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Abstract 

Large	Volume	Metrology	(LVM)	tasks	can	require	the	concurrent	use	of	several	measuring	systems.	These	systems	

generally	consist	of	set	of	sensors	measuring	the	distances	and/or	angles	with	respect	to	a	point	of	interest	so	as	

to	determine	its	3D	position.	When	combining	different	measuring	systems,	characterized	by	sensors	of	different	

nature,	competitive	or	cooperative	methods	can	be	adopted	for	fusing	data.	Competitive	methods,	which	are	by	far	

the	most	diffused	 in	LVM,	basically	perform	a	weighted	mean	of	 the	3D	positions	determined	by	 the	 individual	

measuring	 systems.	 On	 the	 other	 hand,	 for	 cooperative	 methods,	 distance	 and/or	 angular	 measurements	 by	

sensors	of	different	 systems	are	 combined	 together	 in	order	 to	determine	a	unique	3D	position	of	 the	point	 of	

interest.		

This	 paper	 proposes	 a	 novel	 cooperative	 approach	 which	 takes	 account	 of	 the	 measurement	 uncertainty	 in	

distance	 and	 angular	 measurements	 of	 sensors	 of	 different	 nature.	 The	 proposed	 approach	 is	 compared	 with	

classical	competitive	approaches	from	the	viewpoint	of	the	metrological	performance.	The	main	advantages	of	the	

cooperative	approach,	with	respect	to	the	competitive	one,	are:	(i)	it	is	the	only	option	when	the	individual	LVM	

systems	 are	 not	 able	 to	 provide	 autonomous	 position	 measurements	 (e.g.,	 laser	 interferometers	 or	 single	

cameras),	 (ii)	 it	 is	 the	 only	 option	when	 only	 some	 of	 the	 sensors	 of	 autonomous	 systems	work	 correctly	 (for	

instance,	a	 laser	 tracker	 in	which	only	distance	–	not	angular	–	measurements	are	performed),	 (iii)	when	using	

systems	with	redundant	sensors	(i.e.	photogrammetric	systems	with	a	large	number	of	distributed	cameras),	point	

localization	tends	to	be	better	than	that	using	the	competitive	fusion	approach. 

Keywords: Cooperative fusion, Competitive fusion, Large volume metrology, Large Scale Dimensional 

Metrology, Hybrid localization. 

1. Introduction and literature review 

Sensor fusion can be defined as the combination of sensory data from different sources, so that the 

resulting information is somehow better than the information deriving from the single sources taken 

separately (Crowley and Demazeau, 1993; Haghighat et al., 2011). The term “better” can assume 

different meanings depending to the context of interest: it can mean more accurate, more complete, 

more reliable, etc. In their survey, Weckenmann et al. (2009) define the concept of multisensor data 

fusion in dimensional metrology as “the process of combining data from several information 

sources (sensors) into a common representational format in order that the metrological evaluation 

can benefit from all available sensor information and data”. 

An individual dimensional metrology system is basically able to collect and process several input 
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data, deriving from a set of sensors, so as to provide an output, generally the dimensional 

coordinates of the point of interest (see figure 1). It generally consists of: 

 A set of sensors, i.e. devices able to measure primary geometric quantities, such as distances 

and angles. 

 A Data Processing Unit (DPU), which processes sensory data in order to provide an 

estimation of the 3D position of the point of interest. 

 

Figure 1. Schematic representation of a generic dimensional metrology system. The Data Processing Unit (DPU) 
gathers and processes sensory data to output the 3D coordinates of the point of interest, i.e. [X, Y Z]T.  

Typical industrial applications are the reconstruction of curves/surfaces for dimensional verification 

and/or the assembly of large-sized mechanical components. 

According to the sensors layout, dimensional metrology systems can be classified as (i) centralized, 

if sensors are grouped into a unique stand-alone unit, or (ii) distributed, if sensors are spread around 

the measuring volume (Xiong and Svensson, 2002; Maisano et al., 2009; Maisano and 

Mastrogiacomo, 2015).  

Large Volume Metrology (LVM) tasks often involve the concurrent use of multiple dimensional 

metrology systems  (for instance, two or more laser trackers, or scanners, combined with a 

distributed photogrammetric system, etc.) (Calkins and Salerno, 2000; Weckenmann et al., 2009; 

Franceschini et al., 2011; Galetto and Mastrogiacomo, 2013). This practice has several benefits 

including but not limited to: (i) overcoming the limitations of the individual system; (ii) improving 

measurement accuracy; (iii) taking advantage of the overall available instrumentation; (iv) reducing 

the risk of measurement errors.  

The concurrent use of multiple systems requires the definition of suitable data fusion strategies. 

Two possible approaches can be adopted (Durrant-Whyte, 1988; Haghighat et al., 2011): 

 Competitive fusion. Each system performs an independent measurement of the 3D 

coordinates of the point of interest and these position measurements are fused into a single 

one (Boudjemaa and Forbes, 2004). This fusion approach is defined as competitive, since 

each system “compete” for the definition of the fusion result. For example, this principle is 

implemented in the SpatialAnalyser®, probably the most diffused software for LVM 

applications (New River Kinematics, 2015). The goal of competitive fusion is to improve 
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the measurement accuracy while reducing the risk of measurement errors (Boudjemaa and 

Forbes, 2004). 

 Cooperative Fusion. Data provided by two or more independent (non homogeneous) 

sensors, even from different measuring systems are processed in order to achieve 

information that otherwise could not be obtained from individual sensors (Boudjemaa and 

Forbes, 2004). According to this logic, the different sensors share their local measurements 

and “cooperate” for determining a unique position measurement of the point of interest. For 

example, data from (i) two sensors of a system performing angular measurements, and (ii) 

one sensor of another system performing distance measurements can be combined for 

determining the 3D coordinates of the point of interest.  

Compared to the competitive data-fusion approach, the cooperative one is more difficult to 

implement, as it requires that the individual measurement systems are able to return “intermediate” 

data, such as distance and angular measurements by the relevant sensors. However it will be shown 

that a cooperative fusion approach could potentially make a more efficient use of the information 

available, resulting in improved metrological performance. Also, it is the only option when dealing 

with sensors that, taken separately, are not able to perform independent localizations of the point of 

interest (for instance a laser interferometer combined with a single photogrammetric camera) 

(Galetto et al., 2015). 

While the scientific literature encompasses several descriptions of the competitive approaches 

(Boudjemaa and Forbes, 2004), the cooperative ones are almost totally ignored or confined to 

specific measurement applications (Beckerman and Sweeney, 1994; Ho and Pong, 1996; Labayrade 

et al., 2005; Lamallem et al., 2009; Wen et al., 2010; Budzan, 2014). 

This paper proposes a novel cooperative approach which takes account of the measurement 

uncertainty in distance and angular measurements of sensors of different nature. The proposed 

approach will be compared with classical competitive approaches from the viewpoint of the 

metrological performance. 

The remainder of the paper is structured as follows. Sect. 2 introduces the problem of data-fusion in 

dimensional metrology throughout an introductory example, while the problem is formalized in 

Sect. 3. Sect. 4 discusses the classical competitive approach, also proposing a generalized 

cooperative approach. Sect. 5 reports a benchmarking between the proposed approach and a 

classical competitive approach, based on real and simulated experiments. The concluding section 

summarizes the original contributions of the paper, focusing on the benefits, limitations and 

possible future developments.  
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2. Introductory example 

Before providing a comprehensive description of the competitive and cooperative approaches, we 

present an introductory example to illustrate the data-fusion problem. Let us consider a 

measurement volume covered by two LVM systems (see Figure 2): 

 A photogrammetric system (PS), which is able to determine the position of a target in 

contact with the object to be measured. Precisely, this system includes several cameras 

distributed around the measurement volume, able to determine the 2-D position of the target 

within the local image and determining the angles subtended by the target with respect to the 

camera’s focal point (Franceschini et al., 2011). The 3-D coordinates of the target are then 

determined, combining the local measurements by the individual cameras (Luhmann et al., 

2006; Franceschini et al., 2011).  

 A Laser Tracker (LT), which is able to measure the 3-D coordinates of a point by tracking a 

laser beam from the instrument to a retro-reflective target, in contact with the object to be 

measured. The position of the retro-reflective target is calculated using the distance ( LTd̂ ) 

and the angular ( LT̂  and LT̂ ) measurements subtended by the target.   

 
 

Point of interest (P)  

Global coordinate system 

Y 

Z 

X 

O 

LT̂

z LT 

x LT 

y LT 

Cameras of the PS 

 
22

ˆ,ˆ
CC 


 

33
ˆ,ˆ

CC 


 
11

ˆ,ˆ
CC 

PS Coordinate System  

yPS 

zPS 

xPS 

OPS 

LT Coordinate System  

LT̂

LT̂

 
Figure 2. Example of concurrent measurement by two LVM systems: a laser tracker (LT) and a 

photogrammetric system (PS). 

In the layout proposed in Fig.2, the PS includes a set of 3 cameras. Each i-th camera performs 

azimuth (
iC̂ ) and elevation (

iC̂ ) angular measurement with respect to the point of interest. Next, 

the position of P can be calculated combining the local measurements from the three cameras; in 

formal terms: 



 5

        
332211

ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,,ˆ CCCCCCPS
T

PPPP fzyx
PSPSPSPS

x , (1) 

where: 

 
PSPx̂  is the estimate of the position of P; 

 
iC̂  and 

iC̂  are local angular measurements performed by each i-th camera; 

 PSf  is a suitable function for turning local angular measurements into 
PSPx̂ ; 

The proposed layout also includes a LT which is typically equipped with an absolute distance meter 

(ADM) and/or a laser interferometer (performing distance measurements ( LT̂ )) and two angular 

encoders (performing angular measurements, i.e. azimuth ( LT̂ ) and elevation ( LT̂ ) with respect to 

P). As for the PS, the LT is able to estimate the position of P using the available local 

measurements: 

   LTLTLTLT
T

PPPP fzyx
LTLTLTLT

 ˆ,ˆ,ˆ,,ˆ x . (2) 

being 

 
LTPx̂  is the estimate of the position of P; 

 LTLT  ˆ,ˆ  and LT̂  are local distance and angular measurements performed by the LT; 

 LTf  is a suitable function for turning local measurements into 
LTPx̂ ; 

Although the two systems are able to operate independently, their combined use could lead to the 

aforementioned advantages. So, how to take advantage of both the systems? What is the most 

appropriate strategy?  

The most obvious and immediate approach would be that of averaging of the position estimates 

(
PSPx̂  and 

LTPx̂ ) provided by the two systems. However, this is certainly not the most efficient 

approach since it neglects the metrological performance (i.e. the measurement uncertainty) of the 

individual systems and the fact that the estimate of one system can be significantly better than that 

of the other system. In typical competitive approaches, this problem can be overcome aggregating 

PSPx̂  and 
LTPx̂  by weighted average, where weights take account of measurement uncertainty of the 

single LVM system; in formal terms: 

   
PSLTCOMPCOMPCOMPCOMP PPCOMP

T
PPPP fzyx xxx ˆ,ˆ,,ˆ  , (3) 

where: 

 
COMPPx̂  is the estimate of the position of P; 

 
LTPx̂  and 

PSPx̂  are the estimates of the position of P respectively given by the LT and the PS; 

 COMPf  is a suitable function for combining 
LTPx̂  and 

PSPx̂   into 
COMPPx̂ , considering individual 

system uncertainty; 
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On the other hand, the cooperative fusion approach aims at estimating the position of P as a 

function of the local angular and/or distance measurements by the individual sensors of the two 

systems, also considering its metrological characteristics; in formal terms:  

        LTLTLTCCCCCCCOOP
T

PPPP fzyx
COOPCOOPCOOPCOOP

 ,,,,,,,,,,ˆ
332211

x , (4) 

being: 

 
COOPPx̂  is the estimate of the position of P; 

 
iC̂  and 

iC̂  are local angular measurements performed by each i-th camera; 

 LTLT  ˆ,ˆ  and LT̂  are local distance and angular measurements performed by the LT; 

 COOPf  is a suitable function for determining the position of P from local sensor 

measurements, taking account of sensor measurement uncertainty; 

3. Problem description 

The problem herein discussed is to define of the 3D position of a point, combining the 

measurements of a number of LVM systems. Precisely, there are N  LVM systems (D1,…,DN) , 

distributed over the measurement volume, so that each system is able to “see” the point of interest 

(P ≡  TZYX ,, ). Each i-th system consists of Mi sensors. A centralized data processing unit (DPU) 

receives and processes local measurement data from the totality of the sensors of the N LVM 

systems. A schematic representation of the problem architecture is shown in Figure 3.  

Each j-th sensor from the i-th LVM system has its own spatial position and orientation, and local 

coordinate system oij-xijyijzij. A general transformation between a local and the global coordinate 

system (O-XYZ) is given by: 
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Figure 3. Schematic representation of the problem architecture. Two LVM systems (D1 and D2) are presented, 
respectively consisting of M1 = 2 and M2 = 3 sensors. P is the point to be measured. The data processing unit 

(DPU) gathers and processes the data obtained from the distributed sensors. 

 T
ijijijij

ZYX 000 ,,0X    are the coordinates of the origin of oij-xijyijzij – i.e.  the position of the j-th 

sensor of the i-th LVM system – in the global coordinate system O-XYZ  and   Tijijijij zyx ,,x  are 

the coordinates of P in the local coordinate system oij-xijyijzij. ijR  is a rotation matrix, which 

elements are functions of three rotation angles (i.e. ij, ij and ij, see Figure 4): 
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ijz
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''ijz

ij

'ijx 'ijy
ij 'ijy

'ijz

ijx

ijo ijo

ij
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Figure 4. Rotation parameters regarding the transformation between a local coordinate system (oij-xijyijzij) and 
the global one (OXYZ). 
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R , (6) 

where: 

ij represents a counterclockwise rotation around the xij axis; 

ij  represents a counterclockwise rotation around the new yij axis (i.e., yij′), which was rotated by 

ij;  



 8

ij represents a counterclockwise rotation around the new zij axis (i.e., zij″), which was rotated by ij 

and then ij.  

The (six) location/orientation parameters related to the j-th sensor in the i-th LVM system (i.e., 

ijijij
ZYX 000 ,, , ij, ij,ij) are considered as known parameters, since they are measured in an initial 

calibration process. 

We remark that each i-th LVM system (Di) is able to estimate the position of P autonomously. Let 

 TPPPP iii
ZYX ,,ˆ 

i
X  be the measurement of point P by Di, expressed in the global coordinate system 

O-XYZ through Eq. (5). The accuracy of Di in measuring the coordinates of P can be quantified by 

defining the covariance matrix 
i

XP
ˆ . 

Let Sij be the generic vector of local measurement(s) associated with the individual j-th sensor of 

the i-th measurement system. In general, Sij can be of three types:  

  ijij d̂S  for sensors performing distance measurements only (for instance, ADMs, 

interferometers, ultrasound sensors, etc.), where ijd̂  is the local distance measurement. 

These sensors generally equip LVM systems based on multilateration (Franceschini et al., 

2011); 

  ijijij  ˆ,ˆS  for angular sensors (for instance,  optical/magnetical encoders, 

photogrammetric cameras, iGPS sensors, etc.), where  ij̂  and  ij̂  are respectively the local 

measurements of the azimuth and elevation angles. These sensors generally equip LVM 

systems based on triangulation (Franceschini et al., 2011; Caja et al., 2015); 

  ijijijij d  ˆ,ˆ,ˆS  for hybrid sensors, i.e. sensors able to measure one distance and two angles 

(for instance, laser trackers, 3D scanners, or combinations of other sensors). These sensors 

generally equip hybrid LVM systems (Franceschini et al., 2011); 

Let also 
ijS  be the covariance matrix related to each sensor measurement.  

The competitive approach (schematized in Figure 5a) estimates the position of P, relying on the 

position estimates performed by the individual systems and the relevant uncertainties:  

 




  Nif

iPiPCOMPCOMPP ,...,1ˆˆ
ˆ, X

XX , (7) 

On the other hand, the cooperative approach (schematized in Figure 5b) estimates the position of P, 

relying on the local angular and distance measurements, performed by the individual sensors and 

the relevant uncertainties: 

    iijCOOPCOOPP MjNijif
ij

,...,1,,...,1:),(ˆ
,  SSX , (8) 
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Figure 5. Schematic representation of the two possible data-fusion approaches, i.e. (a) competitive and (b) 
cooperative approach.  

4. Discussion of the two data-fusion approaches 

The following two sub-sections provide a detailed discussion of the competitive and cooperative 

fusion approaches, respectively. 

4.1 Competitive data-fusion approach 

The competitive approach is relatively simple to formalize, using the notation introduced in Sect. 3.  

Let A  be a 3Nx3 matrix defined as  T3,33,33,3 IIIA  , in which 3,3I  is the 3x3 identity 

matrix. Defining b  as  TT
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probably that of the Generalized Least Squares (GLS) method (Kariya and Kurata, 2004), in which 

a weight matrix ( W ), which takes into account the uncertainty produced by the equations of the 

system, is defined. One of the most practical ways to define this matrix is the application of the 

Multivariate Law of Propagation of Uncertainty (MLPU) to the random variable in Eq. (9), i.e. b . 

By applying the GLS method to the system in Eq. (9), we obtain the position estimate of P as:  
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where W  is the weighting matrix that – under the hypothesis of independence between the 
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measurements provided by different systems – is defined as:  
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and 0  is the 3x3 null matrix.  

Please notice that Eq. (10)  is the most compact form to express the inversion of Eq. (9), however, it 

is not the most convenient approach to calculate COMPP ,X̂ . For instance, rather than considering the 

inverse of W , one could take the inverse of each 
iPX̂

  since W  is a block diagonal matrix. Similar 

considerations holds for Eqs. (12) and (36). 

4.2. Cooperative data-fusion approach 

The problem of cooperative data-fusion is more complicated. As for the competitive approach, an 

estimation of the position of P )ˆ( ,COOPPX  can be obtained by reversing the linear system: 

qCX COOPP , , (12) 

where C  and q  are respectively the design matrix and the observation vector, which may depend 

on the specific LVM systems and the relevant sensors in use. Precisely, the design matrix and the 

observation vector have the following form: 
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The following sub-sections discuss the definition of the generic ijC  matrix and ijq  vector, 

depending on the sensor type and show a practical solution to the problem in Eq. 12. 

4.2.1 Distance Sensors (Multi-lateration) 
When the j-th sensor of the i-th system is a distance sensor, ijC  and ijq  are defined as follows. 

Each j-th sensor of the i-th system is able to estimate the distance from its position (
ij

0X ) to P 

( PX ). Consistently with the notation introduced in Sect.3 and neglecting the sensors’ local 

measurement errors, this distance estimate can be expressed as:  
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     222ˆ
ijijij OOOPij ZZYYXXd 

ij
0XX . (14) 

Squaring both terms, we obtain  

      0ˆ 2222  ijOOO dZZYYXX
ijijij

. (15) 

Function in Eq. (15) can be linearized by means of its first order Taylor series expansion around a 

generic point  TAAA ZYX ,,AX . Therefore, a linear approximation of Eq. 15 is given by the sum 

of (i) Eq. 15 evaluated in AX and (ii) the gradient of Eq. 15 with respect to X evaluated in AX , 

multiplied by  AXX  :  

      02ˆ 2222 











































A

A

A

T

OA

OA

OA

ijOAOAOA

ZZ

YY

XX

ZZ

YY

XX

dZZYYXX

ij

ij

ij

ijijij
. (16) 

AX  act as a first approximation of PX . The approximation in Eq. (16) gets better and better the 

closer AX  is to PX .  

In matrix form, Eq. (16) becomes:  

ijij qXC  , (17) 

where 

 
2
0

22
0

22
0

22ˆ
2

ijijij

ijijij

ZZYYXXd

ZZYYXX

AAAijij

OAOAOAij





q

C
. (18) 

Being Eq. (17) the linearization of Eq. (15), only an approximated value of PX  can be obtained by 

reversing Eq. 17. An iterative solution of Eq. (17) can be obtained according to the following 

procedure: 

1. Define a preliminary value of AX (close to the true value of PX ) 

2. Solve for PX  by reversing Eq. (17) 

3. If PX  is reasonably close to AX  then 

4. Go to Step 9 

5. Else 

6.  Set AX  as the obtained approximation of PX .  

7. Go To Step 2 

8. End if 

9. End 

4.2.2 Angular Sensors (Triangulation) 
If the j-th sensor of the i-th system is an angular sensor, ijC  and ijq  are defined as follows. 
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From the local perspective of each sensor, two angles – i.e., ij  (azimuth) and ij  (elevation) – are 

subtended by the line passing through P and a local observation point, which we assume as 

coincident with the origin  0,0,0io of the local coordinate system (see Figure 6).  

ijy

ijz

ij

ij

P 

ijo

ijx

Di 
P’ 

 

Figure 6. For a generic network device (Di), two angles – i.e., ij  (azimuth) and ij  (elevation) – are subtended 

by a line joining the point P (to be localized) and the origin oij of the local coordinate system oij-xijyijzij. 

Precisely, ij  describes the inclination of segment oijP with respect to the plane xijyij (with a positive 

sign when zij>0), while ij  describes the counterclockwise rotation of the projection (oijP’) of oijP 

on the xijyij plane, with respect to the xij axis. If we consider the angular measurements ( ijij  ˆ,ˆ ) and 

we neglect measurement errors, the following relationships hold for each i-th local coordinate 

system:  



 














2
ˆ

2

ˆcosˆcos
ˆsin

2

3ˆ
2

then0if

2
ˆ

2
then0if

ˆtan










ij
ij

ijijij
ij

ijij

ijij

ij

ij
ij

x

z

x

x

x

y

. (19) 

Eq. (19) can be reformulated as:  

0
ˆcosˆcos0ˆsin

0ˆcosˆsin

















ij

ijijij

ijij x



. (20) 

Reversing Eq. (5) we have  

ij

T
ijij

T
ij 0XRxXR  . (21) 

Combining Eq. (20) and (21), one can obtain:  

ij

T
ij

ijijij

ijijT
ij

ijijij

ijij
0XRXR






































ˆcosˆcos0ˆsin

0ˆcosˆsin

ˆcosˆcos0ˆsin

0ˆcosˆsin
. (22) 

which can be written as:  

ijij qXC  , (23) 

where 
ij0XCq  ijij  and 
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T
ij

ijijij

ijij
ij RC 




















ˆcosˆcos0ˆsin

0ˆcosˆsin
. (24) 

4.2.3 Hybrid Approach 
When a generic sensor is able to perform both distance and angular measurements (i.e. providing 

ijijd ̂,ˆ  and ij̂ ), the problem is relatively simple. Neglecting measurement errors, the following 

relationships hold:  















ijijij

ijijijij

ijijijij

dz

dy

dx





ˆsinˆ

ˆsinˆcosˆ

ˆcosˆcosˆ

. (25) 

Combining Eqs. (5) and (25) we obtain:  

 Tijijijijijijijij
T
ij

T
ij ddd

ij
 ˆsinˆˆsinˆcosˆˆcosˆcosˆ 0XRXR . (26) 

Eq. (26) can be reformulated as: 

ijij qXC  , (27) 

 where T
ijij RC  , 

ij

T
ijijij 0XRtq   and  Tijijijijijijijijij ddd  ˆsinˆˆsinˆcosˆˆcosˆcosˆt . 

4.2.4 Weighting and Solution 

In order to solve Eq. (12) for COOPP,X̂ , a GLS approach can be adopted. To this purpose, it is 

convenient to define a weight matrix that is inversely proportional to the variability of the error 

vector u :  

qXCu  COOPP,
ˆ . (28) 

Notice that u  is not only a function of COOPP,X̂  but it also depends on the sensors’ local 

measurements and intrinsic parameters (i.e., 
ij

0X , ij, ij and ij,). For simplicity we neglect here the 

uncertainty in the estimation of the intrinsic parameters, which is generally obtained by a suitable 

calibration process (Mastrogiacomo and Maisano, 2010). Defining the overall measurement vector 

as: 
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the GLS weighting matrix (Ω  ) can be obtained applying the MLPU to u  (BIPM et al., 2008): 

  1

)()( )cov(


 T
SS S uu JJΩ , (30) 

Where )(SuJ  is the Jacobian matrix of u  with respect to S . Assuming sensors to be independent 

from each other, Ω  will be a block diagonal matrix:  
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

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. (31) 

where the generic sub-matrix ijΩ  depends on the type of sensor. Precisely, if  ijij d̂S  , ijΩ  is 

given by: 

  1
)cov(


 T

ijijijij JSJΩ . (32) 

being 

 









2)cov(

2

ijdij

ijij d

S

J
. (33) 

If  ijijij  ˆ,ˆS  , ijΩ  is again given by Eq. (32) being 







































2

2

0

0
)cov(

sincoscoscossin

0sincos

ij

ij

ij

ijijijijijijijij

ijijijij
ij zxz

yx









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S
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. (34) 

If  ijijijij d  ˆ,ˆ,ˆS  , ijΩ  is given by Eq. (32) being 
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Having defined  , Eq. (12) can be reversed as:  

  qCCCX 
 TT

COOPP

1

,
ˆ . (36) 

Note that  )cov( ijS  is diagonal since sensors are assumed to be independent to each other. This is a 
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reasonable assumption since the sensors operate independently during measuring operations. 

However, external factors – such as accidental vibrations, thermal gradients, etc. – may cause 

correlation between measures of separate sensors. In this case the assumption can be relaxed simply 

by inserting the non-diagonal elements in the matrix, if they can be estimated. 

5. Test Bench Comparison 

The purpose of this section is to compare by simulations the two fusion approaches on two practical 

case-studies: (i) combination of a set of LTs (i.e. equipped with hybrid sensors) and (ii) 

combination of measuring system based on triangulation (i.e. equipped with angular sensors) and 

multi-lateration (i.e. equipped with distance sensors). Also, the results of some preliminary 

experiments are presented. 

5.1 Combination of LTs  

In this case-study, we simulate an industrial-like environment where a set of LTs are used to 

measure the position of several points of interest. In practice, LTs are generally positioned at a 

sufficiently large distance from the points to be measured, in order to “cover” the largest possible 

measurement volume. Moreover, they are sturdy placed on isostatic tripods, which can be adjusted 

in height.  

In the simulations, the LTs are distributed according to in an area of 20m x 20m with a variable 

height between 1 and 2m and with their vertical axis orthogonal to the floor plan. . As an example 

see Figure 7. 

The number of LTs is varied from 2 to 10, and 30 different layouts are generated for each case; 

9x30 = 270 total layouts are generated. For each of these layouts, we generate 1000 total points 

uniformly distributed in the measurement volume.  

 
Figure 7. Example of simulated layout with 10 LTs. Circles and dotted lines represent respectively the positions 

and axis orientations of the LTs. 

For each point and each j-th sensor, distance and angular measurements )ˆ,ˆ,ˆ( ijijijd   are simulated 
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by adding a zero-mean Gaussian noise to the relevant “true” values (i.e. ijijd , and ij ); these “true” 

values are exactly calculated knowing the relative positions of the sensors with respect to the point 

of interest (angles in degrees and distances in mm):  

)108,0(~withˆ

)108,0(~withˆ
)105.2,0(~withˆ

4

4

3
,




















ijij

ijij

ijdddijij ddd

. (37) 

The above measurements are assumed to be uncorrelated and the standard deviations of the 

Gaussian noise are consistent with the typical uncertainties in distance and angular measurements 

by LTs, as reported in the scientific literature (Calkins and Salerno, 2000). 

The position of the points of interest is estimated through the competitive and cooperative 

approaches.  

In order to apply the cooperative approach, the measurement uncertainties of the sensors (in the 

form of d ,   and  ) are assumed to be known.  

Regarding the competitive approach, coordinates measurement uncertainty (
iPX̂

 ) was estimated 

using a Montecarlo simulation with 1000 replications for each point.  

Error in the localization is analyzed by comparing the simulated localization ( PX̂ ) with the nominal 

positions ( X ). To this purpose, the absolute localization error is defined as:  

PXX ˆe  . (38) 

Results are summarized in Figure 8 and Table 1. In detail, Figure 8 shows multiple boxplots of the 

localization error (e) against the number of LTs in use. As expected, increasing the number of LTs 

results in a reduction of both the localization error and its uncertainty. 

 
Figure 8. Boxplot of the localization error against the number of LTs in use: (a) competitive and (b) cooperative 
fusion approach. On each box, the central mark is the median, the edges of the box are the 25th and 75th 
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percentiles, the whiskers extend to the most extreme data points, which are not considered as outliers; outliers 
are plotted individually. 

Table 1 provides a quantitative synthesis of the simulation results. The analyses of the mean value 

and the 25th and 75th percentiles of the localization error show non-significant differences between 

the two approaches.  

Table 1. Mean value, 25th and 75th percentiles (Q1 and Q3) of the localization error distribution. Comparison 
between cooperative and competitive fusion approaches (values in mm). 

 Cooperative Competitive 

No. of LTs Mean Q1 Q3 Mean Q1 Q3 

2 0.0438 0.0219 0.0771 0.0438 0.0222 0.0783

3 0.0173 0.0082 0.0352 0.0176 0.0082 0.0348

4 0.0098 0.0051 0.0204 0.0099 0.0052 0.0208

5 0.0087 0.0045 0.0162 0.0087 0.0045 0.0162

6 0.0063 0.0035 0.0121 0.0064 0.0035 0.0122

7 0.0063 0.0033 0.0120 0.0062 0.0033 0.0120

8 0.0053 0.0030 0.0093 0.0053 0.0030 0.0094

9 0.0052 0.0029 0.0102 0.0052 0.0029 0.0104

10 0.0044 0.0025 0.0087 0.0044 0.0025 0.0088

 

The great similarity between the results obtained through the two approaches is probably due to the 

fact that, for each LT, the position of P is determined uniquely, with no redundant information (i.e., 

three local measurements correspond to the three unknown coordinates of P). 

5.2 Combination of triangulation and multilateration systems  

The second case study analyses the combination between two distributed LVM systems based on 

triangulation and multilateration respectively. For example, this can be the case of the combination 

of a photogrammetric system (based on triangulation) with a set of interferometers (based on 

multilateration).  

In the simulations, sensors are uniformly distributed in an area of 20m x 20m at variable height 

between 2m and 3m (for the triangulation system) and 1m and 2m (for multilateration system). Both 

triangulation and multilateration sensors are oriented with vertical axis orthogonal to the floor plan. 

The number of sensors of each system is varied from 4 to 10, generating 30 different layouts for 

each case. Total 7x7x30 = 1470 different layouts are generated. For each layout, total 1000 points 

uniformly distributed over the measurement volume are generated.  
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Figure 9. Example of simulated layout with 10 triangulation (circles) and 10 multilateration (triangles) sensors. 

Dotted lines represent sensors’ orientation axis. 

Distance measurements )ˆ( ijd  are simulated by adding a Gaussian noise to the true value (i.e. ijd ), 

exactly calculated according to the relative positions between sensors and points (distances in mm):  

)105.2,0(~ˆ 3 ijdddijij dwithdd  . (39) 

Azimuth and elevation measurements of )ˆ,ˆ,ˆ( ijijijd   are simulated by adding a zero-mean Gaussian 

noise to the relevant true value (i.e. ijijd , and ij ), which is calculated knowing the position of the 

sensors with respect to the points of interest (angles in degrees):  
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3
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


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with

with

ijij

ijij
. (40) 

The above measures are assumed to be uncorrelated and the standard deviations of the Gaussian 

noise are consistent with the typical uncertainties in angular measurements by photogrammetric 

cameras, as reported in the scientific literature (Franceschini et al., 2011). 

The position of the points of interest is estimated through the competitive and cooperative 

approaches.  

In order to apply the cooperative approach, the measurements uncertainties of the sensors (in the 

form of d ,   and  ) are assumed to be known. Regarding the competitive approach, the 

standard deviations relating to the position of P are estimated through a Montecarlo simulation with 

1000 replications for each point. 

As for the simulations described in Sect. 5.1, results are analyzed by comparing the result of the 

simulated localization ( PX̂ ) with the “true” nominal positions ( X ), by means of the absolute 

localization error (see Eq. (38)). Results are summarized in Table 2, which shows the average value 

of the localization error (e) for the different layouts tested. Table A.1 (in the Appendix) is the 

extended version of Table 2, including the 25th and 75th percentiles of the error distribution. The 

analysis of these results suggests the following considerations: 
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 The localization uncertainty tends to decrease when increasing the number of sensors. In 

particular, there seems to be an asymptotical decreasing trend. For the purpose of example, 

Figure 8 shows the results of the cooperative fusion, when the number of angular sensors is 

fixed to 7.  

 The cooperative approach is systematically slightly better than the competitive one in terms 

of localization uncertainty. This aspect is also evident in Table A.1 (in the Appendix) where 

the interquartile range (i.e., the gap between the 25th and 75th percentiles) is systematically 

lower in the case of the cooperative approach.  

Table 2. Mean value of the localization error [mm] for the different layouts tested. The results obtained by 
competitive (“Comp.”) and cooperative (“Coop.”) approaches are reported. Table A.1 (in the Appendix) is the 
extended version of this table. 

  

Number of distance sensors 

4 5 6 7 8 9 10 

Comp. Coop. Comp. Coop. Comp. Coop. Comp. Coop. Comp. Coop. Comp. Coop. Comp. Coop. 

N
um

be
r 

of
 a

ng
ul

ar
 s

en
so

rs
 

4 0.0192 0.0189 0.0152 0.0151 0.0111 0.0110 0.0096 0.0095 0.0085 0.0085 0.0077 0.0077 0.0064 0.0064 

5 0.0189 0.0188 0.0129 0.0129 0.0106 0.0106 0.0095 0.0094 0.0088 0.0088 0.0073 0.0072 0.0073 0.0073 

6 0.0199 0.0197 0.0141 0.0140 0.0121 0.0120 0.0096 0.0096 0.0086 0.0085 0.0075 0.0075 0.0069 0.0069 

7 0.0209 0.0205 0.0139 0.0137 0.0119 0.0118 0.0097 0.0096 0.0084 0.0084 0.0073 0.0073 0.0067 0.0066 

8 0.0186 0.0183 0.0136 0.0136 0.0123 0.0123 0.0095 0.0095 0.0082 0.0081 0.0075 0.0075 0.0069 0.0069 

9 0.0189 0.0186 0.0151 0.0150 0.0111 0.0110 0.0090 0.0090 0.0083 0.0083 0.0077 0.0076 0.0070 0.0070 

10 0.0184 0.0181 0.0129 0.0127 0.0101 0.0100 0.0088 0.0087 0.0080 0.0080 0.0080 0.0079 0.0064 0.0064 

 
Figure 10. Boxplot of the localization error against the number of distance sensors, when applying the 
cooperative approach. On each box, the central mark is the median, the edges of the box are the 25th and 75th 
percentiles, the whiskers extend to the most extreme data points, not considered as outliers.  

5.3 Preliminary experiments  

The two approaches have been implemented considering a specific combination of two LVM 
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systems: (i) a photogrammetric system (PS) OptiTrack V120-TRIOTM (NaturalPoint, 2015) 

equipped with 38.1 mm reflective spherical markers, and (ii) a laser tracker (LT) API RadianTM 

(API Automated Precision INC., 2015). The experiments have been conducted in the laboratories of 

Microservice S.r.l., which also provided the LT. 

The PS consists of a set of 3 cameras fixed on a line frame (see Figure 9), each of which is able to 

provide an azimuth ( PS̂ ) and elevation ( PS̂ ) measurement of the target point. Using these data, 

the PS is able to estimate the position of each measured point P (NaturalPoint, 2015). 

The LT is equipped with an absolute distance meter (ADM) or a laser interferometer (measuring 

distances ( LTd̂ )) and angular encoders (measuring azimuth ( LT̂ ) and elevation ( LT̂ ) angles). 

Using these data, the LT is able to automatically estimate the position of measured points (API 

Automated Precision INC., 2015). 

When implementing the cooperative approach, the 3D position of each measured point is obtained 

using the local distance and angular measurements, performed by the sensors equipping the two 

systems (i.e.  PS̂  and PS̂ , for each camera of the PS, and LTd̂ , LT̂  and LT̂ , for the LT). 

LT	
PS

Scale‐bar

B

A	

C	

Z	

X	

Y	 	

Figure 11.  Measurement layout (A, B and C are the reference points of the scale-bar). 

To obtain an optimal alignment between the coordinate systems of the LT and the PS, 18 points, 

randomly distributed in the measuring volume, have been measured by both the LVM systems 

(Durrant-Whyte, 1988; Haghighat et al., 2011). 

The layout of the two systems is reported in Figure 11, which also shows the scale-bar used for the 

experiment. Distance values among the reference markers on the scale-bar were calibrated on a 

Coordinate Measuring Machine (CMM – DEA Iota0101).  

The position measurement of three points on the scale bar has been replicated 30 time to obtain the 

results in Table 2. The mean value of the distances measured on the scale-bar and the related 

standard deviations are reported, for all the possible sensor configurations. Results are compared 

with those obtained using (i) the LT and the PS individually and (ii) the competitive approach 
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implemented by the SpatialAnalyser® software (New River Kinematics, 2015). 

Table 2. Distances measured on the scale-bar, using different sensor configurations (values reported in mm) 

Config. 
A Bd   dA B


 B Cd  dB C


 A Cd  dA C


  

Calibrated 728.294 0.003 727.703 0.003 1455.996 0.003 
Individual systems 

LT 728.281 0.029 727.653 0.032 1455.930 0.030 
PS 728.330 0.089 727.65 0.12 1455.98 0.11 

Competitive 
LT + PS 728.257 0.019 727.649 0.019 1455.906 0.016 

Cooperative 
LT + PS 728.260 0.018 727.648 0.018 1455.907 0.015 
LT + 2C 728.248 0.019 727.676 0.021 1455.924 0.019 
LT + 1C 728.288 0.022 727.609 0.023 1455.896 0.019 

LT:	Laser	tracker	
PS:	photogrammetric	system	
1C:	central	camera	of	the	photogrammetric	system	
2C:	two	lateral	cameras	of	the	photogrammetric	system	

 

Table 2 suggests few considerations: (i) the cooperative fusion improves the system performance 

when compared to the results of the single LVM system, and (ii) the sensor configuration LT + PS 

drives to the same result, both when implementing the cooperative and the competitive data fusion, 

however, differently from the competitive approach, the cooperative one can be also profitably 

applied for the LT + 2C and LT + 1C configurations. 

6. Conclusions 

This paper presents a structured comparison between the classical competitive approach and a new 

cooperative approach for fusing data obtained from different LVM systems. The latter approach 

uses angular and/or distance data, measured by the sensors equipping each LVM system, so as to 

compute the 3D position of the points of interest. Input data of this model are (i) local 

measurements (i.e. data concerning their position/orientation) performed by the individual sensors 

(and relevant uncertainties), and (ii) calibration parameters of the individual sensors. 

The main advantages of the proposed approach, with respect to the competitive one, are: (i) it is the 

only option when the individual LVM systems are not able to provide autonomous position 

measurements (e.g., laser interferometers or single cameras), (ii) it is the only option when only 

some of the sensors of autonomous systems work correctly (for instance, a laser tracker in which 

only distance – not angular – measurements are performed), (iii) when using systems with 

redundant sensors (i.e. photogrammetric systems with a large number of distributed cameras), point 

localization tends to be better than that using the competitive fusion approach.  

The same considerations do not seem to hold when fusing data from LTs. In this particular case, the 

difference in performance between cooperative and competitive fusion is not statistically 

significant.  

A limitation of the proposed approach is that it can be applied only to sensors performing angular 

and distance measurements, with respect to the point of interest.  
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Future research is aimed at enriching the proposed method so as to take account of the uncertainties 

related to the sensor localization/orientation parameters that derive from the relative calibration 

process.  
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Appendix  
Table A.1. Mean value, 25th and 75th percentile of the localization error distribution [mm] for the different 
layouts tested, when combining a LVM system based on triangulation with one based on multilateration. The 
results obtained by competitive (“Comp.”) and cooperative (“Coop.”) fusion are reported. 

Avg. Q1 Q3 Avg. Q1 Q3 Avg. Q1 Q3 Avg. Q1 Q3 Avg. Q1 Q3 Avg. Q1 Q3 Avg. Q1 Q3

Comp. 0.0192 0.0046 0.0217 0.0152 0.0041 0.0178 0.0111 0.0033 0.0126 0.0096 0.0030 0.0116 0.0085 0.0028 0.0102 0.0077 0.0026 0.0091 0.0064 0.0023 0.0074

Coop. 0.0189 0.0046 0.0216 0.0151 0.0041 0.0178 0.0110 0.0034 0.0125 0.0095 0.0030 0.0115 0.0085 0.0028 0.0102 0.0077 0.0026 0.0090 0.0064 0.0023 0.0075

Comp. 0.0189 0.0048 0.0234 0.0129 0.0038 0.0147 0.0106 0.0035 0.0131 0.0095 0.0030 0.0109 0.0088 0.0028 0.0106 0.0073 0.0025 0.0085 0.0073 0.0025 0.0089

Coop. 0.0188 0.0048 0.0229 0.0129 0.0038 0.0146 0.0106 0.0036 0.0130 0.0094 0.0030 0.0108 0.0088 0.0028 0.0106 0.0072 0.0025 0.0085 0.0073 0.0025 0.0089

Comp. 0.0199 0.0050 0.0238 0.0141 0.0040 0.0167 0.0121 0.0035 0.0143 0.0096 0.0030 0.0114 0.0086 0.0028 0.0104 0.0075 0.0026 0.0088 0.0069 0.0024 0.0082

Coop. 0.0197 0.0050 0.0236 0.0140 0.0039 0.0167 0.0120 0.0035 0.0143 0.0096 0.0030 0.0115 0.0085 0.0028 0.0103 0.0075 0.0026 0.0090 0.0069 0.0024 0.0081

Comp. 0.0209 0.0051 0.0251 0.0139 0.0040 0.0167 0.0119 0.0035 0.0138 0.0097 0.0031 0.0118 0.0084 0.0028 0.0100 0.0073 0.0025 0.0086 0.0067 0.0024 0.0080

Coop. 0.0205 0.0050 0.0247 0.0137 0.0040 0.0166 0.0118 0.0035 0.0138 0.0096 0.0031 0.0118 0.0084 0.0028 0.0099 0.0073 0.0025 0.0085 0.0066 0.0024 0.0079

Comp. 0.0186 0.0048 0.0226 0.0136 0.0040 0.0166 0.0123 0.0036 0.0150 0.0095 0.0031 0.0115 0.0082 0.0027 0.0096 0.0075 0.0026 0.0090 0.0069 0.0024 0.0084

Coop. 0.0183 0.0048 0.0224 0.0136 0.0040 0.0168 0.0123 0.0036 0.0151 0.0095 0.0031 0.0114 0.0081 0.0027 0.0096 0.0075 0.0026 0.0090 0.0069 0.0024 0.0083

9 Comp. 0.0189 0.0051 0.0236 0.0151 0.0043 0.0187 0.0111 0.0034 0.0132 0.0090 0.0029 0.0105 0.0083 0.0028 0.0097 0.0077 0.0026 0.0091 0.0070 0.0024 0.0082

Coop. 0.0186 0.0050 0.0234 0.0150 0.0043 0.0188 0.0110 0.0034 0.0130 0.0090 0.0029 0.0104 0.0083 0.0028 0.0096 0.0076 0.0026 0.0091 0.0070 0.0024 0.0082

Comp. 0.0184 0.0049 0.0221 0.0129 0.0038 0.0150 0.0101 0.0033 0.0119 0.0088 0.0029 0.0103 0.0080 0.0027 0.0095 0.0080 0.0026 0.0093 0.0064 0.0023 0.0077

Coop. 0.0181 0.0049 0.0221 0.0127 0.0038 0.0150 0.0100 0.0033 0.0118 0.0087 0.0029 0.0102 0.0080 0.0027 0.0096 0.0079 0.0026 0.0092 0.0064 0.0023 0.0077
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