
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Systematic Mining of Associated Server Herds for Malware Campaign Discovery / Zhang, Jialong; Saha, Sabyasachi;
Gu, Guofei; Lee, Sung Ju; Mellia, Marco. - STAMPA. - 2015-:(2015), pp. 630-641. (Intervento presentato al  convegno
35th IEEE International Conference on Distributed Computing Systems, ICDCS 2015 tenutosi a Columbus, OH nel June
2015) [10.1109/ICDCS.2015.70].

Original

Systematic Mining of Associated Server Herds for Malware Campaign Discovery

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ICDCS.2015.70

Terms of use:

Publisher copyright

©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2625371 since: 2015-12-12T22:01:40Z

Institute of Electrical and Electronics Engineers Inc.



Systematic Mining of Associated Server Herds for
Malware Campaign Discovery

Jialong Zhang
Texas A&M University

Sabyasachi Saha
Narus, Inc.

Guofei Gu
Texas A&M University

Sung-Ju Lee
Narus Inc.

Marco Mellia
Politecnico de Torino

Abstract—HTTP is a popular channel for malware to com-
municate with malicious servers (e.g., Command & Control,
drive-by download, drop-zone, etc.), as well as to attack benign
servers . By utilizing HTTP requests, malware easily disguises
itself under a large amount of benign HTTP traffic. Thus,
identifying malicious HTTP activities is challenging. We leverage
an insight that cyber criminals are increasingly using dynamic
malicious infrastructures with multiple servers to be efficient
and anonymous in (i) malware distribution (using redirectors
and exploit servers), (ii) control (using C&C servers) and (iii)
monetization (using payment servers), and (iv) be robust against
server takedowns (using multiple backups for each type of
servers). Instead of focusing on detecting individual malicious
domains, we propose a complementary approach to identify a
group of closely related servers that are potentially involved
in the same malware campaign, which we term as Associated
Server Herd (ASH). Our solution, SMASH (Systematic Mining of
Associated Server Herds), utilizes an unsupervised framework to
infer malware ASHs by systematically mining the relationships
among all servers from multiple dimensions. We build a prototype
system of SMASH and evaluate it with traces from a large ISP.
The result shows that SMASH successfully infers a large number
of previously undetected malicious servers and possible zero-day
attacks, with low false positives. We believe the inferred ASHs
provide a better global view of the attack campaign that may not
be easily captured by detecting only individual servers.

I. INTRODUCTION

Malware is a critical security threat to the Internet. Malware
is increasingly using HTTP as its communication and attacking
channel due to the following reasons: (i) HTTP is allowed
in most networks, and thus malware has a good chance to
infect victims and communicate with attackers. (ii) Since
HTTP now is the majority of network traffic, malware can
easily disguise its activities under huge benign HTTP traffic,
making it difficult to be detected. (iii) Most HTTP requests use
domain names to find servers, thus malware can easily evade
IP blocking or hide their servers by using Fast-Flux [23]. As a
result, 75 % of malware generates HTTP traffic [26], and the
number of Web-based attacks increased by almost three-fold
since 2012 [8].

Given the severity and popularity of HTTP based malware,
we focus on such threats. In particular, we concentrate on
detecting malicious HTTP activities from the server side
communication perspective.1 We define two types of malicious
activities: (i) communication activity and (ii) attacking activity.
Communication activity involves malware’s communication
with malicious servers while attacking activity involves mal-
ware’s attack on benign servers. We define the malicious

1By servers, we mean both IP addresses and domain names.

(a) Communication activity (b) Attacking activity
Fig. 1. Attack campaigns examples.

campaign as a set of servers that are involved in such ma-
licious activities. Therefore, the malicious campaigns in both
malicious activities share very similar server side properties.
Figure 1 shows real examples. In the communication activity
(Figure 1(a)), there are two clients sending HTTP requests
to multiple C&C domains. Malware often uses such domain
fluxing to evade detection, leading to sharing the same IP
address. In addition, since these C&C servers use the same
communication protocol, they utilize the same script “lo-
gin.php” to handle the requests from their bots. These multiples
C&C domains form a malicious communication campaign. In
the attacking activity (Figure 1(b)), which is a ZmEu scanning
campaign, there are two clients/bots that kept scanning seven
benign servers targeting on “setup.php” script, which has a
known code injection vulnerability. In this case, those two
clients/bots scan the default path of phpMyAdmin for the
exploitation leading to sharing the same file “setup.php”. Those
seven targeted servers form a malicious attacking campaign.

Many approaches have been proposed to detect malware
activities. Different from existing work that relies on signa-
tures [25], client side behavior patterns [20], or supervised
learning of individual server reputation [16], we propose an
unsupervised approach that focuses on server side communi-
cation patterns and does not rely on signatures. We leverage an
insight that cyber criminals are increasingly using a dynamic
malicious infrastructure with multiple servers to be efficient
and anonymous in (i) malware distribution (using redirectors
and exploit servers), (ii) control (using C&C servers), (iii)
monetization (using payment servers), and (iv) being robust
against server takedown (using multiple backups for each
type of servers). As a result, in each malware campaign,
there are multiple malware servers used as well as common
benign servers they attacked. As illustrated in Figure 1, these
servers are correlated, e.g., they share similar client sets.
This is typically not true for benign servers because different



(independent) servers usually have different sets of clients.2

This insight comes from an inquisition that benign servers
usually serve different benign users whose behaviors might be
diverse while malicious servers are set up for certain malicious
clients. Not only connected to a similar set of clients, but if
these servers are also the same type (e.g., both are exploit
or C&C servers), they are likely to receive requests targeting
same/similar URI files (e.g., vulnerable files or exploit scripts)
from malware clients. For benign servers, each server usually
has lots of scripts/pages and different users likely visit different
pages for different purposes. On the other hand, as malicious
servers are set up for certain purpose (e.g., C&C, malware
downloading), it only uses certain scripts/pages to handle
all their bots’ requests. In addition, we observe many other
correlation among malware servers in the same campaign.
For example, they have the same IP address although with
many different domain names (i.e., domain-fluxing, as shown
in Figure 1(a)), or their domains are registered by the same
organization at a similar time.

Based on the above insights, instead of focusing on detect-
ing individual malicious domains, we propose a complemen-
tary approach to identify a group of closely related servers that
are involved in the same malware attack campaign, which we
term as Associated Server Herd (ASH). Our scheme, SMASH
(Systematic Mining of Associated Server Herds), is designed
to be deployed at enterprise or ISP networks to automatically
detect malicious servers that communicate with their network.
It uses an unsupervised community detection technique to
characterize the relationship among the servers from multiple
dimensions, e.g. if they are contacted by common clients, if
the same or similar files are downloaded from them, or if they
have the same Whois information, etc. Our data mining based
approach exposes that often servers involved in an attack retain
some similarity at multiple dimensions and we can detect
such groups by combining them. Therefore, SMASH is not
a real-time detection system, however, it can be run everyday
to detect daily malicious activities in a large ISP/Enterprise
networks or be run on a large network traffic to dig out
previously unknown malicious activities.

SMASH detects malicious campaigns by correlating ASHs
generated from multiple dimensions. Although each dimension
itself might not be sufficient to distinguish malicious severs
from benign servers, the combination of these dimensions
can generate ASHs involved in malicious campaigns. The
suspicious score of correlated ASHs is based on different
combinations. The more close relationship an ASH has, the
higher the probability the servers in it are involved in malicious
activities.

Our main contributions are summarized as follows:

• We propose SMASH, a system that detects a variety of
attacking campaigns and malicious communication campaigns
using an unsupervised data mining approach. Since our ap-
proach is unsupervised, it can detect zero-day malware.

• We propose a two-step method to identify groups of
servers involved in a malware campaign. In the first step,

2Even in the case of load balancing or Content Distribution Networks where
multiple benign servers are used, these servers are likely to serve different set
of clients (e.g., based on their locations).

we generate multiple ASHs using graph based clustering on
individual dimensions. In the second step, we detect malicious
ASHs by correlating them. Rather than detecting a single
server in isolation, SMASH infers ASHs by looking at the
global, holistic network view. Moreover, by correlating in
multiple dimensions, SMASH is robust to manipulation and
evasion from attackers.

• We evaluate SMASH with 9 days of large ISP data
and present the details of the malicious campaigns it dis-
covered. SMASH detected servers involved in both attacking
and communication campaigns with the highest false positive
rate of only 0.064%. SMASH found a total of 236 con-
firmed malicious campaigns with more than 10,000 servers
involved in malicious activities. SMASH discovered nearly
7× the number of servers detected by a commercial IDS and
blacklists. SMASH also revealed 600 benign servers suffering
from web injection campaigns while IDS detected only four.
Other examples of inferred real world campaigns include Bagle
botnet, Conficker botnet, Zeus botnet, Sality botnet, TDSS
botnet, etc.

II. RELATED WORK

Detecting malicious domains has been widely studied from
different angles. Many schemes detect malicious domains from
the DNS point of view. In [16], [14], the authors use different
features (e.g., number of distinct TLDs, number of distinct
malware samples that contacted the domain, changes in the
number of requests to a domain) to evaluate the reputation of
each single domain in isolation. However, such methods can
not detect servers involved in attacking activities, and need
malicious domain seeds to train their system. Antonkakis et.
al. [15] focus only on malicious domains generated by DGA
malware, and can not be applied to general malicious domains.
Kopis [14] can be used to detect general malicious domains.
However, it needs to monitor DNS traffic at the upper DNS
hierarchy, which dramatically limits its application.

Another line of research detects malicious domains by
extracting signatures from malware traffic and applying gener-
ated signatures to live network to detect malware traffic [26],
[25]. Perdisci et al. [26] proposed a system that clusters mal-
ware samples requesting similar URLs and generates structure
signatures from them. The generated signatures can be used
to detect infected hosts on live networks. SMASH targets
both malicious IP addresses and domains that are involved
in attacking and communication activities. In addition, our
system is completely an unsupervised system that does not
need malicious traffic seeds to train features or build templates.

Gao et al. [19] studied the temporal relationship among
servers to infer malicious domains that always appear with the
seed malicious domains. Li et al. [24] studied the topology
among malicious servers and inferred other malicious servers
from a small set of malicious severs seeds. However, the
limitation of these propagation based detection systems is that
their effectiveness depends on the malicious seeds, thus can not
be used to detect servers involved in new, unknown activities
that malicious seeds can not cover.

Community/clustering based techniques have also been
widely researched in both spam and malware detection. Zhang
et al. [28] utilized the relationship among benign servers that
are targeted by the comment spam to detect new comment



Fig. 2. System overview.

spam. Gu et al [20], [21] proposed anomaly-based botnet
detection systems that look for similar network behaviors
across client hosts. A set of bots that share similar anomaly
patterns are detected as botnets. Yen et al. [27] detected
malware by aggregating traffic that share the same external
destinations or similar payload, and involve internal hosts
with similar OS platforms. The intuition behind these work
is that hosts infected with the same bot malware usually
have common C&C communication patterns. Therefore, they
infer the infected clients by analyzing the relationship among
clients.

Different from these work, SMASH focuses on malicious
servers; we study the relationship among servers because
server-side infrastructure is more robust and stable; while
malware can easily randomize client-side traffic patterns (e.g.,
injecting random content in their packets, sending requests to
random benign websites), they inevitably need to contact their
malicious servers to fulfill their desired functions. In addition,
client based approaches usually require multiple infections
of clients in a network. We believe SMASH is an excellent
complementary system to client side based detection systems.

III. SYSTEM DESIGN

The primary goal of SMASH is to detect suspicious
correlated servers that are involved in malicious activities by
passively looking at the network-wide HTTP communications.
Such malicious activities include launching HTTP attacks
on benign severs and communicating with malicious servers
through the HTTP channel. Instead of detecting each server
in isolation, we study the different relationship among all the
servers involved in similar activities. Those servers involved
in the same malicious activity are inferred as a malicious
campaign by SMASH.

Figure 2 depicts the architecture of SMASH. The system
takes HTTP network traffic as input, and has five components:
traffic preprocessing, ASH mining, ASH correlation, pruning,
and malicious campaign inference.
A. Preprocessing

The goal of preprocessing is to reduce the traffic that need
to be processed by SMASH. We explore two steps to reduce
the number of input servers to SMASH. First, we assume that
domains with the same second-level domain belong to the
same organization 3. For example, a.xyx.com and b.xyz.com
both belong to xyz.com, thus there is no need to differentiate
them. Some CDN/Cloud servers will be also aggregated as one

3There are some exceptions such as Cloud servers, Dynamic DNS, we will
discuss them in Section VI

server in this case. For example, all the Facebook CDN servers
will be aggregated as “fbcdn.net”. Amazon Cloud servers will
be aggregated as “amazonaws.com”. The aggregation of all
domains based on their second-level domains leads to 60%
reduction of all servers.

We further remove most benign servers based on their
popularity.4 To measure the “popularity” of servers, we utilize
the concept of inverse document frequency (IDF), which is a
measure of whether the term is common across all documents
in information retrieval. In our case, we try to remove common
servers across all the clients’ requests. We define the popularity
of a server as the number of clients that communicated with
the server. The more clients the server is connected to, the
more popular the server is.

Due to the page limitation, we discuss how to select the
IDS threshold in Appendix A. We select a threshold of 200,
which filters very popular servers but still keeps 99% of the
servers. After the preprocessing process, we reduced 58.6% of
traffic in our dataset.
B. Associated Server Herd Mining

The goal of ASH mining is to find closely related servers
that are involved in the same malware campaign. We define
one main dimension and three secondary dimensions to char-
acterize the relationship among the servers, and systematically
mine ASHs. ASH generated from each dimension itself might
not be sufficient to distinguish malicious group of servers from
benign servers, but ASHs associated with the combination of
these dimensions are more likely to generate server groups
involved in malicious campaigns.

To find the correlated servers, a simple way is to assign
each server with a feature vector and perform clustering on
this multi-dimension feature vector. But the dimensions are
different in nature and it is inefficient to combine them to
evaluate similarity. Also, as we show in Section V-C, it is
hard to assign a unique weight for each dimension because
different malicious campaigns rely on different combinations
of those dimensions. We observe that malicious servers in
the same malicious campaign usually share a very similar (if
not the same) set of malware clients. Thus, we use client
similarity as the main dimension. It is much more robust
against manipulation from attackers than other dimensions, and
can reliably group the servers involved in the same campaign

4We acknowledge that we may miss some compromised popular domains.
However, we argue that this represents a necessary tradeoff between per-
formance and accuracy. In reality most popular servers have resources and
incentives to secure their websites and thus have a lower possibility to be
compromised than less popular ones.



Fig. 3. Cluster of client similarity.

together, as shown in Figure 3, where the red nodes represent
the servers labeled by IDS and the black nodes represent other
unknown servers. We see that although client similarity alone
may not directly distinguish malicious servers from benign
servers, it separates benign server groups from malicious server
groups. Thus, the main dimension must be satisfied for all
campaigns.

Each secondary dimension characterizes the relationship
among different servers from a certain perspective. We eval-
uate how their combinations can be used to infer malicious
campaigns in Section V-C. Note that we envision SMASH, as
an extensible system, can easily incorporate new dimensions.
For example, to keep our system lightweight, we have not
included all payload downloaded from each host. However,
this can be an interesting dimension to consider and can be
easily added as another dimension.

1) Main Dimension: We use client similarity as the main
dimension. Client similarity between two servers depends on
the common set of clients contacting them. We define the client
similarity between servers Si and Sj as:

Client(Si, Sj) =
|Csi

∩
Csj |

|Csi |
∗
|Csj

∩
Csi |

|Csj |
(1)

where CSi denotes the set of clients contacting server Si.

The ratio
|CSi

∩
CSj

|
|CSi

| represents the importance of the common
clients for server Si. The intuition here is that if two servers
with many clients are similar, there will be large overlap
between their clients. Thus, two servers are similar when their
common clients are important to both servers.

Since malicious servers are usually not connected by be-
nign clients while infected clients are usually connected to
a same set of suspicious servers, two servers sharing similar
sets of client connections should belong to the same ASH.
Specifically, we build a communication graph G = (V,E),
where V denotes all the servers and each edge (i, j) ∈ E
denotes that servers i and j share a set of clients. The weight
of the edges reflects the strength of similarity between the two
servers in terms of client similarity.

To extract ASH from G, we adopt a graph based clus-
tering algorithm [17] that is designed to efficiently uncover
communities in large networks. It uses modularity to measure
the quality of extracted community, which is a scalar value
between -1 and 1, and represents the density of the links

Fig. 4. Obfuscated filenames.

inside the community as compared with the links between
communities. It automatically finds high modularity partitions
of large networks in short time. The nodes that are still
connected to each other after this process form ASHs of the
main dimension.

2) Secondary Dimensions: We present our current sec-
ondary dimensions.

URI File Similarity: We study the relationship among
servers based on URI files as servers in the same malicious
activities might share similar/same URI files. For example,
web attacks target certain vulnerable files, and thus different
targeted servers share the same destination files. Different C&C
servers in the same campaign may use the same scripts to
handle the requests from the infected clients, and hence they
might also share the same files. We extract all the URI files of
the servers by checking the HTTP requests. Here we focus on
URI files rather than the whole URI path because in attacking
activities, some benign servers share the same vulnerable file
but have different paths due to the different configurations on
each web server.

We define a URI file as the substring of a URI starting
from the last ‘/’ until the end before the question mark, which
usually is the file or script used for handling clients’ requests.
As shown in Figure 4, sometimes attackers use obfuscated
filenames for different malicious servers that are involved in
the same malicious campaign. We define URI file similarity
between the two files as follows. If the length of the filename
is shorter than or equal to len, we define the similarity function
of files fi and fj as:

sim(fi, fj) =

{
1 iffi = fj , (2)
0 otherwise. (3)

Thus, two files are similar if they are exactly the same,
since short filenames are usually not obfuscated. However, if
the length of a filename is longer than len5, we define the
similarity function as:

sim(fi, fj) =

{
1 if cos(θ) > 0.8 (4)
0 otherwise (5)

where

cos(θ) =
CharSetfi · Charsetfj

∥CharSetfi∥ · ∥CharSetfj∥
. (6)

Thus, for long filenames, we check the characters frequency
distribution (CharSet in eq. (6)) of the filenames. Two file-
names are similar as long as their names have similar character
distributions. For the exact same filenames, the similarity
score is 1. While our similarity function works well in our
evaluation, it can be replaced by any similarity functions such
as Levenshtein distance and Hamming Distance, etc.

5The value of len is discussed in Appendix (B)



Fig. 5. Whois similarity.

We now define file similarity between the two servers Si
and Sj as

File(Si, Sj) =

∑
m

maxn(sim(fSim
, fSjn

))∑
m

1
∗

∑
n
maxm(sim(fSjn

, fSim
))∑

n
1

(7)

where fSim is the m-th file from server Si. Similar to client
similarity, the first term of the right hand side of eq. (7) reflects
the importance of similar files to server Si, and the second term
of the right hand side of the equation reflects the importance
of similar files to server Sj . Thus, if two servers share enough
similar files, they might be involved in the same activities, and
should be in the same ASH.

IP Address Set Similarity: We investigate the relationship
among the servers based on their IP addresses as malicious
domains may share similar set of IP addresses. For example,
malicious servers use fast flux to evade domain based detec-
tion, and thus multiple domains may share the same IP address.
In our dataset, skolewcho.com, switcho81.com, jikdooty0.com
and swltch081.com all used the same IP address. Similar to
client similarity, we define IP address set similarity as:

IP (Si, Sj) =
|ISi

∩
ISj

|

|ISi
|

∗
|ISj

∩
ISi

|

|ISj
|

(8)

where ISi is the set of IPs that server Si is associated with.
Thus, if two servers share similar IP addresses, they might be
involved in the same activities and should be in the same ASH.

Whois Similarity: We study the relationship among server-
s based on their whois information as malicious servers
may be registered with similar information, such as register
name, home address, email address, phone number and name
servers. Figure 5 shows the whois information of two example
malicious servers. Although they have different registrants,
they share the same home address, phone number and name
servers. We use the whois similarity to measure the relationship
among servers, which is defined as the number of shared fields
between the two servers over the union of fields. We require
that the two servers share at least two above mentioned fields
to be considered as associated servers to avoid the case that
two servers only share the domain name registration proxy.

3) ASH Generation: After studying the similarity among
servers from different multiple dimensions, we build similarity
graphs for different dimensions, and use the same graph based
community detection algorithm shown in Section III-B1 to
generate ASHs. The nodes connected to each other after this
process form ASHs for each dimension.
C. Associated Server Herd Correlation

Once we obtain the ASHs from different dimensions, we
perform ASHs correlation. The goal of multi-dimension cor-
relation is to distinguish malicious ASHs from benign ASHs.
To achieve this, we consider ASHs in different dimensions and
extract their common associated servers to form new ASHs.
Ideally, the more dimensions an ASH belongs to, the more
likely it is involved in malicious activities. The intersection of

ASHs between the main dimension and secondary dimensions
forms the new suspicious ASHs.

For example, (ASHd
j

∩
ASHm

i ) forms a new ASH com-
bining ASHm

i from the main dimension m and ASHd
j from a

secondary dimension d. We compute the suspicious score for
each server in the new ASH using the following:

S(Si) =
∑

d∈Sec Dimensions

wd(C
d
Si
)wm(Cm

Si
)Φ(|Cd

Si

∩
Cm

Si
|)

(9)
where Φ(x) = 1

2 (1 + erf(x−µ
γ )), erf(·) is the “S” shaped

Gaussian error function, and µ and γ are user specified
parameters.6 Cm

Si
is an ASH from dimension m that includes

server Si and wd(C
d
Si
) represents the ASH density. Density is

measured as the number of edges |e| in one group over the
number of edges in the fully connected graph with |v| vertices
in that group (2 ∗ |e|/(|v| ∗ (|v| − 1)). The intuition here is
that the more dense a group is, the more likely it belongs
to a malicious group, as benign servers are less likely to be
well connected. When we obtain the suspicious score for each
server in the newly formed ASH, the servers whose scores
are below the threshold thresh are removed. In addition, the
groups with only one server left are also removed because
that server can not be associated with others. We discuss the
selection of thresh value in Section V.

In eq. (9), Φ(ASHm
i

∩
ASHd

j ) measures the suspicious-
ness of the newly formed ASH, created with the servers
common in two ASHs formed based on dimensions m and d. It
is based on the size of the ASH and promotes the ASHs with a
large number of servers. A smaller value of |ASHm

i

∩
ASHd

j |
means that there are only few servers in the ASH, and we have
less confidence in its maliciousness. Hence we need to cross
check with more dimensions to make a decision.

The “S” shaped Φ() normalizes Φ(ASHm
i

∩
ASHd

j ) into
a value between 0 and 1. After the normalization, a group
with less than four servers receives a low score, and need to
be cross checked with more dimensions to accumulate higher
suspicious scores. For each dimension, the highest score is
1. In this case, the correlation score reflects how the ASHs
are formed. Suspiciousness score S(.) of each server then
accumulates scores from all ASHs it belongs to. The higher
the score, the more suspicious the server is. If a server has
suspiciousness score below thresh, it gets removed from all
the ASHs. After the removal, the ASHs (created by combining
multiple dimensions) are left with only servers with high
scores. For example, a score higher than 1.0 means that the
server is inferred through one main dimension and at least
two secondary dimensions. We then call the ASHs with high
scoring servers as suspicious.
D. Pruning

After the correlation, we define and prune two types of
noisy ASHs: (i) Redirection Group and (ii) Referrer Group.
For the redirection group, some servers are associated with
each other because they belong to the same redirection chain.
Hence they share exactly the same sets of clients, IP addresses,
and sometimes URI files. For the referrer group, some servers
are associated with each other because they are referred by the

6We empirically set µ = 4 and γ = 5.5. Choice of µ promotes the clusters
with size larger than 4. γ determines the desired steepness of the curve.



TABLE I. ISP NETWORK TRAFFIC STATISTICS.

Data2011day Data2012day Data2012week

# of clients 14,649 18,354 28,285
# of HTTP requests 28,544,473 40,522,026 168,726,091

# of Servers 92,517 117,507 354,578
# of URI Files 1,521,249 2,936,082 12,698,176

same landing server (e.g, landing websites are embedded with
other websites).

To remove these noisy servers without eliminating ma-
licious servers, we use their landing servers to replace all
the servers in the same redirection chain instead of simply
dropping those groups, if all the servers in the chain share same
IP addresses, URI files or Whois information. Similar to the
redirection group, we also use landing servers to replace all the
referred servers. The intuition here is that for the redirection
and the referrer groups, if a client visits the landing server, it
automatically visits other servers in the redirection chain or the
embedded servers. We therefore use only the landing server to
represent those servers.

We collect the redirection chains by sending a HTTP
request to each server in the ASHs, and obtain referrer in-
formation by extracting the HTTP “referrer” field from the
input network traffic. After the pruning process, if there still
exist more than one server in the ASH, we keep that group as
a candidate malicious ASH.

E. Malicious Campaign Inference

ASH correlation process typically captures specific mali-
cious activities, but not the whole malicious activities. For
example, bots first download encrypted files from some servers
and connect to other C&C servers. In this case, ASH corre-
lation process might separate these two processes into two
different herds, making it difficult to analyze the file down-
loading activities. Towards this end, we apply a refinement
step in which we rebuild the original attack campaign based
on the client similarity. Two malicious ASHs are merged when
their servers are in the same herd for the main dimension, i.e.,
they share a very similar set of clients. The intuition is that
the main dimension captures the group connection behaviors
of malicious activities, and the infected clients that connect to
different files or IPs could still belong to the same malicious
campaign.

IV. EVALUATION DATA

We describe the details of the network dataset and the
ground truth used to evaluate SMASH.

A. Network Trace

To evaluate our system, we experiment with real network
traffic traces collected at the edges of a large ISP. We moni-
tored all the incoming and outgoing traffic in the network. The
monitored users were mostly residential, and connected to the
Internet via high-end ADSL links. Our traces are PCAP files
and for every TCP connection and UDP flow, we collected the
first 5000 bytes, including the IP addresses and domain names
of the destination servers. Table I presents the information
of the ISP traffic we collected at different times: one day
data from October 2011 (Data2011day), one day data from
August 2012 (Data2012day), and one week data from October
2012 (Data2012week). We choose data from different periods
to evaluate the performance of SMASH over time.

TABLE II. NUMBER OF MALICIOUS CAMPAIGNS.

Data2011day Data2012day

Infer Thresh. 0.5 0.8 1.0 1.5 0.5 0.8 1.0 1.5
SMASH 34 17 11 6 38 19 12 2

IDS 2012 total 1 1 1 0 0 0 0 0
IDS 2013 total 0 0 0 0 0 0 0 0

IDS 2012 partial 4 3 3 0 0 0 0 0
IDS 2013 partial 1 0 0 0 2 0 0 0
Blacklist partial 16 10 5 6 13 12 7 1

Suspicious 4 0 0 0 9 2 1 0
False Positives 8 3 2 0 14 5 4 1
FP (Updated) 4 1 1 0 7 1 1 0

B. Ground Truth

To estimate the false positives and negatives of our infer-
ence results, we use the following data set as the ground truth.

Intrusion Detection System (IDS): We used a well-known
commercial IDS with signatures to label malicious flows with
corresponding threat identifiers. Note that since IDS signatures
are constantly updated, we obtained two different sets of IDS
signatures, one from early 2012 and the other from June 2013.
We run all the collected network traces through both IDS
versions and generate two ground truth datasets; the servers
(IDS2012) labeled by the 2012 IDS signatures and the servers
(IDS2013) labeled by the 2013 signatures but not in IDS2012.

Online Blacklist: We also check our inferred results with
popular blacklists, including Malware Domain Block List [3],
Malware Domain List [4], Phishtank [5], SpyEye Tracker [7],
ZeuS Tracker [13] and online services such as Virustotal [10],
Web of Trust (WOT) [11] and WhatIsMyIPAddress [2]. If a
server is listed as malicious by any of these blacklists, except
WhatISMyIPAddress, we confirm it as a malicious server.
As for WhatIsMyIPAddress, which integrates results from 78
blacklist services, we require malicious report from at least
two blacklists to confirm as a malicious server.

V. EVALUATION RESULTS

A. Inference Results

1) Number of Malicious Campaigns: We first evaluate
inference results in terms of malicious campaigns. We on-
ly consider the campaigns that have at least two involved
clients.7 Table II reports the number of malicious campaigns
the SMASH inferred with different thresh we described in
Section III-C. For those inferred campaigns, we verify them
with our ground truth. If all the servers of a campaign are
confirmed by IDS, we term it as “IDS 2012/2013 total.” If
only a subset of the servers in a campaign are confirmed by
IDS, we term it as “IDS 2012/2013 partial.” If none of the
servers of a campaign are confirmed by IDS but confirmed by
online blacklist, we term it as “Blacklist.” For the campaigns
that can not be confirmed by either IDS or Blacklist, we further
check the HTTP request status code of those servers from
the network traffic, and send the HTTP requests to verify the
existence of those servers.8 If at least half of the servers in
a campaign have error code in their network traffic or do not
exist any more, we consider this as a “suspicious” campaign.
All other campaigns are considered as false positives. Note
that there may exist malicious campaigns that are labelled as

7The results for the campaign with single client is reported in Appendix C.
8We only check the existence of those domains. Our intuition is that

malicious domains usually have short life time, and thus might have expired
while benign domains usually have a longer life time.



false positives because we do not have enough information to
confirm them. Thus, the false positives here should be an upper
bound for our system.

For Data2011day with threshold 0.8, SMASH infers 17
malicious campaigns. Among these, one campaign has all the
servers confirmed by 2012 IDS signatures. There are three
campaigns where some of their servers are confirmed by 2012
IDS signatures. There are ten campaigns that have their servers
partially detected by blacklists. Three campaigns are false
positives. If we reduce the threshold to 0.5, SMASH identifies
34 malicious campaigns but the false positives increase to
eight. On the other hand, if we increase the threshold to 1.0
and then to 1.5, SMASH detects 11 and 6 campaigns, but with
two and zero false positives, respectively. Similar results are
observed from the Data2012day.

Further analyzing the false positives, we discovered two
major categories of false positives: Torrent and TeamView-
er [9], a remote online collaboration tool. For the Torrent
category, several P2P clients connect to a large number of
torrent servers by only requesting “scrape.php” files; thus, they
share at least the same filename and sometimes the same IP
addresses. For TeamViewer, it has a large pool of servers that
are used by their clients to retrieve their ID, which leads to
sharing the same path name among those servers. By removing
the false positives of these two “noisy” campaigns, we have
very few false positives as shown in the last row (FP Updated)
of Table II.

2) Number of Servers in Malicious Campaigns: Table III
shows the inference results of the number of servers involved
in malicious activities. Similar to malicious campaign, if a
server is confirmed by the 2012 IDS signatures, we term it
as IDS 2012, and if a server is confirmed by the 2013 IDS
signatures but not by the 2012 IDS signatures, we term it as
IDS 2013. For those servers that are not confirmed by either
IDS signatures but confirmed by the blacklist, we term it as
“Blacklist.” All the servers in “suspicious” attack campaigns
(as described in Section V-A1) are inferred as “suspicious”.
For the remaining servers, we compare them with IDS and
Blacklist confirmed servers in terms of the requested path,
User-Agent, and parameter patterns. Servers confirmed through
this way are termed as “New Servers”, which are previously
undetected servers. All other servers are false positives.

For Data2011day with threshold 0.8, SMASH infers 3,156
servers that are involved in malicious campaigns. Among these
servers, only 20 are labeled by IDS signature and 401 are
confirmed by the blacklist. Our system can infer 2,701 more
servers which is nearly 7 times the servers detected by IDS
and blacklists combined. There are 34 false positives and only
16 after excluding the P2P and TeamViewer cases. We can
also see that we generate fewer false positives with higher
thresholds. For threshold 1.5, there were no false positives for
either Data2011day or Data2012day . However, this comes at a
price of missing many attack campaigns. We therefore select
0.8 as the threshold, where we detect many attack campaigns
while the highest false positive rate is only 0.064%. After
removing noise, the largest false positive rate is 0.017%.

We see that SMASH discovers many malicious servers
that are not discovered by IDS and blacklist. In Table II
with threshold 0.8 for Data2011day, 13 clusters are partially
detected by IDS or blacklist. Among these clusters, IDS detects

TABLE III. NUMBER OF SERVERS IN MALICIOUS ACTIVITIES.

Data2011day Data2012day

Infer Thresh. 0.5 0.8 1.0 1.5 0.5 0.8 1.0 1.5
SMASH 3,222 3,156 3,039 845 407 287 150 9

IDS 2012 20 19 19 0 0 0 0 0
IDS 2013 2 1 1 0 3 0 0 0
Blacklist 413 401 389 74 67 55 29 2

New Servers 2,713 2,701 2,626 771 171 152 91 0
Suspicious 13 0 0 0 27 5 2 0

False Positives 61 34 4 0 139 75 28 7
FP (Updated) 22 16 2 0 32 5 2 0

Fig. 6. Distribution of the client and campaign sizes.

only 20 servers and blacklists detect 401 servers. On the other
hand, SMASH inferred 2,701 servers that are new, previously
unknown malicious servers. Those servers either share the
similar pattern with IDS confirmed servers in terms of User-
Agent, parameter patterns and URI files, etc or are detected
by other researches based on the Google search results. This
indicates that about 86.5% of these malicious servers could
not be detected by simply relying on IDS or blacklists.

Furthermore, we see from Table III that without any
training or signature updating, SMASH infers malicious severs
that are detected by new IDS signatures but missed by old
IDS signatures. This shows that SMASH can detect zero-day
malicious campaigns before IDS signatures get updated.

Finally we measure the malware servers detected by the
IDS but missed by SMASH, i.e., false negatives. To get the
ground truth of malware server groups from IDS labels, we
group the IDS labelled malicious servers based on the IDS
threat identifier, assuming all the servers in the same threat
identifier belong to the same malicious campaign. We have
a total of 26 missed malware servers for Data2011day and 27
for Data2012day . There are two major types of false negatives.
First, there are 40 malicious servers (in the Cycbot, Fake AV
and Tidserv threat labels) that do not share any secondary
dimension, thus are missed by our system. However, most of
those servers share the same URI parameters pattern. Thus, if
we extend our URI file dimension to consider the parameter
pattern, we could detect these threats. Second, several false
negatives are caused by our pruning/filtering process because
these servers share the same referrer. SMASH has room for
improvement and nevertheless, it can be a great complementary
tool to existing approaches.

3) Activity Scale of Malware Campaigns: We measure the
scale of malware campaigns by observing the number of clients
and servers involved in each malicious campaign. Figure 6
presents the distribution of the campaign size and the client
size. We see that about 75% of the attack campaigns have
the size smaller than 18, which indicates that most attack
campaigns do not connect to a large number of malicious
servers. However, campaigns with size larger than 18 are
usually attacking campaigns, which attack a large number
of benign servers (e.g, web scanning and Iframe injection



TABLE IV. ATTACK CATEGORIES.
Activity Category # of Servers

Communication

C&C 30
Web exploit 1
Phishing 5
Drop zone 2
Other malicious servers 1,120

Attacking Web scanner 23
Iframe injection 14

TABLE V. NUMBER OF ATTACK CAMPAIGNS DURING Data2012week .

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
SMASH 31 36 51 40 34 47 51

IDS 2013 total 1 1 1 0 1 1 1
IDS 2013 partial 3 5 7 4 3 8 8

Blacklist 14 19 28 19 16 18 25
Suspicious 4 5 3 4 3 4 6

False Positives 9 6 12 13 11 16 11
FP (Updated) 3 3 11 9 6 12 9

attacks). As for the number of involved clients, 75% of attack
campaigns have only one infected client. This result suggests
that most client side clustering systems [20], [21] might be
ineffective because they need to correlate among multiple
infected clients in the same network.
B. Attack Diversity & Persistency

To demonstrate that SMASH is not limited to only certain
types of malicious campaigns, we evaluate SMASH from
two different perspectives: attack categories and persistence
of servers involved in malicious activities.

SMASH infers diverse malicious campaigns: Our infer-
ence results include the attack campaigns related to malicious
communication activities and web attacking activities. Table IV
categorizes part of our inferred servers involved in malicious
campaigns based on IDS label and Online Blacklist. The
servers belonging to communication activities are typically
malicious servers, such as those involved in botnet activities
and web exploits. The servers belonging to attacking activities
are usually benign websites that are targeted by malware, such
as web scanning and Iframe injection.

SMASH infers both persistent and agile malicious
campaigns: Persistent malicious campaigns are a set of servers
that continue to communicate with infected clients for multiple
days. On the other hand, agile malicious campaigns are a set
of newly identified servers that are communicated by known
infected clients. To study the evolution of persistent and agile
malicious campaigns, we test our system with one week data
from 2012, Data2012week. Tables V and VI show the inference
results.9 We consider the first day of the week data as the
benchmark. Figure 7 shows the results of each day, where
there are 1,014 servers and 27 clients involved in malicious
activities at the benchmark day. We see that SMASH infers
both persistent (Old Server in Figure 7) and agile malicious
campaigns (New Server Old Slient). It can also infer new
campaigns (New Server New Client in Figure 7). In addition,
we observe that most servers belong to agile malicious cam-
paigns. This result suggests that malware may change their
servers/domains every day to evade domain based detection.

C. Effectiveness of the Main and Secondary Dimensions

1) Main Dimension: 24,964 servers in Data2011day and
33,603 servers in Data2012day are dropped after the main

9For the campaign with one client, we use threshold 1.0 while for the
campaign with more than one client, we use threshold 0.8.

TABLE VI. NUMBER OF SERVERS INVOLVED IN MALICIOUS
ACTIVITIES DURING Data2012week .

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
SMASH 1023 1246 1481 1157 911 1286 1301

IDS 2013 7 15 27 11 7 13 13
Blacklist 371 645 726 348 253 354 698

New Servers 467 398 586 668 443 737 497
Suspicious 13 19 8 18 10 8 21

False Positives 165 169 134 122 198 174 72
FP (Updated) 82 14 130 36 24 89 52

Fig. 7. Persistent vs dynamic campaigns.

dimension processing because they can not be correlated with
other servers in client similarity. For those remaining servers,
we further investigate the relationship among those servers in
the same ASH.10 To do this, we manually study 50 randomly
chosen campaigns from each day. 60% of ASHs are “referrer
groups,” in which all servers in the same group are referred
by the same server. Such groups can be further filtered by the
pruning process. 10% of ASHs are “redirection groups,” in
which all servers in the same groups belong to a redirection
chain. Such groups can be also filtered by the pruning process.
8% of ASHs are “similar content groups,” in which all servers
share very similar content. We further analyze those servers
and most of them belong to adult web servers. 18% of
ASHs are “unknown groups,” in which we can not directly
find any relationship among those servers. However, they are
visited by similar sets of clients. Most of these servers are
different companies selling different products or services. The
remaining 4% of ASHs belongs to malicious ASHs. None of
these servers is detected by IDS while SMASH did.

2) Secondary Dimensions: In SMASH, the ASHs need
not satisfy all secondary dimensions. Hence, we measure the
effectiveness of each secondary dimension. Figure 8 is the
decomposition of inferred servers. We see that 15.05% of
the servers satisfy all secondary dimensions and there is no
false positive for these herds. URI File dimension is the most
effective secondary dimension, which by itself contributes
to 53.71% of the detected servers. Although Whois and IP
Address Set dimensions individually are not very effective,
these two dimensions can help the URI File dimension to
confirm more suspicious ASHs. For example, 14.16% are
inferred through the combination of IP Address Set and URI
File dimensions, and 17.01% are inferred through URI File
and Whois dimension combination.

D. Attack Campaign Case Study

We investigate with case studies the benefits of SMASH
over detecting each malicious server in isolation.

1) Capturing the Insight of Malicious Activities: ASHs
help us understand the malicious campaign in a holistic

10Here, we ignore ASH with only one client, as all the servers in this case
are correlated together only because they are visited by one client.



TABLE VII. BAGLE BOTNET.
Categories Servers URI UserAgent Parameters

C&C

novitacolori.it /images/news.php Internet Exploder p=16435&id=21799517&e=0
beachrugbyfestival.com /images/news.php Internet Exploder p=16435&id=21799517&e=0

beautywoman.sk /images/news.php Internet Exploder p=16435&id=21799517&e=0
... ... ... ...

Downloading

lajuve.org /images/file.txt Mozilla/4.0 ... na
shayestegansch.com /images/file.txt Mozilla/4.0 ... na

www.bigdaybreaker.com /images/file.txt Mozilla/4.0 ... na
... ... ... ...

Fig. 8. Effectiveness of secondary dimensions.

TABLE IX. IFRAME INJECTION ATTACK.
Server URI UserAgent

smileenhance.co.uk /images/sm3.php ’-’
dorsetsheep.org /images/sm3.php ’-’

calumaco.it /images/sm3.php ’-’
zita.nl /wp-content/uploads/sm3.php ’-’

... ... ...

fashion. Table VII shows the Bagle botnet [1], which is a
mass-mailing computer worm campaign that SMASH inferred.
In this campaign, the bot first goes to some servers to
download an encrypted file “file.txt” and connects to C&C
servers by requesting “new.php” with the same parameter
pattern “p=[]&id=[]&e=[]”. There are 94 servers involved in
this campaign and they can be clustered in two categories;
40 downloading servers and 54 C&C servers. None of the
downloading servers was detected by IDS or blacklists. Only
three C&C servers were detected by VirusTotal. Without the
holistic approach of SMASH, we would not have captured the
downloading servers and many additional C&C servers.

Table VIII shows Sality botnet [6] campaign, also inferred
by SMASH. There are 12 servers involved in this campaign.
All have been labeled by IDS but only eight have been labeled
by the blacklist. Again, we cluster the servers in this campaign
into C&C servers and downloading servers. Two C&C servers
are inferred because they share the same set of IP addresses,
the same filename “/” and the same registration information;
thus they form a strong ASH. Downloading servers form differ-
ent ASHs based on the shared filenames. Different from the
Bagle botnet, only downloading servers are benign websites
compromised by the attackers. Thus, they do not share IP
addresses or Whois information. The Sality botnet campaign
is inferred by merging these ASHs. The bots might first go
to the compromised servers to download additional malware
through requesting “.gif” files. They then go to C&C servers
to get further instructions.

Based on above two examples, most of downloading
servers and some C&C servers from the Bagle botnet are
compromised websites. Therefore, domain reputation based
systems [16] or similarity based detection systems [15] would
not detect such malicious servers.

2) Finding More Malicious Activities: Table IX shows a
web injection attack campaign, where infected hosts inject
malicious Iframes to benign websites. SMASH inferred 600
benign servers suffering from such attacks while IDS labeled
only four of such attacks, missing more than 99% of the server-

TABLE X. ZEUS BOTNET.
Zeus C&C Server URI

4k0t155m.cz.cc /login.php
4k0t177m.cz.cc /login.php
4k0t144m.cz.cc /login.php
4k0t166m.cz.cc /login.php
4k0t111m.cz.cc /login.php

... ...

s. All of these inferred servers are queried by the same set of
clients with the same file “sm3.php” under different paths. The
servers not labeled by IDS share the same UserAgent “-” in
their HTTP requests to the IDS labeled servers. This confirms
that they belong to the same attack campaign. Note that most
of the URIs have the path “wp-content,” which indicates that
those servers are installed with WordPress web application.
This attack campaign explores WordPress vulnerability to
upload a malicious script “sm3.php.”

Table X is the Zeus botnet [12] that SMASH also inferred.
This campaign includes eight C&C servers of Zeus. 2012 IDS
signatures labeled none of these domains while the blacklists
detected only one domain. However, 2013 IDS signatures
detect all of these domains. This shows that, as SMASH does
not need to update signatures, it can detect zero-day attack
campaigns. This campaign seems to be using a DGA based
algorithm to generate similar domain names. All these domains
are requested by the same set of clients, and share the same
IP addresses and filename “login.php.” We searched these
domains in Google, and only “4k0t111m.cz.cc” is confirmed
as “zeus tracker.”

VI. DISCUSSION

Overhead: SMASH is designed to monitor the traffic from the
edge of a network. Thus, it can be deployed at enterprise or ISP
networks. The most expensive part of SMASH is on similarity
calculation, whose complexity is N2 where N is the number
of servers, as we need pairwise similarity among different
servers. However, the complexity of similarity calculation can
be significantly reduced by sparse matrix multiplication [18].

Extensions: In our current implementation, we have three
secondary dimensions. Since secondary dimensions are com-
plementary dimensions to further characterize the relationship
among servers, they can be extended. For example, we can
add time based dimensions [19] to characterize the relation-
ship among servers. We can also add payload similarity to
characterize downloading similarity among servers.

Limitations: SMASH assumes that cyber criminals use mul-
tiple servers to conduct their malicious activities. Thus, if
an attacker uses only a single server to conduct malicious
activities (which is now very rare), SMASH can not detect it. In
addition, since we use second-level domain for the inference,
we might miss the malicious servers using dynamic DNS or
hosted on third-party cloud servers. However, those services
incur significant financial cost for the attackers.



TABLE VIII. SALITY BOTNET.
Categories Servers URI UserAgent Parameters

C&C Domain kukutrustnet777.info / KUKU v5.05exp =22667130988 22adcdc=72726968
kjwre9fqwieluoi.info / KUKU v5.05exp =22667130988 e65564=135856260

Downloading

merc-connect.com /images/mainf.gif KUKU v5.05exp =22667130988 8fff57=84933135
meta-kit.com /images/logos.gif KUKU v5.05exp =22667130988 4f152d=10365530

fashionenigma.com /images/logos.gif KUKU v5.05exp =22667130988 6f2483=58270744
... ... ... ...

Evasions: SMASH relies on the correlation between the main
and secondary dimensions. Thus, an attacker who gains the
knowledge of SMASH might try to mislead our system by
manipulating their relationships.

Evading the Main Dimension: To mislead the main
dimension, an attacker can make their bots visit many benign
domains with the same URI file.11 In this case, our main
dimension might generate ASHs that include both benign and
malicious servers. However, since our client similarity looks
at the similarity among all the client sets, it is difficult for an
attacker to assure that there are no other benign clients that visit
those benign domains. Even when an attacker can use some
benign servers to mislead our system, their malicious servers
are still included in ASHs the SMASH inferred, which can be
further filtered through other heuristics. For example, benign
domains might not have such URI files, which may return
an error code. In addition, an attacker can also let different
bots communicate with different servers to prevent us from
generating ASHs. However, this would be a very costly method
for attackers, as the more bots they have, the more servers they
need to register.

Evading Secondary Dimensions: Compared with the
main dimension, secondary dimensions can be easily changed.
However, the process is very inconvenient and costly for the
attackers. For example, to evade the IP dimension, an attacker
can fast flux the IP addresses of their servers, which is very
expensive yet easily detected [22]. To evade the URI File
dimension, an attacker can assign different names for different
servers. However, it makes their connections less scalable; for
the attacking campaigns, it usually targets the vulnerabilities
of certain files, and thus an attacker can not change such
filenames. Although an attacker can successfully evade one of
the secondary dimensions, it is non-trivial to simultaneously
evade all dimension to avoid being detected by SMASH.

VII. CONCLUSION

We studied the malicious servers from a new perspective,
associated server herds. Instead of studying each malicious
domain in isolation, we investigated the relationship among
servers that are involved in the same malicious activities.
This approach enables us to find more malicious servers
including servers involved in attacking activities as well as
servers communicated with malware. We proposed a novel
unsupervised inference system, SMASH, to uncover attack
campaigns based on the correlation among associated server
herds. Our evaluation with a large ISP showed that SMASH
detects new attack campaigns with a low false positive rate
of 0.064% without any training data. Our inferred results also
help us capture the insight of the whole attack campaign.

11There is very low possibility that the benign domains share similar IP
addresses and whois information with the malicious servers.

REFERENCES

[1] The bagle botnet. http://securelist.com/analysis/36046/
the-bagle-botnet/.

[2] Blacklist check. http://whatismyipaddress.com/blacklist-check.

[3] Malware domain blocklist. http://www.malwaredomains.com/.

[4] Malware domain list. http://www.malwaredomainlist.com/.

[5] Phishtank. http://www.phishtank.com/.

[6] Sality botnet. http://en.wikipedia.org/wiki/Sality.

[7] Spyeye tracker. https://spyeyetracker.abuse.ch/.

[8] Symantec Internet security threat report. http://www.symantec.com/
security response/publications/threatreport.jsp.

[9] TeamViewer. http://www.teamviewer.com/.

[10] VirusTotal. https://www.virustotal.com/\#url.

[11] Wot (web of trust). http://www.mywot.com/.

[12] Zeus botnet. http://en.wikipedia.org/wiki/Zeus (Trojan horse).

[13] Zeus tracker. https://zeustracker.abuse.ch/.

[14] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou, and D. Dagon.
Detecting malware domains at the upper DNS hierarchy. In USENIX
Security Symposium, 2011.

[15] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon. From throw-away traffic to bots: Detecting the
rise of DGA-based malware. In USENIX Security, 2011.

[16] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi. Exposure: Finding
malicious domains using passive DNS analysis. In NDSS, 2011.

[17] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
unfolding of communities in large networks. In Journal of Statistical
Mechanics: Theory and Experiment, 2008.

[18] Aydın Buluç and John R. Gilbert. Parallel sparse matrix-matrix
multiplication and indexing: Implementation and experiments. SIAM
Journal of Scientific Computing (SISC), 34(4):170 – 191, 2012.

[19] H. Gao, C. Yegneswaran, Y. Chen, P. Porras, S. Ghosh, J. Jiang, and
H. Duan. An empirical reexamination of global DNS behavior. In
sigcomm, 2013.

[20] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: Clustering
analysis of network traffic for protocol- and structure-independent
botnet detection. In USENIX Security Symposium, 2008.

[21] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. BotSniffer:
Detecting botnet command and control channels in network traffic. In
NDSS, 2008.

[22] C. Hsu, C. Huang, and K. Chen. Fast-flux bot detection in real time.
In RAID, 2010.

[23] M. Konte, N. Feamster, and J. Jung. Dynamics of online scam hosting
infrastructure. In PAM, 2009.

[24] Z. Li, S. Alrwais, Y. Xie, F. Yu, and X. Wang. Finding the linchpins
of the dark web: a study on topologically dedicated hosts on malicious
web infrastructures. In IEEE Symposium on Security and Privacy, 2013.

[25] T. Nelms, R. Perdisci, and M. Ahamad. Execscent: Mining for new
C&C domains in live networks with adaptive control protocol templates.
In USENIX Security Symposium, 2013.

[26] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of HTTP-
based malware and signature generation using malicious network traces.
In USENIX NSDI, 2010.

[27] T. Yen and M. K. Reiter. Traffic aggregation for malware detection. In
DIMVA, 2008.

[28] J. Zhang and G. Gu. NeighborWatcher: A content-agnostic comment
spam inference system. In NDSS, 2013.



APPENDIX

A. Choice of IDF Threshold

To select the IDF threshold, we use the servers labeled by
our IDS as the ground truth. Figure 9 is the IDF distribution of
all the servers and IDS-confirmed malicious servers (embedded
figure) of one day ISP data. We see that 90% of the servers
involved in malicious activities have an IDF value of less than
10 clients, and the highest IDF for the IDS labeled servers
is 127 clients. To cover more servers that are involved in
malicious activities as well as remove top popular benign
servers, we choose a threshold of 200.

Fig. 9. IDF.

B. Choice of Threshold Value on Filename Length

To decide the threshold value of len, we check the length
of the filenames whose servers have been labeled by IDS.
Figure 10 shows the filename length distribution of all the
files on IDS confirmed malicious servers. We see that 85% of
the files have names fewer than 25 characters. These files are
usually not obfuscated. Thus, we use 25 as the value of len.
Six servers have the longest filenames of 211 characters, which
are all obfuscated names similar to those shown in Figure 4.
Our system can successfully generate associated server group
for those servers and infer their attack campaign.

Fig. 10. Length distribution of malicious filenames.

C. Malicious Campaigns with Single Client

We consider the campaigns that have only one involved
client. All the servers that were visited by only one client form
an ASH based on our main dimension. We run our system
with such associated server herd and the results are shown
in Tables XI and XII. We find more attack campaigns and
more servers involved in malicious activities compared with
the campaigns with more than one client. We also observe
that there exist many attack campaigns that only have one
infected client. SMASH still detects them while most client

TABLE XI. NUMBER OF ATTACK CAMPAIGNS WITH SINGLE CLIENT.

Data2011day Data2012day
Inference Thresh. 0.5 0.8 1.0 1.5 0.5 0.8 1.0 1.5

SMASH 174 63 30 10 240 88 43 15
IDS 2012 total 5 4 4 0 0 1 1 1
IDS 2013 total 1 0 0 0 1 1 1 1

IDS 2012 partial 5 4 4 0 2 1 0 0
IDS 2013 partial 1 0 0 0 3 0 0 0

Blacklist 48 28 13 10 73 42 20 7
Suspicious 36 13 3 0 57 21 9 3

False Positives 78 14 6 0 104 22 12 3
FP (Updated) 69 9 2 0 93 16 8 1

TABLE XII. NUMBER OF SERVERS INVOLVED IN MALICIOUS
CAMPAIGNS WITH SINGLE CLIENT.

Data2011day Data2012day
Threshold 0.5 0.8 1.0 1.5 0.5 0.8 1.0 1.5
SMASH 5975 5557 5037 1205 2344 1683 937 133

IDS 2012 57 42 41 0 16 7 6 4
IDS 2013 4 1 1 0 15 9 8 8
Blacklist 1052 999 875 92 600 468 236 16

New Servers 4318 4286 4089 1113 837 741 497 39
Suspicious 166 68 10 0 269 138 74 44

FP 378 161 21 0 607 320 116 22
FP (Updated) 254 75 4 0 465 229 79 4

based detection systems [20], [21] might fail to discover them.
However, the false positives is higher than the previous case
because some rare benign servers may also be mixed together.
Thus, we adjust the threshold to 1.0 for campaigns with only
one involved client.


