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Robust Distributed Routing in Dynamical Networks
– Part II: Strong Resilience, Equilibrium Selection

and Cascaded Failures
Giacomo Como Ketan Savla Daron Acemoglu Munther A. Dahleh Emilio Frazzoli

Abstract—Strong resilience properties of dynamical networks
are analyzed for distributed routing policies. The latter are
characterized by the property that the way the outflow at
a non-destination node gets split among its outgoing links is
allowed to depend only on local information about the current
particle densities on the outgoing links. The strong resilience
of the network is defined as the infimum sum of link-wise
flow capacity reductions making the asymptotic total inflow to
the destination node strictly less than the total outflow at the
origin. A class of distributed routing policies that are responsive
to local information is shown to yield the maximum possible
strong resilience under such local information constraints for
an acyclic dynamical network with a single origin-destination
pair. The maximal achievable strong resilience is shown to be
equal to the minimum node residual capacity of the network.
The latter depends on the limit flow of the unperturbed network
and is defined as the minimum, among all the non-destination
nodes, of the sum, over all the links outgoing from the node,
of the differences between the maximum flow capacity and the
limit flow of the unperturbed network. We propose a simple
convex optimization problem to solve for equilibrium flows of
the unperturbed network that minimize average delay subject
to strong resilience guarantees, and discuss the use of tolls to
induce such an equilibrium flow in traffic networks. Finally, we
present illustrative simulations to discuss the connection between
cascaded failures and the resilience properties of the network.

Index terms: dynamical networks, distributed routing poli-
cies, strong resilience, price of anarchy, cascaded failures.

I. INTRODUCTION

Robustness of routing policies for networks is a central
problem which is gaining increased attention with a growing
awareness to safeguard critical infrastructure networks against
natural and man-induced disruptions. Information constraints
limit the efficiency and resilience of such routing policies, and
the possibility of cascaded failures through the network adds
serious challenges to this problem. The difficulty is further
magnified by the presence of dynamical effects, e.g., see [2].
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This paper considers the framework of dynamical networks
introduced in our companion paper [3], where the network is
modeled by a system of ordinary differential equations derived
from mass conservation laws on directed acyclic graphs with a
single origin-destination pair and a constant outflow from the
origin node. The rate of change of the particle density on each
link of the network equals the difference between the inflow
and the outflow on that link. The latter is modeled to depend on
the current particle density on that link through a flow function.
We focus on distributed routing policies whereby the way the
total outflow of a node gets split among its outgoing links
is allowed to depend only on local information, consisting of
the current particle densities on the outgoing links of the same
node. We call the dynamical network fully transferring if the
total inflow at the destination node asymptotically approaches
the total outflow at the origin node. Our primary objective in
this paper is to analyze the robustness of distributed routing
policies in terms of the network’s strong resilience, which
is defined as the infimum sum of link-wise magnitude of
disturbances making the perturbed dynamical network not
fully transferring.

We prove that the maximum possible strong resilience is
yielded by a class of locally responsive distributed routing
policies, introduced in the companion paper [3]. Such policies
are characterized by the property that the portion of its inflow
that a node routes towards an outgoing link does not decrease
as the particle density on any other outgoing link from that
node increases. We show that the strong resilience of a
dynamical network with such locally responsive distributed
routing policies equals the minimum node residual capacity
of the network. The latter is defined as the minimum, among
all the non-destination nodes, of the sum of the difference
between the maximum flow capacity and the limit flow of
the unperturbed network, on all the links outgoing from the
node. Using ideas from [4], one can show that, when the
information constraints on the routing policies are relaxed, i.e.,
the routing policies can access information about the particle
densities over the whole network, then the strong resilience
of the network can be made equal to the network residual
capacity. The latter is defined as the difference between the
min-cut capacity of the network and the constant outflow at
the origin node. Since the minimum node residual capacity
is less than or equal to –and, in most non-trivial cases,
strictly less than– the network residual capacity, this shows
that the information constraints on the routing policies can
reduce the strong resilience of the network. Moreover, the
minimum residual capacity depends on the limit flow of the
unperturbed network. This is in stark contrast to our result
on weak resilience in [3], where we showed that the weak
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resilience is unaffected by local information constraints on
the routing policies and is independent of the limit flow of
the unperturbed network. We also propose a simple convex
optimization problem to solve for equilibrium flows of the
unperturbed network that minimize the average delay subject
to strong resilience guarantees. Finally, given a desired equilib-
rium flow with strictly positive component on every link of an
unperturbed traffic network, we derive a class of link-wise tolls
which yield that equilibrium flow. Since the strong resilience
and the average delay of the unperturbed traffic network
depend on the equilibrium flow of the unperturbed network,
a system planner can use such tolls as an additional control
mechanism to achieve a desired performance guarantee for the
traffic network. These results are derived under the condition
that the link-wise flow functions are strictly increasing and
the links have unbounded capacity for flow densities. We
present illustrative simulations discussing cascaded failures
that arise when the links have finite capacities on flows as
well as densities. We describe cascaded failures within a
dynamical network framework and illustrate their effect on
network resilience. A rigorous resilience analysis as well as the
design of robust control policies for this model is an ongoing
work, e.g., see [5].

Stability analysis of network flow control policies under
various routing policies is carried out in [6], [7], [8]. A
detailed comparison between the settings of these papers and
our dynamical network setting is included in the companion
paper [3]. The present paper also studies the connection
between the robustness properties of the network and its
equilibrium flow. The role of equilibrium in the efficiency of
a system, especially in economic settings involving multiple
agents, has attracted a lot of attention, e.g., see [9]. One of
the most celebrated notions to measure the inefficiency of
an equilibrium is the price of anarchy [10]. In a road traffic
setting, the price of anarchy of a given network state quantifies
the extent to which the average delay faced by a driver at
that state exceeds the least possible average delay over all
possible network states. In this paper, we propose a robustness-
based metric for measuring inefficiency of equilibrium states
of dynamical networks. Finally, the study of cascaded failures
in complex networks has attracted a great deal of attention
recently, e.g., see [11], [12] where the authors propose various
models for this phenomenon.

The contributions of this paper are as follows: (i) we for-
mulate the notion of strong resilience of a dynamical network,
and show that the class of locally responsive routing policies
yield the maximum strong resilience under local information
constraints; (ii) we formulate a simple convex optimization
problem to solve for the most robust equilibrium flow, and
discuss the use of link-wise tolls in implementing any given
equilibrium (including the most robust) flow with strictly
positive component on every link in traffic networks; and (iii)
we present illustrative simulations to discuss cascaded failures
in dynamical networks and their effect on network resilience.

The rest of the paper is organized as follows. In Section II,
we briefly summarize the dynamical network framework and
then postulate the notion of strong resilience. In Section III,
we state the main result on the strong resilience, and provide

discussions on the results. Section IV discusses the problem of
selection of the most strongly resilient equilibrium flow of the
network and the use of tolls to induce such an equilibrium in
traffic networks. In Section V, we report illustrative numerical
simulation results, discussing the effect of cascading failures
on the resilience of the network. We conclude in Section VI
with remarks on future research directions and state proofs of
the main results in the appendices A and B.

Before proceeding, we define some preliminary notation to
be used throughout the paper. Let R be the set of real numbers,
R+ := {x ∈ R : x ≥ 0} be the set of nonnegative real
numbers. Let A and B be finite sets. Then, |A| will denote
the cardinality of A, RA (respectively, RA+) the space of real-
valued (nonnegative-real-valued) vectors whose components
are indexed by elements of A, and RA×B the space of matrices
whose real entries are indexed by pairs in A×B. The transpose
of a matrix M ∈ RA×B will be denoted by M ′ ∈ RB×A, while
1 will stand for the all-one vector, whose size will be clear
from the context. Let cl(X ) be the closure of a set X ⊆ RA.
A directed multigraph is the pair (V, E) of a finite set V of
nodes, and of a multiset E of links consisting of ordered pairs
of nodes (i.e., we allow for parallel links between a pair of
nodes). If e = (v, w) ∈ E is a link, where v, w ∈ V , we
shall write σ(e) = v and τ(e) = w for its tail and head node,
respectively. The sets of outgoing and incoming links of a
node v ∈ V will be denoted by E+

v := {e ∈ E : σ(e) = v}
and E−v := {e ∈ E : τ(e) = v}, respectively. Moreover, we
shall use the shorthand notation Rv := RE

+
v

+ for the set of
nonnegative-real-valued vectors whose entries are indexed by
elements of E+

v , Sv := {p ∈ Rv :
∑
e∈E+v pe = 1} for the

simplex of probability vectors over E+
v , and R := RE+ for

the set of nonnegative-real-valued vectors whose entries are
indexed by the links in E .

II. DYNAMICAL NETWORKS

The notion of dynamical network was introduced in the
companion paper [3]. In order to render the present paper self-
contained, we state here the concepts and notation which are
most relevant. We start with the following definition.

Definition 1 (Network): A network N = (T , µ) is the pair
of a topology, described as a finite directed multigraph T =
(V, E), where V is the node set and E is the link multiset,
and a family of flow functions µ := {µe : R+ → R+}e∈E
describing the functional dependence fe = µe(ρe) of the flow
on the density of particles on every link e ∈ E . The flow
capacity of a link e ∈ E is

fmax
e := sup

ρe≥0
µe(ρe) . (1)

We shall use the notation Fv := ×e∈E+v [0, fmax
e ) for the

set of admissible flow vectors on outgoing links from node v,
and F := ×e∈E [0, fmax

e ) for the set of admissible flow vectors
for the network. We shall write f := {fe : e ∈ E} ∈ F ,
and ρ := {ρe : e ∈ E} ∈ R, for the vectors of flows and
of densities, respectively, on the different links. The notation
fv := {fe : e ∈ E+

v } ∈ Fv , and ρv := {ρe : e ∈ E+
v } ∈ Rv

will stand for the vectors of flows and densities, respectively,
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on the outgoing links of a node v. We shall compactly denote
by f = µ(ρ) and fv = µv(ρv) the functional relationships
between density and flow vectors.

Throughout this paper, we shall restrict ourselves to net-
works satisfying the following assumptions.

Assumption 1: The topology T contains no cycles, has a
unique origin (i.e., a node v ∈ V such that E−v is empty),
and a unique destination (i.e., a node v ∈ V such that E+

v is
empty). Moreover, there exists a path in T to the destination
node from every other node in V .

Assumption 2: For every link e ∈ E , the map µe : R+ →
R+ is continuously differentiable, strictly increasing, such that
µe(0) = 0, and fmax

e < +∞.

In particular, Assumption 1 implies that (see, e.g., [13]) one
can identify (in a possibly non-unique way) the node set V
with the integer set {0, 1, . . . , n}, where n := |V|−1, in such
a way that

E−v ⊆
⋃

0≤u<v
E+
u , ∀v = 0, . . . , n . (2)

In particular, (2) implies that 0 is the origin node, and n
the destination node in the network topology T . An origin-
destination cut (see, e.g., [14]) of T is a partition of V
into U and V \ U such that 0 ∈ U and n ∈ V \ U . Let
E+
U = {(u, v) ∈ E : u ∈ U , v ∈ V \ U} be the set of all the

links pointing from some node in U to some node in V \ U .
The min-cut capacity of a network N is defined as

C(N ) := min
U

∑
e∈E+U

fmax
e , (3)

where the minimization runs over all the origin-destination
cuts of T . Throughout this paper, we shall assume a constant
total outflow λ0 ≥ 0 at the origin node. Let us define the set
of admissible equilibrium flows associated to λ0 as

F∗(λ0) :=

f∗ ∈ F :
∑
e∈E+0

f∗e = λ0 ,

∑
e∈E+v

f∗e =
∑
e∈E−v

f∗e , ∀ 0 < v < n

 .

Then, it follows from the max-flow min-cut theorem (see,
e.g., [14]), that F∗(λ0) 6= ∅ whenever λ0 < C(N ). That is,
the min-cut capacity equals the maximum flow that can pass
from the origin to the destination while satisfying capacity
constraints on the links, and conservation of mass at the
intermediate nodes.

We now recall the notion of a distributed routing policy
from [3].

Definition 2 (Distributed routing policy): A distributed
routing policy for a network N is a family of differentiable
functions G := {Gv : Rv → Sv}0≤v<n determining the way
the outflow each non-destination node v gets split among its
outgoing link set E+

v , as a function of the observed current
particle density ρv on the outgoing links from the node v.

The salient feature of Definition 2 is that the routing policy
Gv(ρv) depends only on the local information about the
particle density ρv on the set E+

v of outgoing links of the
non-destination node v.

We now state the definition of a dynamical network and its
transfer efficiency.

Definition 3 (Dynamical network): A dynamical network
associated to a network N satisfying Assumption 1, a dis-
tributed routing policy G, and an outflow λ0 ≥ 0 at the origin
node, is the dynamical system

d
dt
ρe(t) = λσ(e)(t)Gσ(e)

e (ρ(t))− fe(t) , ∀ e ∈ E , (4)

where
fe(t) := µe(ρe(t)) ,

λv(t) :=

{
λ0 if v = 0∑
e∈E−v fe(t) if 0 < v ≤ n.

Given some flow vector f◦ ∈ F , the dynamical network (4) is
said to be fully transferring with respect to f◦ if the solution
of (4) with initial condition ρ(0) = µ−1(f◦) satisfies

lim
t→∞λn(t) = λ0 . (5)

Definition 3 states that a dynamical network is fully trans-
ferring when the inflow at the destination node is asymptot-
ically equal to the outflow from the origin node, i.e., there
is no throughput loss asymptotically. Observe that a fully
transferring dynamical network does not necessarily imply that
the link-wise flows converge to an equilibrium, for it might
in principle have a persistently oscillatory or more complex
behavior. Nevertheless, it will prove useful to introduce the
notions of equilibrium and limit flow as follows.

Definition 4 (Equilibrium flow and limit flow): An equilib-
rium flow for the dynamical network (4) is a vector f∗ ∈
F∗(λ0) such that

λ∗σ(e)G
σ(e)
e

(
ρσ(e)

)
= f∗e , ∀e ∈ E , (6)

where, ∀ 0 ≤ v < n,

ρve := µ−1
e (f∗e ) , λ∗v =

{
λ0 if v = 0∑
e∈E−v f

∗
e if 0 < v < n .

A limit flow for the dynamical network (4) is a vector f∗ ∈
cl(F) such that, for some initial flow f◦ ∈ F , the solution of
(4) with initial condition ρ(0) = µ−1(f◦) satisfies

lim
t→∞ f(t) = f∗ . (7)

The set of all initial flows f◦ ∈ F such that (7) is satisfied will
be referred to as the basin of attraction of f∗, and denoted by
B(f∗).

Remark 1: Observe that an equilibrium flow f∗ ∈ F∗(λ0)
is always a limit flow, since the solution of the dynamical
network (4) with initial flow f◦ = f∗ stays put for all t ≥ 0,
and hence it is trivially convergent to f∗. On the other hand,
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if a limit flow f∗ ∈ cl(F) satisfies all the capacity constraints
with strict inequality, i.e., if f∗ ∈ F , then necessarily f∗ ∈
F∗(λ0) is also an equilibrium flow for (4), i.e., it satisfies
mass conservation equations at all the non-destination nodes.
In particular, if a dynamical network admits an equilibrium
flow f∗, then it is necessarily fully transferring with respect to
f∗, as well as with respect to all the initial flows f◦ ∈ B(f∗).

In contrast, if f∗ ∈ cl(F) \ F , i.e., if at least one of the
capacity constraints is satisfied with equality, then f∗ is not
an equilibrium flow for (4). In fact, in this case one has that∑
e∈E+v f

∗
e ≤ λ∗v with possibly strict inequality for some non-

destination node 0 ≤ v < n. Hence, the dynamical network
might still be not fully transferring. Finally, observe that a
limit flow f∗ ∈ cl(F) (and, a fortiori, an equilibrium flow)
may not exist for general networks N , and distributed routing
policies G.

Remark 2: Standard definitions in the literature are typi-
cally limited to static network flows describing transport of
particles at equilibrium via conservation of mass. In fact,
they usually consist (see e.g., [14]) of the specification of
a topology T , a vector of flow capacities fmax ∈ R, and
an admissible equilibrium flow vector f∗ ∈ F∗(λ0) for
λ0 < C(N ) (or, often, f∗ ∈ cl(F∗(λ0)) for λ0 ≤ C(N )).

In contrast, in our model we focus on the off-equilibrium
particle dynamics on a network N , induced by a distributed
routing policy G. Existence of an equilibrium of the dynamical
network (4) depends on the topology T , the structural form
of the flow functions µ and of the distributed routing policy
G, as well as on the outflow λ0 at the origin node. A
necessary condition for that is λ0 < C(N ). In contrast,
simple, locally verifiable, sufficient conditions on G for the
existence of an equilibrium flow might be hard to find for
general dynamical networks. However, in some cases, it is
reasonable to assume the distributed routing policy G to be
the outcome of a slow time-scale evolutionary dynamics with
global feedback which can naturally lead to an equilibrium
flow f∗ ∈ F∗(λ0). This has been shown, e.g., in our related
work [4] on traffic networks, where the emergence of Wardrop
equilibria is proven using tools from singular perturbation the-
ory and evolutionary dynamics. Multiple time-scale dynamics
leading to Wardrop equilibria have been studied in [15] for
communication networks.

While, as discussed in Remark 2, finding simple, locally
verifiable, sufficient conditions on the distributed routing pol-
icy G for the existence of an equilibrium flow of the associated
dynamical network (4) is typically nontrivial, a large class of
distributed routing policies was proven in [3] to yield existence
and uniqueness of a globally attractive limit flow f∗ ∈ cl(F),
as recalled below.

Definition 5 (Locally responsive distributed routing): A
locally responsive distributed routing policy for a network
with topology T = (V, E) and node set V = {0, 1, . . . , n}
is a family of continuously differentiable functions
G = {Gv : Rv → Sv}v∈V such that, for every non-
destination node 0 ≤ v < n:

(a) for every ρv ∈ Rv ,

∂

∂ρe
Gvj (ρ

v) ≥ 0 , ∀j, e ∈ E+
v , j 6= e ;

(b) for every nonempty proper subset J ( E+
v , there exists

a continuously differentiable map

GJ : RJ → SJ ,
where RJ := RJ+ , and SJ := {p ∈ RJ :

∑
j∈J pj = 1} is

the simplex of probability vectors over J , such that, for every
ρJ ∈ RJ , if

ρve →∞ , ∀e ∈ E+
v \ J , ρvj → ρJj , ∀j ∈ J ,

then

Gve(ρ
v)→ 0 , ∀e ∈ E+

v \ J ,
Gvj (ρ

v)→ GJj (ρJ ) , ∀j ∈ J .

Let us restate the result proven in [3, Theorem 1].

Theorem 1 (Existence of globally attractive limit flow):
Let N be a network satisfying Assumptions 1 and 2, λ0 ≥ 0
a constant outflow at the origin node, and G a locally
responsive distributed routing policy. Then, there exists
a unique limit flow f∗ ∈ cl(F) such that B(f∗) = F .
Moreover, if f∗e = fmax

e for some e ∈ E+
v , and 0 ≤ v < n,

then f∗e = fmax
e , for every e ∈ E+

v .

We shall use the above result in the form of the following
corollary, which is an immediate consequence of Theorem 1,
and Remarks 1 and 2.

Corollary 1: Let N be a network satisfying Assumptions
1 and 2, λ0 ≥ 0 a constant outflow at the origin node,
and G a locally responsive distributed routing policy. If the
limit flow f∗ belongs to F , then f∗ ∈ F∗(λ0) is a globally
attractive equilibrium flow for the dynamical network (4), and,
consequently, (4) is fully transferring with respect to f∗.

Example 1 (Locally responsive distributed routing policy):
Let N be a network satisfying Assumptions 1 and 2, and
0 ≤ λ0 < C(N ) a constant outflow at the origin node. Let
f * = µ(ρ*) ∈ F∗(λ0), and η > 0. Consider the distributed
routing policy G = {Gv : Rv → Sv}, where

Gve(ρ
v) =

f *
e exp(−η(ρe − ρ*

e))∑
j∈E+v f

*
j exp(−η(ρj − ρ*

j))
, (8)

for every 0 ≤ v < n, and e ∈ E+
v . Then, G can be easily

verified to be locally responsive, and f∗ to be the globally
attractive limit flow of the associated dynamical network (4).

III. STRONG RESILIENCE OF DYNAMICAL NETWORKS

In this section, we shall introduce the notion of strong
resilience of a dynamical network, and show that locally
responsive policies are maximally robust among the class of
distributed routing policies. We shall also provide an explicit
simple characterization of the maximal strong resilience of a
dynamical network with respect to a given limit flow.
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We shall consider persistent perturbations of the dynamical
network (4) that reduce the flow functions on the links, as per
the following:

Definition 6 (Admissible perturbation): An admissible per-
turbation of a network N = (T , µ), satisfying Assumptions 1
and 2, is a network Ñ = (T , µ̃), with the same topology T ,
and a family of perturbed flow functions µ̃ := {µ̃e : R+ →
R+}e∈E , such that, for every e ∈ E , µ̃e satisfies Assumption
2, as well as

µ̃e(ρe) ≤ µe(ρe) , ∀ρe ≥ 0 .

We accordingly let f̃max
e := sup{µ̃e(ρe) : ρe ≥ 0}. The

magnitude of an admissible perturbation is defined as

δ :=
∑
e∈E

δe , δe := sup
ρe≥0
{µe(ρe)− µ̃e(ρe)} . (9)

Given a dynamical network as in Definition 3, and an
admissible perturbation as in Definition 6, we shall consider
the perturbed dynamical network

d
dt
ρ̃e(t) = λ̃σ(e)(t)Gσ(e)

e (ρ̃(t))− f̃e(t) , ∀e ∈ E , (10)

where

f̃e(t) := µ̃e(ρ̃e(t)) ,

λ̃v(t) :=
{ ∑

e∈E−v f̃e(t) if 0 < v < n

λ0 if v = 0 .

(11)

We are now ready to define the notion of strong resilience
of a dynamical network as in Definition 3 with respect to a
limit flow f∗.

Definition 7 (Strong resilience): Let N be a network satis-
fying Assumptions 1 and 2, λ0 ≥ 0 be a constant outflow at
the origin node, and G a distributed routing policy. Assume
that the corresponding dynamical network has a limit flow
f∗ ∈ cl(F). The strong resilience γ1(f∗,G) is equal to
the infimum magnitude of all the admissible perturbations
for which the perturbed dynamical network (10) is not fully
transferring with respect to some initial flow f◦ ∈ B(f∗).

Notice that the notion of strong resilience formalized in
Definition 7 accounts for the worst-case scenario both with
respect to the choice of the admissible perturbation Ñ , and of
the initial state f◦ in the basin of attraction of f∗. Accordingly,
one can provide an adversarial interpretation to the perturba-
tions as explained in [3]. Our first result is an upper bound
on the strong resilience of a dynamical network driven by an
arbitrary distributed routing policy. In order to state such a
result, for a network N , and a flow vector f * ∈ cl(F), define
the minimum node residual capacity as

R(N , f *) := min
0≤v<n

∑
e∈E+v

(
fmax

e − f *
e

)
. (12)

Theorem 2 (Upper bound on the strong resilience): Let N
be a network satisfying Assumptions 1 and 2, λ0 ≥ 0 a
constant outflow at the origin node, and G any distributed

0

1

2
λ0

e1

e2

e3

e4

Fig. 1. The network topology used in Example 2.

routing policy. Assume that the associated dynamical network
has a limit flow f∗ ∈ F∗(λ0). Then,

γ1(f *,G) ≤ R(N , f∗) .
Proof: See Appendix A.

The proof of Theorem 2 essentially relies only on the
acyclicity of the network topology, and locality of the dis-
tributed policy. The intuition is that if a perturbation acts
only on the outgoing links of a node, then locality of the
routing policy and acyclicity of the network will imply that the
node’s inflow remains constant at the value of the unperturbed
equilibrium. Therefore, if the sum of the perturbed maximum
flow capacities of the outgoing links of the node is below
the node inflow at the unperturbed equilibrium, the perturbed
network will necessary have some flow loss, and hence it will
not be fully transferring.

On the other hand, in order to show that the upper bound
in Theorem 2 is tight for locally responsive policies, we have
to rely highly on Properties (a) and (b) of Definition 5. The
following example illustrates the necessity of these properties.

Example 2: Consider the topology illustrated in Figure 1,
with λ0 = 2, flow functions given by

µe(ρe) = fmax
e (1− exp(−aeρe)) (13)

with a1 = a2 = a3 = a4 = 1 and fmax
e1 = fmax

e2 = 2,
fmax
e3 = fmax

e4 = 0.75. First consider the case when G0
e1(ρ0) =

1 − G0
e2(ρ0) ≡ 0.75, and G1

e3(ρ1) = 1 − G1
e4(ρ1) ≡ 0.5.

One can verify that the associated dynamical network has a
unique equilibrium flow f∗ with f *

e1 = 1.5, f *
e2 = 0.5, and

f *
e3 = f *

e3 = 0.25. Now, consider an admissible perturbation
such that µ̃e1 = 0.7µe1 and µ̃ek = µek for k = 2, 3, 4. The
magnitude of such perturbation is δ = δe1 = 0.6. It is easy
to see that in this case limt→∞ f̃e1(t) = 1.4 = f̃max

e1 which
is less than 1.5, which is the flow routed to it. Therefore,
limt→∞ λ̃2(t) = 1.9 < λ0, and hence the network is not fully
transferring.

Now, consider the same unperturbed network as before,
but with distributed routing policy such that G0

e1(ρ0) = 1 −
G0
e2(ρ0) = (2e−η1ρe1 + eρe2 )−12e−η1ρe1 , where η1 = 0.031,

and η2 = 0.7196, and G1
e3(ρ1) = 1−G1

e4(ρ1) ≡ 0.5 . One can
verify that the associated dynamical network again admits the
same f∗ as before as an equilibrium flow. Let us consider the
same admissible perturbation as before. One can verify that,
for the corresponding perturbed dynamical network,

lim
t→∞ f̃e1(t) = 0.4 < f̃max

e1 = 1.4 ,
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lim
t→∞ f̃e2(t) = 1.6 < f̃max

e2 = 2 .

However, with an asymptotic inflow of 1.6 at node 1, we have
that

lim
t→∞ f̃e3(t) = 0.75 = f̃max

e3 ,

lim
t→∞ f̃e4(t) = 0.75 = f̃max

e4 .

Therefore,
lim
t→∞ λ̃2(t) = 1.9 < λ0 ,

and hence the network is not fully transferring.
In both the cases, R(N , f∗) = 1 and a disturbance of

magnitude 0.6 is enough to make the perturbed dynamical
network not fully transferring. However, note that in the
second case, unlike the first case, the routing policy at node
0 responds to variations in the local flow densities by sending
more flow to link e2, but it is overly responsive in the sense
that it sends more flow downstream than the cumulative flow
capacity of the links outgoing from node 1. However, by
Definition 2, a distributed routing policy is not allowed any
information about any other link other than the current flow
densities of its outgoing links. This illustrates one of the
challenges in designing distributed routing policies which yield
R(N , f∗) as the strong resilience. Observe that the distributed
routing policies used here are not locally responsive, since in
the first case G0 does not satisfy Property (b) of Definition 5
and, in the second case, it does not satisfy neither Property
(a) nor Property (b).

We now state the main technical result of this paper, show-
ing that, for locally responsive distributed routing policies,
the strong resilience coincides with the minimal residual node
capacity.

Theorem 3 (Strong resilience of locally responsive policies):
Let N be a network satisfying Assumptions 1 and 2, λ0 ≥ 0 a
constant outflow at the origin node, and G a locally responsive
distributed routing policy. Let f∗ ∈ cl(F) be the globally
attractive limit flow of the associated dynamical network (4).
Then,

γ1(f∗,G) = R(N , f *) .

Proof: See Appendix B.

For a given network N , a constant outflow λ0 at the
origin node, Theorem 2 and Theorem 3 imply that, among all
distributed routing policies such that the dynamical network
has a given limit flow f∗ ∈ cl(F), locally responsive policies
(for which such limit flow is unique and globally attractive by
Theorem 1) have the maximum strong resilience. Moreover,
such maximal strong resilience coincides with the minimum
node residual capacity R(N , f∗), and hence it depends both
on the network N , and on the limit flow f∗ of the unperturbed
network.

A few remarks are in order. First, it is worth comparing the
maximum strong resilience R(N , f∗) achievable on a network
N by any distributed policy with limit flow f∗, with the
maximum achiavable weak resilience. The latter was studied
in [3] and was shown (see Definition 6, Proposition 1, and

0

E+
UE+

v

V \ U

0

v

n

U

Fig. 2. Comparison between a node-cut and a min-cut.

0 1
λ0

e1

e2

(a)

0

1

2

3
λ0

e1

e2

e3

e4

(b)

Fig. 3. (a) A parallel link topology. (b) A topology to illustrate arbitrarily
large C(N )−R(N , f∗).

Theorem 2 therein) to be equal to the min-cut capacity of
the network, C(N ). Clearly, R(N , f∗) ≤ C(N ). In fact, a
stronger general result can be proven. For this, consider an
O-D cut-set U achieving the minimum in the right-hand side
of (3). Observe that

∑
e∈E+U f

*
e = λ0 by conservation of mass.

Then, let v = max U be the node in U with the largest label,
and notice that, since (2) implies that all the outgoing links of
v are pointing towards nodes with higher label, one has that
E+
v ⊆ E+

U (see Figure 2). Hence, it follows from (12) that

R(N , f∗) ≤ ∑
e∈E+v (fmax

e − f *
e )

≤ ∑
e∈E+U (fmax

e − f *
e )

= C(N )− λ0 .

We provide below two examples to illustrate the difference
between the two quantities.

Example 3: For parallel link topologies, an example of
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which is illustrated in Figure 3 (a), one has that

R(N , f∗) =
∑
e∈E

fmax
e − λ0 = C(N )− λ0 .

Example 4: Consider the topology shown in Figure 3 (b)
with λ0 = 1, f * = [ε, 1−ε, ε, 1−ε] and fmax

e = [1/ε, 1, 1/ε, 1]
for some ε ∈ (0, 1). In this case, we have that C(N ) = 1+1/ε
and R(N , f *) = ε. Therefore,

C(N )−R(N , f *) = 1 + 1/ε− ε ,
and hence C(N )−R(N , f *) grows unbounded as ε vanishes.

We conclude this section with the following observation.
Using arguments along the lines of those employed in [4],
one can show that C(N ) − λ0 provides an upper bound on
the strong resilience even if the locality constraint on the
information used by the routing policies is removed, i.e., if
one allows Gv to depend on the full vector of current densities
ρ, rather than on the local density vector ρv only. Indeed, one
can exhibit routing policies which are functions of the global
density information ρ, for which the strong resilience is exactly
C(N )−λ0 using ideas developed in the paper [4]. Hence, one
may interpret the gap between C(N ) − λ0 and R(N , f *) as
the strong resilience loss due to the locality constraint on the
information available to the distributed routing policy. One
could use Example 4 to again demonstrate arbitrarily large
such loss. This dependence of the strong resilience on the
availability of information is in stark contrast to our result
on weak resilience in [3], where we showed that the weak
resilience is unaffected by local information constraints on
the routing policies. In fact, it would be worth investigating
the impact on the network strong resilience of intermediate
levels of constraints on the information available to the routing
policies, interpolating between the one-hop information of our
current modeling of the distributed routing policies, and the
global information described above. However, this issue is not
addressed here, but rather left as a topic for future work.

IV. ROBUST EQUILIBRIUM SELECTION

In this section, for a given network N satisfying Assump-
tions 1 and 2, and a constant outflow λ0 ∈ [0, C(N )) at
the origin node, we shall address the issue of optimizing
the minimum node residual capacity R(N , f∗) with respect
to f∗. First, in Section IV-A, we shall address the issue of
maximizing R(f∗) := R(N , f∗) over all admissible equilib-
rium flow vectors f∗ ∈ F∗(λ0), i.e., with the only constraints
given by the link capacities and the conservation of mass at
nodes. Then, in Section IV-B we shall focus on the problem
of implementing a desired equilibrium flow f∗, assuming that
f∗ satisfies the additional constraint of being the Wardrop
equilibrium induced by some static tolls. In Section IV-C,
we shall evaluate the gap between the maximum of R(f∗)
over all f∗, and a generic equilibrium f∗, and interpret it as
the robustness price of anarchy with respect to f∗. We then
distinguish between R(f∗) and the commonly used metric of
average delay associated to f∗, and then propose a convex
optimization problem to solve for f∗ that takes into account
average delay as well as strong resilience.

A. Robust equilibrium flow selection as an optimization prob-
lem

The robust equilibrium flow selection problem can be posed
as an optimization problem as follows:

R∗ := sup
f∗∈F∗(λ0)

R(f∗) , (14)

where we recall that F∗(λ0) is the set of admissible equi-
librium flow vectors corresponding to the outflow λ0 ∈
[0, C(N )) at the origin node. Equation (12) implies that R(f *)
is the minimum of a set of functions linear in f *, and hence is
concave in f *. Since the closure of the constraint set F∗(λ0)
is a polytope, we get that the optimization problem stated in
(14) is equivalent to a simple convex optimization problem.
However, note that the objective function, R(f *) is non-
smooth and one needs to use sub-gradient techniques, e.g.,
see [16], for finding the optimal solution.

B. Using tolls for equilibrium implementation in traffic net-
works

We now study the use of static tolls to influence the
decisions of the drivers in order to get a desired emergent
equilibrium flow for (unperturbed) traffic networks. The static
tolls can be modeled to affect the driver decisions over a
slower time scale (with respect to the one of the dynamics
(4)), at which the drivers update their preferences for global
paths through the network. These global decisions are com-
plemented by the fast-scale node-wise route choice decisions
characterized by Definition 2 and 5. The details of the analysis
of traffic networks with such two time-scale driver decisions
can be found in our companion paper [4]. In particular, it
is shown in [4] that, if the two time scales are sufficiently
separated apart, then the network densities are attracted to
a neighborhood of the Wardrop equilibrium. In this section,
in order to highlight the relationship between static tolls and
the resultant equilibrium flow, we assume that the fast scale
dynamics equilibrates quickly and focus only on the slow scale
dynamics.

We briefly describe the congestion game framework for
traffic networks to formalize the equilibrium corresponding
to the slow scale driver decision dynamics. Let Υ ∈ R be a
link-wise vector of tolls, with Υe denoting the toll on link e.
Assuming that Υ is rescaled in such a way that one unit of toll
corresponds to a unit amount of delay, the utility of a driver
associated with link e when the flow on it is fe is

− (Te(fe) + Υe) ,

where Te(fe) is the delay on link e when the flow on it is fe. In
order to formally describe the delay functions Te(fe), we shall
assume that each flow function µe satisfies Assumption 2, and
additionally is strictly concave and satisfies µ′e(0) < +∞.
Observe that the flow function described in Equation (13)
satisfies these additional assumptions. Since the flow on a link
is the product of speed and density on that link, one can define
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the link-wise delay functions Te(fe) by

Te(fe) :=


+∞ if fe ≥ fmax

e ,

µ−1
e (fe)/fe if fe ∈ (0, fmax

e ),

1/µ′e(0) if fe = 0,

∀e ∈ E .

(15)
Let P be the set of distinct paths from node 0 to node n,
and A ∈ {0, 1}E×P , where Aep = 1 if and only if e ∈ p, be
the link-path incidence matrix of the topology T . Let T (f) =
{Te(fe) : e ∈ E} be the vector of link-wise delay functions.
The utility associated to a path p ∈ P is −(A′(T (f) + Υ))p.

We are now ready to define a toll-induced equilibrium.
Definition 8 (Toll-induced equilibrium): Let Π be the set of

probability vectors over P . For a given Υ ∈ R, a toll-induced
equilibrium is a vector f *(Υ) ∈ F∗ for which there exists
π ∈ Π satisfying Aπ = f *(Υ) and, for all p ∈ P ,

πp > 0 ⇒ (A′(T (Aπ)+Υ))p ≤ (A′(T (Aπ)+Υ))q ∀q ∈ P.
(16)

Equation (16) states that a toll-induced equilibrium is the
image through the link-path incidence matrix A of a probabil-
ity vector π ∈ Π whose support consists only of those paths
p ∈ P for which the associated utility −(A′(T (Aπ) + Υ))p
is greater than or equal to the utility −(A′(T (Aπ) + Υ))q
associated to any other path q ∈ P . The intuition behind this
definition is that a path whose utility is strictly dominated by
the one associated to some other path cannot be chosen by a
nonnegligible fraction of flow. Note that f *(0), where 0 ∈ RE
stands for the all-zero vector, corresponds to the Wardrop
equilibrium, e.g., see [17], [18]. For brevity in notation, we
shall denote the Wardrop equilibrium by fW. The following
result guarantees the existence and uniqueness of a toll-
induced equilibrium.

Proposition 1 (Toll-induced equilibrium): Let N be a net-
work satisfying Assumptions 1 and 2 and λ0 ∈ [0, C(N ))
a constant outflow at the origin node. Assume additionally
that the flow function µe is strictly concave and satisfies
µ′e(0) < +∞ for every link e ∈ E . Then, for every toll
vector Υ ∈ R, there exists a unique toll-induced equilibrium
f∗(Υ) ∈ F∗.

Proof: It follows from Assumption 2, strict concavity and
the assumption µ′e(0) < +∞ on the flow functions that, for
all e ∈ E , the delay function Te(fe), as defined by (15), is
continuous, strictly increasing, and is such that Te(0) > 0.
The Proposition then follows by applying Theorems 2.4 and
2.5 from [19].

In this subsection, to illustrate the proof of concept, we will
focus on equilibrium flows f∗ each of whose components is
strictly positive. The results for a generic f∗ ∈ F∗(λ0) follow
along similar lines. Definition 8 implies that for f∗(Υ) ∈ R,
with f∗e (Υ) > 0 for all e ∈ E , to be the toll-induced equilib-
rium corresponding to the toll vector Υ ∈ R is equivalent to
A′ (T (f∗(Υ)) + Υ) = ν1, for some ν > 0. We shall use this
fact in the next result, where we compute tolls to get a desired
equilibrium.

Proposition 2 (Tolls for desired equilibrium): Let N be a
network satisfying Assumptions 1 and 2 and λ0 ∈ [0, C(N ))

a constant outflow at the origin node. Assume additionally
that the flow function µe is strictly concave and satisfies
µ′e(0) < +∞ for every link e ∈ E . Assume that the Wardrop
equilibrium fW is such that fW

e > 0 for all e ∈ E . Let
f * ∈ F∗(λ0), with f∗e > 0 for all e ∈ E , be the desired
toll-induced equilibrium flow vector. Define Υ(f) ∈ R by

Υ(f) =
(

max
e∈E

Te(fe)
Te(fW

e )

)
T (fW)− T (f) . (17)

Then f∗ is the desired toll-induced equilibrium associated to
the toll vector Υ(f∗).

Proof: Since fW is the Wardrop equilibrium, correspond-
ing to the toll vector Υ = 0, we have that

A′T (fW) = ν11, (18)

for some ν1 > 0. For f * to be the toll-induced equilibrium
associated to the toll vector Υ ∈ R, one needs to find ν2 > 0
such that

A′
(
T (f *) + Υ

)
= ν21. (19)

Using (18) and simple algebra, one can verify that (19)
is satisfied with Υ(f *) as defined in (17) and ν2 =
ν1 max{Te(f∗e )/Te(fW

e ) : e ∈ E}.
Remark 3: The toll vector yielding a desired equilibrium

flow is not unique. In fact, any toll of the form Υ(f *) =
cT (fW) − T (f *), with c ≥ max{Te(f *

e )/Te(fW
e ) : e ∈ E}

will induce f * as the toll-induced equilibrium. Proposition 2
gives just one such toll vector.

C. The robustness price of anarchy

Conventionally, traffic networks have been viewed as static,
where a given equilibrium traffic flow is the outcome of
driver’s selfish behavior in response to the delays associated
with various paths and the incentive mechanisms in place.
The price of anarchy [10] has been suggested as a metric to
measure how sub-optimal a given equilibrium is with respect
to the societal optimal equilibrium, where societal optimality
is usually measured in terms of the average delay faced by
the driver population. In the context of robustness analysis of
traffic networks, it is also natural to consider societal opti-
mality from the robustness point of view, thereby motivating
a notion of the robustness price of anarchy. Formally, for
a f * ∈ F∗(λ0), define the robustness price of anarchy as
P
(
f *
)

:= R∗ − R
(
f *
)
, where R∗ is defined in (14). It

is worth noting that, for a parallel topology, we have that
R∗ = R

(
f *
)

=
∑
e∈E f

max
e − λ0 for all f *. That is, the

strong resilience is independent of the equilibrium operating
condition and hence, for a parallel topology, P

(
f *
) ≡ 0.

However, for a general topology and a general equilibrium, this
quantity is non-zero. This can be easily justified, for example,
for robustness price of anarchy with respect to the Wardrop
equilibrium: a Wardrop equilibrium is determined by the delay
functions Te(fe) as well as the topology of the network,
whereas the maximizer of R(f∗) depends only on the topology
and the link-wise flow capacities of the network, as implied
by the optimization problem in (14). In fact, as the following
example illustrates, for a non-parallel topology, the robustness
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price of anarchy with respect to Wardrop equilibrium can be
arbitrarily large.

Example 5 (Arbitrarily large robustness price of anarchy):
Consider the network topology shown in Figure 1. Let the
link-wise flow functions be given by Equation (13). The delay
function is then given by

Te(fe) =


(aefmax

e )−1 if fe = 0

− 1
aefe

log
(

1− fe
fmax

e

)
if 0 < fe < fmax

e

+∞ if fe ≥ fmax
e .

Fix some ε ∈ (0, 1) and let λ0 = 1/ε. Let the parameters of
the flow functions be given by

fmax
e1 = fmax

e2 = 1/ε+ ε , fmax
e3 = fmax

e4 = 1/(2ε) + ε/2 ,

a1 = 1 , a2 = a3 = a4 =
3ε

1−ε log
(
ε+ε2

1+ε2

)
log
(

1+ε2−ε
1+ε2

) .

For these values of the parameters, one can verify that the
unique Wardrop equilibrium is given by

fW = [1 1/ε− 1 1/(2ε)− 1/2 1/(2ε)− 1/2]T .

The strong resilience of fW is then given by

R(N , fW) = min{2/ε+2ε−1/ε, 1/ε+ε−(1/ε−1)} = 1+ε .

One can also verify that, for this case, R∗ = 1/ε+ 2ε which
would correspond to f * = [1/ε 0 0 0]T . Therefore,

P (fW) = 1/ε+ 2ε− (1 + ε) = 1/ε+ ε− 1

which tends to infinity as ε approaches 0.
The above example provides a strong motivation to take

robustness into account while selecting the equilibrium oper-
ating condition for the network. However, conventionally, the
equilibrium selection problem for traffic networks has been
primarily motivated from the point-of-view of minimizing av-
erage delay. The average delay associated with an equilibrium
f∗ is defined as:

D(f∗) :=
1
λ0

∑
e∈E

f∗e Te(f
∗
e ) . (20)

The following simple example illustrates that the maximizers
of −D(f∗) and R(f∗) are not necessarily the same.

Example 6: Consider the network topology shown in Fig-
ure 1. Let the link-wise flow functions be given by Equa-
tion (13). Let the parameters of the flow function be given by:
ae1 = 0.01, ae2 = ae3 = ae4 = 10 and fmax

e1 = fmax
e2 = 2,

fmax
e3 = fmax

e4 = 0.75. Let λ0 = 2. The equilibrium maximizing
R(f∗) is f * = [2 0 0 0]T and the maximum strong
resilience is found to be R∗ = 1.5. The minimum value
of D(f∗) over all f∗ ∈ F∗(λ0) is 15.17, and the corre-
sponding equilibrium f∗ and the value of strong resilience
are [0.5 1.5 0.75 0.75]T and 0.5 respectively. Note that
the maximizers of −D(f∗) and R(f∗) are not necessarily the
same. Therefore, a reasonable optimization problem should
take into account average delay as well as network resilience.

0 0.5 1 1.50.5

1

1.5

2

b

f* 1

(a)

0 0.5 1 1.50

50

100

150

200

b

D
*
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Fig. 4. Plots of the solution of the optimization in (21) for parameters
specified in Example 6, as b is increased from 0 to R∗ = 1.5: (a) f∗1 is the
flow on link e1 corresponding to f∗ optimizing (21); note that f∗2 = λ0−f∗1 ,
and f∗3 = f∗4 = f∗2 /2, (b) D∗ is the solution of (21).

Accordingly, we propose a modified optimization problem as
follows:

minimize D(f∗)
subj. to f∗ ∈ F∗(λ0),

R(f∗) ≥ b,
(21)

where b ∈ [0, R∗]. Assumption 2 and Equation (20) imply that
D(f∗) is convex. Therefore, taking into account the expression
for R(f∗), (21) is still a convex optimization problem. Figure 4
plots the outcome of this optimization as b is varied from 0
to R∗. In all the cases, we solved (21) using CVX, a package
for specifying and solving convex programs [20].

V. CASCADED FAILURES

In this section, through numerical experiments, we study the
case when the flow functions are set to the ones commonly
accepted in the road traffic literature, e.g., see [21]. In such
literature, the flow functions are defined over a finite interval
[0, ρmax

e ], where ρmax
e is the maximum traffic density that link

e can handle. Additionally, µe is assumed to be strictly con-
cave and achieves its maximum in (0, ρmax

e ). As an example,



10

0

1

2

3

4

5

6

7

8
λ0

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

Fig. 5. The graph topology used in simulations.

consider the following flow function:

µe(ρe) =
4fmax

e ρe(ρmax
e − ρe)

(ρmax
e )2

, ρe ∈ [0, ρmax
e ]. (22)

Accordingly, the link-wise flow dynamics in (4) is replaced
by:

d
dt
ρe = χσ(e)λσ(e)G

σ(e)
e

(
ρσ(e)

)
− χτ(e)fe , (23)

where

χv := 1−
∏
e∈E+v

(1− ξe) , ξe := 1[0,ρmax
e )(ρe)

are the activation status indicators of a node v ∈ V 1 and a
link e ∈ E . An important implication of the finite capacity on
the traffic densities is the possibility of cascaded spill-backs
traveling upstream as follows. When the density on a link
reaches its capacity, its outflow permanently becomes zero and
hence the link is effectively cut out from the network. When
all the outgoing links from a particular node are cut out, it
makes the outflow on all the incoming links to that node zero.
Eventually, these upstream links might possibly reach their
capacity on the density and cutting themselves off permanently
and cascading the effect further upstream. We shall show how
such cascaded effects affect resilience of the network.

Specifically, we study the effect of the flow functions given
by (22) on the weak resilience of the network, which was
formally defined in [3]. In simple words, weak resilience of
the network is defined as the infimum sum of the link-wise
magnitude of all the disturbances under which the outflow
from the destination node is asymptotically zero. In [3, Propo-
sition 1], we showed that the weak resilience of the dynamical
network with the flow functions satisfying Assumption 2 is
upper bounded by its min-cut capacity. It is easy to show that
this upper bound on weak resilience also holds when the flow
functions are the ones given by (22).

For the simulations, we selected the following parameters:
• the graph topology T shown in Figure 5.
• λ0 = 3.
• ρmax

e = 3 for all e ∈ E , and flow capacities are given by
fmax
e1 = fmax

e2 = fmax
e3 = 2.5, fmax

e4 = 0.9, fmax
e5 = 1.75,

1Here, we are adopting the non-standard convention that an empty product
equals 0 so that χn(t) = 1 for all t.

fmax
e6 = fmax

e11 = fmax
e13 = 1, fmax

e7 = fmax
e8 = 0.7, fmax

e9 =
0.4, fmax

e10 = fmax
e12 = 1.5, fmax

e14 = 2, and fmax
e15 = 1.6. The

link-wise flow functions are as given in (22), if e ∈ E−n
or if ρ < ρmax

e′ for at least one downstream edge e′,
i.e., e′ ∈ E such that e ∈ E−v and e′ ∈ E+

v for some
v ∈ {1, . . . , n− 1}, and the flow functions are uniformly
zero otherwise;

• the equilibrium flow f∗ has components f∗e1 = f∗e3 =
f∗e6 = 0.5, f∗e2 = 2, f∗e4 = f∗e13 = 0.3, f∗e5 = 1.5, f∗e7 =
f∗e8 = 0.25, f∗e9 = 0.2, f∗e10 = f∗e12 = 0.9, f∗e11 = 0.2,
f∗e13 = 0.3, f∗e14 = 1.1, and f∗e15 = 0.7;

• the route choice function is as follows:

Gve(ρ
v) =

f *
e exp(−η(ρe − ρ∗e))1[0,ρmax

e ](ρe)∑
j∈E+v f

*
j exp(−η(ρj − ρ∗j ))1[0,ρmax

j ](ρj)
,

where η will be a variable parameter for the simulations.
Note that this is a modified version of the route choice
function given by (8). The modification is done to respect
the finite traffic density constraint on the links.

One can verify that, with these parameters, the maximum
flow capacity of the network, and hence an upper bound on
the weak resilience, is 5.2.

Consider an admissible disturbance such that µ̃e4 = 2
9µe4 ,

µ̃e5 = 23
35µe5 , µ̃e6 = 4

5µ6, µ̃e7 = 2
7µe7 , µ̃e8 = 2

7µe8 ,
µ̃e9 = 1

2µe9 , µ̃e10 = 3
5µe10 , µ̃e12 = 8

15µe12 and µ̃k = µk for
k = {1, 2, 3, 11, 13, 14, 15}. As result, δe4 = 0.7, δe5 = 0.6,
δe6 = 0.2, δe7 = 0.5, δe8 = 0.5, δe9 = 0.2, δe10 = 0.6,
δe12 = 0.7 and δek = 0 for k = {1, 2, 3, 11, 13, 14, 15}.
Therefore, δ = 4, which is less than the min-cut flow
capacity of the network. For this case, it is observed that,
limt→∞ λe8(t) = 0 independent of the value of η. This can
be explained as follows. For the given disturbance, we have
that f̃max

e10 + f̃max
e12 = 1.7 < 1.8 = f∗e10 + f∗e12 . Therefore, after

finite time t1, we have that ρ̃e10(t) = ρmax
e10 and ρ̃e12(t) = ρmax

e12

for all t ≥ t1. As a consequence, we have that, f̃e4(t) = 0
and f̃e5(t) = 0 for all t ≥ t1. One can repeat this argument
to conclude that, for the given disturbance, after finite time,
ρ̃ek for k = 1, . . . , 9 reach and remain at their maximum
density capacities. As a consequence, after such a finite time,
f̃e1(t) + f̃e2(t) + f̃e3(t) = 0 and hence, limt→∞ λe8(t) = 0,
i.e., the network is not partially transferring. This is also
illustrated in Figure 6 which plots the flow through some of
the links of the network as a function of time. This example
illustrates that the cascaded effects can potentially reduce the
weak resilience of a dynamical network.

Preliminary simulations also suggest that the strong re-
silience of the dynamical network given by (23) could be
strictly greater than the minimum node residual capacity in
some instances, e.g., see [5]. A rigorous resilience analysis as
well as the design of robust control policies for this model is
an ongoing work.

VI. CONCLUSION

In this paper, we studied strong resilience of dynamical
networks, with respect to perturbations that reduce the flow
functions on the links of the network. We showed that locally
responsive distributed routing policies yield the maximum
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Fig. 6. Plot of link-wise flows for some of the links of the network that
ultimately shut down. The timings of shut downs of the links demonstrate the
cascaded effect starting from link e10 and traveling up to the origin node.

strong resilience under local information constraint. We also
showed that the corresponding strong resilience is equal to
the minimum node residual capacity of the network, and
hence depends on the limit flow of the unperturbed network.
Our results show that, unlike the weak resilience which was
considered in [3], the strong resilience of a dynamical network
is sensitive to local information constraints. We proposed
simple convex optimization problems to solve for equilibria
that maximize traditional metrics of social optimality such as
average delay subject to guarantees on strong resilience. We
derived a class of link-wise tolls that implement a desired
limit flow for an unperturbed traffic network, thereby giving
the system planner an additional control mechanism to achieve
desired performance from the traffic network. Finally, we also
discussed cascaded failures due to spill backs when we impose
finite density constraints on the links and illustrated the utility
of routing policies discussed in this paper in averting such

failures. The findings of this and the companion paper [3]
stand to provide important guidelines for management of
several large-scale critical infrastructures both from planning
as well as real-time operation point of view.

In future, we plan to extend the research in several di-
rections. We plan to rigorously study robustness properties
of networks with finite link-wise capacity for density, and
formally establish the results on resilience as suggested by
the simulations in Section V. In this setting, the outflow
function of a link depends on the density on that link as
well as the saturation status of downstream links. The weak
resilience is upper bounded by network residual capacity, i.e.,
C(N )− λ0 and can be strictly less than that due to the pos-
sibility of cascaded failures, as suggested by the simulations
in Section V. The corresponding maximally resilient routing
policy will be modified versions of locally responsive policies,
as defined in Definition 5, that possibly require additional
information about the maximum capacities on density and flow
as well as the densities corresponding to the maximum flow.
We plan to study the scaling of the resilience with respect
to the amount of information, e.g., multi-hop as opposed to
just single-hop, available to the routing policies. We also plan
to perform robustness analysis in a probabilistic framework
to complement the adversarial framework of this paper. The
locally responsive routing policy considered in this paper is
expected to be maximally resilient even in the probabilistic
setting; however, the exact characterization of resiliences will
be different. We also plan to consider a setting with buffer
capacities on the nodes and study the scaling of the resilience
with such buffer capacities. We also plan to consider more gen-
eral graph topologies, e.g., graphs having cycles and multiple
origin-destination pairs. In this case, an upper bound on the
resilience can be obtained by deriving appropriate diffusivity
results (cf. Lemma 1 in the appendix) for the static network
flow formulation, i.e., when inflow and outflow on a link
are the same, and when the routing policy at a node can
measure the magnitude of disturbance on the outgoing links.
The challenge then lies in designing routing policy for the
dynamic formulation that can emulate the diffusivity properties
of the static formulation as closely as possible.

APPENDIX A
PROOF OF THEOREM 2

In this section, we shall prove Theorem 2 by showing that,
given a network N satisfying Assumptions 1 and 2, a constant
outflow λ0 ≥ 0 at the origin node, a distributed routing policy
G, and a limit flow f∗ ∈ cl(F) for the associated dynamical
network (4), the strong resilience satisfies

γ1(f∗,G) ≤ R(N , f∗) .

Let f◦ ∈ B(f∗) be some initial flow in the basin of
attraction of f∗. In order to prove the result, it is sufficient to
exhibit a family of admissible perturbations, with magnitude
δ arbitrarily close to R(N , f∗), under which the network is
not fully transferring with respect to f◦. Let us fix some non-
destination node 0 ≤ v < n minimizing the right-hand side of
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(12), and put κ :=
∑
e∈E+v f

max
e . For any R(N , f∗) < δ < κ,

consider the admissible perturbation defined by

µ̃e(ρe) :=
κ− δ
κ

µe(ρe) , ∀e ∈ E+
v ,

µ̃e(ρe) := µe(ρe) , ∀e ∈ E \ E+
v .

(24)

Clearly, the magnitude of such perturbation equals δ.
Let us consider the O-D cut-set that partitions V into U :=

{0, 1, . . . , v} and V \ U , and recall that

E+
U = {(u,w) ∈ E : 0 ≤ u ≤ v, v < w ≤ n} .

Observe that, thanks to Assumption 1 on the acyclicity of
the network topology, since all the links outgoing from some
node u < v are unaffected by the perturbation, the associated
perturbed dynamical network (10) with initial flow f̃(0) =
f◦ ∈ B(f∗) satisfies

lim
t→∞ f̃e(t) = lim

t→∞ fe(t) = f *
e , ∀e ∈ E+

u , ∀0 ≤ u < v .

On the other hand, one has that

f̃e(t) < f̃max
e =

κ− δ
κ

fmax
e , ∀e ∈ E+

v , ∀t ≥ 0 .

Therefore, one has that

lim sup
t→∞

∑
e∈E+U

f̃e(t) ≤
∑
e∈E+v

f̃max
e +

∑
e∈E+U \E+v

f *
e

=
κ− δ
κ

∑
e∈E+v

fmax
e +

∑
e∈E+U \E+v

f *
e

=
∑
e∈E+v

fmax
e − δ −

∑
e∈E+v

f∗e +
∑
e∈E+U

f∗e

= R(N , f∗)− δ + λ0 .
(25)

Observe that, for every v < w < n, and t ≥ 0,

d
dt

∑
e∈E+w

ρ̃e(t) =
∑
e∈E+w

∑
j∈E−w

f̃j(t)Gve(ρ̃
w(t))−

∑
e∈E+w

f̃e(t)

=
∑
e∈E−w

f̃e(t)−
∑
e∈E+w

f̃e(t) .

(26)
Define the edge sets

A :=
⋃

v<w<n
E+
w , D :=

⋃
v<w≤n E

−
w ,

and let
ζ(t) :=

∑
e∈A

ρ̃e(t) .

Using (26), the identity A∪E+
U = D, and (25), one gets that,

given ε > 0, there exists s′(ε) ≥ 0 such that

d
dt
ζ(t) =

∑
v<w<n

∑
e∈E−w

f̃e(t)−
∑

v<w<n

∑
e∈E+w

f̃e(t)

=
∑
e∈D

f̃e(t)−
∑
e∈E−n

f̃e(t)−
∑
e∈A

f̃e(t)

=
∑
e∈E+U

f̃e(t)−
∑
e∈E−n

f̃e(t)

≤ R(N , f∗)− δ + λ0 − λ̃n(t) + ε ,

(27)

for all t ≥ s′(ε). Now assume, by contradiction, that

lim inf
t→∞ λ̃n(t) > R(N , f∗)− δ + λ0 .

Then, there would exist some ε > 0 and s′′ ≥ 0 such that

λ̃n(t) ≥ R(N , f∗)− δ + λ0 + 2ε , ∀t ≥ s′′ .
It would then follow from (27) that dζ(t)/dt ≤ −ε for all
t ≥ max{s′(ε), s′′}, thus contradicting the fact that ζ(t) ≥ 0
for all t ≥ 0. Hence, necessarily

lim inf
t→∞ λ̃n(t) ≤ R(N , f∗)− δ + λ0 < λ0 ,

so that the perturbed dynamical network is not fully trans-
ferring. Then, from the arbitrariness of the perturbation’s
magnitude δ ∈ (R(N , f∗), κ), it follows that the network’s
strong resilience is upper bounded by R(N , f∗).

APPENDIX B
PROOF OF THEOREM 3

In this section, we prove Theorem 3, by showing that,
for a given a network N satisfying Assumptions 1 and 2,
a constant outflow λ0 ≥ 0 at the origin node, and a locally
responsive distributed routing policy G, the strong resilience
with respect to the unique limit flow f∗ ∈ cl(F) of the
associated dynamical network (4) satisfies

γ1(f∗,G) = R(N , f∗) .
Thanks to Theorem 2, it is sufficient to show that

γ1(f∗,G) ≥ R(N , f∗) . (28)

First, let us consider the case when f∗ ∈ cl(F) \ F∗(λ0),
i.e., when the limit flow of the unperturbed dynamical network
(4) is not an equilibrium flow. As argued in Remark 1, in
this case some of the capacity constraints are satisfied with
equality, i.e., there exists some e ∈ E such that f∗e = fmax

e .
Then, Theorem 1 implies that f∗j = fmax

j for all j ∈ E+
σ(e), so

that
R(N , f∗) ≤

∑
j∈E+

σ(e)

(
fmax
j − f∗j

)
= 0 ,

and (28) is trivially satisfied, since γ1(f∗,G) ≥ 0 by defini-
tion. Therefore, for the rest of this section, we shall restrict
ourselves to the case when f∗ ∈ F∗(λ0), i.e., when f∗

is a globally attractive equilibrium flow of the unperturbed
dynamical network (4).

Observe that, for any admissible perturbation, regardless of
its magnitude, the perturbed dynamical network (10) satisfies
all the assumptions of Theorem 1, which can therefore be
applied to show the existence of a globally attractive perturbed
limit flow f̃∗ ∈ cl(F̃), where F̃ := ×e∈E [0, f̃max

e ). This
in particular implies that λ̃n(t) =

∑
e∈E−n f̃e(t) converges

to λ̃∗n =
∑
e∈E−n f̃

∗
e as t grows large. However, this is not

sufficient in order to prove strong resilience of the perturbed
dynamical network (10), as it might be the case that λ̃∗n < λ0.

In fact, we are going to prove that, if the magnitude of
the admissible perturbation is smaller than R(N , f∗), the
perturbed limit flow f̃∗ is an equilibrium flow for the perturbed
dynamical network (10), so that λ̃∗n = λ0 and (10) is fully
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transferring. In order to show this, for every non-destination
node 0 ≤ v < n, we need to study the perturbed local system

d
dt
ρ̃e(t) = λ̃(t)Gve(ρ̃

v(t))− f̃e(t) ,

f̃e(t) = µ̃e(ρ̃e(t)) ,
∀e ∈ E+

v , (29)

where λ̃(t) is a nonnegative-real-valued, Lipschitz continuous
input. Indeed, [3, Lemma 4] can be applied to the perturbed
local system (29) establishing convergence of the perturbed
local flows f̃v(t) to a local equilibrium flow f̃∗(λ) ∈ F̃v ,
where F̃v := ×e∈E+v [0, f̃max

e ), provided that the input flow
λ̃(t) converges, as t grows large, to a value λ which is strictly
smaller than the sum of the perturbed flow capacities of the
outgoing links. However, such local result is not sufficient
to prove strong resilience of the entire perturbed dynamical
network. The key property in order to prove such a global
result is stated in Lemma 1, which describes how the limit
flow redistributes itself upon the network perturbation. In
particular, such result ensures that the increase in flow on all
the links downstream from a node whose outgoing links are
affected by a given perturbation, is less than the magnitude
of the disturbance itself. We shall refer to this property as the
diffusivity of the local perturbed system.

Lemma 1 (Diffusivity of the local perturbed system): Let
N be a network satisfying Assumption 2, v be a non-
destination node, and Gv : Rv → Sv be a continuously
differentiable function satisfying Properties (a) and (b) of
Definition 5. Let λ∗v ∈ [0,

∑
e∈E+v f

max
e ), ρ∗ ∈ Rv , and

f∗ ∈ Fv satisfy ρ∗ = µv(f∗) and

f∗e = λ∗vG
v
e(ρ
∗) , ∀e ∈ E+

v .

Let Ñ be an admissible perturbation of N . Then, for every
λ ∈ [0,

∑
e∈E+v f̃

max
e ), the perturbed local system (29) with

constant local input λ̃(t) ≡ λ has a globally attractive
equilibrium flow f̃∗(λ) ∈ F̃v satisfying∑
j∈J

(
f̃∗j (λ)− f *

j

)
≤ [λ− λ∗v]+ +

∑
e∈E+v

δe , ∀J ⊆ E+
v ,

(30)
where δe := ||µe( · )− µ̃e( · )||∞.

Proof: Define λ̂ := max{λ, λ∗v}. Let ρ̂v(t) be the solution
of the perturbed local system (29) with constant input λ̃(t) ≡
λ̂, and initial condition ρ̂e(0) = ρ∗e , for all e ∈ E+

v , and let
f̂e(t) := µ̃e(ρ̂e(t)). We shall first prove that

f̂e(t) ≥ µ̃e(ρ∗e) , ∀ t ≥ 0 ∀ e ∈ E+
v . (31)

For this, consider a point ρ̂v ∈ Rv , such that ρ̂v 6= ρ*, and
there exists some i ∈ E+

v such that ρ̂i = ρ*
i and ρ̂e ≥ ρ*

e for all
e 6= i ∈ E+

v . For such a ρ̂v and i, [3, Lemma 1] implies that
Gvi (ρ̂

v) ≥ Gvi (ρ
*). This, combined with the fact that λ̂ ≥ λ∗v

and µ̃i(ρ̂i) ≤ µi(ρ̂i) = µi(ρ*
i ) , yields

λ̂vG
v
i (ρ̂

v)− µ̃i(ρ̂i) ≥ λ∗vGvi (ρ*)− µi(ρ*
i ) = 0 . (32)

Considering the region Ω := {ρ̂v ∈ Rv : ρ̂e ≥ ρ*
e , ∀e ∈ E+

v },
and denoting by ω ∈ RE+v the unit outward-pointing normal
vector to the boundary of Ω at ρ̂v , (32) shows that

d
dt

(ρ̂v · ω) =
(
λ̂vG

v(ρ̂v)− µ̃v(ρ̂v)
)
· ω ≤ 0 ,

0 v + 1 n
λ0

Dv+1

Bv+1

J

J1

J2

Fig. 7. Illustration of the sets used in proving the induction step in the proof
of Lemma 2.

for all ρ̂v ∈ ∂Ω and t ≥ 0. Therefore, Ω is invariant under
(29). Since ρ̂v(0) = ρ* ∈ Ω, this proves (31).

Now, [3, Lemma 2] implies that there exists a globally
attractive local equilibrium flow f̂∗ := f̃∗(λ̂). Then, for any
J ⊆ E+

v , passing to the limit of large t in (31) yields∑
j

f̂∗j = λ̂−
∑
k

f̂∗k

≤ λ̂−
∑
k

µ̃k(ρ*
k)

= λ̂− λ∗v +
∑
j

f *
j +

∑
k

µk(ρ*
k)−

∑
k

µ̃k(ρ*
k)

≤ [λ̂− λ∗v]+ +
∑
j

f *
j +

∑
k

δk

≤ [λ̂− λ∗v]+ +
∑
j

f *
j +

∑
e

δe ,

(33)
where the summation indices j, k, and e run over J , E+

v \J ,
and E+

v , respectively. Moreover, since λ ≤ λ̂, from [3, Lemma
3] one gets that

f̃∗e (λ) ≤ f̃∗e (λ̂) = f̂∗e , ∀e ∈ E+
v .

In particular, this implies that∑
j∈J

f̃∗j (λ) ≤
∑
j∈J

f̂∗j , ∀J ⊆ E+
v .

This, combined with (33), proves (30).

The following lemma exploits the diffusivity property from
Lemma 1 along with an induction argument on the topological
ordering of the node set to prove that R(N , f∗) is indeed a
lower bound on the strong resilience of the network under the
locally responsive distributed routing policies.

Lemma 2 (Globally attractive perturbed equilibrium):
Consider a network N satisfying Assumptions 1 and 2, a
locally responsive distributed routing policy G, and a constant
outflow λ0 ∈ (0, C(N )) from the origin node. Assume
that f∗ ∈ F∗(λ0) is an equilibrium flow for the associated
dynamical network. Let Ñ be an admissible perturbation
of N of magnitude δ < R(N , f∗). Then, the perturbed
dynamical network (10) has a globally attractive equilibrium
flow and hence it is fully transferring.

Proof: First recall that Theorem 1 can be applied to the
perturbed dynamical network (10) in order to prove existence
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of a globally attractive limit flow f̃∗ ∈ cl(F̃). For brevity in
notation, for every 1 ≤ v < n, let

λ∗v :=
∑
e∈E+v

f *
e , λ̃∗v :=

∑
e∈E−v

f̃∗e , λ̃max
v :=

∑
e∈E+v

f̃max
e .

Also, for every node v ∈ V , let

Dv :=
⋃

0≤u≤v
E+
u ,

Bv := {(u,w) ∈ E : 0 ≤ u ≤ v, v < w ≤ n}

be, respectively, the set of all outgoing links, and the link-
boundary of the node set {0, 1, . . . , v}.

By induction on u = 0, 1, . . . , n− 1, we shall prove that∑
e∈J

(
f̃∗e − f *

e

)
≤
∑
e∈Du

δe , ∀J ⊆ Bu . (34)

First, notice that B0 = D0 = E+
0 . Since∑

e∈E+0

δe ≤ δ < R(N , f∗) ≤
∑
e∈E+0

(fmax
e − f *

e ) ,

we also have that λ0 < λ̃max
0 . Therefore, by using (30) of

Lemma 1, one can verify that (34) holds true for u = 0.
Now, for some v ≤ n − 2, assume that (34) holds true for

every u ≤ v. Consider a subset J ⊆ Bv+1 and let J1 :=
J ∩E+

v+1 and J2 := J \J1 (see Figure 7 for an illustration).
By applying Lemma 1 to the set J1, one gets that∑

e∈J1

(
f̃∗e − f *

e

)
≤
[
λ̃∗v+1 − λ∗v+1

]
+

+
∑

e∈E+v+1

δe , (35)

for t ≥ 0. It is easy to check that J2 ⊆ Bv and E−v+1 ⊆ Bv .
Therefore, using (34) for the sets J2 and J2 ∪E−v+1, one gets
the following inequalities respectively:∑

e∈J2

(
f̃∗e − f *

e

)
≤
∑
e∈Dv

δe, (36)

∑
e∈J2

(
f̃∗e − f *

e

)
+

∑
e∈E−v+1

(
f̃∗e − f *

e

)
≤
∑
e∈Dv

δe. (37)

Consider the two cases: λ̃∗v+1 ≤ λ∗v+1, or λ̃∗v+1 > λ∗v+1. By
adding up (35) and (36) in the first case, or (35) and (37) in
the second case, one gets that∑
e∈J

(
f̃∗e − f *

e

)
=

∑
e∈J1

(
f̃∗e − f *

e

)
+
∑
e∈J2

(
f̃∗e − f *

e

)
≤

∑
e∈E+v+1

δe +
∑
e∈Dv

δe

=
∑

e∈Dv+1

δe .

This proves (34) for node v+ 1 and hence the induction step.

Fix 1 ≤ v < n. Since E−v ⊆ Bv−1, (34) with u = v − 1
implies that

λ̃∗v =
∑
e∈E−v

f̃∗e

≤
∑
e∈E−v

f *
e +

∑
e∈Dv−1

δe

=
∑
e∈E+v

f *
e +

∑
e∈E

δe −
∑

e∈E\Dv−1

δe

≤
∑
e∈E+v

f *
e + δ −

∑
e∈E+v

δe ,

where the third step follows from the fact that∑
e∈E−v

f *
e =

∑
e∈E+v

f *
e

by conservation of mass at node v, while the last inequality
follows from the inclusion E+

v ⊆ E \ Dv−1. Then, one gets
that

λ̃∗v ≤
∑
e

f *
e + δ −

∑
e

δe

<
∑
e

f *
e +R(N , f∗)−

∑
e

δe

≤
∑
e

f *
e +

∑
e

(
fmax

e − f *
e

)−∑
e

δe

=
∑
e

(fmax
e − δe)

=
∑
e

f̃max
e ,

where the summation index e runs over E+
v . Hence, it follows

from [3, Lemma 3] applied to the perturbed local system (29)
that

f̃∗e = f̃∗e (λ̃∗v) < f̃max
e , ∀e ∈ E+

v , (38)

for all 1 ≤ v < n− 1. Moreover, since

λ0 =
∑
e∈E+0

f∗e <
∑
e∈E+0

fmax
e ,

applying [3, Lemma 3] again to the perturbed local system
(29) shows that (38) holds true for v = 0 as well. Hence,
f̃∗e < f̃max

e for all e ∈ E , so that the limit flow f̃∗ belongs
to F , and hence it is necessarily an equilibrium flow of the
perturbed dynamical network (10), as argued in Remark 1.
Therefore, the dynamical network (10) is fully transferring.

Theorem 3 now immediately follows from Lemma 2, and
the arbitrariness of the admissible perturbation of magnitude
smaller than R(N , f∗).
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