Compressed Sensing Basics and Beyond

EUROCAST 2015

Feb 12, 2015

S.M. Fosson E. Magli

Outline

- 2 Applications
- Recovery
- 4 Distributed compressed sensing

Outline

- 2 Applications
- 3 Recovery
- 4 Distributed compressed sensing

Compressed sensing (compressed sampling, compressive sensing... CS) deals with

Underdetermined linear systems ...

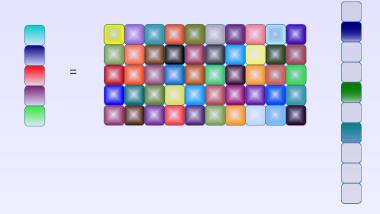
$$Ax = y$$

 $x \in \mathbb{R}^n$ (unknown), $y \in \mathbb{R}^m$ (measurements), $A \in \mathbb{R}^{m \times n}$, m < n

Within the infinite set of solutions, CS looks for the sparsest one

... with sparsity assumptions

x is k-sparse, i.e., it has k non-zero components, where $k \ll n$



$$Ax = y, x \in \mathbb{R}^n$$
(sparse), $y \in \mathbb{R}^m, m < n$

- Is the problem well-posed (= is the solution unique)?
- 2 Are there feasible algorithms to find the solution?
- Which applications motivate this study?

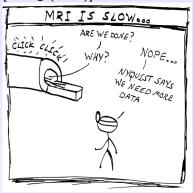
Answers

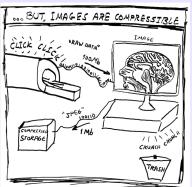
- Yes, under some conditions
- A number of recovery algorithms have been proposed
- Sparsity is ubiquitous: many signals are sparse in some basis $(y = A\phi x \text{ where } \phi \text{ is the sparsifying basis, e.g., DCT, wavelets, Fourier...})$
 - Applications where data acquisition is difficult/expensive, and one aims to move the computational load to the receiver

Outline

- 2 Applications
- 3 Recovery
- 4 Distributed compressed sensing

Magnetic Resonance Imaging (MRI): acquisition is slow [Lustig (2012)]

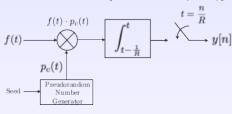


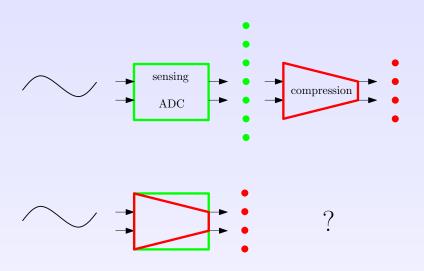


ightarrow sense the compressed information directly

$$Ax = y, x \in \mathbb{R}^n$$
(sparse), $y \in \mathbb{R}^m, m < n$

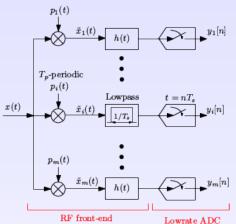
- Sampling: Nyquist-Shannon sampling theorem states given a signal bandlimited in (B, B), to represent it over a time interval T, we need at least 2BT samples
- CS indicates a way to merge compression and sampling, and sample at a sub-Nyquist rate [Tropp et al. (2009)]



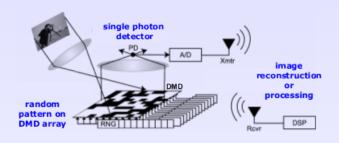


Wideband spectrum sensing

Modulated wideband converter (MWC) [Mishali and Eldar (2010)]



- Sub-Nyquist sampling for signals sparse in the frequency domain
- Realized in hardware (with commercial devices)



Boufonos et al., ICASSP 2008

Key ingredient: a microarray consisting of a large number of small mirrors that can be turned on or off individually

Light from the image is reflected on this microarray and a lens combines all the reflected beams in one sensor, the single pixel of the camera

Outline

- 2 Applications
- Recovery
- 4 Distributed compressed sensing

ℓ_0 -norm

 $||x||_0 := \text{number of nonzeros entries of } x \in \mathbb{R}^n$

Natural formulation of the CS problem:

$$P_0: \min_{x \in \mathbb{R}^n} ||x||_0$$
 subject to $Ax = y$

- Is the solution unique?
- P₀ is NP-hard!

Spark

spark(A) := minimum number of columns of A that are linearly dependent

Theorem [D. Donoho, M. Elad (2003)]

For any vector $y \in \mathbb{R}^m$, there exists at most one k-sparse signal $x \in \mathbb{R}^n$ such that y = Ax if and only if $\mathrm{spark}(A) > 2k$.

Coherence

$$\mu(A) := \max_{i \neq j} \frac{|A_i^T A_j|}{\|A_i\|_2 \|A_j\|_2} (A_i = i \text{th column of } A)$$

Theorem [D. Donoho, M. Elad (2003)]

lf

$$k < \frac{1}{2} \left(1 + \frac{1}{\mu(A)} \right)$$

 $y \in \mathbb{R}^m$, there exists at most one k-sparse signal $x \in \mathbb{R}^n$ such that y = Ax.

Possible solution: convex relation

Basis Pursuit

$$P_1: \min_{x \in \mathbb{R}^n} ||x||_1 \text{ subject to } Ax = y$$

- P₁ is convex; can be solved by linear programming
- Are P_0 and P_1 equivalent?

Coherence

Coherence

$$\mu(A) := \max_{i \neq j} \frac{|A_i^T A_j|}{||A_i||_{\partial_i}||A_i||_{\partial_i}} (A_i = i \text{th column of } A)$$

Theorem [Elad and Bruckstein (2002)]

If for the sparset solution x^* we have

$$\|x^*\|_0 < \frac{\sqrt{2} - \frac{1}{2}}{\mu(A)}$$

then the solution of P_1 is equal to the solution of P_0 .

RIP

Matrix A satisties the RIP of order k if there exists $\delta_k \in (0,1)$ such that the following relation holds for any k-sparse x:

$$(1 - \delta_k) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_k) \|x\|_2^2$$

Theorem [Candès (2008)]

If $\delta_k < \sqrt{2} - 1$, then for all *k*-sparse $x \in \mathbb{R}^n$ such that Ax = y, the solution of P_1 is equal to the solution of P_0 .

- Coherence, spark, RIP: not easy to compute
- Random matrices A with i.i.d. entries drawn from continuous distributions have spark(A) = m + 1 with probability one.
- Gaussian, Bernoulli matrices: given $\delta \in (0,1)$ there exist c_1, c_2 depending on δ such that G. and B. matrices satisfy the RIP with constant δ and any $m \geq c_1 k \log(n/k)$ with probability $\geq 1 2e^{-c_2 m}$ [Baraniuk (2008)]
- Structured matrices: circulant matrices, partial Fourier matrices

Orthogonal Matching Pursuit (OMP)

- "When we talk about BP, we often say that the linear program can be solved in polynomial time with standard scientific software, and we cite books on convex programming [...]. This line of talk is misleading because it may take a long time to solve the linear program, even for signals of moderate length" [Tropp and Gilbert (2007)]
- Possible solution: greedy algorithm, fast, easy to implement \rightarrow OMP

Orthogonal Matching Pursuit (OMP)

- Initialize $r_0 = y$, $\Lambda_0 = \emptyset$
- **2** For $t = 1, ..., T_{max}$
- $\lambda_t = \underset{j=1,\dots,n}{\operatorname{argmax}} |A_j^T r_{t-1}|$
- $\widehat{\mathbf{x}}_t = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{argmin}} \|\mathbf{y} \mathbf{A}_{\Lambda_t} \mathbf{x}\|_2$
- $T_{max} \approx k$
- OMP requires the knowledge of k!

Basis Pursuit Denoise (BPDN)

$$P_1: \quad \min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{x}\|_1 \text{ subject to } \|A\mathbf{x} = \mathbf{y}\|_2 \leq \varepsilon$$

Unconstrained version of BPDN

Lasso

$$\min\nolimits_{\mathbf{x} \in \mathbb{R}^{n}} \left(\left\| \mathbf{A}\mathbf{x} - \mathbf{y} \right\|_{2}^{2} + \lambda \left\| \mathbf{x} \right\|_{1} \right)$$

For some $\lambda > 0$, Lasso and BPDN have the same solution (the choice of λ is tricky!)

- **1** $\hat{x}_0 = 0$
- ② For $t = 1, ..., T_{max}$
- $\widehat{\mathbf{x}}_t = \mathsf{S}_{\lambda}(\widehat{\mathbf{x}}_{t-1} + \tau \mathsf{A}^\mathsf{T}(\mathbf{y} \mathsf{A} * \widehat{\mathbf{x}}_{t-1}))$

where the operator S_{λ} is defined entry by entry as $S_{\lambda}(x) = \operatorname{sgn}(|x| - \lambda)$ if $|x| > \lambda$, 0 otherwise

- IST achieves a minimum of the Lasso [Fornasier (2010)], and in many common situations such minimum is unique [Tibshirani (2012)]
- Faster method to get a minimum of the Lasso: alternating direction method of multipliers (ADMM)

- **1** $\hat{x}_0 = 0$
- **2** For $t = 1, ..., T_{max}$
- $\widehat{\mathbf{x}}_t = \mathsf{H}_k(\widehat{\mathbf{x}}_{t-1} + A^T(\mathbf{y} A\widehat{\mathbf{x}}_{t-1}))$

where the operator $H_k(x)$ is the non-linear operator that sets all but the largest (in magnitude) k elements of x to zero [Blumensath (2008)]

Outline

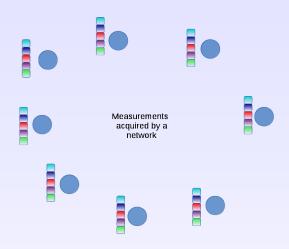
- 2 Applications
- 3 Recovery
- 4 Distributed compressed sensing

Distributed compressed sensing (DCS)

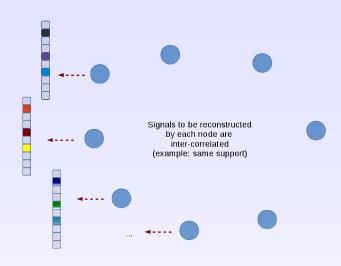
Data acquisition is perfored by a network of sensors

$$y_v = A_v x_v \quad v \in \mathcal{V} = \{ \text{ sensors } \}$$

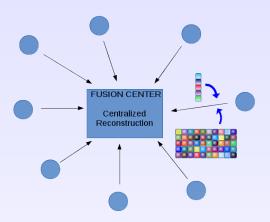
- First works: recovery is performed by a fusion center that gathers information from the network (sensing matrices, measurements)
- New: in-network recovery, exploiting local communication and consensus procedures
- We need iterative algorithms



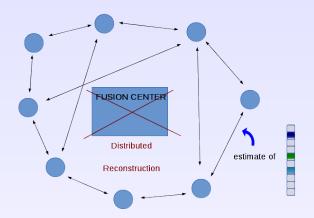
Distributed Compressed Sensing (DCS)



Distributed Compressed Sensing (DCS)



Distributed Compressed Sensing (DCS)



- C. Ravazzi, S.M. Fosson, E. Magli, E., Energy-saving Gossip Algorithm for Compressed Sensing in Multi-agent Systems, ICASSP. 2014
- S.M. Fosson, J. Matamoros, C. Antón-Haro, E. Magli, Distributed Support Detection of Jointly Sparse Signals, ICASSP, 2014
- 3 J. Matamoros, S.M. Fosson, E. Magli, C. Antón-Haro, Distributed ADMM for in-network reconstruction of sparse signals with innovations, IEEE GlobalSIP, 2014
- @ C. Ravazzi, S.M. Fosson, E. Magli, Distributed iterative thresholding for ℓ_0/ℓ_1 -regularized linear inverse problems, IEEE Trans. Inf. Theory, 2015.

- http://dsp.rice.edu/cs
- E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, Feb. 2006
- O. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, Apr. 2006
- A mathematical Introduction to Compressive Sensing, edited by S. Foucart and H. Rauhut, 2013
- Compressed Sensing: Theory and Applications, edited by Y.C. Eldar and G. Kutyniok, 2012
- Theoretical Foundations and Numerical Methods for Sparse Recovery, edited by M. Fornasier, 2010