (x,y,z) as well as polar 
coordinates (,,z) are used. The incident field is 
constituted by the E-polarized plane wave with 
longitudinal component  
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where 

o ok     is the free space propagation 

constant,  the azimuthal angle of incidence.  
The following Laplace transforms (2) and (3) in the -
plane assume a fundamental role. 
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In particular we define the spectral unknowns: V+()= 
V+(), I+()= I+(), V+()= V+(±), I+()= 
I+(±), V-()= V+(-), I-()=-I+(-). From here 
on, all these quantities will be called the spectra.  
The axial spectra are the spectral unknowns (2) and (3) 
evaluated along  =0 and  =- directions. 
The system of GWHE is constituted by three equations 
and are given in terms of the axial spectra and the 
spectra on the face a and b.  
The first equation of this system relates the spectral 
quantities at section y=0 
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where (0) ( ) ( ), ( )v V V Y        , is obtained from 

circuital consideration of wave propagation in layered 
media [18] 
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where ( ) ( ) /c oY k Z   , 2 2( ) k    , ( (0) k  ), 

2 2( ) / ( )d r oY k kZ    , k is the free space 

propagation constant, Zo the free space impedance.   
Using the definition of the axial spectra, (4) is 
rewritten as  
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For the angular region 1 with perfect conducting 
boundary on face a (the voltage spectrum is vanishing 
on the face a) we obtain the following equation [10]: 
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where ma=- cos a+ sin a. 
A similar equation is obtained for region 3 
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where mb=- cos b+ sin b. 
Since no general closed form solution of the system 
of GWHEs (6), (7) and (8) is available, we reduce the 
problem to a system of Fredholm integral equations 
(FIEs). The procedure to reduce the GWHE to 
Fredholm equations is discussed in several papers, for 
instance [14].  
This procedure consists in the use of Cauchy 
integration and in the extraction of offending 
singularities derived from geometrical optics fields. 
Moreover, while reducing the problem to FIEs, we 
enforce that the kernels are not singular and possibly 
compact to get better convergence.  
The FIEs can be analytical manipulated to get a system 
of coupled FIEs in the unknowns V+() and V+() 
that can be solved by numerical quadrature [15], 
obtaining approximate axial spectra which is valid 
only in particular subdomains. 
Alternatively to the Fredholm formulation, the GWHE 
can be reduced to difference equations in the w-plane 
by introducing the mapping k cos w, useful to 
obtain analytical continuation for the approximate 
axial spectra.  
At the present time the FIE formulation in the plane 
gives limited precision for angular region 1 with acute 
aperture angles (a<). This phenomenon was not 
observed for acute angular regions in GWHE 
formulation in w  plane ( / aw w  ), see [19]. 

Using the equations reported for example in [1], [17] 
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where ˆ ( ) sin( ) ( cos( ), )dV w w V k w    and 

ˆ ( ) ( cos( ), )I w I k w    , we obtain the spectra for 

any direction on the angular regions.  

By using the inverse Laplace transform (11) 
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where ( )
r

B  is the mapping of the Bromwich Br 

contour of the -plane into the w-plane and by using 
asymptotic techniques (SDP) we obtain estimates of 
far field in terms of geometrical optics field (GO) and 
diffracted field (GTD). Using the Uniform Theory of 
Diffraction [20] the far field is estimated by removing 
caustics of GTD. 

Following circuital consideration [18] in region 2 the 
spectra at y=-d is given by 
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The application of the inverse Fourier transform (13) 
and asymptotic techniques (SDP) give estimates of far 
field in the dielectric layer. 
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The complete procedure and numerical validation will 
be presented at the conference and proposed in [21]. 
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