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Abstract: In this paper, we introduce the Data-Driven Inversion-Based Control (D2-IBC)
method for nonlinear control system design. The method relies on a two degree-of-freedom
architecture, with a nonlinear controller and a linear controller running in parallel, and does not
require any detailed physical knowledge of the plant to control. Specifically, we use input/output
data to synthesize the control action by employing convex optimization tools only. We show the
effectiveness of the proposed approach on a simulation example, where the D2-IBC performance
is also compared to that of the Direct FeedbacK (DFK) design approach, a benchmark method
for nonlinear controller design from data.

Keywords: data-driven control design; nonlinear systems; convex optimization.

1. INTRODUCTION

One of the most natural ways to force the output of a
nonlinear system to follow a given trajectory is to employ
a feedforward controller described by the inverse of the
system dynamics. When fed by the reference trajectory,
the output of such a controller will correspond exactly
to the desired input of the system, i.e. the input signal
producing an output sequence equal to the reference one.
Unfortunately, such an ideal controller is seldom com-
putable and/or applicable in most of the practical cases.
The problems can be many, e.g. the system dynamics is not
invertible, there are unstable zero dynamics, the model of
the plant is not an accurate description of all the underly-
ing dynamics, the plant is affected by noises/disturbances,
or other application-specific issues.

The above observations led - for some classes of systems
- to the well-known feedback linearization approach (see
Khalil (2002)), where the objective of the nonlinear con-
troller is milder, i.e. the controller is no longer required to
fully invert the system dynamics, but only to linearize it
around the current operating point. Nevertheless, such an
approach suffers from some critical drawbacks, too. First
of all, only input affine systems can typically be dealt
with, see Khalil (2002). Secondly, such an approach is
still very sensitive to model errors, which may jeopardize
the performance but also destabilize the system, when
implemented in a real-world setup.

In the last decades, these premises have produced several
research directions with the aim to overcome the limits of
the above (appealing) approaches for control of nonlinear
systems. Among the others, the most common activities
in the field are: approximate linearization via feedback

(see Guardabassi and Savaresi (2001)), feedforward lin-
earization (see Hagenmeyer and Delaleau (2003)), robust
feedback linearization (see Marino and Tomei (1996)),
model predictive control (see Mayne et al. (2000)), and
data-driven control (see Novara et al. (2013); Radac et al.
(2013)).

Unlike the others, a data-driven approach does not (intrin-
sically) require an accurate physical parametrization of the
system to control, because the controller is directly com-
puted from experimental measurements. Such a change
of perspective obviously offers a great potential against
undesired modeling errors, but also offers new theoretical
challenges to the systems and control community. In this
field, a lot of work has already been done, ranging from the
Ziegler and Nichols method (Ziegler and Nichols (1942)) to
Virtual Reference Feedback Tuning (VRFT in Campi et al.
(2002); Formentin et al. (2012a,b, 2013); Formentin and
Karimi (2014)) until the recent data-driven loop-shaping
approach (see Formentin and Karimi (2013)). However,
only few contributions have focused on nonlinear systems.
Among these, neural networks have played a major role,
see e.g. Yeşildirek and Lewis (1995); Polycarpou (1996).
Notwithstanding their evident general applicability, these
methods are hard to implement from a practical point
of view, due to the lack of criteria for optimal network
selection. Since all the related optimization problems are
non-convex, there is also no guarantee that the resulting
controller corresponds to the optimal one.

The nonlinear version of the VRFT method in Campi and
Savaresi (2006) represents an effective tool to make the
nonlinear system behave like a desired linear reference
model, using convex optimization only. Although the idea



behind the method sounds natural and appealing, the
approach in the current form is not able to guarantee the
stability of the closed-loop system nor a certain level of
performance, when the system moves far from the input
trajectory of the identification data set. Instead, with
the recent Direct Feedback approach (DFK Novara et al.
(2013)), a stabilizing controller can be computed, which
can also guarantee that the norm of the tracking error
is bounded, under some assumptions on the identification
data set and solving only convex problems. Specifically, the
DFK controller aims to be the data-driven counterpart of
the model-driven inversion-based controller, but without
needing any assumption on the model parametrization.
However, the DFK approach may not be suitable for the
control of systems described by a regression function non-
invertible (non-bijective) with respect to the command in-
put (this limitation is common to many methods, including
feedback linearization). Also, DFK is based on full-state
feedback and its extension to the output feedback case
has not been systematically developed yet.

In this paper, we propose a novel approach called Data-
Driven Inversion-Based Control (D2-IBC). The method
is developed within the same mathematical framework of
DFK (therefore sharing the same advantages), but without
the above limitations and with enhanced performance
guarantees, e.g. since output feedback is used, this method
is applicable also when the state measurements are only
partially available.

More specifically, we show how D2-IBC relies on an ar-
chitecture composed by a nonlinear controller and a lin-
ear controller in parallel, allowing both compensation of
nonlinearities and performance boosting. The algorithm is
depicted in detail and tested on a benchmark simulation
example to show its effectiveness.

The remainder of the paper is as follows. In Section 2,
the control design problem is formally stated and the D2-
IBC approach is introduced. The algorithmic details are
provided in Section 3, whereas the effectiveness of the
strategy on a benchmark simulation example, the Duffing
oscillator, is illustrated in Section 4. Some concluding
remarks end the paper.

2. THE D2-IBC APPROACH

2.1 Problem setting

Consider a nonlinear discrete-time SISO system in regres-
sion form:

yt+1 = g (yt,ut, ξt) (1)

yt = (yt, . . . , yt−n+1)
ut = (ut, . . . , ut−n+1)
ξt = (ξt, . . . , ξt−n+1)

where ut ∈ U ⊂ R is the input, yt ∈ R is the output,ξt ∈
Ξ ⊂ Rnξ is a disturbance including both process and
measurement noises, and n is the system order. U and
Ξ are compact sets. In particular, U

.
= [u, u] accounts for

input saturation.

Suppose that the system (1) is unknown, but a set of
measurements is available:

D .
= {ũt, ỹt}0t=1−L (2)

where ũt and ỹt are bounded for all t = 1− L, . . . , 0. The
symbol ∼ is used to indicate the input and output samples
of the data set (2).

Let Y0 ⊆ Rn be a set of initial conditions of interest for
the system (1) and, for a given initial condition y0 ∈ Y0,
let Y (y0) ⊆ `∞ be a set of output sequences of interest.

The aim is to control the system (1) in such a way that,
starting from any initial condition y0 ∈ Y0, the system
output sequence y = (y1, y2, . . .) tracks any reference
sequence r = (r1, r2, . . .) ∈ Y (y0). The set of all solutions
of interest is defined as Y .

=
{
Y (y0) : y0 ∈ Y0

}
. The

set of all possible disturbance sequences is defined as
Ξ

.
= {ξ = (ξ1, ξ2, . . .) : ξt ∈ Ξ,∀t}.

To accomplish this task, we use the feedback control
structure depicted in Figure 1, where S is the system (1),
Knl is a nonlinear controller, Klin is a linear controller,
rt ∈ Y is the reference, and Y ⊂ R is a compact set where
the output sequences of interest lie.

Knl is used to stabilize the system (1) around the trajec-
tories of interest, whereas Klin allows us to enhance the
tracking performance. As shown in the next Sections 2.2
and 2.3, the design of these two terms is based on system
inversion.
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Fig. 1. Feedback control system.

Remark 1. The system (1) is not required to be stable
and in general no preliminary stabilizing controllers are
needed. The only guideline is to generate the data using
input signals for which the system output does not diverge.
This can be easily done for many nonlinear systems.
Indeed, many systems are characterized by trajectories
that are unstable but bounded (a typical feature of chaotic
systems). In the presence of unbounded trajectories, for
which a suitable input signal can hardly be found, a
preliminary stabilizing controller may be required. The
preliminary controller can also be a human operator, who
is able to drive the system within a bounded domain, see
Novara et al. (2013); Fagiano and Novara (2012). �

2.2 Nonlinear controller

The nonlinear controller design is carried out using the
Nonlinear Inversion Control (NIC) method, see Novara
and Milanese (2014). The first step of this method is to
identify from the data (2) a model for the system (1) of
the form

ŷt+1 = f (yt,ut) ≡ f (qt, ut)
qt = (yt, . . . , yt−n+1, ut−1, . . . , ut−n+1)

(3)

where ut and yt are the system input and output, and ŷt is
the model output. For simplicity, the model is chosen of the
same order as the system but this choice is not necessary:
all the results presented in the paper hold also when the



model and system orders are different. Indications on the
choice of the model order are given in Section 3.

A parametric structure is taken for the function f :

f (qt, ut) =

N∑
i=1

αiφi (qt, ut) (4)

where φi are basis functions and αi are parameters to be
identified. The basis function choice is in general a crucial
step, see Sjöberg et al. (1995); Hsu et al. (2006); Novara
et al. (2011). In the present approach, polynomial func-
tions are used. The motivations are mainly two: (1) poly-
nomials have been proved to be effective approximators in
a huge number of problems; (2) as we will see later, they
allow a “fast” controller evaluation. The identification of
the parameter vector α

.
= (α1, . . . , αN ) can be performed

by means of convex optimization, as shown in Section 3.1.

Once a model of the form (3) has been identified, the
controller Knl is obtained by its inversion, looking for a
command input unlt such that the model output at time
t+1 is “close” to rt+1. This input can be computed solving
the following optimization problem:

unlt = arg min
u∈U

J (u) (5)

The objective function is given by

J (u) =
1

ρy
(rt+1 − f (qt, u))

2
+

µ

ρu
u2 (6)

where

ρy
.
= ‖(ỹ1−L, . . . , ỹ0)‖22 /L, ρu

.
= ‖(ũ1−L, . . . , ũ0)‖22 /L

are normalization constants computed from the data set
(2), and µ ≥ 0 is a design parameter, allowing us to
determine the trade-off between tracking precision and
command activity.

Note that the objective function (6) is in general non-
convex. Moreover, the optimization problem (5) has to be
solved on-line, and this may require a long time compared
to the sampling time used in the application of interest. In
order to overcome these two relevant problems, a technique
is now proposed, allowing a very efficient computation of
the optimal command input unlt .

Since a polynomial basis function expansion has been
considered for f , it follows that the objective function J (u)
is a polynomial in u. The minima of J (u) can thus be found
considering the roots of its derivative: Define the set

Us
.
=

(
Rroots

(
dJ (u)

du

)
∩ U

)
∪ {u, u}

where Rroots (·) denotes the set of all real roots of ·, and
u and u are the boundaries of U . The optimal command
input is given by

unlt = Knl (rt+1, qt)
.
= arg min

u∈Us
J (u) (7)

where it has been considered that Us depends on the
reference rt+1 and regressor qt.

The nonlinear controller Knl to use in the feedback system
of Figure 1 is fully defined by the control law (7). Sufficient
conditions under which Knl stabilizes this system are
derived in Novara and Formentin (2014) for the sake of
space.

Remark 2. The derivative dJ (u) /du can be computed an-
alytically. Moreover, Us is composed by a “small” number
of elements:

card (Us) < deg (J (u)) + 2

where card is the set cardinality and deg indicates the
polynomial degree. The evaluation of unlt through (7) is
thus extremely fast, since it just requires to find the
real roots of a polynomial whose analytical expression
is known and to compute the objective function for a
“small” number of values (see Section 4 for an indicative
computation time value). This fact allows a very efficient
controller implementation on real-time devices. �

2.3 Linear controller

The design of the linear controller Klin is based on the
Virtual Reference Feedback Tuning (VRFT) method (see
Campi et al. (2002)), suitably adapted for the present
setting. In particular, Klin is parametrized as an extended
PID (Proportional Integral Derivative) controller:

ulint (θ) = ulint−1(θ) +

nθ∑
i=0

θiet−i (8)

where et = rt−yt is the tracking error, nθ is the controller
order and the θi’s denote the controller parameters. Note
that, for nθ = 1 and nθ = 2, the standard PI and PID
controller are selected, respectively. The parameters θi
are identified from the available data by means of convex
optimization. See Campi et al. (2002) for more details.

3. D2-IBC DESIGN

3.1 Model identification and nonlinear controller design

First, a set of polynomial basis functions φi has to be
chosen (see Section 2.2). Then, the following quantities
are defined:

ỹ
.
= (ỹt1+1, . . . , ỹt2+1)

Φ
.
=

 φ1
(
ỹt1 , ũt1

)
· · · φN

(
ỹt1 , ũt1

)
...

. . .
...

φ1
(
ỹt2 , ũt2

)
· · · φN

(
ỹt2 , ũt2

)


where t1
.
= 1 − L + n, t2

.
= −1, and ũt and ỹt are the

input-output measurements of the data set (2). Consider
the set SC ⊂ RN , defined as

SC(γ, η, ρ)
.
= {β : |ỹl+1 − ỹk+1 + (Φk −Φl)β|

< γρ ‖ỹl − ỹk‖∞ + 2ηρ, k ∈ T , l ∈ Υk}
where T .

= {t1, . . . , t2}, Φk indicates the kth row of Φ, Υk

is the set of indexes given by

Υk
.
= {i : ‖ũk − ũi‖∞ ≤ ζ}

and ζ is the minimum value for which every set Υk contains
at least two elements. The set SC is defined by a set of
linear inequalities in β and is thus convex in β. This set
has been introduced in Novara et al. (2013) and is used in
the following in order to enforce closed-loop stability.

The parameter vector α
.
= (α1, . . . , αN ) of the model

defined by (3) and (4) can be identified by means of
the following algorithm, completely based on convex op-
timization. Note that the algorithm is “self-tuning”, in
the sense that the required parameters are chosen by the
algorithm itself, without requiring extensive trial and error
procedures.

Another algorithm will be derived later in this section for
the design of the linear controller.



Algorithm 1 (Design of Knl)

(1) Initialization: choose “low” model order (e.g., n = 1)
and polynomial degree (e.g., 2); choose a precision
level η0 (e.g., η0 = 0.05 ‖ỹ‖∞).

(2) Construct the vector ỹ and the matrix Φ as indicated
above.

(3) Let η
.
= max (η0, η1), where

η1 = min
β∈RN

‖ỹ −Φβ‖∞ .

(4) Consider the optimization problem

α = arg min
β∈RN

‖β‖1
subject to
(a) β ∈ SC(1, η, ρ)
(b) ‖ỹ −Φβ‖∞ ≤ ηρ

(9)

where ρ is a real number slightly larger than 1 (e.g.,
ρ = 1 + δρ, δρ = 0.05).
If the optimization problem (9) is feasible, solve it,
return α and stop.
Else, increase the model order n and go to step 2.
The order should be increased up to a maximum value
nmax, chosen on the basis of some rough knowledge on
the order of system to control (this kind of knowledge
is available in most practical cases).

(5) If n = nmax and (9) is not feasible, repeat steps 2-4
for increasing polynomial degree d. The degree should
be increased up to a maximum value dmax. From our
experience, dmax can be a value in the range [4, 10].
Note that this choice is not critical thanks to `1 norm
minimization in (9), which penalizes models with a
large number of basis functions.

(6) If n = nmax, d = dmax and (9) is not feasible, repeat
steps 1-5 for ρ = 1 + 2δρ, 1 + 3δρ, . . ..

The algorithm allows the achievement of three important
features:

(1) Closed-loop stability . As proven in Novara et al.
(2013), under reasonable conditions, constraint (a)
ensures that the function ∆

.
= g − f has a Lipschitz

constant γy non larger than 1, as L → ∞. On
the other hand, a theorem in Novara and Formentin
(2014) shows that having this constant smaller than
1 is a key condition for closed-loop stability. The
proposed approach is thus able to ensure closed-loop
stability when the number of data is sufficiently large.

(2) “Small” tracking error . Constraint (b) is aimed
at providing a model with a “small” prediction error
(this error, evaluated on the design data set, is given
by ‖ỹ −Φα‖∞). As shown in Novara and Formentin
(2014), reducing this error allows us to obtain a
“small” tracking error. Note that there is a trade-
off between stability and tracking performance: In
step 6, ρ is increased until the stability condition
is met. However, increasing ρ causes an increase of
the prediction error and, consequently, of the tracking
error.

(3) Model sparsity . In step 4, the `1 norm of the
coefficient vector β is minimized, leading to a sparse
coefficient vector α, i.e. a vector with a “small”
number of non-zero elements, Fuchs (2005); Donoho
et al. (2006); Candes et al. (2006); Tropp (2006).
Sparsity is important to ensure a low complexity

model, limiting at the same time well known issues
such as over-fitting and the curse of dimensionality.
Sparsity allows also an efficient implementation of the
model/controller on real-time processors, which may
have limited memory and computation capacities.

Once a model has been identified, the nonlinear controller
Knl is obtained by its inversion, as explained in Section
2.2. The weight µ in (6) can be chosen on the basis of the
desired trade-off between inversion precision and command
input activity.

3.2 Linear controller design

The main idea to identify parameters of the linear con-
troller Klin is to rewrite (8) as

ulint (θ) =

nθ∑
i=0

θiψ
i
t (10)

where

ψit = ψit−1 + evt−i, i = 0, . . . , nθ. (11)

The two forms (10) and (8) are equivalent because the only
difference between them is that the integral action and the
Finite-Impulse-Response (FIR) filter - built with θ and the
past values of the virtual error - are switched. Since the
system is linear, the filters can obviously commute without
changing the dynamical properties of the controller.

By defining

ϑ
.
= (ϑ0, . . . , ϑnθ )

Ψ
.
=

 ψ
0
1−L · · · ψ0

0
...

. . .
...

ψnθ1−L · · · ψ
nθ
0


we introduce the following optimization problem:

θ = arg min
ϑ∈Rnθ

∥∥∥δ̃u− ϑΨ
∥∥∥2
2
, (12)

which is a simple least squares problem (and therefore
convex).

A linear controller of the form (8) can then be computed,
given Knl, according to the following algorithm.

Algorithm 2 (Design of Klin)

Initialization: choose the controller order nθ and a refer-
ence model M as explained in Campi et al. (2002).

(1) Construct the vector of measurements δũ based on
Knl and the matrix Ψ as indicated above.

(2) Compute the controller parameters θ as in (12).

The design of the linear controller is based on some user
defined parameters, i.e. the parameters defining M and nθ.
Smart and simple choices for these parameters are nθ =
1, 2 (PI or PID controller) and M as a low order model
with dynamics comparable to the mean time response of
the model f and the same pure delay. In the simulation
section, we will show the practical effectiveness of such
choices.

In Novara and Formentin (2014), we provide sufficient
conditions for closed-loop stability of the proposed scheme,
as well as a rigorous motivation for employing such an
architecture.



4. EXAMPLE: CONTROL OF THE DUFFING
OSCILLATOR

The Duffing system is a second-order damped oscillator
with nonlinear spring, described by the following differen-
tial equations:

ẋ1 = x2
ẋ2 = −α1x1 − α2x

3
1 − βx2 + u

y = x1 + ξ
(13)

where x = (x1, x2) is the system state (x1 and x2 are
the oscillator position and velocity, respectively), u is the
input, y is the output, and ξ is a zero-mean Gaussian
noise having a noise-to-signal standard deviation ratio of
0.03. The following values of the parameters have been
considered: α1 = −1, α2 = 1, β = 0.2. For these parameter
values and for certain choices of the input signal, this
system exhibits a chaotic behavior, and this makes control
design a particularly challenging problem.

A simulation of the Duffing system (13) having duration
400 s has been performed, using the input signal u(τ) =
0.3 sin(τ) + ξu(τ), where τ here denotes the continuous
time and ξu(τ) is a white Gaussian noise with zero mean
and standard deviation 0.2. Notice that the selected input
signal is persistently exciting in the sense of Ljung (1999).
This is mandatory, as the design of the linear controller
in D2-IBC has been reformulated as a pure linear system
identification problem, and therefore linear identifiability
conditions must be satisfied.

A set of L = 4000 data have been collected from this
simulation with a sampling period Ts = 0.1 s:

D .
= {ũt, ỹt}0t=−1999

where ũt = u(Tst) are the measurements of the input and
ỹt = u(Tst) are the measurements of the output (t denotes
the discrete time).

A nonlinear controller Knl has been designed following
the approach of Sections 2.2 and 3.1. The basis functions
have been generated as products of univariate polynomials
with degree 2, yielding a set of 28 functions with maximum
degree 4. Then, Algorithm 1 has been run, choosing
µ = 0.001 and ρ = 1.05. The following parameter values
have been produced by the algorithm: n = 2, η = 0.18,
γy = 0.29. The constant Γy has also been estimated as
shown in Section 3.1 and the value 0.05 has been obtained,
indicating a good stabilizing capability. The algorithm
selected 23 of the initial 28 basis functions. Note that
the sparsification properties of the algorithm may be even
more important in situations where the regressor is of
higher dimensions, leading to problems with hundreds or
thousands basis functions.

A PID linear controller Klin has been designed according
to the approach of Sections (2.3) and (3.2), posing δũ =

ũ− ũnl, where ũnl is the output sequence provided by the
controller Knl. The reference model M as been chosen as
a first order system with a unitary steady-state gain and
a bandwidth of 10 rad/s.

The D2-IBC control scheme of Figure 1 has then been
implemented, where S is the system (13), Knl and Klin

are the designed controllers, and ξt is a Gaussian noise
affecting the output measurements, having zero-mean and
a noise-to-signal standard deviation ratio of 0.03. A testing
simulation of the control system with duration 800 s has
been performed, using zero initial conditions and a refer-

D2-IBC DFK

RMS 0.015 0.021

Table 1. Average RMS tracking errors.

ence signal rt generated as a sequence of random steps,
filtered by a second-order filter with a cutoff frequency of
2 rad/s (this filter has been inserted in order to ensure
not too abrupt variations). In Figure 2, the output of the
D2-IBC control system is compared to the reference.

Then, a Monte Carlo (MC) simulation has been carried
out, where this data-generation-control-design-and-testing
procedure has been repeated 100 times. For each trial, the
tracking performance has been evaluated by means of the
Root Mean Square tracking error

RMS
.
=

√
1

8000

∑8000

t=1
(rt − yt)2.

The average RMS error obtained in the MC simulation is
reported in Table 1.

For comparison, a similar MC simulation has been per-
formed using the DFK control design approach of Novara
et al. (2013). The average RMS tracking error obtained
by the DFK method in the MC simulation is also reported
in Table 1.

For both the D2-IBC and DFK approaches, a simulation
of the closed-loop system has been performed where rt =
0, ∀t and ξt is a step disturbance of amplitude 0.5. The
output signals obtained in these simulations are shown in
Figure 3.

From these results, it can be concluded that both the
D2-IBC and DFK controllers are able to (1) ensure a
very accurate tracking, even in the presence of quite sig-
nificant measurement noises; (2) reject/attenuate strong
step disturbances. Thanks to the presence of the linear
controller, the D2-IBC controllers ensure a zero steady-
state tracking error for step references (with null noise)
and full asymptotic rejection of step disturbances. Simi-
lar features are not guaranteed by the DFK controllers,
which anyway yields quite satisfactory results. Note also
that an output feedback structure is used for the D2-IBC
controllers, whereas the DFK controllers uses a full-state
feedback scheme.

0 100 200 300 400 500 600 700 800
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−0.5

0

0.5

1
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y

Fig. 2. Tracking performance of a D2-IBC control system.
Continuous (black) line: reference. Dashed (red) line:
actual output.
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Fig. 3. Above: disturbance rejection of a D2-IBC
(continuous-red) controller and a DFK (dashed-black)
controller. Below: same figure, with zoomed y axis.

5. CONCLUSIONS

In this paper, we introduced and analyzed the D2-IBC
approach for control of nonlinear systems. In such an
approach, only convex optimization problems need to be
solved to compute the controllers, the final laws are easy to
implement, due to the sparsity property, and a large class
of nonlinear systems can be dealt with. The effectiveness of
the approach has been shown on a benchmark simulation
example.

Future work will be devoted to the multivariable exten-
sion of the D2-IBC method and to some real-world test
applications.
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