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Noisy Range Network Localization based on
Distributed Multidimensional Scaling

Mingzhu Wei, Rosario Aragues, Carlos Sagues and Giuseppe C. Calafiore

Abstract—This paper considers the noisy range-only network
localization problem, in which, measurements of relative dis-
tances between agents are used to estimate their positions in
networked systems. When distance information is noisy, existence
and uniqueness of location solution usually are not guaranteed. It
is well known that in presence of distance measurement noise, a
node may have discontinuous deformations (e.g. flip ambiguities
and discontinuous flex ambiguities). Thus there are two issues
that we consider in noisy localization problem. The first one is the
location estimate error propagated from distance measurement
noise. We compare two kinds of analytical location error compu-
tation methods by assuming that each distance is corrupted with
independent Gaussian random noise. These analytical results
help us to understand effects of the measurement noises on
the position estimation accuracy. After that, based on multidi-
mensional scaling theory, we propose a distributed localization
algorithm to solve the noisy range network localization problem.
Our approach is robust to distance measurement noise, and it
can be implemented in any random case without considering
the network setup constraints. Moreover, a refined version of
distributed noisy range localization method is developed, which
achieves a good trade-off between computational effort and global
convergence especially in large-scale networks.

Index Terms—Network localization, noisy range measure-
ments, distributed algorithms, multidimensional scaling.

I. INTRODUCTION

Estimating the positions of agents in networked systems
is crucial for many applications ranging from robotics, au-
tonomous vehicles navigation and sensor networks. Most of
the applications require a precise knowledge of geometric po-
sition since the actions and observations are usually location-
dependent. Often global positioning system (GPS) cannot be
used since it cannot work indoors. Your system may be
composed of tiny robots or that require more precision than
the one given by the GPS or even your system may not operate
on earth. Then in a network, the absolute node positions
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(with respect to a local or global reference frame) need to be
estimated from partial relative measurements (e.g. distance)
between nodes. There are several distance measurement tech-
niques, which are easy to implement and low-cost, including
time-difference-of-arrival (TDOA), time-of-arrival (TOA) and
received signal strength (RSS) techniques [3]. Moreover, due
to the spatial separation between the agents, or to occlusions,
classically agents can only measure and exchange data with a
subset of the team instead of the whole network. The range-
only network localization problem consists of combining these
distance measurements to build an estimate of the agent po-
sitions. If the internodal distance measurements are exact, the
localization problem has a unique global solution. In practice,
the internodal distances are often noisy, the existence and
uniqueness of the network configuration cannot be guaranteed.
It is well known that in presence of distance noises, a node
may have discontinuous deformations (e.g. flip ambiguities
and discontinuous flex ambiguities) [15], [25]. Thus there are
two important considerations in noisy range network localiza-
tion: i) the characterization of location error propagated from
distance perturbations; ii) the design of localization algorithms
with noisy range information.

Several works focus on the first issue, i.e. location error
characterization. The Cramér-Rao Bound (CRB) is a popular
tool for analyzing the location estimate errors. It is used
for deriving lower bound position error from Gaussian and
log-normal noisy distance models in time-of-arrival (TOA)
and received signal strength (RSS) measurements [20]. CRB
is also used to examine the behavior of error inducing pa-
rameters in multi-hop localization systems, such as, network
density, anchor percentage and uncertainty of anchors [22].
Alternatively, there is a work that proposes a general location
estimation error theory of noisy range based localization
problem which states that if the distance noise is small enough,
the noisy minimization problem has a unique solution, and the
displacements of agent positions have a bound based on the
distance noise [1].

There are more works discuss the second issue, i.e. network
localization algorithm design with noisy range measurements.
The general ways involve centralized methods and distributed
methods [18]. In the centralized schemes, there is only one
central unit to do the localization procedure for the whole
networked sensors. For example, [5] proposes a successive
refinement approach, in which Semi-Definite Programming
(SDP) method tries to get a rude solution for the global
network configuration in the noisy case and a gradient-descent
method is added as a regularization term to have the final
refinement solution. While Other works apply network multi-
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lateration techniques to search global solution, where each sen-
sor estimates its multi-hop ranges to the nearest anchors[23].
When each sensor has multiple measurements to anchors, its
coordinates can be calculated locally via multi-lateration pro-
cedure. [24] proposes two computationally efficient algorithms
to refine the noisy distances based on the Cayley-Menger de-
terminant in n-lateration networks and solves the new refined
localization problem as in the noiseless case. In decentralized
localization problems, each agent can implement its position
estimation by itself in a network without the central computa-
tion unit and the communication cost can be reduced [10]. [13]
and [14] describes fully distributed localization approaches,
distributed iterative localization (DILOC) algorithm in noise-
free range-based network localization problem, distributed
localization random environments (DLER) algorithm in range
noisy scenario and a fast distributed sensor localization with
noisy distance measurements (DILAND) algorithm. Where the
state of each sensor is updated with a convex combination
of the states of its neighboring nodes. The coefficients are
the barycentric coodinates of the convex hulls formed by the
sensors and their neighbors. And the barycentric coodinates are
determined from the Cayley-Menger determinants. Moreover
the convergence of DLER and DILAND algorithms have been
demonstrated against noisy distance measurements, communi-
cation link failures and communication channel noise. There
is also a hybrid algorithm [16], which provides criteria (robust
quadrilaterals) in the selection of a subgraph of the network
to avoid flip ambiguities. Then the whole network is divided
into small clusters. Inside each cluster, it uses a centralized
optimization approach to get the agent positions. While all
the clusters execute a distributed localization method in the
network.

In a noisy range network localization problem, there are
three kinds of input errors: range measurement errors, commu-
nication link failure errors and communication channel noises
[9]. Usually the latter two errors could be removed during
the algorithm iteration process. But the distance measurement
errors in a sensor network will definitely propagate to the
location error of each node. To reduce the location errors,
accuracy distance measurement techniques and effective lo-
calization algorithms are needed. It is known that most of the
existing noisy range only localization algorithms can be char-
acterized into two classes: multi-lateration and successive re-
finement techniques. Better statistical performance is achieved
by successive refinement methods compared to network multi-
lateration approaches [18]. Therefore we are interested in
searching successive refinement strategies in a distributed way.
The SDP in [5] is a successive refinement approach, but it is
implement in a centralized way. Which means the comptation
cost in central unit will be a huge task in a large-scale
network. The DILOC, DLRE in [13] and DILAND in [14]
are distributed and iterative algorithms, which include two
stages: triangulation and update. However they apply the idea
of multi-lateration techniques in triangulation phase, in which
each sensor tries to find a convex hull (triangulation) where it
is included. And the update coefficients are derived from the
triangulation setup. To find a convex hull, all connections in
the convex hull are needed, including the distances between

the sensors and vertices of the convex hull and the distances
between the vertices. From this point, it is obviously that
the connectivity is heavy in such a network configuration.
As we already know that if nodes in a network can be
located, network minimal rigidity property is the sufficient
condition. While to triangulates each sensor in a network,
its connectivity will be much heavier than a minimal rigid
network. Moreover, the probability of each sensor triangulating
itself depends on sensing range ability and nodes deployment
density. Only at least one of these two parameters approaches
to infinity, the probability can be close to 1. It implies that the
triangulation condition is severe, i.e. if a network is minimal
rigid, the network localization optimum exists, but because the
connections are not enough for triangulating each sensor, the
DILOC cannot be performed to get the solution. When there
are distance measurement errors, the triangulation setup may
fail, then the DILOC method is also ineffective. In addition,
to execute DILOC, the position of anchors are restricted to
form a convex hull which all sensors lie in. In practical case,
the anchors may be in any arbitrary positions instead of the
boundary of a sensing area.

To break through all of the limits, our contribution involves
two issues in this paper. i) We will discuss the effect of range
measurement noise in the final localization error by consider-
ing two different analytical error computation approaches. ii)
We will propose fully distributed noisy range based network
localization approaches, which belong to successive refinement
methods. Unlike DILOC [13], our approaches do not impose
any restriction on the anchor positions and can perform the
localization in geometry global rigid graphs without heavy
connectivity. Furthermore, by adding a fully distributed gradi-
ent algorithm, the refined version can achieve a good trade-off
between computational effort and convergence performance.

The reminder of this paper is organized as follows. The
problem setup is presented in Section II. The location error
is analyzed through two different ways in Section III. A dis-
tributed multidimensional scaling based algorithm for solving
noiseless network localization problem is derived as a basic
technique for range only localization problem in Section IV.
The two distributed noisy localization algorithms are proposed
in Section V to solve the noisy range localization problem.
Numerical simulation results are reported in Section VI and
conclusions are drawn in Section VII.

II. PRELIMINARY KNOWLEDGE

A. Problem Setup

Consider a network with n nodes, where m is the number
of anchors which are given perfect priori position knowledge,
and n − m is the number of sensors whose position are
unknown. Let V = {v1, . . . , vn} be a set of n nodes (rep-
resenting sensors, agents, robots, vehicles, etc.), and let P =
{p1, . . . , pn−m, pn−m+1, . . . , pn} denote a corresponding set
of positions on the Cartesian plane, where pi = [xi yi]

> ∈ R2

are the coordinates of the i-th node. We shall call P a
configuration of nodes. Suppose that some pair of nodes, say
nodes (i, j), have the possibility of measuring the relative
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distance between them:

‖pi − pj‖ = dij , ∀ (i, j) ∈ E . (1)

We denote E the set of unordered node pairs (i, j) such
that a distance measurement exists between i and j. Let p .

=
[p>1 p>2 · · · p>n ]> denote the vector of node positions. Our
objective is to determine a node configuration {p1, . . . , pn}
that minimizes a Least-Squares of fit criterion

f(p) =
1

2

∑
(i,j)∈E

(
‖pi − pj‖2 − d2ij

)2
. (2)

When the global minimum of f is zero, we say that exact
matching is achieved, that means a configuration {p1, . . . , pn}
is found that exactly matches the given distance measurements.
Otherwise, no geometric node configuration can exactly match
the given range data, and we say that approximate matching
is achieved by the optimal configuration.

B. Distance Measurement Techniques
Since the absolute value of distances are the common

information in range network localization algorithms, here
we introduce two common methods that can obtain absolute
distance measurements, the received signal strength (RSS) and
the time of arrival (TOA).

a) Received signal strength (RSS): In wireless the signal
power decays with a path-loss exponent np, which depends on
the environment. Πij is the power received at agent i transmit-
ted by agent j (in mW), which is modeled as log-normal. Thus
the random variable ΠRSS

ij (dBm) = 10 log 10Πij is Gaussian
[19],

ΠRSS
ij ∼ N(Π̄ij(d), σ2

dB), Π̄ij(d) = ΠRSS
0 −10np log 10(dij − d0).

Where Π̄ij(d) is the mean power in dBm, ΠRSS
0 is the re-

ceived power (expressed in dBm) at a short reference distance
d0. A bias-corrected estimator of distance can be defined as,

d̂RSSij =
d0
c

10
ΠRSS

0 −ΠRSS
ij

10np ,

where c is a multiplicative bias factor, for typical channels, c ≈
1.2 [17]. Note that, d̂RSSij has a log-normal distribution since
log d̂RSSij has a Gaussian distribution. And d̂ij = log d̂RSSij is
the distance measurement that we consider in the remaining
of the paper.

b) Time of arrival (TOA): Time-of-arrival (TOA) is the
measured time at which a signal (RF, acoustic, or other) first
arrives at a receiver. The measured time delay, TTOAij is the
time for a signal to propagate from agent i to agent j. It can
be modeled as a Gaussian distribution,

TTOAij ∼ N(dij/vp + µT , σ
2
T ).

Then the distance measurement that we consider later is given
by

d̂ij = (TTOAij − µT ) · vp. (3)

Where, vp is the propagation velocity of signal. Based on
calibration experiments and a priori knowledge of the envi-
ronment, a precise estimates of the bias µT can be obtained,
and wide-band direct-sequence spread-spectrum (DS-SS) mea-
surements have shown µT = 10.9 ns [18].

III. LOCATION ESTIMATION ERROR CHARACTERIZATION

From the typical distance measurements techniques received
signal strength (RSS) and time-of-arrival (TOA), we note that
the range estimates can be modeled as Gaussian distributions.
So we assume the distance measurements are disturbed by
Gaussian random noise and then analyze the distance noise
propagation to the position estimation.

A. Linear Algebra Property of Globally Rigid Graph

The minimization objective (2) is rewritten as

f(p) =
1

2

∑
(i,j)∈E

g2ij(p), gij(p)
.
= ‖pi − pj‖2 − d2ij . (4)

The gradient ∇gij is a row vector of n blocks, with each block
composed of two entries. Thus 2n entries in total, and with the
only non-zero terms corresponding to the blocks in position i
and j:

∇gij(p) = 2[0>2 · · · 0>2 (pi − pj)> 0>2 · · · 0>2 (pj − pi)> 0>2 · · · 0>2 ].

Then the rigidity matrix R of the network formation can be
written:

R = R(p)
.
=

1

2

 ∇g1(p)
...

∇g|E|(p)

 ∈ R|E|,2|V|. (5)

Notice that in the case when anchor nodes are present, by
eliminating the columns of R corresponding to anchors and
the rows of R corresponding to the edges between the anchors
pairs, we have the reduced rigidity matrix Rr which is the
submatrix obtained from R.

Lemma 1: [25] Assume that R is the rigidity matrix of a
formation such that there is at least one selection of non-
collinear anchors, ai1 , ..., ai|V′| , for |V ′| ≥ 3, with the property
that the formation obtained by adding inter-anchors edges is
globally rigid. Then the reduced rigidity matrix Rr is of full
column rank.

Let Es and Vs be the set of sensors and the set of edges
between sensors. According to lemma 1, we have |Es| ≥ 2|Vs|,
which means the number of equations of eq.(1) is larger
than the number of the unknown variables, i.e. with the
assumption of generically globally rigid (ggr) communication
graph, then the equation set constitutes an overdetermined
system of simultaneous equations. In general, simultaneous
equations have multiple solutions, but for the overdetermined
set, if there is a solution, the solution is unique.

In the noiseless case, the localization problem is solvable
if the communication graph is ggr [2]. In the noisy scenario,
due to the overdetermined property of the constraint equation
set, the unique global will not exist, except assuming the
distance bound is typically small [1], so that the unique
approximate solution can be found, which is close to the true
localization. In the following paragraphs, we will investigate
the measurements noise effect on the location error.
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B. Analytical Location Estimation Error

In real scenarios, the distances measured by agents are
noisy. We assume the distance measurements are corrupted
with Gaussian random noise. The model is

d̂ij = dij + ωij , (i, j) ∈ E . (6)

Where dij is the true distance between nodes i and j, d̂ij
is the measurement of dij and ωij is the independent Gaus-
sian random measurement noise. For example, in TOA case,
measurement noise is ωij ∼ N(0, σ2

d), with σ2
d = v2pσ

2
T .

Now we consider the square of measured distances,

d̂2ij = d2ij + 2dijωij + ω2
ij , (i, j) ∈ E .

The error part consists of two terms. One term 2dijωij is
Gaussian with mean 0 and variance 4d2ijσ

2
d. While the second

term ω2
ij , that follows a Chi-square distribution with 1 degree

of freedom multiplied by σ2
d. If |ω| << dij , i.e. small noises,

the error part 2dijωij+ω2
ij can be approximated to a Gaussian

model. Thus the square of measured distance becomes a
Gaussian model,

d̂2ij = d2ij + εij , εij ∼ N(0, 4d2ijσ
2
d) (7)

Where εij is the measurement noise in the square of true
distance and is assumed as an independent Gaussian random
model.

There are two kinds of methods to check the measurement
noise propagation characterization. One is based on Cramér-
Rao Bound (CRB), and another is based on approximation of
residual function [25]. We will derive the CRB error of our
problem and compare it with the approximated location error
in [25].

1) Position estimate error analysis based on Cramér-Rao
Bound: The Cramér-Rao Bound (CRB) is an algorithm-
independent way to express a lower bound on the covariance
of an unbiased estimator for deterministic parameters. Here
we derive the CRB of position estimation when the distance
measurement is modeled as eq.(6).

Let the k-th edge be the distance between nodes i and j in a
global rigid graph, the location estimation problem becomes,

d̂k = d̂ij = ‖pi − pj‖+ ωij , k = 1, · · · , |Es|.

Where pi is the true position of node i. Let Mk(p) =
Mij(p) = ‖pi − pj‖. We stack all the equations corre-
sponding to all the nodes and have D = M(p) + ω, where
D = [d̂1, ..., d̂|Es|]

T , M(p) = [M1(p), ...,M|Es|(p)]
T and

ω = [ω1, ..., ω|Es|]
T .

Under the assumption of Gaussian independent random
distance error, measurement probability density function (pdf)
of the distance d̂ij is

fd̂k|p(d̂k, p) =
1√

2π · σd
·exp(− 1

2σ2
d

·(d̂k−‖pi−pj‖)2), σk = σd.

Since we assume that the distance measurements are uncorre-
lated, the covariance matrix Σω is a diagonal matrix with the
nonzero elements Σω(k, k) = σ2

k = σ2
d. Then the measurement

pdf is the vector Gaussian pdf:

fD|p(D, p) =
∏

(i,j)∈Es

fd̂k|p(d̂k, p)

=
1

(
√

2π)|Es| ·
∏

(i,j)∈Es σd

· exp(
∑

(i,j)∈Es

−1

2σ2
d

· (d̂k − ‖pi − pj‖)2)

=
1

(
√

2π)|Es| · |Σω|
1
2

· exp(−1

2
[D −M(p)]TΣ−1ω [D −M(p)]).

(8)

Based on eq.(8), we find the Fisher information matrix :

J(p) = E[(∇plnfD|p(p)) · (∇plnfD|p(p))T ]
= [G′(p)]TΣ−1ω [G′(p)],

where

[G′(p)]k,n =
∂Mk(p)

∂pn
=



xi−xj

dij
, pn = xi;

yi−yj
dij

, pn = yi;
xj−xi

dij
, pn = xj ;

yj−yi
dij

, pn = yj ;

0, otherwise.

According to the definition of reduced rigidity matrix Rr, we
have G′(p) = Rr · Σ−1d ,where Σd is a diagonal matrix with
the nonzero elements Σd(k, k) = dij . The Fisher information
matrix is

J(p) = RTr · Σ−1 ·Rr, (9)

where Σ = Σd · Σω · Σd.
So the Cramér-Rao Bound matrix is

CCRB = J−1(p) = [RTr · Σ−1 ·Rr]−1. (10)

The formal position estimate error covariance matrix defined
as Cp = E[(p̂− p)(p̂− p)T ], which is lower bounded by the
Cramér-Rao Bound, i.e. Cp ≥ CCRB.

2) Position estimate error analysis based on cost function
linearization: By linearizing the cost function (2) in the noisy
case, [25] derive the approximate location error characteriza-
tion. They define the following residual function, ϑij(p) as

ϑij(p) = ‖p̂i − p̂j‖2 − d̂2ij , p̂i = pi + δpi ,

where δpi is the position estimate error of agent i in the noisy
case. Then

ϑij(p) = ‖(pi + δpi)− (pj + δpj )‖2 − (d2ij + εij)

= 2(pi − pj)T (δpi − δpj ) + ‖δpi − δpj‖2 − εij .

Based on [1, Theorem 3.2], with sufficiently small distance
measurement error, the location estimation error is bounded in
a typical small vicinity of the true position. By omitting the
effect of the second order term, ‖δpi − δpj‖2, they have

θij(p) = (pi − pj)(δpi − δpj )T − εij/2.

The two summands ϑ and θ are the same for a particular edge
(i, j) by neglecting the factor of 2 and the second order term.
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Stacking all the equalities in lexico-graphical order, then

θ(p) = R · δp − ε/2, (11)

In the noisy range localization problem, by minimizing the
following problem,

min
δp
‖R · δp −

ε

2
‖2, (12)

The solution δ∗p can be found, which satisfies R · δ∗p = ε/2.
Rigidity matrix R is often not square in general, then it

is not invertible, thus the error in the agent position caused
by the distance measurement noise will make no sense. But
if we put some constraint conditions (for example, some
agents are fixed, some distances will not change), a submatrix
of R will map the position estimate errors to the distance
measurement errors. If the distance error is deterministic, then
the deterministic position error is

δ∗p = (RTr Rr)
−1RTr · εr/2. (13)

Where Rr is reduce rigid matrix, i.e. the submatrix of R. εr is
the error vector in the square of the length of edges (connecting
those edges with at least one non-anchor). Actually each
element of εr is in the form of eq.(7).

With the Gaussian independent random distance noise,
whose covariance Σε is a diagonal matrix with the nonzero
elements Σε(k, k) = 4d2kσ

2
d, the covariance of approximate

position estimate error cov(δ∗p) is derived as follows,

cov(δ∗p) =
1

4
(RTr Rr)

−1RTr cov(εr)((R
T
r Rr)

−1RTr )T

=
1

4
(RTr Rr)

−1RTr · Σε · ((RTr Rr)−1RTr )T

= (RTr Rr)
−1RTr · Σ · ((RTr Rr)−1RTr )T .

(14)

Proposition 1: In a generally global rigid communication
graph G, with the assumption of independent and identically
distributed (i.i.d.) Gaussian random distance measurement
noise, if the distance errors are typically small, the approx-
imate location error is equal to CRB error, i.e. the CRB
error can be used as a benchmark of localization accuracy
for particular algorithms.
Proof. With Gaussian random distance measurement noise,
according to the equations (10) and (14), in order to prove
CCRB = cov(δ∗p) , we need to prove

(RTr ·Σ−1 ·Rr) · [(RTr Rr)−1RTr ·Σ · ((RTr Rr)−1RTr )T ] = I.
(15)

The leftside of eq.(15) is reformed as,

(RTr · Σ−1 ·Rr) · (RTr Rr)−1RTr · Σ · ((RTr Rr)−1RTr )T

= RTr · Σ−1 · [Rr · (RTr Rr)−1RTr )] · Σ · ((RTr Rr)−1RTr )T .
(16)

Let A = Rr · (RTr Rr)
−1RTr . It is easy to indicate that

A · A = A. A is non-singular matrix since the determinants
of Rr and (RTr Rr)

−1RTr are non-zero. Then A = I and the
eq.(16) is

(RTr · Σ−1 ·Rr) · (RTr Rr)−1RTr · Σ · ((RTr Rr)−1RTr )T

= RTr · Σ−1 · [Rr · (RTr Rr)−1RTr )] · Σ · ((RTr Rr)−1RTr )T

= RTr · Σ−1 · I · Σ ·Rr(RTr Rr)−1
= RTr Rr(R

T
r Rr)

−1

= I.

Then, Cp = CCRB = cov(δ∗p) is proved. �
Remark 1: As addressed in proposition 1, CRB can eval-

uate the noise propagation in the case where the distance
noise is typically small. Under Gaussian random distance
error model and generally global rigid graph assumption, CRB
error is approximately linear with error variance σ2

d. Since the
reduced rigidity matrix Rr in covariance matrix defined by
the communication graph, the network parameters (such as,
network size or anchor number) have crucial effects on CRB
error, so as the approximate location error in [21].

IV. DISTRIBUTED MULTIDIMENSIONAL SCALING BASED
ALGORITHM

In Multidimensional Scaling (MDS) theory, the data is quan-
titative and the proximities of objects are treated as distances
in a Euclidean space [6], [12]. The goal of multidimensional
scaling method is to find a configuration of points in a
multidimensional space such that the internodal distances are
related to the provided proximities by some transformation
(e.g. a linear transformation) [12]. If the proximity data were
measured without error in a Euclidean space, then classical
metric MDS would exactly recreate the configuration of points
[2], [15]. In practice, the technique tolerates error gracefully
due to the overdetermined nature of the solution. The MDS
algorithm is used to regulate the local formation-shape to the
global one in formation-shape stabilization problem, and it is
implemented in a decentralized way [9]. Based on the idea of
[9], we will address how to use it in a range only network
localization problem to find the global network configuration
with random initial position instead of local solutions. Since
the error tolerance property of the MDS, we will use it to the
localization problem where the distance estimates can be very
rough indeed in the section V.

A. Classical Multidimensional Scaling Algorithm

Inspired by the multidimensional scaling techniques, we
note that the desired network configuration is the global
minimizer of the raw stress function S(p) : (R2)n → R,

S(p) =
1

2

∑
(i,j)∈E

(‖pi − pj‖ − dij)2 . (17)

The S-Stress function Ss(p) of S(p) is in fact the cost function
f(p) in eq.(2), i.e. Ss(p) = f(p). Since the stress function
S(p) has the same global minimizers as the S-Stress function
Ss(p), so as f(p). Here instead we focus on searching the
solution of the raw stress function S(p). If we compute the
partial derivative and design a gradient-descent coordinate
algorithm to minimize the stress function S(p). It is prone to
local minima. An alternative strategy involves the construction
of majorization functions that are easier to optimize.

Given any column vector of agents’ positions, z =
[zT1 , ..., z

T
n ]T ∈ R2n, and a communication graph G, we let

Gz be the weighted graph with adjacency matrix A(Gz) with
entries,

aij =

{
dij

‖zi−zj‖ , (i, j) ∈ E ,
0, (i, j) /∈ E .
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Then the stress majorization function F z(p) : R2n → R is

F z(p) = tr(pTL(G)p)− 2tr(pTL(Gz)p) +
1

2

∑
(i,j)∈E

d2ij . (18)

Where L(G) is the Laplacian matrix related to communication
graph G with the element lij satisfyinglij =

{
−1, (i, j) ∈ E ,
0, otherwise,

lii = |Ni|.

And L(Gz) is the Laplacian matrix of the weighted graph Gz
with the element lzij satisfyingl

z
ij =

{
− dij
‖zi−zj‖ , (i, j) ∈ E ,

0, otherwise,
lzii =

∑
j∈Ni

dij
‖zi−zj‖ .

Alternatively the Kronecker product of F z(p) can be ex-
pressed as

F z(p) = pT (L(G)⊗ I2)p− 2pT (L(Gz)⊗ I2)z+
1

2

∑
(i,j)∈E

d2ij .

(19)
Proposition 2: [9] Given z and a communication graph G,

the following statements hold:
1) The gradient and Hessian of F z(p) are respectively,

5F z = 2(L(G)⊗ I2) · p− 2(L(Gz)⊗ I2) · z,
52F z = 2L(G)⊗ I2.

2) The function F z(p) is global convex.
3) p ∈ R2n is a global minimizer of F z(p), if and only if

(L(G)⊗ I2) · p = (L(Gz)⊗ I2) · z.

Proposition 3: [9] Given an undirected graph G, for any
sets P = {p1, ..., pn} ∈ R2n and Z = {z1, ..., zn} ∈ R2n,
S(p) ≤ F z(p). Moreover, if p = z, then F p(p) = S(p).

From proposition 3, we can know if the global solution of
F z(p) is achieved, then it is the solution of S(p). Based on
proposition 2, it is easy to deduce an update formula of the
SMACOF (Scaling by MAjorizing a Complicated Function)
algorithm [12],

(L(G)⊗ I2) · p = b(z). (20)

Where b(z) is a matrix function of current node position
estimation z and b(z) = (L(Gz)⊗ I2) · z.

B. Distributed Multidimensional Scaling Algorithm

Given an invertible matrix U ∈ Rn×n and a vector b ∈ Rn,
we consider a linear system U · x = b. With Jacobi Over
Relaxation (JOR) method [9], the τ + 1 iteration value of i-th
element of x, represented by symbol xi(τ + 1) is obtained
using the following equation

xi(τ + 1) = (1− h)xi(τ) + h · 1

uii
(bi −

∑
j 6=i

uijxj(τ)). (21)

with τ ∈ Z ≥ 0, x(0) ∈ Rn, and a relaxation factor h, h ∈
(0, 1).

The convergence properties of the JOR method can be
characterized in terms of eigenvalues of the matrix describing
the linear iteration [4].

Proposition 4 (DMDS Method): Given an undirected com-
munication graph G and an initial position guess, each node
converges to true position by executing the distributed multi-
dimensional scaling (DMDS) method with the exact distance
measurements dij , (i, j) ∈ E . The update rule is

pi(τ+1) = pi(τ)− h

|Ni|
·
∑
j∈Ni

(1− dij
‖pi(τ)− pj(τ)‖ )·(pi(τ)−pj(τ)).

(22)
Proof. From eq.(20), the centralized update formula at itera-
tion τ with position estimation p(τ) reads,

(L(G)⊗ I2) · p(τ + 1) = b(p(τ)). (23)

As stated before, JOR method can solve a linear function
with a distributed way and keep the global convergence. If
we can implement our problem with the JOR method, it will
persist the above property.

Give the communication graph G, each node i has current
access of bi(p(τ)) and lii. Moreover it collects lij and lp(τ+1)

ij

by communicating with its neighbors j ∈ Ni. Then distributed
implementation for solving eq.(23) is in the following update
form,

pi(τ + 1) = (1− h) · pi(τ)− h

lii
· [
∑
j∈Ni

lij · pj(τ)− bi(p(τ))].

(24)
Where the weighted Laplacian matrix L(Gp(τ)) is correspond-
ing to the position estimation p(τ) at iteration τ , with the
entries, l

p(τ)
ij =

{
− dij
‖pi(τ)−pj(τ)‖ , (i, j) ∈ E ,

0, otherwise.
l
p(τ)
ii =

∑
j∈Ni

dij
‖pi(τ)−pj(τ)‖ .

(25)

Then, the eq.(24) is rewritten as eq.(26).
So the proposition 4 is proved. �

V. DISTRIBUTED RANGE LOCALIZATION APPROACHES IN
NOISY CASE

In previous section, we derived the DMDS approach in the
noiseless range based network localization. In this section,
we consider the localization problem where the distances are
noisy. We apply a distance information estimation scheme,
which provide more accurate distance measurements to the
distributed localization algorithms. To accelerate the conver-
gence speed in actual applications, we propose a refined
distributed noisy range localization algorithm.

A. Distributed MDS Method in Noisy Scenario

a) Distance estimation: The localization schemes exclu-
sively use current measurements of internodal distances to
compute the position estimation. So if distance information
is high uncertain, the position estimation accuracy will be
affected. Here we use the information from past distance mea-
surements to compute a more accurate version of the distance
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pi(τ + 1) = (1− h) · pi(τ)− h · 1

lii
· (
∑
j∈Ni

lij · pj(τ)−
∑
j∈Ni

dij
‖pi(τ)− pj(τ)‖

(pi(τ)− pj(τ)))

= pi(τ)− h · 1

|Ni|
·
∑
j∈Ni

(1− dij
‖pi(τ)− pj(τ)‖

) · (pi(τ)− pj(τ)).

(26)

d̄ij(τ) at each update iteration τ . These estimated distance
d̄ij(τ) is thus a function of the entire past measurements
d̂ij(s)s≤τ [14].

Since at time τ , we have knowledge of previous measure-
ments d̂ij(s)s≤τ between nodes i and j. With d̄ij(0) = d̂ij(0),
we use the following update rule to estimate an accurate dis-
tance estimate d̄ij(τ) which is the one used by the localization
algorithm,

d̄ij(τ) =
1

τ

∑
s≤τ

d̂ij(s) =
τ − 1

τ
d̄ij(τ − 1) +

1

τ
d̂ij(τ). (27)

Assumption 1: [14] Let {K(τ)τ≥0} be any sequence of
internodal distance measurements collected over time, then
there exist a sequence of estimates d̄(τ)τ≥0, such that for
all τ , d̄(τ) can be computed efficiently from {K(s)s≤τ} and
have P [limτ→∞ d̄(τ) = d] = 1, where d is the true distance
measurement.

b) Relaxation parameter: The relaxation parameter h is
chosen as a time varying function, h(τ), satisfing h(τ) ≥ 0,
limτ→∞ h(τ) = 0, and

∑
τ h(τ) = ∞. In particular, we

consider the following choice: for h > 0 and 0 < δ ≤ 1,

h(τ) =
h

(τ + 1)δ
. (28)

Where the weights decay to zero, but not too fast, which is
common in the adaptive control and signal processing.

We apply the distance estimate scheme and time-varying
relaxation parameter to distributed multidimensional scaling
algorithm eq.(22) to solve the noisy range based network
localization problem. The new algorithm is summarized as
Distributed Noisy Range Localization (DNRL) Method.

Algorithm 1: DNRL method
Inputs
• p(0): Initial guess of node positions;
• τ

max
: Maximum number of update iterations;

• η
abstol

: Absolute update tolerance.
Initialization Let τ = 0, pi(τ) = pi(0), for all i = 1, ..., n−
m; let the initial distance information be equal to the initial
measurement, i.e. d̄ij(0) = d̂ij(0),∀(i, j) ∈ E ; mark all states
of nodes as active.
Repeat while τ < τmax , and at least one node is active:

For i = 1 to n−m,
• Compute update coefficients lp(τ)ij and l

p(τ)
ii as

in eq.(25);
• Update the node position estimate according to

eq.(29), but with h(τ) satisfying eq.(28),

pi(τ + 1) = pi(τ)− h(τ)

Ni
·
∑
j∈Ni

(1

− d̄ij(τ)

‖pi(τ)− pj(τ)‖
) · (pi(τ)− pj(τ)).

(29)

• If ‖pi(τ)−pi(τ−1)‖ ≤ ηabstol, then mark node
i as ”inactive”;

end for.
Let τ = τ + 1.
Update distance sequence d̄ij(τ) as formula eq.(27).

End repeat

B. Refinement by a distributed gradient based method

The DNRL approach almost surely converges to the optimal
solution, but its convergence speed is slow so that it needs
costly computational effort. In the practical application, we
hope to apply a method to get global solution with fast
convergence speed. We combine a distributed gradient method
with our DNRL algorithm to achieve this goal.

c) Distributed Gradient based Approach: Gradient-based
approaches are based on successive refinement steps to find
the global minimum of a non-linear cost function associated
to a network localization problem. The distributed version
of gradient method that we proposed in [7] is an iterative
method with fast convergence speed, which only requires
first-order information. The distributed gradient (DG) based
method is proved to converge to the same solution as its
centralized counterpart. But it provides the benefits of a fully
decentralized scheme that can be implemented autonomously
by the networked agents.

It is known that f(p) has the same global minimizer as
S(p). After executing the DNRL algorithm, the raw position
estimation is close to the global solution. DG method can
converge to the true position estimation with a good initial
guess and exact distance measurement information, . Therefore
the distributed gradient refinement approach is used to regulate
this raw node position estimation to the almost true position,
avoiding the local minimizer.

The DG method is composed of a consensus phase and an
update phase. In the consensus phase, distributed implemen-
tation of Barzilai-Borwein stepsizes of each node is in the
following form,

αi(τ(t))
.
=
ρi(τ(t))

ψi(τ(t))
. (30)

It is an approximation of the common step size ατ , and t is
the consensus iteration.

The numerator and denominator of αi(τ(t)) are defined as
follows: at ”time” τ(0) each node i, i = 1, . . . , n, initializes
two scalar values:

ρi(τ(0)) = ‖p(τ)i −p
(τ−1)
i ‖2, (31)

ψi(τ(0)) = (p
(τ)
i −p

(τ−1)
i )>(∇if(p(τ))−∇if(p(τ−1))),(32)
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and then starts a series of consensus iterations, exchanging
data with its neighbors:

ρi(τ(t+1))=Wiiρi(τ(t))+
∑
j∈Ni

Wijρj(τ(t)), (33)

ψi(τ(t+1))=Wiiψi(τ(t))+
∑
j∈Ni

Wijψj(τ(t)), t = 0, 1,. . .,(34)

where ∇if(p) denote the i-th 1 × 2 block in the gradient
∇f(p),

∇if(p) =
∑
j∈Ni

(pi − pj)>gij(p). (35)

W is a symmetric doubly stochastic matrix, compatible with
graph G, with its weights as follows:

Wij =


1

max(|Ni|, |Nj |)
if (i, j) ∈ E , i 6= j,

1−
∑

j∈Ni\i

Wij if i = j,

0 otherwise,

where |Ni| denotes the cardinality of Ni.
During the update phase, this common parameter ατ is used

to actually update the current position estimate, then each
node would be able to locally update its estimated position
according to the distributed gradient rule [8]:

p
(τ+1)
i = p

(τ)
i − ατ∇if(p(τ)), i = 1, . . . , n. (36)

The refined DNRL (R-DNRL) algorithm is a combination
of DNRL and DG algorithms. First we run Algorithm 1
with small fixed iteration number, τ1max

, then output the
raw position estimation pDNRL and the distance estimation
information d̄

DNRL
which gets closer to the true value d. Then

we run the DG algorithm, where the initial position guess is
p

DNRL
and the required distance information is fixed as d̄

DNRL
.

The practical distributed noisy range localization algorithm
works as follows.

Algorithm 2: R-DNRL method
Inputs
• p(0): Initial guess of node positions;
• τ1max : Maximum number of update iterations in DNRL

phase;
• τ

max
: Maximum number of update iterations in DG

refinement phase;
• η

abstol
: Absolute update tolerance.

Initialization Let τ = 0, pi(τ) = pi(0), for all i = 1, ..., n−
m; let the initial distance information be equal to the initial
measurement, i.e. d̄ij(0) = d̂ij(0),∀(i, j) ∈ E ; mark all states
of nodes as active.
DNRL procedure:

Execute the DNRL algorithm for τ1max
iterations.

Outputs
• pDNRL : Raw position estimation;
• d̄

DNRL
: Approximated distance information used in DG

algorithm.
DG refinement:
Inputs
• tmax: Maximum number of consensus iterations;
• τ

wup
: Maximum number of warm-up iterations;

Warm-up
Set the position estimates p(τ) = p

DNRL
; let the required

distance d̄ = d̄
DNRL

; mark all nodes as ”active”.
• Fix ατ = α̃ (a small number, and equal for all nodes);
• Update all node position estimates according to (36) for
τ

wup
iterations ;

Repeat while τ ≥ τmax , and at least one node is active.
(Stepsize computation) Repeat while t < tmax:
• Initialize ρi(τ(0)) and ψi(τ(0)) as eq.(31) and eq.(32);
• Update ρi(τ(t)), ψi(τ(t)) according to eq.(33) and eq.

(34) for t
max

iterations;
(Gradient update) At each active node:
• Compute ατ according to eq.(30);
• Update position estimate according to eq.(36);

If ‖pi(τ) − pi(τ − 1)‖ ≤ ηabstol, then mark node i as
”inactive”;

End repeat
Remark 2: DNRL approach can converge to almost true

position estimation avoiding the local minima, but it needs
onerous iterations. When we select a small number of DNRL
iterations, DNRL approach outputs raw global position esti-
mations and relatively accurate distance estimations. Since DG
method can accelerate the convergence speed with noise-free
distance information, DG refinement could find the optimum
network configuration where location errors are in the toler-
ance bound by using the almost true distance estimations. Thus
the proposed R-DNRL scheme can work well with a good
trade-off between computational effort and location error.

VI. NUMERICAL EXPERIMENTS

We now present some numerical tests on the proposed
decentralized network localization methods. In first experi-
ment, we study the performance of distributed multidimen-
sional scaling (DMDS) approach. In second experiment, we
choose a small-scale network to investigate the properties
of the distributed noise range network localization (DNRL)
approach and the refined version (R-DNRL technique). In third
experiment, we extend to large-scale networks and evaluate the
performance of R-DNRL technique.

We assume the distance measurement d̂ij between nodes i
and j is corrupted by Gaussian noise with model as eq.(6).
Where σd is the standard deviation of distance measurement.
The initial guess of each sensor position in networks for
algorithms is drawn from a multivariate normal distribution
centered at the true node positions with standard deviation σp.

A. Experiment 1
In this experiment we investigate the error propagation

characterizations of three methods, SDP, DILOC and DMDS
by comparing their localization errors with CRB errors. If a
network is generically global rigid, it can find the optimum
localization solution. SDP and DMDS methods can achieve
the only optimum configuration in such a generically global
rigid graph. But for DILOC method, to triangulate each sensor,
the network connectivity is much heavier than the generically
global rigid graph. Moreover all sensors must stay in the
convex hull formed by anchors. Instead there is no anchor
position limit during SDP and DMDS methods running. To
compare the three localization algorithms, we will consider a
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graph with heavier edge connections than generically global
rigid graph so that it can be located by all the three algorithms.
Fig. 1 plots such a network where n = 50 nodes are distributed
in a triangle [0, 1]× [0, 1], m = 3 anchors are at the external
vertices of the formation and all sensors are triangulated with
the solid lines.
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Fig. 1. The N = 50 network graph and the respective triangulation set.
The stars represent true unknown sensor positions; the circles represent the
m = 3 anchor positions; the lines represent triangulation set connections.

We define the root-mean-square (RMS) positioning error φ
for a n-nodes network where n−m sensor positions need to
be determined,

φ =

√∑n−m
i=1 ‖p̂i − pi‖2

n−m
, (37)

where pi is the true position of node i, i ∈ 1, .., n−m, p̂i is
the corresponding estimated position and m is the number of
anchors.

The CRB error is given by

φ
CRB

=

√∑n−m
i=1 ([CCRB]2i−1,2i−1 + [CCRB]2i,2i)

n−m
. (38)

It is known that if the location error nearly achieves to the
CRB error, there is no need to improve the accuracy of a
localization algorithm. Here we compare CRB errors with the
location errors of DMDS, SDP and DILOC approaches. We
run 100 Monte-Carlo simulations for distance measurement
errors σd =0.005, 0.01, 0.03, 0.05, 0.07, 0.1. Fig. 2 shows
that the location errors of SDP and DMDS algorithms are
close to the CRB errors especially with small distance noise.
As the distance measurement errors increase, the location
errors of SDP and DMDS approaches linearly increase as
what CRB errors do. However the location errors of DILOC
method are much greater than CRB errors and do not increase
linearly when distance errors become greater. It implies that
DILOC is more sensitive to the distance errors than SDP
and DMDS methods, because DILOC is not a successive
refinement method and it applies the trilateration technique at
setup phase. Thus SDP and DMDS methods have much less
algorithm errors than DILOC method in noisy range network
localization.
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Fig. 2. Location error comparison of SDP, DILOC and DMDS algorithms
with the Cramér-Rao Bound errors. Where initial position guess σp = 0.1.

Table I shows the computational efforts of the three tech-
niques. As a centralized localization algorithm SDP need much
more time to obtain the optimum solution than the distributed
ones, DMDS and DILOC. DILOC needs more computational
efforts than DMDS. Moreover as the distance errors increase,
the location errors of DILOC become larger. But the location
errors of DMDS change little with distance noise. It shows
that DMDS is more robust than DILOC in noisy range case.
In addition, when we take account of network connectivity and
anchor position limits, we do not think DILOC is a common
available localization method. About SDP method, though
it is as good as DMDS from aspect of minor localization
algorithm errors, it is a centralized algorithm which needs
much computation cost than a distributed algorithm. Therefore
it is obviously DMDS is a suitable localization method in the
distributed noisy range based network localization system.

B. Experiment 2
In order to work on more realistic graphs, we use random

geometric graphs, that are graphs in which nodes are deployed
at random in the square plane, and an edge exists between
a pair of nodes if and only if their geometrical distance is
smaller than sensing radius, r. It has been proved in [11] that

if r > 2
√

2
√

log(n)
n , the graphs produced by the previous

technique in a square [0, 1]× [0, 1] are geometry globally rigid
with high probability.

In this section, we pick a small-scale network to investigate
the detailed properties of DNRL and R-DNRL algorithms in
the case where the distances are noisy. In a geometry globally
rigid graph, the only optimum global configuration can be
obtained. But if we apply DIRE and DILAND algorithms
(two variations of DILOC method in noisy range case), their
triangulation setup phase can not be implemented because
there is not enough connections between nodes as what they
need so that these two algorithms are ineffective in such a
network. However DNRL and R-DNRL algorithms can work
well. In the numerical simulations, we consider geometry
globally rigid graphs with n = 30 nodes that are distributed
in a square [0, 1]× [0, 1], where the sensing range is r = 0.6
and the m = 3 anchor nodes are selected randomly in the
network. An example of random geometric graph is shown in
Fig. 3.
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TABLE I
COMPUTATION EFFORT OF SDP, DILOC AND DMDS METHODS

σd 0.005 0.01 0.03 0.05 0.07 0.1
SDP method (seconds) 192.7494 232.6691 184.2966 183.0561 212.7865 239.5150
DILOC method (seconds) 0.6333 0.7316 0.5623 0.5565 15.3241 17.0462
DMDS method (seconds) 0.0619 0.0626 0.0728 0.0733 0.0743 0.0750
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Fig. 3. The N = 30 random geometric communication graph. The stars
represent true unknown sensor positions; the circles represent the anchor
positions; the lines represent distance connections.

In order to measure the localization effectiveness of each
node in the noisy range case, we define the local position
error at the each node as the Euclidean distance between the
estimated position at iteration τ and the true position of the
node. We assume that distance measurement d̂ij(τ) at time
τ between nodes i and j is corrupted by Gaussian noise
σd. The required distance information d̄ij(τ) in localization
is estimated using eq. (27). The time varying relaxation
parameter is set as h(τ) = 0.6/(τ +1)0.5 and the initial guess
parameter is set as σp = 0.1. Here we change the distance
error σd with different test values σd = 0.005, 0.01, 0.03,
0.05, 0.07, 0.1.
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Fig. 4. The local position error convergences of five nodes by using DNRL
algorithm. Where initial position guess σp = 0.1 and distance measurement
error σd = 0.1.

The DNRL algorithm can converge to the almost true global

configuration, but with great computational effort. For exam-
ple, in Fig. 4 the random picked 5 nodes of the network can
finally converge to the true position with a suitable iteration
number, but iteration number is large which implies the great
computational effort. Instead when the R-DNRL method is
used, the convergence of each node to the true position can
be guaranteed with much less computational effort. Table II
compares the simulation results of the two methods. Even
though the location errors increase as distance noise increase,
the network configuration still converges to the almost true
value. It means that the location errors of DNRL and R-DNRL
algorithms are robust with the distance measurement noise in
a tolerant convergence bound. For the practical noisy range
localization problem in a large-scale network, because R-
DNRL method can accelerate the convergence speed, it could
achieve great performance to balance localization convergence
and computational effort.

C. Experiment 3

In third experiment we study the performance of R-DNRL
localization algorithm when the network becomes large-scale.
We use graphs with n = 25, 100, 400 nodes disposed in lattice
configuration on the unit square [0, 1]×[0, 1]. An example with
n = 100 nodes is shown in Fig. 5. Four anchor nodes are
selected at the external vertices of the unit square. Diagonal
edges are added to the lattice structure for guaranteeing rigidity
of the underlying graph, hence enabling the nodes to retrieve
the correct configuration.
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Fig. 5. Lattice configuration (n = 100).

In this experiment, we test the convergence of the R-DNRL
method against different distance noise factors nf = 0.005,
0.01, 0.03, 0.05, 0.07, 0.1 and different network sizes n =
25, 100, 400. To keep the distance errors vary in the same scale
for different network sizes, the noise factor nf is different
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TABLE II
COMPARISON OF DNRL AND R-DNRL APPROACHES

Distance errors σd 0.01 0.03 0.05 0.07 0.1

DNRL Location errors 0.0003 0.0002 0.0003 0.0004 0.00048
Computational efforts (seconds) 36.9177 23.0370 21.9075 23.4849 27.0800

R-DNRL Location errors 0.0001 0.0003 0.0006 0.0007 0.0009
Computational efforts (seconds) 1.4018 1.2657 1.4550 1.2529 1.4289
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Fig. 6. Percentage of convergence test depending on network size and
goodness of initial guess for the R-DNRL approach.

from the standard deviation of distance measurement σd. nf
is defined in eq.(39),

d̂ij = dij(1 +N(0, 1) ∗ nf ), (i, j) ∈ E . (39)

The initial guess parameter is fixed as σp = 0.1. Fig. 6 reports
that through 100 Monte Carlo simulations, the convergence
percentages are all greater than 96% in different network size
and distance noise factor setups. Table III illuminates that with
the distance noise robustness and tractable localization time,
localization convergence of R-DNRL algorithm is not affected
by the network size. We can conclude that R-DNRL algorithm
is a feasible and efficient distributed localization algorithm in
networks with different configurations, different network sizes
and different distance measurement noises.

VII. CONCLUSIONS

In this paper, we have discussed two issues in noisy range-
only network localization. First one is analysis of distance
measurement noise effect on location estimation errors. We
applied two different mathematical ways to derive the analyt-
ical location estimation errors. The formal position estimation
error is lower bounded by Cramér-Rao bound (CRB). If
the distance noise is typically small and the communication
graph is generally globally rigid, an approximate location
error computed by cost function linearization is proved to be
equal to CRB error. That is an evidence that CRB error can
be used as a benchmark to evaluate the performance of our
particular localization algorithm. After understand of range
measurement noise propagation, based on multidimensional
scaling theory and Jacobian over relaxation algorithm, we
deduced a distributed multidimensional scaling localization

(DMDS) algorithm which is prove to achieve perfect con-
vergence through comparing with Cramér-Rao bound (CRB).
After that, we adopted a distance estimation scheme and
a time varying relaxation parameter to obtain a distributed
noisy range localization (DNRL) algorithm which is used
in noisy case. The DNRL algorithm has good convergence
and robustness in noisy range network localization problems.
But it needs large computational effort, especially in large-
scale networks. By adding a distributed gradient method to
the DNRL algorithm, we derived a refined distributed noisy
range localization (R-DNRL) algorithm which is robust to
the distance measurement noise and achieves a good trade-
off between computational effort and convergence error in
practical applications. To sum up, in a localization problem, if
the network size is small, we can choose the DNRL algorithm,
nevertheless if the network size becomes large, the R-DNRL
method would be a better choice.

The localization algorithms that we considered in this paper
is applied in a stationary network, while the mobility of nodes
would make the localization problem much complicated. Thus
the distributed localization algorithm in a mobile network
will be our future direction. Mobility creates the problem for
locating and tracking the moving sensors in real time, and the
opportunity to improve sensor location, such as considering
the update rate, i.e. how often location must be re-estimated.
If sensors are completely stationary, localization might just be
done at startup. In networks with some changes over time, it
should not be necessary to continually make and broadcast
pair-wise measurements between stationary sensors. There
might be a distributed algorithm which detects sensor motion
(by monitoring changing pair-wise measurements) and then
updates the location estimates only those sensors in motion,
in order to save communication and computation. The trade-
offs between measurement requirement, communication and
accuracy should be more explicitly explored.
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