
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

CrowdSurf: Empowering Transparency in the Web / Metwalley, Hassan; Traverso, Stefano; Mellia, Marco; Miskovic,
Stanislav; Baldi, Mario. - In: COMPUTER COMMUNICATION REVIEW. - ISSN 0146-4833. - STAMPA. - 45:5(2015), pp.
5-12. [10.1145/2831347.2831349]

Original

CrowdSurf: Empowering Transparency in the Web

Publisher:

Published
DOI:10.1145/2831347.2831349

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2625368 since: 2015-12-12T21:48:00Z

ACM

CrowdSurf: Empowering Transparency in the Web

Hassan Metwalley
DET, Politecnico di Torino, Italy
hassan.metwalley@polito.it

Stefano Traverso
Politecnico di Torino, Italy

stefano.traverso@polito.it

Marco Mellia
Politecnico di Torino, Italy

mellia@polito.it
Stanislav Miskovic
Symantec Corp., USA

stanislav miskovic@symantec.com

Mario Baldi
Politecnico di Torino, Italy
mario.baldi@polito.it

ABSTRACT
Individuals lack proper means to supervise the services they con-
tact and the information they exchange when surfing the web. This
security task has become challenging due to the complexity of the
modern web, of the data delivering technology, and even to the
adoption of encryption, which, while improving privacy, makes in-
network services ineffective. The implications are serious, from a
person contacting undesired services or unwillingly exposing pri-
vate information, to a company being unable to control the flow of
its information to the outside world.

To empower transparency and the capability of taking informed
choices in the web, we propose CROWDSURF, a system for com-
prehensive and collaborative auditing of data exchanged with Inter-
net services. Similarly to crowdsourced efforts, we enable users to
contribute in building awareness, supported by the semi-automatic
analysis of data offered by a cloud-based system. The result is the
creation of “suggestions” that individuals can transform in enforce-
able “rules” to customize their web browsing policy. CROWDSURF
provides the core infrastructure to let individuals and enterprises
regain visibility and control on their web activity. Preliminary re-
sults obtained executing a prototype implementation demonstrate
the feasibility and potential of CROWDSURF.

Keywords
Privacy, Crowdsourced systems, Web Browsing

1. INTRODUCTION
Users can not do without being online. They rely on web ser-

vices to organize their work and life, to retrieve information and
products, to establish and maintain social relationships, etc. To
keep up with this trend, technology has considerably evolved. On
the one hand, producers build smarter terminals, which consistently
interact with multiple web sources to fetch content and information
for the user. On the other hand, the web has grown in complexity as
well. To the end of improving interaction and design, modern web-
sites consist of numbers of different objects which are often served
by multiple, possibly third party, sources. Hence, the infrastruc-
ture delivering the web, i.e., the Internet, e., between the user and
the web. Due to this change, the Internet nowadays consists of a
complicated mix of (pervasive) distributed systems such as CDNs,
cloud services, virtualized resources, etc. The way people access
the Internet is also more complicated than in the past, with smart-
phones running apps instead of one browser in a PC.

taking part in it. This scenario dramatically complicates the task
of controlling what services are accessed and which information

This work was conducted under the Narus Fellow Research Pro-
gram.

users share with the providers offering such services. Over the past
years network middleboxes have been deployed throughout the In-
ternet to filter inappropriate/undesired content, and to protect users
and organizations from possible threats. The capabilities of these
devices are more recently being curbed by the growing deployment
of traffic encryption. According to recent estimates [1], about 50%
of web traffic is HTTPS, and thus, encrypted. For instance, accord-
ing to the same study, child protection through the use of Internet
Watch Foundation1 blacklists has become ineffective, with just 5%
of entries still being blocked when HTTPS is deployed (e.g., by
blocking the entire domain name).

In parallel, the increasing trend of users “living online” has fa-
vored a business around the collection of personal information. The
web includes indeed hundreds of tracking services which implicitly
or explicitly extract data from the user’s web browsing activity. The
data collection business has reached striking volumes [2, 3, 4, 5],
and the phenomenon is so pervasive that users encounter the first
tracker as soon as they start browsing the web [5]. This results in
involuntary leakage of information that users and companies would
like to keep private, in people being exposed to dubious third party
services, as well as in web companies (sometimes illegitimately)
profiling users, and selling private information. While encryption
helps in protecting users’ privacy, it also prevents third parties to
observe and possibly control what (personal) data is exchanged,
which is fundamental for instance in corporate scenarios.

In this paper we advocate the need for a model where users
are explicitly offered the freedom to i) know which services their
data is exchanged with and how, and ii) decide what information
can be accessed and shared, and with whom. We present as such
CROWDSURF, a system that allows end-users and enterprises to re-
gain visibility on the information they exchange on the web and,
possibly, to control it. CROWDSURF’s approach is holistic, and we
design it following principles that are sound and practical, rather
than revolutionary. CROWDSURF targets HTTP, the new “narrow
waist of the Internet” [6], and, hence, users accessing the web us-
ing a browser or running a smartphone app, whether connected to
a public WiFi hotspot, residential gateway or a corporate network.

We design the CROWDSURF client as a layer that sits right be-
low the application layer, where information has not yet been en-
crypted when TLS is being used. The CROWDSURF backend is a
cloud service which builds on crowdsourcing principles, whereby
CROWDSURF can semi-automatically learn from contribution users.
Any user and/or device running CROWDSURF can contribute ac-
cording to a personal level of expertise or convenience, from teams
of security researchers who can collaboratively setup experiments
to observe intricate signs of behind-the-scenes communications, to
novice users who voluntarily offer anonymized samples of their

1https://www.iwf.org.uk

https://www.iwf.org.uk

traffic, or vote on the legitimacy of data leaving their devices. All
the data gathered and processed enables the CROWDSURF cloud to
compute suggestions about the trustfulness of web services. The
CROWDSURF client translates these suggestions in rules which the
user can install and customize in order to enable control on the
services contacted and on the information exchanged. Users can
choose to block undesired services, remove information they would
like to keep private, or explicitly embrace third party services for
the advanced functionalities they offer, in spite of the personal in-
formation they gather.

For this paper, we implement CROWDSURF in a prototype that
we use to show the feasibility of the approach. We do not de-
sign CROWDSURF to target a specific threat, and we demonstrate
its flexibility by providing different application examples. In par-
ticular, we show its capability to impose blacklists (see Sec. 2.4),
to assess the security mechanisms offered by services transporting
users’ personal information (see Sec. 3.2), or to automatically de-
tect the presence of user identifiers in HTTP traffic (see Sec. 4.1).

Our work is preliminary, and aims at stimulating a debate toward
the creation of a sustainable ecosystem with increased transparency
and control. If widely deployed, CROWDSURF would allow users
to acquire consciousness of which services they contact, and which
data they expose and to whom. On the other hand, CROWDSURF
would lead web services to embrace more transparent and loyal
communication mechanisms.

We believe CROWDSURF’s potential is wide, and that it can be
employed in several contexts. Indeed, CROWDSURF would let a
parent decide which websites her children can access, or a company
define and impose policies for employees (including the case when
BYOD – Bring Your Own Device – policy is allowed). CROWDSURF
allows also third parties to offer novel services, where users vol-
untarily opt for advanced services, e.g., for using an accelerat-
ing proxy managed by an ISP for specific types of traffic (e.g.,
when watching videos, but not when accessing her bank account).
CROWDSURF could even be instrumental in enabling users to mon-
etize on their personal information, should they decide for it, as
proposed in [7].

The remainder of the paper is organized as follows. Sec. 2 first
provides a high level description of CROWDSURF, detailing the de-
sign of the client, and the cloud components. Sec. 3 describes the
prototype of CROWDSURF we build. We rely on this prototype to
analyze performance implications on the user experience, and to
present a simple application example in which CROWDSURF ob-
serves how users’ credentials are exchanged with popular services.
Then, we focus on the cloud-side of CROWDSURF in Sec. 4: we
present an algorithm for the detection of user-identifiers embed-
ded in HTTP requests, and then analyze the time the system would
take to collect enough information to build suggestions. Then, we
discuss the open problems of CROWDSURF in Sec. 6 and, finally,
Sec. 7 concludes the paper.

2. CROWDSURF
CROWDSURF is a crowdsourced system in which users can opt

to collaborate by providing explicit (e.g., their opinion) and implicit
(e.g., traffic samples) information about the web services they use.
Requiring the involvement of users, we follow a short list of simple
design principles:
1) Privacy-safe: it must never compromise users’ privacy, and any
contribution must be purged from any personal information.
2) Automated: it must support the generation of suggestions by
running algorithm on the cloud.
3) Client centric: it must be available on any device, as the default
tool to enhance transparency and enforce users’ choices.

CR
O
W
DS

U
RF
	 L
ay
er
	

HTTP	

Ru
le
	 P
ro
ce
ss
or
	

Ac8on	

TLS	

TCP	

Redirect	

Regular	 Expression	 Matching 	 	

Modify	 Allow	 Block	

Open	 	
Controller	

Third	 party	
Controller	

Corporate	
Controller	

Anonymiza8on	

Su
gg
es
8o

ns
	

	 to
	

Ru
le
-‐S
et
s	

Log	 and	
Report	

Client	 Cloud	
Figure 1: CROWDSURF layer in the networking stack and its high
level structure.

2.1 CROWDSURF Architecture Overview
A controller – running in the cloud – collects pieces of informa-

tion provided by the volunteers and feeds an automatic data ana-
lyzer, which runs data mining algorithms to produce suggestions. A
suggestion contains indications about the reliability of one or more
web services. For instance, the data analyzer can flag services col-
lecting/leaking users’ personal information, or known to host ma-
licious software. A federated group of experts forms the advising
community, which inspects the results provided by the data ana-
lyzer and interacts with it to generate the suggestions. Following
a collaborative approach similar to Wikipedia and the Electronic
Frontier Foundation (EFF), users are invited to increase the wisdom
of the system. On the other hand, thanks to the CROWDSURF client,
the users can supervise the information they exchange with ser-
vices, and can contribute in forming the suggestions. They can vol-
untarily donate portions of their browsing activity, i.e., anonymized
HTTP-level traces, to support the analysis of the community. Or
they can simply use the system, without contributing to it, as the
large majority of users does for Wikipedia.

2.2 CROWDSURF on the Client-side
We envision as CROWDSURF cornerstone a new layer to add to

the stack. We expect users’ terminals, mobile devices and personal
computers alike, to embed the CROWDSURF layer in their operat-
ing system. The Client box of Fig. 1 shows the high level architec-
ture. It sits between the HTTP and transport layers, where it has
access to HTTP traffic, before it is possibly encrypted. This choice
is motivated by the fact that today HTTP is “the” application layer
protocol [6].

Users asynchronously and periodically obtain suggestions from
the advising community and are free to decide to what level to take
them into account. This feature is implemented by the Suggestions
to Rule-Sets block in Fig. 1. It enables controlling how sug-
gestions are translated in a set of rules, or rule-set. A rule con-
sists of a regular expression (which may apply on all or specific
fields of the HTTP requests) and one or more actions. For each
HTTP request, the Rule Processor looks for matches and applies
the corresponding actions, for instance Block, Redirect, Modify,
Log&Report, with Allow being the default one. We provide some
examples of rule-sets in Sec. 2.4. This simple pattern matching/action
process has been proved very flexible and very efficient. It is at the
root of successful technologies such as the ones used in firewalls,
antiviruses, traffic classifiers, etc.

Given that CROWDSURF leverages a crowdsourced approach, the
Log&Report block is vital. It enables the collection of data sam-
ples. The layer collects traffic samples at user’s will and under
user’s full control. The layer temporarily stores the collected data
locally, and periodically transmits it to the controller. We adopt dif-
ferent approaches to limit private information leakage. The anonymiza-
tion block in Fig. 1 is responsible for this. First, it implements

sampling policies, e.g., by logging only samples of traffic at ran-
dom. This also reduces the amount of data to transfer. Second, it
assigns each user a unique random identifier, CS-UID, rotated pe-
riodically (e.g., every day). Third, it alters any piece of personal
information it can find, such as, e.g., username/password creden-
tials, cookies, etc. For instance, by default the block replaces all
key values found in HTTP requests with random strings obtained
by using cryptographic hash functions with user’s identifier as seed
to guarantee consistency for the data analysis. Fourth, users can
leverage the pattern/action mechanism to implement anonymiza-
tion practices. For instance, this enables the definition of custom
policies like “never collect data when browsing my online bank ac-
count, or when checking my email”. Fifth, data on the controller
will be stored for only the time needed to process it (also to limit the
storage). At last, since even information available at the network
layer (e.g., IP addresses) could be exploited to trace back the iden-
tity of the user, transmission to the controller takes place through an
encrypted channel established with a peer randomly picked (from
a list provided by the controller), i.e., by employing other devices
running the CROWDSURF layer as relays. These anonymization
mechanisms are meant to prevent occasional attacks and can not
be considered as 100% reliable. Unfortunately, we are not aware
of privacy preserving policies that allow us to remove all sensitive
data from HTTP traces. In our ongoing effort we are investigat-
ing the adoption of data sharing mechanisms based on differential
privacy [8]. However, we remark that the user voluntarily opts to
contribute, and she has full control on which data she intentionally
decides to share.

2.3 CROWDSURF in the Cloud
The cloud controller is responsible for semi-automatically ana-

lyzing the traffic samples and the reports provided by users who
participate CROWDSURF, and for generating the suggestions. In
particular, we devise three different cloud controllers, depending
on the possible deployment scenario:
Open controller: In the most common case, a user accessing the
Internet receives suggestions from the advising community and uses
them to regulate her access to web services. If user’s preference al-
lows it, traffic samples are sent to the controller so to contribute to
the advising community. The latter may be offered and supported
by public bodies or non-profit organization like EFF.
Third party controller: In a second scenario, suggestions could
also be generated by a third party advisor run by an independent,
third party entity which offers custom suggestions to users. This
opens a “market of suggestions”. Or alternatively, a third party ad-
visor can offer advanced suggestions in change of data voluntarily
offered by users for running other businesses, e.g., targeted adver-
tisement [7].
Corporate controller: When CROWDSURF is deployed in a cor-
porate scenario, the corporate controller does not create sugges-
tions, but it directly imposes rule-sets which are installed on all
devices connected to the corporate network. The same rule-set can
be easily imposed on any corporate-owned device, even when con-
nected from other networks. We expect the employee not to be
allowed to modify the rule-sets imposed by the corporate authority.
To handle the BYOD case, the presence of the corporate controller
must be automatically identified by any device when connected to
the corporate network. This can be achieved for instance using
DHCP extensions, or using standard DNS names that forces the
CROWDSURF client to connect to the corporate controller.

2.4 Application Examples
In the following we provide examples of CROWDSURF applica-

Actions
block redirect log&report

W
eb

Se
rv

ic
es

Facebook C
Twitter C

Dropbox C
Google C(→Bing)

YouTube C
Ebay+Amazon C

Adult Sites C, K
Trackers P K

Ads+NoJS P

Table 1: Rules for the (P)aranoid, (K)id and (C)orporate profiles.

tions in both the public Internet, and the corporate network. We use
the same examples to run the experiments in Sec. 3.1.

We consider three user profiles, each exploiting CROWDSURF
to customize their browsing experience. A summary of rules is
available in Tab. 1. We define a “Paranoid Profile” (P) that opts
for blocking all advertisement sites, to not download offending
Javascript code, and to use private navigation mode on the browser.
This profile is the equivalent of running browser plugins like Ad-
Block Plus and NoScript. This user decides to not share any traffic
samples with the community.

A second profile is called “Kid Profile” (K): the user activates
parental control by installing the suggestions provided by the ad-
vising community. For the experiment we describe in Sec. 3.1, we
simply use the list of the Alexa top 50 “Adult Sites” augmented
by other manually verified adult sites. The user contributes also
to manually signal other offending websites/objects she gets into.
Finally, she volunteers to enable random logging and reporting of
three popular online trackers (doubleclick.net, scorecardresearch.com,
and yieldmanager.com). By doing so she supports the advising
community that would like to understand which kind of informa-
tion these trackers collect.

A third profile impersonates the “Corporate Profile” (C): rules
are imposed by the network administrator, and i) do not allow em-
ployees to access Facebook (also removing Facebook buttons from
any website), ii) redirect all requests from Google Search to Bing,
iii) block the usage of adult sites, Ebay, Amazon, and YouTube,
and iv) all HTTP(S) requests exchanged with Dropbox and Twitter
are reported to the corporate controller.

3. PROOF OF CONCEPT
As a proof of concept, we develop a preliminary prototype in

which the controller is a Java-based web service where the SOAP
protocol is used to communicate with CROWDSURF-enabled de-
vices. For the sake of ease, we implement the CROWDSURF client
as Firefox plugin based on the Mozilla Javascript SDK. Our plugin
works on both standard PCs and mobile devices, supports rules,
and the allow, block, redirect, log&report actions.2 The plu-
gin supports the encryption of all communications. Traffic logs are
compressed and anonymized before being transmitted. At startup,
the data analyzer provides each CROWDSURF instance with a ran-
domly assigned ID (the CS-UID). The controller component re-
ceives and stores reports that we process to extract information.

3.1 Performance Implications
We exploit our implementation to evaluate the performance over-

head a user would pay when running CROWDSURF on her de-
vice. Given the not-optimized implementation of the prototype, our
benchmark is meant to show the feasibility of the approach rather
than being considered as a thorough testing. We consider the three
profiles described in Sec. 2.4. For baseline, we take a plugin-free
Firefox configuration. We setup a testbed based on Selenium Web-
2The code building our software is available upon request.

Driver3 to automatize the browsing of webpages. We consider i)
the Alexa top 10 global websites, ii) 8 popular news portals, and
iii) 6 portals which do not include any online tracker. We run the
experiment from a standard PC and instrument the browser to visit
each website 20 times, emptying the cache at every run. Then, we
measure the average time needed to render the webpage.

We notice that the Paranoid profile is favored, as it blocks ad-
vertisement and some Javascript content download, thus speeding
up the rendering of the webpage in many cases. For the case of
google.com, the Corporate profile shows much better performance
than the Paranoid, since in the former profile requests are redirected
to bing.com, which in our measurements is faster at rendering. In
general, results show that the extra load generated by a possible
CROWDSURF implementation is fairly minimal, especially consid-
ering the low optimization of our code. The Paranoid profile is 1.07
times faster than the baseline, while Corporate and Kid configura-
tions show slightly worse performance being 1.08 and 1.17 times
slower, respectively. In summary, our result shows that clients
today have enough power to easily execute CROWDSURF with-
out harming users’ browsing experience. We invite the interested
reader to refer to our technical report [9] for a thorough description
of the results.

3.2 Checking HTTPS Information Handling
We use our implementation to run a kind of analysis we want

CROWDSURF to offer, i.e., the capability of verifying to which ser-
vices personal data is sent, and how. In particular, we are interested
in understanding whether information such as user credentials and
credit card data might be shared with third party services, and how
these are exchanged with the first party.

We collect a dataset by browsing a catalog of websites with a
CROWDSURF enabled browser to log all HTTP and HTTPS re-
quests. We consider a list made of the Alexa top sites in the Global,
Banking, Gambling, and Shopping categories. We investigate a to-
tal of 160 websites. For each of them, we manually attempt to log
in with the dummy credentials “MyName:MyPassword”. We then
analyze the logs the client collects.

We observe that the credentials are handled by the first party
service only, and never exchanged (at least not it plain text) with
third parties. However, we find that still 10% among the most pop-
ular websites in the Global rank do not use HTTPS to exchange
users’ credentials. Only two of these apply some client-side cus-
tom encryption/obfuscation technique before transmitting them to
the server. Even more surprisingly, when HTTPS is used, we notice
that users’ credentials are sent in plain text over the encrypted chan-
nel. Assuming HTTPS offers a secure channel, no guarantees are
given on how the server handles and stores credentials. Indeed, the
server could store those in plain text, posing severe security risks
if the server gets compromised. Unfortunately, this is not a rare
event. The most recent incident involved a giant like eBay [10].
90% of both Gambling and Shopping categories do not hash the
credentials. Even for the Bank category, 75% of websites trans-
mit credentials in plain text, totally trusting the HTTPS channel.
Interestingly, some of those do implement two-step strong authen-
tication methods based on PIN or token, which are sent in plain text
through the HTTPS channel.

These findings strengthen the need for CROWDSURF to warn
users and services about the weaknesses that are unfortunately present
on (popular) websites exchanging credentials. As discussed in Sec. 5,
no other tool offers this kind of capability.

We also run a second experiment where we examine the key

3http://www.seleniumhq.org

Algorithm 1 Automatic third party tracker identifier.
#HTTP request log and target website
Input: HS, target
#List of possible third party trackers and their user-tracking keys
Output: TS
#Init hashtable of user identifiers
1: Hu ← init hash table()
#Init hashtable of key-value pairs
2: Hkv ← init hash table()
#Read HTTP request logs
3: while h in HS do

#Extract fields of interest
4: h← csUid, host, path, referer

#Check target is third party
5: if target not in h.host and target in h.referer then

#Extract key, value pair from the URL path
6: K, V ← extract keys(h.path)

#Iterate all key names and values
7: while k, v in K, V do

#Create hash for Hu

8: host key csUid←create hash(h.host,k,h.csUid)
#Create hash for Hkv

9: host key value←create hash(h.host,k,v)
#Insert all key-value pairs in Hu

10: ADD DISTINCT(Hu[host key csUid],v)
#Insert CS-UID in Hkv

11: ADD DISTINCT(Hkv[host key value],h.uid)
12: end while
13: end if
14: end while
#Iterate over Hu

15: while hash in Hu do
#Iterate over values mapped to current hash

16: while value in Hu[hash] do
#Check current hash refers to one value only

17: if LEN(Hu[hash]) == 1 then
#Decode hash into host, key and CS-UID

18: host, key, csUid← decode hash(hash)
#Create an auxiliary hash using host, key and value

19: hashaux ← create hash(host, key, value)
#Check the auxiliary hash in Hkv contains only one CS-UID and
#check this corresponds to the one in Hu

20: if LEN(Hkv[hashaux]) == 1 and Hkv[hashaux] == csUid
then

#Add host and key to the output list
21: ADD(TS, host, key)
22: end if
23: end if
24: end while
25: end while
26: return TS

names of parameters in HTTP requests that carry the username and
password to create two regular expressions to automatically match
those keys. Surprisingly, a regular expression of only 5 (6) terms
allows to match 98% of keywords used for username (password),
with no false positives in any other part of this dataset. This means
that services usually employ standard names for keys carrying cre-
dentials, e.g., uid, login, pwd, etc. This is a simple example to
show the potentiality of CROWDSURF to support data extraction
and suggestion creation.

4. CROWDSURF AT SCALE
To better understand how CROWDSURF would work at a larger

scale, we have to consider more sizable portions of traffic than
those we collected with our prototype. For this, we consider a
dataset obtained from passive measurements where HTTP requests
generated by 19,000 households in a ISP network are monitored
(see [5] for all details).

4.1 Automatic Tracker Detector
One of the CROWDSURF challenges is the need of automatic

means to detect services that possibly offend users’ policies. This

http://www.seleniumhq.org

acmetrack.com User1 User2 … Usern

Visit-1

key1 y1 y2 … yn

key2 z z … z
key3 v1 v2 … vn

Visit-2

key1 y1’ y2’ … yn’

key2 z z … z
key3 v1 v2 … vn

… … … … … …

Visit-m

key1 y1’’ y2’’ … yn’’
key2 z z … z
key3 v1 v2 … vn

Figure 2: Example of key-value pairs the algorithm 1 checks. key3
is the only one the algorithm labels as user-identifying, as it main-
tains the same value for the same user across multiple visits, but it
shows different values across different users.

section presents a simple automatic solution the data analyzer run-
ning in the CROWDSURF cloud can use to generate suggestions. As
an example, we present an unsupervised methodology to identify
possible third party trackers that users unknowingly contact while
browsing a given website. The results provided by the algorithm
can be used by the advising community to create suggestions that
notify the users about the tracking services they encounter.

The algorithm we design builds on the observation that third
party trackers often exchange user-identifiers (UID) as URL pa-
rameters. Then, the algorithm looks for parameters in HTTP GET
requests that look like UIDs.4 Let us consider the third party ser-
vice acmetrack.com, and the HTTP query example
http://acmetrack.com/query?key1=X&key2=Y. The algorithm
first extracts key1 and key2, with values X and Y, respectively.
Then, it looks for the keys whose value is uniquely associated to
the CS-UID (the identifier CROWDSURF assigns to the user), i.e.,
one value must be associated to one CS-UID, and values must be
different for different CS-UIDs. Fig. 2 reports intuitive examples of
keys our algorithm processes for third party site acmetrack.com.
The URL contains three keys. key1 shows different values for dif-
ferent users, but these are not equal across visits, so it cannot be
a user identifier. key2 takes the same value across different users
(and visits), so we discard it. key3 is the only key whose values
are different for different users, and constant for same user across
different visits. Thus key3 is considered a possible user-identifier.

A simple way of designing the algorithm could be by build-
ing a matrix as depicted in Fig. 2, and iterate it to pinpoint user-
identifying keys. However, this approach is hardly implementable
since it requires large memory. Then, for our implementation, we
decide to rely on hash tables as illustrated in Alg. 1.

More in detail, our algorithm leverages the HTTP requests re-
ported to the controller by users who activated CROWDSURF’s Log&Report
action on their devices. These requests form the dataset HS used
as input. From HS, URLs having target appearing in the Referer
field, but not in the Host string are considered (lines 3-14). In other
words, the data analyzer extracts all third party URLs a user con-
tacts when accessing pages of the target website. For each match-
ing URL, we extract all HTTP key-value pairs (K,V) contained
in each GET request (line 6). For each service, and for each key,
we investigate one-to-one mapping between the CS-UID and the
observed values. This is obtained using two hash tables, Hu and

4The methodology can be easily extended to process the data the
client transmits to the servers via POST requests, or embedded in
the cookies, or to seek for user identifiers based on combinations
of multiple keys.

Website # of distinct
trackers Third party service Keys

Portal1 26 c1.adform.net xid

News1 13 atemda.com bidderuid

E-Commerce1 12 x.bidswitch.net user id

E-Commerce2 9 googlesyndication.com afp,tdl,tme

E-Commerce3 4 www.77tracking.com pagehittag,rand

Portal2 4 track.movad.net us

Porn 3 ovo01.webtrekk.net cs2

SportNews 1 ums.adtech.de providerid

SearchEngine 1 metrics.nt.vc cg,hu

ib.adnxs.com xid

p.rfihub.com bk uuid

pixel.mathtag.com check

dis.criteo.com uid

Table 2: Number of distinct third party trackers for each of the 9
websites in our experiment (left), and the third party trackers and
the user-tracking keys our algorithm detects for website News1
(right).

Hvk. The first uses as key the hash of (tracker hostname, key name
k, CS-UID), and contains all distinct values v seen in the logs. The
second instead uses as key the hash of (tracker hostname, key name
k, key value v), and contains the distinct CS-UIDs (lines 8-11).
Finally, the algorithm iterates over the values contained in the two
hash tables to elect the keys which show a one-to-one mapping with
CS-UIDs (line 17-20), add them, together with their hostnames, to
the output list (line 21), which is finally returned at the end of the
execution (line 26).

Given the output, we further process it to guarantee statistical
evidence. In particular, we consider as actual UIDs those keys for
which we observe at least 10 different CS-UIDs, and 10 visits each.
We chose these thresholds experimentally. A comprehensive study
of their sensitivity can be found in [11].

We validate our approach using our passive HTTP trace. We
target popular portals. For each of them, we look for third party
services, and we extract those keys whose values show a one-to-
one mapping with the CS-UID.

The left part of Tab. 2 shows the number of third party track-
ers found in each website in our experiment. In total, we iden-
tify 65 distinct trackers. Surprisingly, we find that 27 of them are
actual tracking services not present in the blacklist of Ghostery:
a.tfxiq.com, m.webtrends.com and track.movad.net to name a few.

Considering for instance News1 service, we check the third
party hostnames associated to it that were discovered using user-
identifiers. We report them in the right part of Tab. 2. Key names
are shown on the left column. For News1 the algorithm identifies
13 distinct third party services. By inspecting their hostname, we
observe that all are (well-known) tracking services, with most of
key names suggesting the exchange of possible user identifiers.

These results, even if far from conclusive, are promising, and
show that the availability of large data enables automatic detection
of personal information leakage. Our experiments are carried over
HTTP traffic. CROWDSURF allows us to check for privacy leakages
also in case HTTPS is in place.

4.2 A Feasibility Check
As described in Sec. 2, the crowd feedback is vital for CROWDSURF.

Therefore, in this section we run a simple study to compute how
long the system would take to build a large enough set of user
reports to generate reliable suggestions. We consider the case in
which we aim at collecting reports involving N different services,
e.g., websites. We say a service data to be reliable when we have
collected at least K reports. We assume that a user sends its report
back to the controller when she visits that service. We consider
sampling, so that only a fraction of visits are reported.

Understanding how many reports we need to obtain K distinct

1 10 100 1000 1e4
Service Rank

1000

1e4

1e5

1e6
N

um
be

r
of

V
is

it
s

Number of Visits

0.001

0.01

0.1

1

10

100

T
c

[h
ou

rs
]

Tc

Figure 3: Popularity of services found in a portion of our trace,
and corresponding average time Tc (in hours) to collect at least 100
reports with a sample ratio equal to 1/10.

reports for each of the N services belongs to the family of Coupon
Collector’s problem. In particular, we have to refer to the Newman-
Shepp generalization [12]. Let E[V] be the expectation of the total
number of coupons (reports) to collect so that, for each of the N
goods (services), at least K coupons are collected. Then, E[V] is
given by:

E[V] = N logN + (K − 1)N log logN +O(N). (1)

The model assumes coupons are uniformly extracted among N
goods. By targeting K = 100 reports for N = 10, 000 services,
E[V] ≈ 2.3 M coupons. In our experiment, the total number of
HTTP requests that are logged considering one day is ≈ 45 M.
Thus, assuming i.i.d. requests, we obtain that the system would
take ≈ 1.2 hours to collect at least K=100 reports for each of the
N=10, 000 selected services in the catalog. If we apply a sampling
rate of 1/10, then the number of reports reduces to 4.5 M, and thus
the time to collect enough reports becomes 12 hours.

In reality, the probability of visiting a service is not i.i.d., and
it typically follows a heavy-tailed distribution. Consider the left
y-axis of Fig. 3. It reports the number of visits of the top 10, 000
services. As expected, it follows the typical Zipf-like distribution.
Thanks to this, the top 10, 000 services correspond to 88.13% of to-
tal visits. We run a trace-driven experiment using the actual trace to
evaluate the average time Tc needed to collect 100 reports for each
of the top 10, 000 services in the trace. We assume CROWDSURF
clients are configured with sampling ratio equal to 1/10. We focus
on the top 10, 000 popular services in the first day of our trace. For
each request, we measure Tc, averaging over 12 independent runs,
i.e., repeating the experiment assuming the collection starts at a dif-
ferent random initial time. As soon as K=100 reports are collected,
the data collection is said to be reliable for the target service.

Red dots in Fig. 3 reports Tc (in hours, right-y axis) for each
service. As shown, CROWDSURF would take few hundred seconds
to collect 100 visits for the most popular service, e.g., 87 s for
www.google.com, much less than the time predicted by Eq.(1). Less
than 48 h are needed in the worst case, i.e., for those services whose
visit rate is much smaller than the average rate considered in Eq.(1).
Observe that some services show very bursty traffic patterns that
considerably decrease Tc. Indeed, when the clients access those
services, we collect a large number of reports in few time. The
overall average value of Tc is 12.57 h.

This simple experiment shows that even with a population of
only 19, 000 contributors that are reporting 1/10 of their activity,
CROWDSURF can easily collect enough reports to compute sugges-
tions. We can also envision smarter sampling policies to, e.g., avoid
to keep collecting samples from most popular sites while only ask-
ing sample contributions for other services.

Ghostery AdBlock Plus WoT DNTMe PrivDog
Block ads Yes Yes No Yes Yes
Disable tracking Yes Yes Yes Yes Yes
Parental control No No Yes No No
Filter sent data No No No No No
Customizable Yes Yes Yes No Yes
Support mobiles Firefox Proxy No Custom No
Collect traffic Yes Yes No Yes No
Collect rating No No Yes No No
Open-source No Partially No No No
Corporate ver. Yes No No Yes No
Neutral authority No No No No No

Table 3: Feature comparison with selected client-based solutions.

5. CROWDSURF AND SIMILAR SOLUTIONS
To the best of our knowledge, we are the first to propose an open

cloud-based system relying on crowdsourced principles to increase
transparency in the web. The only proposal that could be compared
to CROWDSURF is Privee [13], but it presents significant differ-
ences. First, it specifically targets the classification of web services
based on the privacy policies they publish on their websites. Privee
combines users’ reports and automatic text-mining algorithms to
perform this classification. CROWDSURF follows similar princi-
ples, but has a much wider scope. For instance, Privee does not
leverage HTTP traffic samples, but only users’ reports, and, more
importantly, do not offer a client-side component which translates
classification results in concrete actions. The browser plugin Privee
provides simply labels potential privacy-offending services. Dif-
ferently, CROWDSURF provides information users can exploit to
manipulate their HTTP traffic.

Focusing on tools made available by the industry, we can find
several solutions which help users filter the HTTP traffic they gen-
erate. However, these tools are mainly oriented to protect users
from online trackers or advertisement. They are all implemented as
browser plugins. The most popular are DoNotTrackMe (DNTMe),
WebOfTrust, Ghostery, EFF’s Privacy Badger PrivDog, AdBlock
Plus and NoScript. Tab. 3 reports some of the features we want
CROWDSURF to offer against their availability in a subset of the
aforementioned tools. As reported, each tool offers different sub-
sets of features. Notably, no plugin investigates which kind of
data is exchanged with the server, mostly blocking the transactions
based on the contacted hostname only. None of them assess the
security level of communications carrying users’ sensitive infor-
mation (e.g., how users’ credentials are transmitted to the server –
see Sec. 3.2). Not all of them offer a good level of customization.
Only a few of them collect users’ contributions and provide infor-
mation about website trustfulness. For instance, AdBlock Plus col-
lects users’ traffic samples (but the users has no control of which
data is shared) and WoT collects users’ ratings. None of them is
open-source, and AdBlock Plus is the only one sharing with the
community the list of regular expressions it uses to build the black-
list of services. Few solutions offer advanced functionality which
may be suitable for the administrators of corporate networks (e.g.,
a business version is available). Only EFF’s Privacy Badger (not
in the table) is developed and maintained by a neutral authority.
All other tools are developed by third parties, which the users are
compelled to trust, sometimes disappointingly [14].

Importantly, only three of them can run on mobile devices, but
with severe limitations. For instance, they run either as stand-alone
web browsers, or as Firefox plugins. Thus, they have no visibility
on the traffic generated by other apps. AdBlock Plus runs as a proxy
inside the mobile terminal, so to process HTTP traffic generated by
applications. However, it has no visibility on HTTPS traffic. This is
in common with network-based solutions such as proxies and fire-
walls. They do not provide the functionality we want CROWDSURF
to implement. Indeed, despite both have been designed to process

0 10 20 30 40 50 60 70 80 90
Share Of users (%)

Users Without Plugin

Adblock Plus

AdBlock

Do Not Track Me

Word Of Trust

Ghostery

No Script
E

xt
en

si
on

s

Figure 4: Shares of users adopting “popular” privacy-preserving
extensions.

traffic, they have no visibility when encryption is enabled. Man-
in-the-Middle solutions are also available, but appear to be very
intrusive (and cumbersome).

We check the popularity of some extensions among Internet users
by leveraging the ISP dataset. Fig. 4 show the results. 85% of
households do not have any of these plugins installed on any de-
vice they use. Only AdBlock Plus seems to be quite popular, being
installed in 11% of households. However, by checking the user-
agents in the requests, we observe it is installed mostly on Personal
Computers, leaving tablets and smartphones unprotected even in
those households. This observation demonstrates, first, that the vast
majority of users are not conscious of their information being ex-
posed when surfing web, and, second, that those who actually care
about this problem are not aware of means to supervise their surfing
when using mobile terminals.

In summary, we lack a comprehensive solution capable of of-
fering Internauts visibility and control of the information they send
over the Internet, independent on device/OS they use. CROWDSURF’s
challenge is in offering a unified, not-optional, cross-device and
cross-platform system.

6. DISCUSSION
CROWDSURF design presents some practical challenges that must

be faced, and ingenuity must be used to find appropriate solutions.
The research community as a whole is called to design efficient
algorithms, and propose scalable implementations. CROWDSURF
offers this possibility, allowing anyone to contribute.
i) Protecting CROWDSURF users’ privacy: For CROWDSURF is
vital to maintain a good degree of visibility on the traffic sample
users decide to share. However, it is fundamental to guarantee that
all users’ sensitive information is filtered out from the traffic sam-
ple before this is shared. To overcome limitations of the current
CROWDSURF’s anonymization mechanisms, we are investigating a
methodology based on differential privacy [8].
ii) Protection from malicious biases: CROWDSURF’s suggestion
system might be polluted by malicious services to increase their
reputation or gain popularity among users. Clearly, mechanisms to
to prevent this kind of attacks must be adopted. We leave this for
our future work.
iii) Usability: A key factor to let CROWDSURF reach a wide popu-
lation of users is to combine CROWDSURF features with a simple,
easy to use, yet effective interface to quickly inspect contacted ser-
vices, customize rules, generate suggestions, etc.
iv) Web industry reaction: We believe that CROWDSURF, if widely
deployed, would not incite services to contrast or boycott it. In-
stead, we believe CROWDSURF would lead to a better, more trans-
parent web, where providers would be induced to improve the relia-
bility of their services. In turn, users would reward trustful providers
with their loyalty. Moreover, CROWDSURF has the potential of cre-
ating room for new services and opportunities such as, e.g., a new
“market of suggestions”.

iv) Complexity: We are aware that CROWDSURF introduces a con-
siderable amount of new “mechanisms” to guide users during their
online activity. However, we believe that this represents a little
technological cost in comparison to the large flexibility and advan-
tages it would introduce.

7. CONCLUSION
This paper presented CROWDSURF, a crowdsourced holistic sys-

tem which allows users and companies to supervise the information
exchanged in the web.

We have shown that CROWDSURF is feasible. We presented real
data to support how we can build a crowdsourced knowledge sup-
ported by automatic algorithms. As a proof of concept, we imple-
mented CROWDSURF as a Firefox plugin, whose benefits can come
at a marginal performance cost for the user. Second, we provided
an example of algorithm for the automatic generation of sugges-
tions for the users.

We are aware that our idea is ambitious, as, first, CROWDSURF
shall pass through a long and difficult design and standardization
process to get accepted as a compelling technology by the industry.
It shall undergo a deep engineering effort to convince users about
its reliability, usability and effectiveness. However, as the research
community is becoming more and more conscious that data consti-
tutes a vital asset in modern Web, we are confident that the unified
solution offered by CROWDSURF represents a good starting point
to protect (and possibly endorse) such asset.

8. REFERENCES
[1] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,

K. Papagiannaki, and P. Steenkiste, “The Cost of the “S” in HTTPS,”
in ACM CoNEXT, 2014.

[2] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and
C. Diaz, “The Web Never Forgets: Persistent Tracking Mechanisms
in the Wild,” in ACM SIGSAC, 2014.

[3] B. Krishnamurthy, K. Naryshkin, and C. E. Wills, “Privacy leakage
vs. Protection measures: the growing disconnect,” in W2SP, 2011.

[4] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi, “Host
Fingerprinting and Tracking on the Web: Privacy and Security
Implications,” in NDSS, 2012.

[5] H. Metwalley, S. Traverso, M. Mellia, S. Miskovic, and M. Baldi,
“The online tracking horde: a view from passive measurements,” in
TMA, 2015.

[6] L. Popa, A. Ghodsi, and I. Stoica, “HTTP As the Narrow Waist of
the Future Internet,” in ACM HotNets, 2010.

[7] C. Riederer, V. Erramilli, A. Chaintreau, B. Krishnamurthy, and
P. Rodriguez, “For Sale : Your Data: By : You,” in ACM HotNets,
2011.

[8] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving
data publishing: A survey of recent developments,” ACM Comput.
Surv., vol. 42, pp. 14:1–14:53, June 2010.

[9] H. Metwalley, S. Traverso, M. Mellia, S. Miskovic, and M. Baldi,
“CrowdSurf: Empowering Informed Choices in the Web,” ArXiv
e-prints, Feb. 2015.

[10] Hackers steal vast eBay user database, including passwords,
http://www.bdlive.co.za/world/americas/2014/05/23/

hackers-steal-vast-ebay-user-database-including-passwords.
[11] H. Metwalley, S. Traverso, and M. Marco, “Unsupervised detection

of web trackers,” in IEEE GLOBECOM, 2015.
[12] D. J. Newman, “The double dixie cup problem,” American

Mathematical Monthly, 1960.
[13] S. Zimmeck and S. M. Bellovin, “Privee: an architecture for

automatically analyzing web privacy policies,” in Proceedings of the
23rd USENIX conference on Security Symposium, pp. 1–16,
USENIX Association, 2014.

[14] Google, Microsoft, and Amazon are paying to get around Adblock
Plus, http://www.theverge.com/2015/2/2/7963577/
google-ads-get-through-adblock.

http://www.bdlive.co.za/world/americas/2014/05/23/hackers-steal-vast-ebay-user-database-including-passwords
http://www.bdlive.co.za/world/americas/2014/05/23/hackers-steal-vast-ebay-user-database-including-passwords
http://www.theverge.com/2015/2/2/7963577/google-ads-get-through-adblock
http://www.theverge.com/2015/2/2/7963577/google-ads-get-through-adblock

	Introduction
	CROWDSURF
	CROWDSURF Architecture Overview
	CROWDSURF on the Client-side
	CrowdSurf in the Cloud
	Application Examples

	Proof of Concept
	Performance Implications
	Checking HTTPS Information Handling

	CrowdSurf at scale
	Automatic Tracker Detector
	A Feasibility Check

	CrowdSurf and similar solutions
	Discussion
	Conclusion
	References

