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Abstract: Mutual information of two random variables can be easily obtained from their Shannon entropies. 

However, when nonadditive entropies are involved, the calculus of the mutual information is more complex. 

Here we discuss the basic matter about information from Shannon entropy. Then we analyse the case of the 

generalized nonadditive Tsallis entropy.  
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1. Introduction 

In many applications of engineering and 

telecommunication, it is often desired to increase or 

decrease the dependency of two random variables. 

This dependency is linked to the mutual 

information, which is its measure. The mutual 

information can be easily decomposed into a sum 

(with signs) of entropies [1], when the Shannon 

entropy is used. This entropy is additive, that is, 

when we have independent subsystems, X and Y, 

the entropy of their union is S(X,Y)=S(X)+S(Y). 

When nonadditive entropies are involved, the 

approach to find the mutual information is not so 

simple. Moreover, it is often preferred to use the 

term “mutual entropy”, instead of “mutual 

information” [2,3]. 

The mutual entropy contains conditional entropies, 

which must be carefully defined when entropies are 

nonadditive [3].  Among the nonadditive entropies, 

we have the Tsallis entropy. It is a generalization of 

the standard Boltzmann–Gibbs entropy, introduced 

in 1988 as a basis for generalizing the standard 

statistical mechanics [4,5]. Due to its entropic 

index, which can be used as tuning parameter, this 

entropy is involved in several applications, in 

particular for image processing and image 

registration [6]. Here we discuss the basic matter 

concerning the mutual information when Tsallis 

entropy is involved.  

 

2. Mutual information 

The mutual information of two random variables in 

subsystems X,Y is providing a measure of the 

mutual dependence of the variables. This can be 

viewed intuitively as a measure of information that 

X and Y are sharing. In particular, it measures how 

much knowing one of these variables reduces 

uncertainty about the other [7-9]. In [9], examples 

are explaining this quantity. If X and Y are 

independent, knowing X does not give any 

information about Y and vice versa: the mutual 

information is zero. If Y=f(X) or X=f(Y), where f 

indicates a deterministic function, all information 

conveyed by X (or Y) is shared with Y (or X): the 

mutual information is the same as the uncertainty 

contained in Y (or X) alone, which is measured by 

the entropy of Y (or X). The mutual information is 

then the entropy of Y (or X) [9].  

 

 

 
 

Figure 1: Venn diagram of mutual information 

I(X;Y) associated with correlated variables X and 

Y. The area contained by both circles is the joint 

entropy H(X,Y). The lower circle is the individual 

entropy H(X), such as the upper circle is that of 

H(Y).  

 

 

The physical meaning of the mutual information 

I(X;Y)  as “the reduction of the uncertainty of X 

due to knowledge of Y” (or vice versa) [9], can be 

depicted in a Venn diagram (Figure 1). In this 
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diagram, the single-variable entropies H(X), H(Y) 

are represented by two overlapping sets, whereas 

the two-variable entropy is represented by the union 

of these sets and the mutual information common to 

X and Y is represented by their intersection. Note 

that H(X)=I(X;X), so entropy is the “self-

information”. Also note that conditioning of 

entropies in Venn diagrams is indicated by set 

subtraction, so that, for example, the set 

representing H(X∣Y) results from subtracting the set 

representing H(Y) from the set representing H(X). 

The mutual information is given by [10]: 

I(X;Y)=H(X)+H(Y)−H(X,Y), with the following 

properties, I(X;Y)=I(Y;X) and I(X;X)=H(X).  Note 

that  H(Y|H) is the conditional entropy [11]. Let us 

assume the joint entropy H(X,Y)  for  the combined 

system determined by two random variables X and 

Y. We need H(X,Y) “bits of information” to 

describe its exact state [12]. If we first learn the 

value of X, we have gained H(X) bits of 

information. “Once X is known, we only need 

H(X,Y)−H(X) bits to describe the state of the whole 

system” [12]. This quantity is exactly H(Y|X), 

which gives the chain rule of conditional entropy: 

H(Y|X)=H(X,Y)−H(X).  

If we are using the Shannon entropy S:  

 

(1)Y)S(X,S(Y)S(X)

X)|S(YS(Y)

Y)|S(XS(X)Y)I(X;







 

 

If X,Y are independent, we have that 

S(X,Y)=S(X)+S(Y), and therefore I(X;Y)=0. 

 

3. Using Tsallis entropy 

In fact, besides the Shannon entropy we have 

generalized entropies too, and, among them, the 

nonadditive entropies. How can we generalize the 

mutual information in this case? In [3], it is 

preferred the use of the so-called Tsallis mutual 

entropy, defined as: 

 

(2)X)|T(YT(Y)

Y)|T(XT(X)Y)MT(X;




 

 

In (2), T is referring to the Tsallis entropy. 

According to [4], T(X,Y)=T(X)+T(Y|X) and 

T(Y,X)=T(Y)+T(X|Y). Let us remember that 

Tsallis entropy T and Rényi entropy R, [13], are 

linked by the following equation: 

 

)3(
q1

q)T](1ln[1
R




   

 

Here q is the entropic index. As q approaches 1, the 

Tsallis entropy becomes the Shannon entropy. 

Let us try defining the Tsallis mutual entropy as:  

 

(4)Y)T(X,T(Y)T(X)Y)(X;MT*   

 

If X,Y are independent, we must have a mutual 

information equal to zero. However, from (4), we 

find: 

 

(5)1)T(X)T(Y)(qY)(X;MT*   

 

This happens because the generalized additivity for 

independent subsystems is: 

 

(6)

.q)T(X)T(Y)(1T(Y)T(X)Y)T(X, 
 

 

As a result, for an entropic index different from 1, 

(4) should give a result different from zero. 

Therefore, (4) is not good for representing the 

mutual information I(X;Y). 

In his paper, Tsallis is discussing the problem of 

correlated systems too [4]. He used the Rényi 

entropy for correlated systems: 

 

(7)Y)R(X,R(Y)R(X)Γ   

 

Since the Rényi entropy is additive,  if X,Y are 

independent, Γ is equal to zero. Let us note that it is 

function Γ which seems working as the mutual 

information. 

However, for the non-additive Tsallis conditional 

entropy, a quite simple formula was given in [14]: 

 

)8(
q)T(X)(11

T(X)Y)T(X,
X)|T(Y

)8(
q)T(Y)(11

T(Y)Y)T(X,
Y)|T(X

b

a











 

 

We could define the mutual entropy, as for the 

Shannon entropy, in the following manner: 

 

)9(
q)T(Y)(11

T(Y)Y)T(X,
T(X)

Y)|T(XT(X)Y)(X;MT **

a







 

 

)9(
q)T(X)(11

T(X)Y)T(X,
T(Y)

X)|T(YT(Y)X)(Y;MT **

b







 

 

For X,Y independent variables, using (9a) for 

instance: 
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0

q)T(Y)(11

T(Y)FT(Y)T(X)FT(X)

Y)(X;MT

YX,YX,

**








 

Where q)T(X)T(Y)(1F YX,  . The same for 

(9b).  

 

 

 
Figure 2: Venn diagram when Y is completely 

dependent on X. 

 

4. The problem of symmetry 

Let us note that I(X;Y) must be symmetric, that is 

I(X;Y)=I(Y;X), “otherwise it would not be mutual 

information” [15].  Are (9a) and (9b) giving us the 

same mutual information? Let us consider the case 

when Y is completely dependent on X, as depicted 

in the Figure 2.  

In this case H(X,Y)=H(X), so we have 

T(X,Y)=T(X), and the mutual information is T(Y). 

In the following discussion, we have X larger that 

Y. Then T(X) lager than T(Y). 

Let us consider (9a) and (9b): 

 

)10(
q)T(Y)(11

q)T(X)(11
T(Y)

Y)(X;MT*

a





 

 

)10(T(Y)X)(Y;MT* b  

 

Therefore, (9a)-(9b) do not fulfil the required 

symmetry. In fact, if we consider the Figure 2, it is 

clear that a non-symmetric situation exists,  

Aiming to solve the case of Figure 2, we could 

modify these mutual Tsallis entropies so that:  

 

 

)11(

q)T(X)(11

1

q)T(X)(11

T(X)Y)T(X,
T(Y))q)T(X)(11(X)MT(Y;

)11(

q)T(X)(11

1

q)T(Y)(11

T(Y)Y)T(X,
T(X))q)T(Y)(11(Y)MT(X;

b

a































 

 

We can see that: 

 

)12(
q)T(X)(11

q)T(X)T(Y)(1Y)T(X,T(Y)T(X)
X)MT(Y;




  

 

So we have a mutual information, which is symmetric. If X and Y are independent: MT(X;Y)=0.  

For completely dependent variable and T(X,Y)=T(X):  

 

(13)T(Y)
q)T(X)(11

q)T(X)T(Y)(1T(Y)
X)MT(Y;Y)MT(X; 




  

 

In the case X is coincident with Y, we have T(X)=T(Y): 

 

(14)T(X)T(Y)
q)T(X)(11

q)T(X)T(Y)(1T(X)
Y)MT(X; 




  

 

 

However, we can have also the case when X is totally inside Y (Figure 3).  
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Figure 3: Venn diagram when Y is completely dependent on X. 

 

Then, let us write the join entropy as T(Y,X), to remark this situation. We have that the mutual information must 

be equal to T(X). We obtain this in a symmetric entropy, when we define the mutual entropy as:  

 

)15(
q)T(Y)(11

q)T(X)T(Y)(1X)T(Y,T(Y)T(X)
X)MT(Y;Y)MT(X;




  

 

Then, when T(Y,X)=T(Y), from (15) we obtain MT(X;Y)=T(X).  We can define, in the same manner as in Ref.4 

is proposed the correlation term in the mutual Tsallis entropy: 

 

  
)16(

T(Y)T(X),maxq)(11

q)T(X)T(Y)(1X)T(Y,T(Y)T(X)
X)MT(Y;Y)MT(X;




  

 

 

This can be an expression of the mutual information 

for Tsallis entropy, which is properly answering to 

the fundamental requirements of computation. We 

have discussed such an approach, because it can be 

easily applied to another nonadditive entropy, the 

Kaniadakis entropy, to determine its mutual 

information [16]. This problem will be addressed in 

a following paper.  
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