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Recovery of cadastral boundaries with
GNSS equipment

A. Cina, A. M. Manzino* and G. Manzino

The purpose of this work is to propose a new redefinition of cadastral boundaries using GNSS

equipment and cadastral maps. These maps are the ‘original’ maps of the Italian Land Cadastre,

the first cartographic support built directly from measures carried out by technicians during

implantation of the Italian land cadastre. They are called ‘originali di impianto’ – ‘originals of

implantation’ or ‘implant maps’. As such, these maps are valuable and are kept with great care.

Recently, the Italian cadastre has carried out an accurate digitisation of these maps in a raster

format at a high resolution. In this work, the authors propose the use of these digital maps for the

recovery of cadastral boundary. The original cadastral map, one of the primary sources relied

upon in defining legal boundaries, generally uses the Bessel ellipsoid localised in Genova and the

Cassini-Soldner projection; the GNSS equipment, on the other hand, uses the geocentric ellipsoid

with global or continental realisations. After an RTK positioning, the receivers usually provide the

cartographic coordinates in a Gauss projection. However, our study deals with the problem of

using different projections and reference systems within the limits of a map. In this context, the

transition between systems and projections can be made through a conformal transformation with

deformations slighter than graphical errors in the map. The difficulty of finding identifiable points in

both reference systems is partially solved through a new way of carrying out the redefinition of

boundaries by exploiting geometric information.

Keywords: Cadastral boundaries, GNSS, Maps, Conformal transformation, Geometrical constrains

Introduction

Recovery of cadastral boundaries
In the absence of any other reference, one of the docu-
ments legally accepted to establish (or rather re-establish)
property boundaries is the original cadastral map or
‘implant map’. It is known, however, that the reference
systems and cartographic projections of these maps are
often not the same as those available in real time in
a GNSS RTK positioning. The authors indicate the
cartographic coordinates of these projections in the two
reference systems, respectively, with ‘C’ (Cadastre) and
‘G’ (GNSS); improperly, but for brevity and convenience,
they call them coordinate systems or ‘systems’. The
transformation between the two different ‘systems’ is a
complex problem that has already been investigated by
several authors (Bildirici, 2003; Bin and Chai, 1996; Cina
et al., 2012a, 2012b; Felus, 2007).

The study proposed here addresses this problem in an
area limited to a map sheet or a portion of it. This allows
for the simplification of the transformation model to a
simple roto-translation with scale variation between

known points in both systems. This simple solution,
however, shows a practical problem that is not negli-
gible, especially when using the implant maps. The
transformation between reference frames is only possible
when there are a sufficient number of points identifiable
on the map and on the ground called ‘double points’.
It is then necessary to measure the coordinates of these
points on the map and on the ground. They are usually
indicated by boundary stone markers, many of which
have been lost over time. The new way of recovering
cadastral boundaries uses additional geometric infor-
mation of ‘belonging’ and ‘parallelism’ to boundaries to
perform the transformation between systems.

After a section that introduces the operating modes,
the authors develop the basic equations and study the
accuracies obtainable.

To verify the correctness of the proposed method,
some simulations were performed with the aim of esti-
mating the parameters of roto-translation and the
positioning accuracy of points for the recovery cadastral
boundaries. In these simulations, the authors show that
these points have coordinates with standard deviation
more or less comparable with the graphical error of this
map. As such, the proposed procedure is feasible in
practice. For convenience, the authors refer to the pro-
blem of boundary recovery in Italy and give some
brief notes on the Italian geodetic and cartographic
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reference systems. The procedure is, however, general
and adoptable for any reference system and mapping in
other countries.

Reference system and projection of cadastral
map
Let us refer to the original cadastral map. In the absence
of other documentation, it is the document that legally
allows for the recovery of cadastral boundaries
(Angelini, 2008). The maps consulted are not the orig-
inal cadastral maps. They are constantly updated, but
have undergone alterations over time and suffered tears
and substantial degradation. The vector maps are
derived from scans of the latter for subsequent vector-
isation. In Italy, most of the surveys that gave rise to
these maps were referred on a Bessel ellipsoid, locally
oriented in Genova, with the Cassini-Soldner projection.

Initially, the projections were extended for only a few
miles. Later, the limits were extended to the maximum, a
distance of 70–80 km away. Within this area, you can
replace the local sphere by the ellipsoid. The Cassini-
Soldner map projection was used even before its
implementation in Italy, for the construction of the old
map of France at 1:86 400 scale. Started by Cesare
Cassini and continued by his son Giacomo, these maps
was finished in 1709 by nephew Domenico. A century
later, in 1810, J. Soldner introduced some improvements
to the formulae; this updated projection was used to
map the Bavarian cadastre. The initiative was then
followed by several German states.

The calculation of coordinates in Cassini-Soldner
projections starts from a reference system with origin O9.
Its geographical coordinates Qo and lo are known on the
ellipsoid. The cartographic coordinates of a generic
point P9, which has geographic coordinates Q and l,
correspond to the rectangular geodetic coordinates XP

and YP of P9 with respect to O9 (Fig. 1). In the cadastral
maps, the X-axis corresponds to the meridian on the
ellipsoid called the central meridian; it passes through
the point O9. The Y-axis is geodesic perpendicular to
X in Q9.

The Cassini-Soldner projection is afilactic (neither
conformal nor equivalent), but, if the distance from the
origin is within 70 km, the representation can be con-
sidered equivalent in practice. At this distance, the linear
strain has a maximum value of 6 cm km(1 in the direc-
tion of the meridian, while it is null in the direction of
the parallel.

The Italian Cadastre adopted Cassini-Soldner rep-
resentations in 1886. Only recently, in 2011, did the
Italian Ministerial law provide for the adoption of the
ETRF2000 reference system. The Italian cadastral
system is adjusting to these new rules.

New proposed method
The fundamental problem in the use of GNSS equip-
ment in the recovery of cadastral boundaries is because
of the diversity of reference systems and projections
(Di Filippo, 2003). The original cadastral map uses an
ellipsoid locally oriented and Cassini-Soldner projec-
tions, while the GNSS equipment uses the geocentric
WGS84 ellipsoid and normally provides coordinates in
Gauss projection after an RTK positioning. For brevity,
the authors denote the two systems and the two pro-
jections with C (Cadastre) and G (Gauss), respectively.
As demonstrated by Cina et al., (2010a, 2010b), if the
size of a survey on the ground is on the order of the size
represented by one map (1–2 km), the link between the
two reference systems can be modelled, with negligible
residual deformations, through a two-dimensional (2D)
roto-translation with scale variation. This is the case
even when the origin of the cadastral reference system is
far from the area of GNSS surveying.

The parameters of this model can be derived if the
coordinates of at least two ‘double points’ in both
reference systems are known. Generally, a greater
number of points will result in a more correct esti-
mation. Usually, the problem at hand is precisely the
search for such points – identified by rectangular stone
markers placed between contiguous properties (Fig. 2 a
and b) – or for ideal points consisting of the crossing of
axis roads, intersections between roads and canals,
bridges and canals or other artefacts found on the
ground and in the map (Fig. 6). From the metric point of
view, the implant map is also the more precise carto-
graphic support available in the absence of direct sur-
veys (new subdivisions, original sketches, etc.). The only
problem is that these implant maps have never been
updated; indeed, by definition, the only extant originals
should not be subject to changes. The implant map
represents the existing boundary lines from more than a
century before the advent of GNSS measurements.

At the time of the construction of the map, many
dividing lines were evident on the ground; these were
based on parallelepipeds that, over time, have been
destroyed or uprooted and on which it would be poss-
ible, often only in theory, to make GNSS measurements.

Overlapping ‘original maps’ with aerial images
The lack of availability of ‘double points’ can be alle-
viated by means of a new methodology for estimating
the parameters of conformal transformation starting
from new geometric constraints.

However, we must check in advance onsite if the other
geometric information contained in the map can still be
found.

In many cases, for this purpose, Google EarthH is a
valuable aid because it provides a fairly well-updated
aerial image of the territory of the entire globe (Fig. 3).

Note that this overlap does not have metrical meaning,
but only serves to allow for the observation of what cur-
rently exists in the area that can be recognised on themap.

The first step is the superposition of the original map
and the aerial image of the same area. This operation is
not trivial, as it requires the cadastral map to be in the
same reference system and in the same projection as
the image taken from Google Earth, but this is precisely
the problem to be addressed. To do this, we can proceed
with three approximations:1 Cassini-Soldner projection: X and Y coordinates
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N a coarse display area corresponding to the cadastral
map, searching for any extant entities

N the use of vector cadastral maps. In Italy, these maps
are less accurate than the original maps and are
undergoing a slow but steady process of change of
reference system in recent years to be consistent with
measurements made with GNSS receivers. It will be
necessary in this case to clearly distinguish the new
boundaries, given the vector maps, from forms
already on the original map

N the use of some interpolative approximate methods as
we can see in Ching-Sheng and Dah-lih (2003) and
Doytsher and Hall (1997).

In Fig. 3 are shown examples of overlapping vector
maps with aerial imagery in Google Earth. Figure 4
shows that it is possible to observe how some boundaries
have not varied in time, while others appear shifted in
parallel to the original map (Fig. 5 a and b). A classic
example of a boundary varied parallel to itself is the
shape of a road that has expanded over time, but kept its
direction unchanged.

If the aerial image shows a dividing element (a road
or a channel) that is present in the map and confirmed
on site, a surveyor can measure the coordinates on
the ground of some points belonging to these dividers.
This is the case even if the divider does not begin

or end in the area, or if the stone marker is no longer
retrievable on site.

In cases in which the divider has not changed from the
original cadastral map, the coordinates (X, Y) of two
points along the cadastral boundary detected on the
ground by the GNSS receiver can be measured. They
can be recorded as coordinates (E, N) in the second
reference system (G), for one or more points belonging
to this divider. The operation is achievable because the
divider is still detectable on the ground (Fig. 4).

The geometric condition of parallelism between two
lines is usable in the case where the overlap of the aerial
image with the implant map reveals that the divider has
changed its position in time parallel to itself (conditions
to be checked on site). In this case, first digitally acquire
the coordinates in the reference system C of two points
constituting the cadastral boundary identified; on the
ground, measure the coordinates in the second system G
of two points forming the parallel to the divider ident-
ified (Fig. 5a and b).

Examples of parallelism are easy to find in streets or
rivers and long straights, which remain unchanged in
their direction for centuries.

Finally, it is still possible and useful to investigate
‘double points’ that are measurable in both reference
systems.

2 Boundary stone marker buried, found with GNSS measurements; boundary stone found on the ground

3 Example of overlapping vector cadastral map with aerial image. Original scale map 1:2000
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Even more than in the previous cases, the search for
such points requires an inspection of the area, as they are
usually invisible from aerial images. In the absence of
stone markers, or artefacts on the boundaries, the points
that are known in the two frames resulting from the
intersection between two dividing lines (roads, a road
axis intersecting dividing divider, the intersection of
streets and canals in the centre of the bridge, etc.) can be
used as control points. Figure 6 shows two examples of
‘double points’ that can be used on the ground: a stone
marker found on the ground (yellow circle) and an
intersection of rural road axes (blue circle).

The geometric conditions described above will now be
explained mathematically by means of equations.

Estimate of parameters of 2D conformal
transformation
From this point, the authors designate as (E, N) the
cartographic coordinate in the reference ‘G’ used by the
measure instrumentation system (coordinate visible on
the controller of the GNSS receiver or on that of the
total station) and designate as (X, Y) the coordinate read

on the cadastral map, typically the implant map in a
digital raster format.

This last map format is consistent with the reference
system and the projection used during the building of
cadastral cartography, using a reference system ‘C’.
Assume that, between the two systems, in limited area
interior to a map, we can model the direct and inverse
transformation between systems with a 2D four par-
ameter transformation described by the formula

X

Y

 !
¼

X 0

Y 0

 !
þ l

cos q sinq

2sinq cosq

" #
E

N

 !
ð1Þ

The parameter estimation of translation, scale and
rotation is immediate in the case where it is possible to
find the coordinates of some ‘double points’ in the two
systems C and G. The system is not linear, but it
becomes so with a simple change of variables

a ¼ l cosq; b ¼ l sinq ð2Þ
Then (1) becomes

X

Y

 !
¼

X 0

Y 0

 !
þ

a b

2b a

 !
E

N

 !

¼
X 0

Y 0

 !
þ B

E

N

 !
ð3Þ

From the solution of these linear equations is then
possible to derive

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b 2

p
; q ¼ arctan

b

a
ð4Þ

As is well known, it is necessary to have at least four
equations, that is, at least two double points to derive
the parameters; in practice, it is better to have more than
two common points, for which the problem is solved by
the least squares.

Since the system is linear in the new unknowns, we can
set their approximate values equal to zero. For each
point, the known terms are the X and Y coordinates of
each point in the system C. Assuming that the coordi-
nates (E, N ) in the G system have much better accuracy
than the coordinates (X, Y ) in the system C and that the
scale factor is close to one, both equations can be

4 Condition of belonging. Measurement of the coordinates

on the map (yellow line) and in the field (point P3)

5 Cadastral boundary on the map (a) with its parallel marked on ground (b)
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weighted with a weight p; this is the inverse of the
graphical square error associated with the map scale.

When we subtract the mean coordinates of all the
points from the coordinates of the two systems, the least-
squares problem can be solved in a closed expression
form. In this case, we express the coordinates of the
points with respect to the barycentric systems with
lower-case letters, i.e.

xi ¼ X i 2 XG; yi ¼ Y i 2 Y g;

ei ¼ Ei 2 EG; ni ¼ N i 2NG
ð5Þ

where with XG, YG, EG, and NG, we have defined the
mean value of the respective coordinates (barycentric
coordinates).

With simple algebraic manipulation, we get

a ¼
Pn

i¼1ðxiei þ yiniÞPn
i¼1 e2i þ n2i
� � ; b ¼

Pn
i¼1ðxini 2 yieiÞPn
i¼1 e2i þ n2i
� � ð6Þ

In these barycentric systems, the two translation values
x0 and y0 are exactly zero. It is possible to derive the
unknown parameters without necessarily having known
points in both reference systems, using the condition of
a measured point belonging to a segment that represents
a cadastral boundary recognised on the ground. The
authors denote with (E, N ) the coordinate of the point P
in the G system and with (X, Y ) its coordinates in the C
system. They start from the equation of a line through
two points P1 and P2 (Fig. 7)

X 2 X 1

X 2 2 X 1
¼ Y 2 Y 1

Y 2 2 Y 1
)

ðX 2 X 1ÞðY 2 2 Y 1Þ2 ðY 2 Y 1ÞðX 2 2 X 1Þ ¼ 0

ð7Þ
The coordinate of the point P can be derived from
equation (3). A point belonging to a dividing line gen-
erates a single measurement equation

ðX 0 þ aE þ bN 2 X 1ÞðY 2 2 Y 1Þ2 ðY 0 þ aN

2 bE 2 Y 1ÞðX 2 2 X 1Þ ¼ 0
ð8Þ

The system is still linear in the four unknowns XO, YO, a,
and b, for which the approximated values may still be

assumed to be equal to zero. The derivatives with respect
to the unknowns XO, YO, a, and b become

Lf
LX 0

¼ Y 2 2 Y 1;
Lf
LY 0

¼ 2ðX 2 2 X 1Þ
Lf
La ¼ EðY 2 2 Y 1Þ2NðX 2 2 X 1Þ
Lf
Lb ¼ EðX 2 2 X 1Þ þNðY 2 2 Y 1Þ

ð9Þ

and the known term in the equation is

l0 ¼ X 1Y 2 2 Y 1X 2 ð10Þ
Note that the addition of another measured point on the
same alignment (E2, N2) does not change the coefficients
of the first two columns of the design matrix, involving
the translations, or even the known term l0. In fact, the
problem remaining is how to weight these equations.
This problem, however, obscures the fact that these
equations should be solved with the implicit form of the
least-squares method, involving equations of the form

gð yþ v; xÞ ¼ 0 ð11Þ
In these cases, it is necessary to calculate the matrix of
derivatives of the implicit function with respect to the
measures that, because the coordinates (E, N ) have
negligible errors, are the coordinates (X, Y ). The
derivatives in our case are

2D ¼ Lg
Ly

¼ Lg
LX 1

Lg
LY 1

Lg
LX 2

Lg
LY 2

h i
¼ ½2Y 2 X 2 Y 1 2X 1 �

ð12Þ

The problem is solved in practice by the adoption of a
new weight matrix P

�P ¼ ðDCXYD
TÞ21 ð13Þ

Considering that for each ‘belonging condition’,
equation (13) is a scalar and that the CXY matrix is
proportional to the identity matrix, for these types of
measurements, we can use new scalar weights p

�p ¼ p

X 2
1 þ Y 2

1 þ X 2
2 þ Y 2

2

ð14Þ

Looking at equation (8), we note that to estimate the
parameters XO, YO, a, and b, it is necessary to find at
least four alignments and then measure at least four

6 ‘Double points’, measurable in both frame systems

7 Condition of a point belonging to a segment
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points belong to them on the ground in system G. In
addition to the ‘belonging condition’, it is possible to use
a further geometrical condition: parallelism. This con-
dition, unlike the previous one, utilises those lines shown
in the map. These are in addition to the property
boundaries, which during the years have undergone
parallel change from their original position (or may have
changed only in the parallel mode). This is the case of
a new building if it has a constant distance from
the boundary, a fence with unknown distance from the
border, the edge of a canal that has expanded over time
and whose centreline cannot be measured, etc.

It will be necessary to identify an alignment and then
measure two points. They must both be on the original
map and on the probable segment that we assume is
parallel on the ground, at a unknown distance, to the
alignment identified in the map. As we have described,
four points are necessary: 1 and 2 with known coordi-
nates (X, Y ) in the system C, and the points P and Q of
known coordinates (E, N ) in the reference system G
(Fig. 8). Knowing these four points, it is possible to
derive the measuring equations, starting from the par-
allelism condition of two straight lines, written in an
explicit form

a9xþ b9yþ c9 ¼ 0

a"xþ b"yþ c" ¼ 0
ð15Þ

Two straight lines in the plane are parallel if

a9b00 2 a00b9 ¼ 0 ð16Þ
The straight line equation through points 1 and 2, and P
and Q (Figure 8) can be written

X 2 X 2

X 1 2 X 2

¼ Y 2 Y 2

Y 1 2 Y 2

;
X 2 XQ

XP 2 XQ

¼ Y 2 YQ

YP 2 YQ

ð17Þ

Recognising and collecting the terms that multiply X
and Y indicated in equation (15) with a9, b9, a0, and b0,
we have

ðY 1 2 Y 2ÞX 2 ðX 1 2 X 2ÞY 2 ðY 1 2 Y 2ÞX 2

þ ðX 1 2 X 2ÞY 2 ¼ 0

If we insert the coordinates of the points P and Q

ðYP 2 YQÞX 2 ðXP 2 XQÞY 2 ðYP 2 YQÞXQ

þ ðXP 2 XQÞYQ ¼ 0
ð18Þ

The condition of parallelism can then be written as

2ðY 1 2 Y 2ÞðXP 2 XQÞ þ ðYP 2 YQÞðX 1 2 X 2Þ ¼ 0

ð19Þ
Since the points P and Q are known only in the G
system, it is necessary to bring them into such a system.
For brevity, we denote them as

DX ¼ X 1 2 X 2; DY ¼ Y 1 2 Y 2

DE ¼ EP 2 EQ; DN ¼ NP 2NQ
ð20Þ

Recalling (3) we have

XP 2 XQ ¼ aDE þ bDN

YP 2 YQ ¼ 2bDE þ aDN
ð21Þ

Substituting in the previous relation the coordinates of
the points P and Q in the system C, we use equation (19)
to obtain

a½2DY DE þ DX DN�2 b½DY DN þ DX DE� ¼ 0

ð22Þ

Again, the equations are linear in the unknowns; how-
ever, we note that the two translations have disappeared,
implying that they cannot be calculated with this con-
dition. Therefore, we usually have to employ at least
some points belonging to an alignment or ‘double
points’ to complete the solution. The partial derivatives
with respect to the terms a and b are given in brackets.
To this equation is added an important consideration:
the equation is homogeneous, i.e. the known term is
zero. This means that if one were to use only these
measures, we could not compute simultaneously the two
terms a and b, but only their ratio. Recalling equation
(4), it is understood that the only term that can be
calculated is the rotation of the system; the scale factor
cannot be determined.

If we had only parallelism equations, the rotation
angle between the two systems, the only unknown
quantity, would be obtainable in a simple way in a
closed form. However, without the unknowns of scale
and translations, this formula would not have practical
meaning; its only use would be for the theoretical
maximisation of the precision of the rotation angle. The
good news is that the simulations carried out show that
the condition of parallelism, in addition to those
‘belonging’ and ‘double point’, improve the accuracy of
the rotation angle. It is also useful to remember that this
equation, like those corresponding to belonging and
double point, must be properly weighted even though
the known term is zero. To be precise, it is also necessary
here to rewrite the equation implicitly and get the matrix
D (the vector D in this case), i.e. the partial derivatives of
the function with respect to the coordinates measured in
the system C. Observing equation (22), we obtain

Lg
LDX ¼ aDN 2 bDE ¼ DY

Lg
LDY ¼ 2aDE 2 bDN ¼ 2DX

ð23Þ
8 Parallelism condition
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and putting p the scalar weight of both coordinates in C
system

pðDX Þ ¼ pðDY Þ ¼ p
2

p
PARALLELISM

¼ p
2ðDX 2þDY 2Þ

ð24Þ

To better exemplify the problem, we write the terms of a
design matrix A and the vector of known terms l0 used in
the least-squares system

Ax2 l0 ¼ v ð25Þ
for cases: PD ¼ double point, known in two systems
(rows 1 and 2),

AP ¼ belonging to the line (row 3) and
PA ¼ parallelism (row 4).

x¼

E0

N0

a

b

2
666664

3
777775; l0¼

X

Y

X 1X 22Y 1Y 2

0

2
66666664

3
77777775
;

A¼

1 0 E N

0 1 N 2E

Y 22Y 1 X 12X 2

EðY 22Y 1Þþ
þNðX 12X 2Þ

EðX 22X 1Þþ
þNðY 22Y 1Þ

0 0
ðY 22Y 1ÞðEP2EQÞþ
þðX 12X 2ÞðNP2NQÞ

ðY 22Y 1ÞðNP2NQÞþ
þðX 12X 2ÞðEP2EQÞ

... ... ... ...

2
66666666666664

3
77777777777775

ð26Þ

Variance–covariance matrix of coordinates of a
point in cadastral system C
It should be remembered that the coordinates used to
calculate the parameters of rotational translation are
obtained graphically from the map, for which we assume
an accidental error equal to the graphical error: 0.2 mm
multiplied by the scale factor of the map (0.40 m for the
scale 1:2000). The authors assert that the process of
recovery of cadastral boundaries is effective if the pre-
cision of the vertices found on the ground is still com-
patible with the accuracy of the map (that is, with its
graphical error). For this reason, it is necessary to cal-
culate the variance–covariance matrix of any point in the
system C.

To do this, one must consider the dependence of the
coordinates from the precision of the input coordinates
in the G system, from the position of the point in the G
system, and finally, from the precision of the parameters
(X0, Y0, a, b) derived from the proposed above.

Now the authors rewrite the relation (3) that high-
lights the dependence of the coordinates (X, Y) in the
system C on the coordinates (E, N) in the system G by
means of the matrix B.

They now also highlight the link between the coordi-
nates in the C system and the four parameters estimated
by the matrix F

X

Y

 !
¼

E N 1 0

N E 0 1

" # a

b

X 0

Y 0

0
BBBBB@

1
CCCCCA ¼ F

a

b

X 0

Y 0

0
BBBBB@

1
CCCCCA ð27Þ

The variance–covariance matrix of any point in the
system C consists of two quantities

CXY ¼ BCENB
T þ FCabX0Y0

F T ð28Þ

The matrix B is made explicit in equation (3).
Assume that the standard deviation of the planimetric

coordinates system G is known; if measured in RTK
mode, it could be of the order of 2 cm, usually not
comparable with the accidental error of the coordinates
of the map (Cina et al., 2014; Dabove et al., 2014;
Manzino and Dabove, 2013). In this case, CEN is a di-
agonal matrix with diagonal terms equal to (0.02 m)2.

To check the compatibility of the precision obtained
with the aims of boundary recovery, the authors derive
the variance–covariance matrix of five points con-
veniently located on the map. For these points, they
assume the coordinates in the G system to be known.
The points were chosen well to be distributed in the map
in which the simulations are performed; in particular,
four points were chosen at places at the periphery of
the map and one point is located approximately
in the centre (Fig. 9). The five points under study allow
for the simulation of the recovery of the cadastral
boundary.

After computing the variance–covariance matrix of
the coordinates of each point, we computed the semi-
axes of the ellipses error. The aim is to compare the
semi-major axis with the graphical error for all the tests
and simulations under study. It should be emphasised
that the points 2, 3, and 5 are located within the areas of
measurement used for the transformation as well as are
the only known points in both systems. The points 1 and
4 are intentionally located outside of the area in which
they are simulated measurements.

Simulations performed

Preamble
In the previous section, we analysed the equations that
govern the various geometrical conditions of our work.
To test the operational effectiveness of the equations
derived, it is useful to perform a simulation. To achieve
this simulation, it was necessary to artificially construct
the two coordinate systems. The authors used one
‘original cadastral map’ of a farming area in Lombardy
(Italy), digitalised in the raster format.

The coordinates of the points in the C system were
acquired using commercial software on the computer
monitor on a georeferenced map, with the use of
parametric crosses with known coordinates in
Cassini-Soldner projection. On the computer monitor,
we have zoomed the digital map to maintain a size on
the screen comparable to the scale of 1:2000. The
coordinates were then obtained from the mouse pos-
ition, without the use of ‘snap’ functions and active with
vector maps. In all cases, we assume the collimation
error is equal to the accidental graphical error. For each
geometrical condition examined (double point, belong-
ing, parallelism and the mixed conditions), more
simulations were performed, constructing a series of
case studies that, for lack of space, the authors report
only partially.

Instead of the coordinates of the measured points in
the G system, the same map sheet has been acquired by
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CAD through some simple commands. This occurred
after rotating and shifting by known quantities

X 0 ¼ 100m; Y 0 ¼ 100m; l ¼ 1:00; q ¼ 308

This has allowed, in the various simulations, for the ver-
ification of the accuracy of the results obtained for the
estimated parameters. In all the simulations, the authors
also calculated and verified the condition number of the
normal system. Among the many simulations of
measurement, here the authors report the summary
results of 10 of them. They only used the ‘belonging
conditions’ (AP hereafter) in some simulations; in others,
they included ‘parallelism condition’ (PA), and in others,
the ‘double point’ condition (PD) is added.

Simulations performed
Table 1 shows the four values of the parameters as-
sociated with their mean square error s. As can be seen,
the translations also differ from the imposed values by
5–6 m; the difference comes down to 1 m or less in
most redundant schemes. Looking at the s values of the

parameters, it can be argued that the precision obtained
is comparable to the accuracy of the results.

However, the result appears poor at the first sight, as
we expect an accuracy of a few metres in the values of
the offsets (corresponding to an accuracy of a few metres
in recovering the cadastral boundary).

Fortunately, this is not the case. If we want to derive
the size of the error ellipses on new points, internal or
external to the relief, we must take care to correctly
propagate accidental errors. The procedure must take
into account the variance–covariance matrix, without
simplifications – considering, for example, the covari-
ances that play a positive role here (see Table 2).

As we have seen in the previous section, we have
calculated the variance–covariance matrix of the points
1, 2, 3, 4 and 5. Table 2 shows the maximum and average
values of the semi-major axes of the standard-ellipses on
these five significant points. The maximum values were
always reached at point 1, outside the ground and, sec-
ondarily, at point 4. We note that the maximum values
of the semi-major axes range from 57 to 28 cm, values
fully comparable with the graphical error for the scale
map 1:2000.

Table 1 Values of parameters and accuracies

Case studies XO/m, s/m YO/m, s/m Scale ls (l) Rotation q/8, s/8

Real values 100.00 200.00 1.000 30.00
6 AP 104.923.22 206.604.03 1.0006.561024 30.040.03
8 AP 103.331.62 206.752.94 1.0004.561024 30.040.02
10 AP 101.292.02 201.793.70 1.0005.661024 30.010.03
12 AP 101.311.69 201.982.92 1.0004.561024 30.010.02
4 AP þ 4 PA 99.184.27 199.195.35 1.0009.561024 29.990.04
6 AP þ 2 PA 99.184.27 199.195.35 1.0009.561024 29.990.04
6 AP þ 6 PA 99.821.86 201.082.17 1.0003.761024 30.000.02
4 AP þ 4 PA þ 1 PD 99.183.49 199.194.37 1.007.761024 29.990.03
6 AP þ 2 PA þ 1 PD 99.732.43 200.322.62 1.0004.761024 30.000.02
6 AP þ 6 PA þ 1 PD 99.821.52 201.081.77 1.0003.061024 30.000.01

AP: belonging at segment; PA: parallelism; PD: double point, known in both systems.

9 Location of the five points of which he wants to know the accuracy. Original scale map 1:2000
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Conclusions
The research described is intended to help the surveyor in
all those cases in which he seeks to recover cadastral
boundaries. The method, as proposed here in a limited
area, is independent of the reference system (local or car-
tographic) adopted by the measurement equipment and
can also be used with measurements acquired by a con-
ventional total station. This algorithmallows for the use of
such equipment and is immediate and suitable for hand-
held controllers or modern topographic or GNSS instru-
mentation. The procedure can be extended to the group of
affine transformations (with six parameters), since the
belonging and parallelism conditions are maintained.
(This is not the case with projective transformations).
These and other issues will be investigated in the future.
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