POLITECNICO DI TORINO
Repository ISTITUZIONALE

Network Connectivity Graph for Malicious Traffic Dissection

Original

Network Connectivity Graph for Malicious Traffic Dissection / Bocchi, Enrico; Grimaudo, Luigi; Mellia, Marco; Baralis,
ELENA MARIA; Saha, Sabyasachi; Miskovic, Stanislav; Modelo Howard, Gaspar; Lee, Sung Ju. - ELETTRONICO. -
(2015), pp. 1-9. (Intervento presentato al convegno 24th International Conference on Computer Communication and
Networks (ICCCN) tenutosi a Las Vegas, NE nel august 2015) [10.1109/ICCCN.2015.7288435].

Availability:
This version is available at: 11583/2625360 since: 2015-12-12T18:42:527

Publisher:

Published
DOI:10.1109/ICCCN.2015.7288435

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

20 March 2024

Network Connectivity Graph
for Malicious Traffic Dissection

Enrico Bocchi*, Luigi Grimaudo*, Marco Mellia*, Elena Baralis*,
Sabyasachi Sahaf, Stanislav Miskovic!, Gaspar Modelo-Howard!, Sung-Ju Lee®

*Politecnico di Torino
{name.surname } @polito.it

Abstract—Malware is a major threat to security and privacy
of network users. A huge variety of malware typically spreads
over the Internet, evolving every day, and challenging the research
community and security practitioners to improve the effectiveness
of countermeasures.

In this paper, we present a system that automatically extracts
patterns of network activity related to a specific malicious event,
i.e., a seed. Our system is based on a methodology that correlates
network events of hosts normally connected to the Internet over
(i) time (i.e., analyzing different samples of traffic from the
same host), (ii) space (i.e., correlating patterns across different
hosts), and (iii) network layers (e.g., HTTP, DNS, etc.). The
result is a Network Connectivity Graph that captures the overall
“network behavior” of the seed. That is a focused and enriched
representation of the malicious pattern infected hosts exhibit,
purified from ordinary network activities and background traffic.

We applied our approach on a large dataset collected in a
real commercial ISP where the aggregated traffic produced by
more than 20,000 households has been monitored. A commercial
IDS has been used to complement network data with alerts
related to malicious activities. We use such alerts to trigger our
processing system. Results shows that the richness of the Network
Connectivity Graph provides a much more detailed picture of
malicious activities, considerably enhancing our understanding.

I. INTRODUCTION

Information security over the Internet remains a primary
concern for consumers, enterprises, and governments alike.
Malware infiltrates and spreads over the Internet hiding its
traffic among humongous benign traffic. Cyber-attackers also
use sophisticated schemes to modify malware and evade de-
tection by security measures. Recent industry reports disclose
that existing antivirus software’s detection rate of newly crafted
viruses is less than 5% [1]. This creates a de facto arm’s race
between security researchers and cyber-attackers.

Practitioners in the field take different approaches to detect
malware, which result in a set of methodologies ranging from
instruction set and code analysis, to traffic characterization of
infected hosts. For instance, a detection rule can be designed
by studying the behavior of infected hosts in a controlled
environment (e.g., a honeypot). In this scenario, it is possible
to identify the communication channel with the Command and
Control (C&C) network, or define signatures for proprietary
and obfuscated protocols used by malicious software.

fSymantec, Corp.
{name_surname } @symantec.com

°KAIST
sjlee@cs.kaist.ac.kr

However, it is generally more complicated to obtain a
complete picture of the overall malware behavior due to the
evolution of malware itself to circumvent counteractions, and
the lack of tools that easily extract facts related to malicious
activities. Thus, to obtain a thorough and up to date picture,
security specialists are called to a manual and cumbersome
analysis of data produced by infected hosts in the wild.

In this paper, we present a methodology to automatically
extract detailed network patterns generated by infected hosts.
We consider the vantage point offered by a network where the
traffic aggregate of thousands of possibly infected hosts flows.
A passive monitoring tool extracts and logs events from the
traffic. An event could be a HTTP request, a DNS response, or
simply a TCP flow going to a host using an unknown protocol.
A security monitor, e.g., an Intrusion Detection System (IDS),
analyzes the traffic in parallel, and flags some of the events as
malicious, according to a database of already available rules.
These flagged events are the seeds that trigger our analysis.
Given the traffic log and a seed, our system provides a set
of “forensic” information to the security analyst for a better
understanding of the context in which malicious events take
place. Ultimately, it extracts a detailed and complete picture
of the malicious activities correlated with the seed event.

Identifying the subset of events that belongs to the same
activity is a challenging task as each host generates thousands
of events caused by multiple applications running concurrently.
For instance, the same host could visit a legitimate web page,
poll the mail server, and upload files on a cloud storage service,
while a malware is connecting to a C&C node that instructs
victims with new malicious instructions. Furthermore, the
sequence at which events appear is typically not deterministic
with randomness due to diversity (e.g., two hosts visiting the
same page can fetch objects in a different order), and system
memory (e.g., a DNS request not appearing in the traffic as
the server name has been previously resolved and cached).

Our approach is based on a filtering and enrichment process
that leverages (i) temporal and (ii) spatial repetitiveness of
events generated by different hosts. The intuition is to look
for common patterns that are present in different snapshots
from the same host, and among different hosts. We explicitly
go after repetitive and popular events. In practice, as few as
three observations of a malicious seed are enough to trigger our
methodology. The result is offered as a Network Connectivity

HTTP event DNS event I generic TCP/UDP event

malicious binary download successfyl Traffic to domC Traffic to domC

activity obfuscated JS domC DNS req. (€&0) (C&C)
failed failed failed
‘ DN reg. DNS req. DNS req.
- time
host traffic

\ 4

normal

normal ¢jick on acme.org m normal browsing brovys{'ng
activity email check activity ACtVIty amail check
Fig. 1. Example of events generated by a host as seen from the network.

Graph (CG), which models only events highly correlated with
the seed, and allows us to easily navigate and extract valuable
information using our domain knowledge.

We start from real traffic collected in an operative network
where more than 20,000 households are monitored. In a day,
more than 336 M events are logged by the passive monitoring
tool. A commercial IDS rises alarms for 1,700 unique mali-
cious seeds, generating 42,000 events and belonging to more
than 150 different threats. Out of those events, about 40,000
(95%) are processed by our system as they show the required
properties of repetitiveness. For each seed, we run the filtering
and enrichment process. At the end, the information offered
in the final CG grows by a factor of 40, i.e., starting from a
single seed, which is represented by three nodes in the CG,
160 nodes are present on average in the final CG.

Visual inspection allows us to immediately spot (i) the ma-
licious infrastructure (e.g., the presence of new C&C nodes),
(i1) malicious attacks interfering with legitimate infrastructures
(e.g., the exploitation of benign websites to force the download
of Exploit Kits), and (iii) some evasion techniques adversaries
uses (e.g., the usage of DNS fast-fluxing [2]).

The contributions of our work are as follows:

e We propose a methodology that extracts and represents
the network activity surrounding a malicious seed, which
is useful to identify and derive a detailed superset of
events correlated to it.

e We take a multi-layer approach that combines the con-
nectivity between different protocol layers to uncover
hidden behavior and provide forensic information.

e We offer the information in the form a Network Connec-
tivity Graph, that is a straightforward means to represent
the common activity of malicious incidents.

We believe that applications of the CG go beyond the simple
visualization of the malicious activity. For instance, signatures
of the IDS can be updated and enriched, or the CG can be used
as a signature itself to design novel behavioral classifiers able
to distinguish between CGs derived from malicious or benign
seeds. We leave these contributions as future work.

II. METHODOLOGY OVERVIEW

Before presenting the details of our system, we provide an
overview and the intuitions behind its design.

A. Scenario

We consider a scenario in which a sniffer passively monitors
the traffic generated by a large group of hosts, e.g., hosts in

Host Connectivity
Observation Snapshots Common Patterns Graph (Host-CG)

Extraction Creation
seed seed /
Host v ¥ 5
traffic | || time

Qg

&

snapshot snapshot

Fig. 2. Host Connectivity Graph generation.

an enterprise network, or households connected to a Point of
Presence (POP) of an Internet Service Provider (ISP). The
sniffer extracts information from the packets and logs them
in a file where each row corresponds to a different event. We
assume that, for each TCP and UDP connection, the sniffer
logs the flow identifier, the timestamp of the first packet, the
flow duration, the number of exchanged packets and bytes, etc.
For some protocols, the sniffer can provide multiple events
with very detailed information. For instance, it could annotate
each HTTP request/response with the requested URL, user-
agent, content-type, server response status code, etc.

Consider the timeline generated by a host reported in Fig. 1.
It details the logged events generated by Internet applications.
DNS and HTTP events are reported using specific markers,
while other protocols are reported as generic TCP/UDP events.
The user is visiting some web page (e.g., acme.org) while
an email client is polling a mail server for new messages.
Normal events are reported in the bottom part of the timeline.
Unfortunately, acme.org is hosting a Drive-by Download page.
Events on the upper part are due to the malicious activity in
which the host is unknowingly fooled to download a malware
from a malicious JavaScript contained in the web page. We
observe the download of the JavaScript object, followed by
the download of the malware. Once running at the host, the
malware periodically contacts (via HTTP) a C&C server whose
hostname is quickly rotated using fast-flux [2]. The periodic
polling is visible in the log as a sequence of (failed and
successful) DNS requests, and HTTP traffic to the C&C node.

Based on the view of the traffic from all monitored hosts, we
design a methodology that extracts and characterizes common
network activities. The challenge is how to isolate the events
that are possibly correlated with a specific malicious activity
from the “background” noise caused by other events.

B. Network Connectivity Graph

Consider a seed and the timeline around it. Intuitively, close-
in-time events are likely to be related to it. For instance, in
Fig. 1, the DNS request followed by several HTTP requests to
the acme.org server could be identified as a typical pattern.
However, Drive-by Download attacks [3] can mimic or be
hidden in the same behavior. To isolate them, we study
snapshots of traffic that contain the specific seeds.

Fig. 2 shows the workflow used to transform the events
of a given host into a Host Connectivity Graph (Host-CG).
Three steps are executed: (i) Snapshots extraction; (ii) Per-
layer common patterns mining; and (iii) Host-CG creation.

Algorithm 1 Create Network Connectivity Graph.

input args s seed

H: set of hosts

A: snapshot duration
output Seed Connectivity Graph

1: procedure graphLayer (s, S, layer):
2: P = findCommonPattern (s, S, layer)
3: return fromPatternsToGraph (P, layer)

4: procedure hostConnectivityGraph (s, h, A):
5: S = getSnapshots (s, h, A)

6: gyrrp = graphLayer (s, S, 'HTTP’)

7 gpng = &raphLayer (s, S, 'DNS’)

8: gpop = graphLayer (s, S, "TCP’)

9: gupp = &raphLayer (s, S, "UDP’)

10: return connectLayers (& yrrp> Epns> Ercps Supp)
11: procedure seedConnectivityGraph (s, H, A):
122 Gs=0

13: foreach h € H:

14: G; < hostConnectivityGraph (s, h, A)
15: return fuseGraphs (Gs)

Snapshots Extraction. For each instance of the seed, we ex-
tract a snapshot defined as the ordered set of events occurring
in the temporal window centered at the seed. Two snapshots
are presented in Fig. 2 as example.

Common Patterns Mining. We then look for commonalities
across snapshots. In particular, we look for patterns, defined
as the unordered set of events, that appear across multiple
snapshots. Intuitively, the periodic HTTP requests toward
the C&C server would possibly be a repeating pattern on
the HTTP-layer. On the contrary, the web browsing events
asynchronously generated by the host would be present only
in a small subset of snapshots.

We extract separate common patterns by processing the host
traffic considering layers in isolation. The traffic generated
on each layer corresponds to all events of a specific protocol
so that HTTP, DNS, other-TCP (i.e., all TCP communication
except HTTP on port 80), and other-UDP (i.e., all UDP
communication except UDP on port 53) events are separately
analyzed. This choice originates from the fact that each proto-
col has some peculiarities that we would leverage. For instance,
in the HTTP layer, we are looking for common and repetitive
patterns. On the DNS layer instead, a single failed DNS request
may be more interesting than successful DNS requests.

Host Connectivity Graph. For each layer, we represent
the common pattern as a graph where nodes and edges are
specifically defined to offer a compact yet rich representation.
Consider the HTTP-layer. URLSs can be represented by sepa-
rating server hostnames and object paths using two nodes: An
edge between the hostname and the path would thus represent
a URL. The resulting graph captures the website structure.
For example, acme.org/index.html and acme.org/logo.png are
represented with a hostname node (acme.org) and two objects
nodes. Similarly, in the DNS layer, the request for acme.org
is linked to the IP address(es) returned by the resolver.

ith snapshot b——(—— jth snapshot b—— ———

i+15¢snapshot ——() — i+15¢ snapshot — 00—
—>T2 - - —<T/2
merged -
snapshot ith snapshot — —
i+1° snapshot ——
Fig. 3. Snapshots creation when consecutive snapshots overlap.

As last step, we connect each per-layer graph into a final
Host Connectivity Graph. This is done by adding links across
multiple layers. For instance, the acme.org hostname in the
HTTP layer is linked to the same node in the DNS layer graph.

The resulting graph is a rich and compact representation of
the common network activity related to a specific seed and a
given host. Each layer brings a specific characterization of the
activity given by a protocol, resulting in an overall integration
of common patterns. In the previous example, the HTTP layer
highlights the common websites hosting the binary download,
while the DNS layer reveals failing requests triggered before
or after C&C communications. Focusing only on each activity
individually would miss such relationship.

Seed Connectivity Graph. We leverage the fact that the
same seed may be present in the timeline of different hosts,
offering some “spatial” diversity. To have a broader view of the
common activity related to a specific seed, we “fuse” multiple
Host-CGs into a single Seed Connectivity Graph (Seed-CG).
As for the common pattern, we have the freedom to choose
between a selective fusion, e.g., retaining only those common
nodes from all Host-CGs, or a permissive fusion, e.g., merging
all nodes from all Host-CGs.

III. BUILDING THE CONNECTIVITY GRAPH

The key aspect of the proposed methodology is the approach
used to create Network Connectivity Graphs. The pseudo-code
in Alg. 1 details this procedure. This section discusses the
design choice taken and the parameters to be controlled when
creating a network connectivity graph.

A. Snapshots Extraction

The first step to process host traffic is the extraction of the
observation snapshots. We define parameter A that controls the
duration of the snapshots. In particular, a snapshot is composed
by all events occurring in the interval +A /2 centered around
the seed. In case consecutive snapshots overlap, we apply
two strategies depicted in Fig. 3 to solve the conflict. If
the overlapping window lasts for more than A/2, the two
snapshots are merged. Otherwise, the overlap is split into
two halves, each associated to a different snapshot. These
operations are executed by getSnapshots() (Alg. 1 line:5) that
receives the seed (S), a host (h) presenting at least one instance
of the seed, and the snapshot duration (A) as inputs. It returns
the set of snapshots (S) found.

Different values of A can lead to different results: the larger
the A (e.g., hours), the more the snapshots will merge. This

results in less snapshots on which to perform pattern mining,
with each presenting “noisy” data since not many events are
filtered. Conversely, a small value of A (e.g., seconds) might
be too conservative. In the following, we set A = 30 minutes.
A complete sensitivity analysis is reported in Sec. V-B.

B. Common Patterns Mining

We use the frequent itemset mining technique to extract
common patterns [4]. This technique works on unordered
sets of simple objects (e.g., strings). Snapshots, however,
correspond to ordered sequences of events that may appear
multiple times. We thus map each event to an ifem based on
the event properties. Specifically:

e a HTTP item is represented by the HTTP URLs, e.g.,
http://domain.com/path/file.ext.

e a DNS item combines the requested hostname with
either the list of returned IP addresses, or the query
response code, e.g., DoesNotExists.com—NXDomain.

e TCP and UDP items are represented by the server IP
address and the port contacted, e.g., 10.20.30.40—443.

For each snapshot, we create a transaction containing the
set of distinct items. We look for common itemsets, i.e., sets of
items common across multiple transactions. A support value is
computed for each itemset and indicates the fraction of transac-
tions containing the specific itemset. An itemset is “frequent”
if its support is greater than or equal to MinSupport. For a
given support value, the itemset presenting the highest number
of items is said to be closed. The closed attribute implies that
no other itemset made by more items has the same support.

Itemsets with a number of items smaller than MinLength
could be discarded. By setting MinLength=1, frequent itemsets
are equivalent to simple frequent items in terms of Connectiv-
ity Graph elements. For MinLength=2, at least pairs of items
are considered. For instance, consider acme.org/index.html and
acme.org/logo.png that appear in 70% and 45% of snapshots,
respectively. The itemset (acme.org/index.html, acme.org/logo.
png) may appear from 15% to 45% of snapshots.

Looking for all itemsets is a NP-hard problem [5], but well-
known algorithms compute frequent closed itemsets efficiently.
Among those, we rely on the Carpenter algorithm [6], which
is specifically designed for datasets made of few transactions
(i.e., snapshots) that have a huge number of items (i.e., events).

Our system looks for frequent closed itemsets that, for
simplicity, we call patterns. Patterns are extracted by findCom-
monPatterns() (Alg. 1 line:2), that receives the seed (S), the
set of snapshots (S) and the layer (layer) to process. It returns
the pattern (P). The pattern extraction process is guided by
the definition of the value of MinSupport, i.e., events that
do not appear with frequency of at least MinSupport are
discarded. We set MinSupport = 1/2, i.e., for each host, we
discard all events not appearing in at least half of the snapshots.
Sensitivity analysis is detailed in Sec. V-B.

C. Host Connectivity Graph

As previously discussed, we individually process each layer
to create separate graphs. The graphLayer() (Alg. 1 line:1)

ob/ect-patr

07 05;,0/ \/7051773/776
L] .‘
.O
2
f105tr73/77€
server /P

/;OSI‘W//

.
H
v error~coae H

|
ol oor” /
\ &
rost /P server /P Oth-UDP

Fig. 4. Graph layers nodes and multi-layer connections.

extracts patterns for a specific layer and maps them into a
graph. This mapping exploits a subset of the events properties:

e The HTTP layer has two node types: hostnames and
object paths. An edge connects the hostname and the
object path to compose a URL.

e The DNS layer has three node types: server hostnames,
server IP addresses, and DNS error codes. An edge
connects the hostname to either the IP addresses returned
by a DNS response, or to an error code.

e The TCP and UDP Ilayers have two node types: server
IP addresses and server ports. An edge connects the two
to represent a TCP or UDP connection.

Different graph layers are combined in a single Host-CG
using hostConnectivityGraph() (Alg. 1 line:4). The function
starts by extracting the snapshots (S) related to the seed.
The snapshots are then processed to extract the graph layers
(8urTP> 8DNS: 87CP> EUpp) through calls to graphLayer().
The separate layers are finally integrated to form the Host-CG
using the collectLayers() function, which looks for common
nodes across the layers and links them as represented in Fig. 4.
Notice that each graph layer contains the host (h) IP address
by construction.

D. Seed Connectivity Graph

To provide the global view of the common behavior seen
by observing multiple hosts, we combine all Host-CGs. This
operation is performed by the seedConnectivityGraph() (Alg. 1
line:11) function. For each host (h) among the subset pre-
senting the seed (H), the function creates the Host-CG calling
hostConnectivityGraph(). All the output graph are collected
into the set Gposts. The graphs are finally merged using
fuseGraphs(). This operation can consider different strategies.
For instance, applying a strict intersection would retain only
nodes appearing in all Host-CGs. In the worst case, this results
in a Seed-CG containing only the original seed. More complex
strategies can instead compute nodes and links popularity
among hosts, and discard those below the threshold MinPop-
ularity. In the following, we consider the strict intersection
across Host-CGs as the default choice, i.e., MinPopularity=1.

TABLE 1. DATASET SUMMARY.

All Flagged
Class Hosts (%) [Events (%) Hosts Events
HTTP 16,217 (79.1)| 397 M (1.8)| 1,308 | 42,007
DNS 15,164 (74.1)| 30.7M (9.3) - -
Other TCP 18,911 (92.31)| 408 M (I2.14) 31 1,543
Other UDP 18,032 (88.02)| 2247 M (66.87) - -
Total 20486 [3359M [1321 | 43550

IV. DATASET

We now describe the traffic traces and tools that we use to
extract information to build the dataset that we use.

A. Data Collection

We consider a vantage point located in a commercial ISP
where approximately 20,000 customers are connected. Most
of the customers are residential users, connected via ADSL
modems to the monitored point. Each customer modem is
given a static IP address, which can be used to identify all
the traffic generated/destined to the same household. In the
following, we generalize the term “host” to refer to traffic
exchanged by a single household (IP address).!

We consider a trace obtained live during one day in April
2012. A commercial monitoring tool processed the packets in
real time to generate a text log file in which each TCP and
UDP flow is logged. For each flow, a record is stored. It details
the flow identifier (the tuple source/destination IP addresses,
source destination ports and protocol type), the timestamp of
the first packet, the total number of packets/bytes sent and
received, the application-protocol used. In case protocol is
HTTP, the entry is annotated with server hostname, object
path, user-agent, content-type, response status (e.g., 200 OK),
content-length directly extracted from the HTTP header[7].
In case multiple HTTP objects are fetched using the same
TCP flow (e.g., due to HTTP-persistent), multiple records are
logged. Similarly, for each DNS transaction, the tool logs the
requested hostname, the set of returned IP addresses, or the
response code in case of an error (e.g., NXDomain) [8]. To
protect users privacy, sensitive information has been removed.

In parallel to the monitoring tool, a commercial IDS pro-
cessed the packets in real time, logging alerts if some network
activity matches any rule that is present in its database. We
consider the IDS as an oracle that reveals which events are
to be considered malicious. For each alert, the IDS simply
specifies the flow identifier, and a threat-ID, i.e., a numerical
code that identifies a particular threat. The IDS is very con-
servative in triggering alerts and hence it is possible that some
malicious events do not trigger any alert. Conversely, every
alert is related to some malicious activity.

B. Dataset Overview

We consider each record in the log as a different event. By
matching the flow identifiers, alerts are linked to records, so

!Given the popularity of NAT (Network Address Translation) at home, the
ADSL modem IP address identifies traffic exchanged by all devices accessing
the Internet at each customer household.

1 ,
All — .
2 0.8 \, Flags v § 100
206 \\ g
° o “‘_\
g 04 S 1o ~
- . S N z
= Kk £
0.2 \ | SO RS S R
0 i 1

1 10 100 1K 100K 6M
URL Popularity Rank

(a) Popularity of HTTP objects.

1 10 50 236 1783
Malicious seeds

(b) Snapshots per malicious events.

Fig. 5. Dataset characterization. (a).Top-100 HTTP objects are whitelisted
(b).Seeds generating at least 3 snapshots are processed by our system.

that records can be flagged as malicious. We obtain the labeled
dataset described in Table 1. Overall, 20,486 hosts generated
about 336 M total events over the whole day. About 20%
of those are related to HTTP and DNS records, with a large
majority of the “Other TCP” due to TLS/SSL (HTTPS) traffic,
and “Other UDP” events due to Peer-to-Peer applications.

Among all users, 6.4% exhibit some malicious activity (i.e.,
at least one event is flagged), with 151 different threat-IDs
being reported by the IDS. Yet, only 43,550 flags are raised by
the IDS. That translates to a negligible 0.013% of all traffic.
Most of these records correspond to HTTP traffic, with the
exception of some IRC and RPC flows. This confirms on the
one hand the very stealthy and low rate activity that malware
is typically generating. On the other hand, it confirms the
conservative design of IDS. Almost all the flags are related
to malicious HTTP activities including Exploit Kits (e.g., Nu-
clear, Blackhole, ZeroAccess), Drive-by Downloads, Malicious
Browser Toolbars (e.g., Ask.com), Trojans and Worms (e.g.,
Skintrim, Conficker), etc.

C. Whitelisting

Whitelisting is a common technique used to both reduce
the amount of information processed, and to discard data that
would possibly pollute the analysis. For the same purposes,
we built a whitelist that targets very popular events that would
be in any CG with high probability but add little information
or create noise. Instead of creating a manual list of popular
and benign events, we opt for a dynamic and context-aware
approach. We build a whitelist based on events popularity
among clients, and select the top-k elements to be ignored
during the processing. We whitelist single HTTP events and
not the entire websites, as it is known that malware can be
hosted and distributed also from legitimate services.

Fig. 5(a) shows the HTTP events popularity, i.e., the fraction
of hosts that accessed a given URL (with stripped parameters).
Note the log scale on x-axis. Fig. 5(a) shows the classic
heavy tailed popularity. Top URLs are clearly very common
among most of the hosts. Those include social network buttons
(e.g., www.facebook.com/plugins/like.php), analytics services
(e.g., www.google-analytics.com/ga.js), software update check
(e.g., download.windowsupdate.com/v9/windowsupdate/redir/
muv4wuredir.cab), etc. Red triangles highlight those events
that are considered malicious by the oracle. The most diffused

rossdbo Mz
555520050 157 T,

1575586149

o1z, |
onzs 40047
3 \
0425

sy’
60134865
‘iﬂs' 'eq
it
i A

62 149452

popss certfalrub net

(a) Initial graph from a single snapshot.

(b) Host-CG of a

8080150135
4)\ 1942045127
p)

(o
PEN
2 s o

o 1731
ol N
7412579155 | ;
o 7412578708 \
V4 |
Apdeon
pop.arallcom |
ot

izrov. 968 com

taxescell.ru
bluesbars.ru

< corlion.ru
adbier.com

3 tiebath.ru
moodgum.ru

dandSrat.com NOn‘em
Dol

pzsds

/mybach.gﬁb/ ;amqp%mcy.cum
Ivolvo.php Jworld.php Ih'yah’qe.oomA
b / } > / ratfigkicbm
jockesnafiiked.com vergriBlom "
\ blueberfymojcom |\ 108.174.53.11

\ 21752.202.71 Fal
\ 216.144.:250.123
19924377141 60.13.186.5

152 |

accouni

s-staic.k.

single client. (c) Final Seed-CG.

Fig. 6. Evolution of Network Connectivity Graphs at several steps of our methodology. The event under study http://jockesnotliked.com/mybach.php is reported

as malicious by our oracle. Three clients are flagged for this event: Two generate

type of attack - a Drive-by Download threat - infects about
800 hosts (3.8% of hosts). The huge tail confirms the intuition
that most of URLs are accessed by few hosts only. We
conservatively compile a whitelist made of the Top-100 HTTP
events, which equivalently filters those events that are common
to more than 23% of hosts. This avoids blurring the common
pattern mining and reduces the itemset extraction time, despite
not affecting the descriptiveness of CGs.

V. CONNECTIVITY GRAPH CHARACTERIZATION

We next evaluate the benefits and properties of CG creation.
We first identify the amount of events eligible of becoming
seeds. Recall that our methodology requires a recurrence of
seeds over time and over population. The requirement matches
basic properties of malicious activities, such as recurrent re-
porting to the C&C center or recurrent attempts to identify new
victims. For this reason, we expect that malware distributors
would try to disguise such repetitiveness as much as possible.
In our dataset we found 820 malicious hosts that had only one
flagged event. If analyzed in isolation (on per host basis), these
events would not have any recurrence.

Fig. 5(b) reports the number of snapshots that can be
associated to each unique malicious event. By considering
1,783 unique malicious events, we found that 236 events can
be uniquely associated to at least three independent snap-
shots. Setting MinSnapshots=3, these events become fully
characterizable by our system. In fact, looking at the absolute
numbers, we can provide insights for 95% of the malicious
snapshots in our dataset (40k out of 42k events).

A. Connectivity Graph construction steps

In Fig. 6, we present an example of the Network Connec-
tivity Graph evolution according to the steps of the method-
ology described in Sec. III. We consider the malicious seed
http://jockesnotliked.com/mybach.php.

e Fig. 6(a) shows the network traffic produced by a host during
a single 30 minute snapshot centered on the seed. Obviously,
this graph is very difficult to interpret.

e Fig. 6(b) presents the Host-CG of one of the three clients (red
marker in the center) involved in the malicious activity. Despite
being already clearer and understandable with little effort, it
still contains some nodes related to ordinary user’s behavior

two analysis snapshots each, while the third client generates eight snapshots.

that are not part of the malicious activity. For instance, HTTPS
and POP3 Secure transactions on the TCP layer (light green
circles in bottom-right part) are related to mail exchange and
login to Google services, while flows over UDP (olive green
circles in upper part) are mostly directed to the Skype service.
e Fig. 6(c) corresponds to the final Seed-CG generated by
our system when fusing the Host-CG of three different hosts.
It is now much easier to identify the events involved in the
suspicious activities. Events highlighted by red edges are
those considered malicious by our oracle. The richness of
the provided indications stems from the augmented context
that we provide about these clients. First, the clients access
three URLs (blue hexagons) hosted by three hostnames
(orange circles) all of which now become an indication
of a suspicious infrastructure. Next, two of the contacted
hostnames (jockesnotliked.com and blueberrymo.com) use the
same [P address (gray diamonds) suggesting for a potential
obfuscation by hostname flipping and resources reusage, both
common practices among malicious adversaries. The third
hostname (rivergrape.com) is distributed over several mirrors
whose IP addresses belong to very different subnets, a hint of
cheap infrastructure or zombies that were previously infected
by the malware. Finally, the right side of Fig. 6(c) shows
another layer of information indicating multiple failures of
DNS queries (purple boxes). This reaffirms our suspiciousness.

Apart from providing more context for the malicious activ-
ity, our system discovers new malicious objects and improves
the flagging consistency of our oracle IDS. For example, the
object bluberrymo.com/volvo.php is consistently included in
malicious graphs, while the IDS occasionally missed it. Our
system also discovered a new object rivergrape.com/world.
php, and we confirmed its maliciousness across several other
security tools such as VirusTotal.?

B. Impact of Pattern Filtering

We study the volume of information that Seed-CG creation
process extracts from single seeds. Table II shows the average
number of nodes included in the final Seed-CGs. Three sets of
parameters are reported, from a very selective common pattern

2VirusTotal: www.virustotal.com

TABLE II. AVERAGE NUMBER OF NODES FOR DIFFERENT TYPES

AMONG SEED-CGS WITH A = 30 MIN.

Type cl c2 c3
Object-path 6.6 14.9 2351.4
Hostname 7.0 16.8 691.5
Server IP 19.9 95.9 3423.0
Dst-port TCP 0.2 0.5 79.9
Dst-port UDP 2.0 27.8 1335.1
DNS error 0.3 2.4 40.4
[Total 36.0 | 1584 | 79215

cl = {MinSupport=1, minPopularity=1}
¢2 = {MinSupport=0.5, minPopularity=1}
¢3 = {MinSupport=0, minPopularity=0}

250 e e
Object Path —a— UDPpgrpor - ©- _e-9®
200 1 Hostname - -%- DNS failures —* - .-®

5 Server [P —+- Total - ®- .,"

5 .

o TCPDch g - F e

Z 150 .

5 Y

° /;r /'0/.-0—-»-0—-—0-

£ 100 :

g Tt

S s

Z 50 Py Sy

e Y 000 -0-0 Q- @ HoR R

0 8= = —

1s 55 10s30s 1 5 10 15 20 25 30 35 40 45 50 55 60
Snapshot Size A [min]

Fig. 7. Average amount of nodes in Seed-CGs with different snapshot sizes.

filtering such as ¢l = {MinSupport=1, minPopularity=1},
which selects only the objects that appear in all snapshots
and for all hosts, to ¢3 = {MinSupport=0, minPopularity=0},
which instead merges and fuses all patterns independently of
their support and popularity. c2 = {MinSupport=0.5, minPop-
ularity=1} is the suggested default parameter setting.

Results clearly show that starting from a single event,
the proposed methodology builds graphs with hundreds of
nodes. Note how the number of elements grows consistently
when selecting less restrictive thresholds for MinSupport and
minPopularity. The number of elements is indeed very large
for ¢3, where thousands of nodes are included in the CGs. This
hurts the amount of information offered to the security analyst
(see Fig. 6(a) for instance). c2 offers a good trade-off between
descriptiveness and richness of the final CG.

Fig. 7 shows the average number of nodes in Seed-CGs
according to the selected snapshot size, A, for the parameter
set c2. As expected, CGs contain only the seed event and few
other nodes when selecting small A, e.g., lower than 1 min.
On the other hand, the number of nodes increases with the
snapshot size, peaking at more than 200 nodes on average with
a 60 min snapshot. Interestingly, the number of object-paths
and hostnames does not increase dramatically with higher A,
proving the effectiveness of the Common Patterns Mining
technique. The only node type showing higher inflation is the
Server IP address, owing to malicious activities poking benign
infrastructures hosted on Content Delivery Networks (CDNs).

VI. CONNECTIVITY GRAPH EXAMPLES

In the following, we provide some examples of CGs cover-
ing several typologies of malware found in our dataset, each
presenting different behaviors and network patterns.

A. Cycbot Backdoor Activity

automation.whatismyip.com

72.233.89.20

72-%5%@.89,1 97

—n09230945.asp

whatismyip.com
23.20:103.142
—cmyipcom
— 174.132.254.58
www.ipaddrs.com
96.97175.154

S s
435,445 72179
’3%2,3’144

35477

1543
49
3546

213.239.234.118

204.45.86.130 208.91.197.7

Fig. 8. CG for Cycbot Backdoor Activity backdoor trojan. Notice the fast-flux
domain name shuffling (orange circles in lower-left part), and the IP address
detection webpages (top-right) to assess victims’ reachability.

Cycbot is a backdoor trojan that allows cyber-criminals to
access infected computers remotely. This causes victims’ hosts
to be exploited by malicious adversaries for large-scale attacks,
and to potential leakages of personal sensitive information.

Fig. 8 shows the CG of the event */logo.png for which our
oracle raises an alarm. Interestingly, more than 80 hostnames
seem to serve the malicious file logo.png (cloud of orange
circles in Fig. 8). All those hostnames have a third-level
domain name exhibiting random strings that are made of both
characters and numbers, and are hard to code with regular
expressions. This technique, known as fast-flux, allows attack-
ers to hide malicious infrastructures by generating hostnames
that are registered to the DNS and lately removed with a
high frequency. This makes the detection harder, circumvents
blacklisting, and guarantees a longer reachability to the infras-
tructure. Considering only second-level domains, the number
of hostnames drops to 10, each presenting an appealing name
acting as a lure for potential victims, e.g., faststorageonline.
com, phonegamescatalog.com, wwwmp3archives.com, etc. The
entire set of domain names is hosted on few servers, heading
to 5 IP addresses. Those IPs are not organized in a structured
CDN and do not belong to the same subnet, suggesting for the
usage of infected machines scattered in the network.

The right part of Fig. 8 includes some benign objects. While
those may seem false positives, this is not the case. Looking
closer at the top of Fig. 8, it is easy to realize that contacted
websites host services aimed at the discovery of the public
IP address of the host. Such behavior is coherent considering
the intent of the malware we are facing. Being a backdoor
trojan, the infected client has to be reachable by the cyber-
criminals, but connectivity issues, e.g., hosts behind NATSs
or firewalls, might preclude the reachability of the victim.

Looking at the bottom-right part of the CG, we observe that
the malware is checking Internet connectivity by visiting the
www.google.com homepage, another test run by the malware
to gather connectivity properties of the victim.

B. Downloader.Dromedian Communication

cantstOpmenever.net

cantstOpmehever2287.net

getal1y42¥4ouhave.net

/webhp

/run/fox.php \

www.google.com

cantstO;&neneverZZ.net »///{I& rad.msn.com
/ 173'19‘%133? ‘}7343591 77 \

208.73.210.29 173.1943548 52 Fao 94.245.117.45
173.194.354 86 38.146 94.245.117.47

/ADSAdClient31.dll

Fig. 9. CG for Downloader.Dromedian Communication trojan horse. Notice
the presence of legitimate nodes being contacted by malware.

Downloader.Dromedan is a trojan horse that runs silently
on the victim’s host, downloading and putting in execution
additional threats. This malware connects to remote malicious
infrastructures and C&C networks in order to fetch and execute
additional malware and potentially unwanted programs (PUP).
In most cases, it causes the redirection of ordinary web surfing
traffic to malicious websites through the installation of toolbars
in web browsers. Such toolbars force the user to visit certain
contents in order to generate profit for malicious attackers.

Fig. 9 shows the CG of the malicious event
cantstOp24menever22.net/run/fox.php, which triggers the
alarm related to the Downloader.Dromedian in our reference
IDS. Two clients are infected and, in addition to the seed
(red arrows), they both connect to www.google.com/webhp
repeatedly. While the Google webpage is not malicious per
se, it is caused to frequently appear due to PUPs related to
Conduit search hijacker. Several unwanted toolbars like Delta
Search Toolbar, Social Search Toolbar, and Internet Helper
Toolbar are related to Conduit search, and cause Google
Webhp redirects by hijacking the browser settings. Looking
at the top-right part of the CG, infected clients query three
hostnames causing an error at the DNS resolver side, owing
to the fact that the two exploited hosts try to connect to the
remote malicious infrastructure. Our suspiciousness on such
event is reinforced by the similarity of the queried hostnames
with the successful one (i.e., cantstOp24menever22.net), and
by the presence of numbers interleaving characters with a
random fashion, possibly trying to avoid blacklisting.

C. Mass Injection Website

The Mass Injection Website attack does not target the host of
the victim directly, but leverages vulnerabilities of legitimate

208.109.14.25

/;’:}.zcs.i
theuticashale.c
CuticeREE 64.202,189.170

) 4 Wwww.symzer.com www.theuticashze.com
wwwtindelifieties.com o
N theRarcelldsshale.com

\ Jhey/wp—content/themes/instalfle.php

208.109.78.122

Iwp-contentthemes/spectrumyinstal/file.php

/wp-content/themes/headling;

72.167.2,1 / enabjgf-actris.ru
L
thegenieslamp.net pastro.ru 5"
Fal
Q. stecdon.ru
e le.php = Non<Bistent
. N\
/ linstatfiie.php Do
www.radburnd.com \
bloggasaurus.com
97.74.141.1

/Wp’w"'e"‘/“p'oadyi"%m
| Sotob{awi.

wwjlabmag.com

www._creativelayer.net
74.220215.92

advantageclubrockford.c
184.168.203.1

69.89.31.198 /modules/mod_wdbanners/instal/file.php
O)//
"

itjustdawnedonme.co

wf
72.167.232.149
ashishpaliéom

173.245.60.1 97.74144.115

cuteasabargain.com
173.245.61.81

66.147.240.173 67.205Qp 71

e
72.167.3.128

Fig. 10. CG for Mass Injection Website attack. Notice all URLs containing
“wp-content”, suggesting for a WordPress vulnerability being exploited my
malicious adversaries. Victims are forced in a redirection chain through
websites hosting Exploit Kits.

websites to inject malicious scripts and hidden iframes. In turn,
users visiting compromised websites are victims of a redirec-
tion chain that forces them to visit third-party websites hosting
Exploit Kits. Such Exploit Kits target potential vulnerabilities
at the client side so that once the victim lands on the effective
Exploit Kit, her machine gets infected as well.

Fig. 10 shows the network behavior of two hosts being
victims of the Mass Injection exploitation. Our oracle con-
siders malicious only the seed bloggasaurus.com/wp-content/
instal/file.php but our CG is populated with other URLs all
terminating with /instal/file.php. Interestingly, many of those
URLs also include the substring wp-content, suggesting for
an exploited vulnerability in the WordPress blogging tool.
Our suspiciousness is confirmed by the fact that both victim
hosts exhibit the same identical behavior towards all the URLs
depicted in the CG. The volume of issued requests is identical,
and, considering the contacted URLs in a temporal sequence,
it is possible to clearly spot repeated patterns over time, i.e.,
both hosts visit other URLs in a deterministic way. Moreover,
such web pages host different kinds of content, ranging from
newscast to music festivals and healthcare. Thus, it is almost
impossible that two users visit the same pages, the same
number of times, in the same order. This confirms the ongoing
automated webscan the user is not aware of.

VII. RELATED WORK

The increased ability of malware to spread and infect
computers has led to vast amounts of research attempting to
identify malware using the network traffic they generate. The
work here presented is related to malware detection through
graph-based approaches, and multi-protocol traffic correlation.

Graph-based Malware Detection: In [9], the authors build
a bipartite graph consisting of domain names of failed DNS
queries and host issuing such queries. The intuition is that
host infected by the same malware usually query for the same
(or similar) set of domain names. Similarly, [10] proposes
to build a relationship graph based on DNS historical data.

In this context, suspicious networks are identified by means
of two graph measures: graph density and eigenvector cen-
trality. In [11], malicious hosts are detected using a semi-
supervised, score-propagation algorithm that utilizes HTTP-
communication graph and flow information. All these ap-
proaches restrict their efforts to a specific protocol to identify
the suspicious graph entities. Alternatively, our system uses
the data gathered from multiple protocols to create the CG on
which the malware patterns are identified.

Multi-protocol Traffic Correlation: Many efforts have fo-
cused on the analysis of a single protocol to identify patterns
displayed by malware. The popularity of HTTP has made it the
preferred protocol for malware creators and, as such, the target
for researchers to analyze and detect malware. [12] presents
a system to identify malicious drive-by download activities
by exposing the distribution networks necessary to distribute
malware. Similarly, [13], [14] propose classifiers based on
features from web domains and URLs. Systems that analyze
the DNS protocol, usually look at failed DNS queries [15],
[10], as this activity can lead to the existence of malware
using domain generated algorithms (DGA). The problem with
systems relying on a single protocol is their limited scope,
as malware can switch among protocols, and the required
semantic understanding of the particular protocol considered.

In comparison, a seminal work evaluating multiple protocols
is [16], where the lifecycle of botnets is modeled according
to a set of phases. An interesting approach is used in [17],
[18], where network traffic is presented through generic packet
information such as length sequences and encoding differ-
ences, allowing to represent the malware activity observed
in different protocols. All of these multi-protocol approaches
have the limitation of targeting specific type of malware.
Our approach is instead general and encompasses different
malicious activities. We propose a graph based approach that
extracts the behavioral commonalities from multiple clients
with a seed event in common.

VIII. CONCLUSIONS

We presented a system able to identify and correlate network
events with malicious traffic. Starting from a seed, i.e., an
alarm raised by a reference IDS, our system leverages both
spatial and temporal recurrence of events and frames them in
a Network Connectivity Graph, that is a focused representation
of the malicious activities over multiple network layers.

In contrast to other security tools, often providing atomic
information on malicious attacks, our system delivers an
enriched set of network activities related to malicious software
running on victims’ hosts. Specifically, it is capable of spotting
interactions between malicious and legitimate infrastructures,
increasing the knowledge on the incident.

We proved our approach is effective against different classes
of malware, each showing peculiar behaviors and network
patterns. In all cases, it provided a rich and interpretable
characterization of the malicious activity, facilitating the un-
derstanding of malicious attacks and supporting the forensic
activity of the security analyst.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

ference on.

REFERENCES

iMPERVA, “Assessing the effectiveness of antivirus solutions,”
http://www.imperva.com/docs/HII_Assessing_the_Effectiveness_of_
Antivirus_Solutions.pdf, 2012.

R. Perdisci, I. Corona, D. Dagon, and W. Lee, “Detecting malicious flux
service networks through passive analysis of recursive DNS traces,” in
Computer Security Applications Conference, 2009. ACSAC ’09. Annual,
2009, pp. 311-320.

M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-
by-download attacks and malicious javascript code,” in Proc. of WWW,
2010.

P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining,
2nd ed. Addison-Wesley, 2013.

D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen,
and R. S. Sharma, “Discovering all most specific sentences,” ACM
Transactions on Database Systems (TODS), vol. 28, no. 2, pp. 140—
174, 2003.

F. Pan, G. Cong, A. K. Tung, J. Yang, and M. J. Zaki, “Carpenter:
Finding closed patterns in long biological datasets,” in Proc. of the 9th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2003, pp. 637-642.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext transfer protocol - http/1.1,” Tech. Rep.,
2006.

P. Mockapetris, “Domain names - concepts and facilities,” Tech. Rep.,
2003.

N. Jiang, J. Cao, Y. Jin, L. Li, and Z.-L. Zhang, “Identifying Suspicious
Activities Through DNS Failure Graph Analysis,” in Network Protocols
(ICNP), 2010 18th IEEE International Conference on. 1EEE, 2010,
pp. 144-153.

Y. Nadji, M. Antonakakis, R. Perdisci, and W. Lee, “Connected colors:
Unveiling the structure of criminal networks,” in Research in Attacks,
Intrusions, and Defenses. Springer, 2013, pp. 390-410.

L. Liu, S. Saha, R. Torres, J. Xu, P.-N. Tan, A. Nucci, and M. Mellia,
“Detecting Malicious Clients in ISP Networks Using HTTP Connec-
tivity Graph and Flow Information,” in Advances in Social Networks
Analysis and Mining (ASONAM), 2014 IEEE/ACM International Con-
IEEE, 2014, pp. 150-157.

L. Invernizzi, S. Miskovic, R. Torres, S. Saha, S.-J. Lee, C. Kruegel,
and G. Vigna, “Nazca: Detecting Malware Distribution in Large-Scale
Networks,” in Proc. of the ISOC Network and Distributed System
Security Symposium (NDSS ’14), Feb 2014.

P. K. Manadhata, S. Yadav, P. Rao, and W. Horne, “Detecting malicious
domains via graph inference,” in ESORICS 2014. Springer, 2014, pp.
1-18.

A. Le, A. Markopoulou, and M. Faloutsos, “PhishDef: URL names say
it all,” in Proc. of the 30th IEEE International Conference on Computer
Communications, 2011, pp. 191-195.

M. Antonakakis, R. Perdisci, Y. Nadji, N. V. II, S. Abu-Nimeh, W. Lee,
and D. Dagon, “From throw-away traffic to bots: Detecting the rise of
DGA-based malware,” in Proc. of USENIX Security Symposium, 2012,
pp. 491-506.

G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “Bothunter:
detecting malware infection through IDS-driven dialog correlation,” in
Proc. of the 16th USENIX Security Symposium, 2007, pp. 12:1-12:16.

C. J. Dietrich, C. Rossow, and N. Pohlmann, “Cocospot: Clustering
and recognizing botnet command and control channels using traffic
analysis,” Computer Networks, vol. 57, no. 2, pp. 475-486, 2013.

J. Frangois, S. Wang, R. State, and T. Engel, “Bottrack: tracking botnets
using netflow and pagerank,” in NETWORKING 2011. Springer, 2011,
pp. 1-14.

