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Abstract—YouTube relies on a massively distributed Content
Delivery Network (CDN) to stream the billions of videos in its
catalogue. Unfortunately, very little information about the design
of such CDN is available. This, combined with the pervasiveness
of YouTube, poses a big challenge for Internet Service Providers
(ISPs), which are compelled to optimize end-users’ Quality of
Experience (QoE) while having no control on the CDN decisions.

This paper presents YouLighter, an unsupervised technique
to identify changes in the YouTube CDN. YouLighter leverages
only passive measurements to cluster co-located identical caches
into edge-nodes. This automatically unveils the structure of
YouTube’s CDN. Further, we propose a new metric, called Pattern
Dissimilarity, that compares the clustering obtained from two
different time snapshots, to pinpoint sudden changes. While
several approaches allows us to compare the clustering results
from the same dataset, no technique measures the similarity
of clusters from different datasets. Hence, we develop a novel
methodology, based on the Pattern Dissimilarity, to solve this
problem.

By running YouLighter over 10-month long traces obtained
from ISPs, we pinpoint both sudden changes in edge-node
allocation, and modifications to the cache allocation policy which
actually impair the QoE that the end-users perceive.

I. INTRODUCTION

YouTube is one of the most popular and demanding Internet
services. It accounts for 1 billion users distributed world-wide,
who watch 6 billion hours of videos per month.1 Due to its
popularity and the nature of the content that it distributes, the
demanded load to handle is huge, and guaranteeing a satisfac-
tory Quality of Experience (QoE) for the users is a challenging
task to accomplish. To this end, YouTube leverages a massive,
globally distributed Content Delivery Network (CDN), the
Google CDN [1], which consists of hundreds of edge-nodes
scattered in the Internet. Each edge-node hosts hundreds of
video servers, or caches, which can each potentially serve any
video a user may request [2].

Google, as many other Over-the-Top content providers,
places its edge-nodes close to users, usually at aggregation
points directly peering with Internet Service Providers (ISPs).2
Hence, Google uses the ISP’s network as the “last mile” to
deliver YouTube videos. Despite this localized setup, once
a user requests a video playback, the CDN load balancing
algorithm directs the request to one of the caches, and there is
no mean to influence or predict which cache, or even which
edge-node will be used [3], [4]. This is particularly critical
for the ISP, which on the one hand is compelled to deliver

1https://www.youtube.com/yt/press/statistics.html
2https://peering.google.com/about/index.html

YouTube videos to users without impairing the QoE, while
on the other aims at minimizing the delivery costs. Hence,
the ISP spends a significant effort in monitoring the CDN
infrastructure and designing ad hoc traffic engineering policies
for YouTube traffic [5]. However, changes in the YouTube
CDN occur frequently, and they may involve modifications
in the infrastructure, e.g., the activation of a new cache, or in
the load balancing algorithm decision, e.g., a sudden switch
of caches to serve requests. Conversely, the ISP’s policies are
often static and hardly cope with the continuous evolution
of the Google CDN: any sudden change can make the ISP’s
optimization obsolete, and thus ineffective, possibly causing
abrupt disruptions or QoE degradations. This constitutes an
issue for the ISP, as it sees its reputation degrade when a
change happens, even if Google caused it.

In this paper, we present YouLighter, a novel methodol-
ogy to automatically monitor and pinpoint changes in the
YouTube CDN. YouLighter relies on an unsupervised learning
approach that, as such, does not require any knowledge of
the YouTube infrastructure. Instead, it only assumes that the
ISP has deployed passive probes, which expose TCP flow
level logs summarizing video requests from users. Considering
a given observation window of, say one day, YouLighter
aggregates these flow logs to constitute a snapshot of the traffic
exchanged with YouTube caches. Based on DBSCAN [6],
a well-established unsupervised machine learning algorithm,
YouLighter is able to automatically group thousands of caches
into a bunch of edge-nodes using simple features that charac-
terize the network distance of caches from the vantage point.

To pinpoint changes, YouLighter runs DBSCAN on con-
secutive snapshots, it transforms the corresponding clustering
results into centroid patterns, and it compares them using the
notion of Pattern Dissimilarity. The bigger the distance be-
tween two snapshots is, the more different the sets of YouTube
caches to serve ISP customers during the two periods of
time are. YouLighter highlights several kinds of changes. E.g.,
deviations from the typical behavior of edge-nodes possibly
induced by congestion arising in the network. In general,
YouLighter unveils sudden changes happening the YouTube
CDN infrastructure which may be responsible of QoE issues
for ISP customers.

We validate our methodology over traces we collect from
four different vantage points that we have deployed in two
ISPs in two different countries. First, we demonstrate that the
clustering algorithm YouLighter adopts is effective at identify-
ing and grouping YouTube caches belonging to different edge-
nodes. Second, we run YouLighter over different collected
snapshots considering the longitudinal dataset, which, overall,

https://www.youtube.com/yt/press/statistics.html
https://peering.google.com/about/index.html


accounts for more than 33 months of traffic. We pinpoint sev-
eral examples of sudden and previously undiscovered changes
in the YouTube CDN. For some of them, we investigate the
impact on the QoE of ISP customers, revealing the sudden drop
of average video download throughput to less than 250 kb/s
which hampers even the possibility of watching a video.

We believe that YouLighter is a promising tool for
ISPs, network administrators and researchers to monitor the
YouTube CDN and the traffic it generates. Importantly, thanks
to its design, YouLighter offers the capability of automating
and accelerating the troubleshooting procedures. For instance,
ISPs may use YouLighter to quickly react to changes possibly
harming customers’ QoE. In this direction, ISPs may adopt
traffic engineering algorithms to change routing to under-
performing edge-nodes, e.g., by means of BGP policies, or
to enforce DNS policies to overrule YouTube choices by re-
directing traffic from caches with bad QoE to caches with a
good QoE.

Finally, while we engineer YouLighter to target YouTube
CDN monitoring, we believe that the Pattern Dissimilarity
notion we introduce in this paper constitutes a more general
framework that has the potential to open the usage of unsuper-
vised algorithms for anomaly detection problems in general.

The remainder of this paper is structured as follows: Sec. II
discusses the related work. Sec. III describes the details of our
datasets, and shows the dynamicity of YouTube cache selection
policies. Sec. IV presents our methodology and introduces
the Pattern Dissimilarity. Sec. V presents our results: First,
we evaluate the sensitivity of YouLighter’s parameters, and,
second, we show how effective YouLighter is at pinpointing
changes in YouTube CDN employing our traces. Finally,
Sec. VII concludes the paper.

II. RELATED WORK

A large body of work has analyzed the YouTube delivery
infrastructure and its evolution over time [1], [2], [3], [7], [5].
They show a highly dynamic system which keeps changing
over time due to continuous upgrades in the infrastructure [1],
[2] or due to the dynamicity of the cache selection policies [3],
[7]. Some of the findings are already outdated. For instance,
the load-balancing policy based on HTTP redirections which
is described in [3], [7] is no longer in place, and YouTube
dismissed the naming scheme described in [2] at the end
of 2011. To the best of our knowledge, the only updated
work which resembles in spirit our study is [5]. However, the
proposed methodology requires a significant manual effort, and
the paper mostly focuses on results about the characterization
of the YouTube service in terms of traffic characteristics and
QoE perceived by the users. In this work, we do not aim to
offer an updated view or characterization of YouTube. Instead,
we present a methodology that allows to automatically identify
changes in both the infrastructure, e.g., the appearance of
new edge-nodes, and in the day to day management of the
infrastructure, e.g., a change in the load-balancing algorithm
that may affect millions of customers.

Our contribution is in line with the body of works fo-
cusing on anomaly detection, for which [8], [9] offer good
surveys. To the best of our knowledge, only [10] targets large
scale anomaly detection in operational networks. However,
it presents a supervised system, which relies on data from
passive probes, topology information and routing tables to
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Fig. 1. The traffic monitoring setup we employ for this paper.

feed a classic forecasting system, which finally compares its
predictions to the actual measurements to pinpoint deviations.
YouLighter, on the other hand does not assume any knowledge
of a baseline, and leverages unsupervised algorithms to auto-
matically unveil changes. We specifically design it to target the
YouTube CDN, for which the ground truth is a moving target
that is very difficult to know.

However, the application of unsupervised learning tech-
niques to get insights about the network traffic is not new.
For instance, [11] proposes a flow-based anomaly detection
algorithm based on k-means, while [12] uses DBSCAN to
identify anomalous clusters. In all the cases, clustering is used
to study the same given dataset. To the best of our knowledge,
no approaches have been proposed to identify anomalies by
comparing clustering results attained from different datasets
(e.g., different time snapshots, different populations, etc.).
Only [13] aims at measuring similarity between sets of over-
lapping clusters from complex networks, in which groups of
nodes form tightly connected units linked to each other. Since
points are not embedded in a metric space, they define ad-hoc
distances. YouLighter operates in a geometric space where we
can exploit the concepts of density and centroid of a cluster
to simplify the comparison among two different datasets.

YouLighter differs also from techniques for the tracking of
moving clusters and objects as [14], [15]. Indeed, their goal is
to track the movements of the same clustered objects over time,
e.g., a group of migrating animals. On the contrary, YouLighter
has no insights about the CDN infrastructure and it cannot
track single objects, which may disappear and reappear freely.

Finally, other approaches as [16] measure the similarity
among sample distributions obtained at different time intervals.
However, directly relying on distributions to perform the com-
parison considerably complicates the detection of the edge-
nodes behind the changes. Instead, YouLighter extracts and
compares clustering patterns, which are simpler to process
in an automatic manner, and allow to immediately pinpoint
the edge-nodes (i.e., the clusters) responsible for possible
deviations.

III. DATASETS

We assume the ISP has instrumented the network with
passive probes, which collect statistics from flows carrying
YouTube videos. In this work, we rely on passive probes
running Tstat 3 that we install in Points-of-Presences (PoPs) of

3http://tstat.polito.it
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Trace Period Volume Flows Caches
ISP1-A 01/04/2013 - 28/02/2014 138.7 TB 33,216,794 8,664
ISP1-B 01/04/2013 - 28/02/2014 152.9 TB 31,643,603 8,899
ISP1-C 01/04/2013 - 28/02/2014 134.8 TB 27,377,089 9,028

ISP2 01/03/2014 - 17/07/2014 48.3 TB 9,100,163 3,755
TABLE I. TRACES CONSIDERED IN THIS STUDY.

operational networks, as depicted in Fig.1. Clients are located
in one PoP, and connect to the backbone via a router, where
Tstat monitors the traffic. Tstat observes packets, rebuilds each
TCP flow, tracks it, and at the end of flow, logs detailed
statistics. Tstat can classify TCP flows that carry YouTube
videos. For each request, it logs i) the anonymized client IP
address, ii) the server IP address, iii) the hostname of the
server, iv) the TCP minimum Round Trip Time (RTT),4 v) the
IP Time-To-Live (TTL) of packets received by the client in
the PoP, vi) the amount of bytes the clients send and receive,
vii) the average download throughput, and viii) the time at
which the TCP connection starts. Note that Tstat computes
all these metrics considering only TCP segments, and do not
require access to application payload. This avoids any privacy
issues. Moreover, this allows us to collect all needed statistics
even in presence of encryption, e.g, HTTPS which nowadays
represents more than 50% of overall YouTube traffic [17].

We have been collecting traffic logs since April 2013
by monitoring the traffic users generate when accessing the
Internet. We instrument four different probes. Three of them
are located in PoPs of the same ISP and in two different
cities of the same country. We install the fourth one in a
PoP of a different ISP in a second country. Tab. I describes,
for each trace, the time period, the total downloaded volume,
the number of flows and the number of YouTube servers we
observe. Notice that in total we monitor the activity of more
than 32,000 customers, and the maximum number of caches
that ISP1 customers used at least once is ∼9,000.

A. YouTube Cache Naming Structure
We find that the YouTube infrastructure described in [2]

is no longer in use. Since 2012, YouTube server hostnames
are in the form rx---ABCxxtxx.c.youtube.com, where
x are numbers, while ABC is a three-letter code re-
porting the IATA code of the closest airport. For in-
stance r7---fra07t16.c.youtube.com identifies a sin-
gle cache, in Frankfurt. The hostname resolves to a single IP
address, 74.125.218.182 in the example. Thus, we can uniquely
identify a cache by its hostname.5 All caches co-located in the
same edge-node share the same IATA code. This allows us to
get coarse ground truth about the location of servers. However,
as we will see, several edge-nodes can be located in apparently
different areas, but share the same IATA code.

We run some active experiments to cross-check if YouTube
specializes caches to serve some particular content, and we
verify that every cache can serve any video, at any resolution,

4The RTT is measured as the time between the client data segment and the
corresponding server acknowledgment observed at the vantage point. For each
TCP connection, minimum RTT is computed among all valid samples.

5Starting from January 2013, YouTube obfuscates the IATA
code using a simple substitution cipher that we were able to
break. For instance, r7---fra07t16.c.youtube.com becomes
r7---sn-4g57kued.c.youtube.com. From October 2013, the
youtube.com domain has been replaced by the googlevideo.com
domain. This information can be used to identify YouTube flows even in
presence of [18].
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Fig. 2. Rank of YouTube caches based on the number of flows. February
2014, ISP1-A.
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Fig. 3. Evolution of the volume of traffic for the four most active caches we
observe on February 1st 2014. First week of February 2014, dataset ISP1-A.

in any format, e.g., MPG4 or Flash, to any device, e.g., PC,
smartphones or tablets.

B. Characterization of the Load Balancing Policies
Every time a user starts a video playback, the player

starts a progressive download of the video content from the
specific cache the system provides in the HTML page.6 We are
interested in seeing which are the policies governing the server
allocation, such as (i) is there any “preferred” group of caches?
or (ii) are those stable over time? Fig. 2 reports the rank of
YouTube caches based on the number of flows they handle,
which is proportional to the number of served videos. We
consider February 2014 from the ISP1-A dataset. First, notice
that we observe more than 3,200 caches during one month.
Second, the load each cache handles is very heterogeneous;
few servers handle lots of requests, but there is a not negligible
number of caches that serves a significant portion of flows. For
instance, more than 400 caches serve more than 100 videos,
and in order to observe 95% of requests, one should monitor
about 330 caches.

We also notice that the rank is extremely dynamic over
time. For instance, we pick the four most active caches during
the 1st of February 2014 and we report in Fig. 3 the amount of
traffic they generate over time for the following seven days. As
shown, the amount of traffic a single cache handles changes
widely over time, and none of the monitored caches keeps a
constant leading position for a long period of time. As one
may expect this dynamicity to disappear when reducing the
focus, we also run an experiment to monitor a larger pool of
caches as those in the rank in Fig. 2, and we recompute the
same rank on a daily basis for one month. We observe that

6Load balancing policies are implemented at application layer. Indeed the
web server chooses and encodes the cache hostname directly in the HTML
page served to the client.



the rank changes widely day by day and the most used cache
in a day is not among the top-10 cache of the month (due to
the lack of space we can not report here the full description of
this experiment; more details are available in our technical
report [19]). This shows that the server allocation policies
adopted by YouTube spread the load over several hundreds
of caches, and the choices are extremely dynamic over time if
we observe with the fine grained granularity of a single cache.

Since caches inside the same edge-node are all equivalent,
the intuition is to observe the system using the coarse granular-
ity offered by edge-nodes. However, edge-nodes are unknown,
they can change over time due to system upgrade or redesign,
and information that could be available (e.g., the IATA code)
may be not reliable, or may be removed by YouTube. In the
following, we design an unsupervised clustering algorithm to
automatically identify edge-nodes from just the observation of
traffic flows.

IV. METHODOLOGY

Intuitively, the path between two caches in the same edge-
node and clients in the same PoP exhibits the same properties,
e.g., same RTT. Conversely, the path between two caches
in different edge-nodes should present different RTT. This
intuition is corroborated in Fig. 4 which depicts the 5th,
20th, 50th, 80th, and 95th percentiles of the per-cache RTT
distribution. We identify caches with their IP address, and then
we order and group them into edge-nodes using the IATA code
as ground truth so that caches belonging to the same edge-
node appear one close the other. Five edge-node are present,
E-1 to E-5. Each hosts a variable number of caches, with E-3
being the largest. As shown, the caches in the same edge-node
exhibits very similar RTT percentiles, suggesting that we can
identify clusters of caches by considering the RTT as a feature.

A. Multi-dimensional Clustering
We leverage above intuition to design a clustering algo-

rithm to automatically find homogeneous groups of caches.
We use some ingenuity to characterize the path from client
to each cache, and then to cluster caches that exhibits similar
paths. We can split the process of our methodology into the
following steps:
Step 1 - Passive monitoring of YouTube video flows: As
described in Sec. III, a passive probe provides the continuous
collection of YouTube traffic logs. We log each metadata of
each TCP connection, and we store logs in a database for
further processing.
Step 2 - Measurement consolidation and filtering: To ease
the monitoring procedure, we use a batch processing approach
that considers time windows of size ∆T . Thus, every ∆T
we generate a “snapshot”, and we aggregate and process
measurements in it. In the following, we indicate the n-th
snapshot as a superscript when needed, e.g., a(n) indicates
the metric a at snapshot n.

We identify each cache x by its IP address. We then group
all flows in the same snapshot with the same server IP address
to obtain a table where columns correspond to the metric (e.g.,
RTT, TTL, transmitted packets, etc.), and each row corresponds
to a sample, i.e., the tuple of measured values observed within
a TCP flow. Since we are interested in the active caches, we
discard those with less than MinFlow = 50 samples. We
define the whole measurement snapshot n as X(n).
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Step 3 - Feature selection and data normalization: Next,
we apply a feature selection driven by domain knowledge
to select the set M of metrics. In particular, as we are
interested in grouping caches according to the path properties,
we choose M = {RTT, TTL}. Then, for each cache x in
the snapshot X , and for each metric m ∈ M, we generate
an empirical distribution. From the distribution, we extract the
vector Pm(x) = (pm,1(x), pm,2(x), . . . , pm,k(x)) containing k
percentiles of m for cache x. We thus standardize percentiles
following a simple normalization:

minm = min (pm,i(x) ∀x ∈ X,∀i = 1, . . . , k) (1)
maxm = max (pm,i(x) ∀x ∈ X,∀i = 1, . . . , k) (2)

p̄m,i(x) =
pm,i(x)−minm
maxm −minm

(3)

Intuitively, Eq.(3) normalizes the percentiles of metric m so
that p̄m,i ∈ [0, 1].

At last, P̄m(x) = (p̄m,1(x), p̄m,2(x), . . . , p̄m,k(x)) repre-
sents the standardized vector of features for the metric m
for server x. Recalling that M = {RTT, TTL}, we identify
each cache x ∈ X with a 2k-dimensional space of edge 1 by
features:

x̄ = (P̄RTT (x), P̄TTL(x)) (4)

and we transform the original set of caches X into a set of
points X̄ = {x̄}.
Step 4 - Clustering: We employ the density-based DBSCAN
algorithm [6] to group together servers based on their multi-
dimensional features. We choose DBSCAN because (i) it is
able to handle clusters of arbitrary shapes and sizes; (ii)
it is relatively resistant to noise and outliers; and (iii) it
does not require the specification of the number of desired
clusters. DBSCAN requires two parameters: ε and MinPts. ε
determines the maximum allowed distance between any given
point in a cluster and its closest neighbor belonging to the same
cluster, and MinPts the minimum number of points required
to form a cluster. Based on that, it classifies all points as being
(i) core points, i.e., in the interior of a dense region; (ii) border
points, i.e., on the edge of a dense region; or (iii) noise points,
i.e., in a sparsely occupied region. Noise points do not form
any cluster, while the algorithm puts in the same cluster any
two core points that are within ε of each other. Similarly, any
border point that is close enough to a core point is put in the
same cluster as the core point. The result of this process is a
collection C of clusters Cj ∈ C, also named as clustering:

C = {Cj} = DBSCAN(X̄) (5)



B. Highlighting Changes with the Pattern Dissimilarity
We are now interested in tracking the evolution of clusters

over time, for which, as we discuss in Sec. II, no known solu-
tion is present in the literature. Indeed, it is not obvious how
to compare two clusterings C1 and C2 obtained considering
two different datasets, i.e., snapshots in our case. For instance,
i) points that were present in C1 may not be present in C2,
and vice versa; ii) points clustered into the same cluster in C1
can now belong to two or more clusters in C2; and iii) the
same points that form a cluster in C1 can still form the same
cluster, but can be placed in another region in the clustering
space in C2. In our case, this corresponds to i) popular caches
at snapshot n that are not anymore used at snapshot n+ 1, or
ii) some caches at snapshot n that were part of the noise are
instead clustered at snapshot n + 1, or iii) the path to caches
suddenly changes at snapshot n+ 1, altering RTT and TTL.

To evaluate the difference among the clustering, we pro-
pose a novel methodology that is based on the notion of Pattern
Dissimilarity.

1) Clustering Patterns: We first map each cluster into a
single Centroid that summarizes it. Given a cluster C ∈ C, we
consider the centroid, or geometric center, x̂ whose compo-
nents p̂m,i in the i percentile of feature m are:

p̂m,i =
1

|C|
∑
x∈C

renorm(pm,i(x)) (6)

All centroids then form a pattern P̂ = {x̂}. The renorm()
function eventually considers the re-normalization of features
that can be needed if points in C1 and C2 went through
different standardization processes. In our case, assuming
C1 = C(n), C2 = C(n+1), from Eq.(3) for each m ∈ M
we have:

Minm = min
(
min(n)m ,min(n+1)

m

)
(7)

Maxm = max
(
max(n)m ,max(n+1)

m

)
(8)

renormm(a) =
a−Minm

Maxm −Minm
(9)

2) Centroid Distance: Given a centroid x̂ and a centroid
pattern P̂ , we define the Centroid Distance (CD) as the
distance between x̂ and its closest centroid in P̂ . Specifically,
we compute the closest centroid ŷ∗ ∈ P̂ such that d(x̂, ŷ∗) ≤
d(x̂, ŷ) ∀ŷ ∈ P̂ . d(x, y) can be any distance metric that is
valid in the feature space. In this work, we use the classic
Euclidean distance. Thus, the Centroid Distance CD of the
centroid x̂ from centroids in P̂ is

CD(x̂, P̂) = min
ŷ∈P̂

d(x̂, ŷ) (10)

Hence, the Centroid Distance couples centroids according
to a nearest neighbor principle.

3) Pattern Dissimilarity: At last, we define the Pattern
Dissimilarity - PD - as the sum of the Centroid Distance
among every centroid in the clusterings. Since the number of
clusters in P̂1 and P̂2 may be different, we need to symmetrize
the definition:

PD(P̂1, P̂2) =
∑
x̂∈P̂1

CD(x̂, P̂2) +
∑
x̂∈P̂2

CD(x̂, P̂1) (11)

Fig. 5. Example of Clusterings, Patterns and Centroid Distance computations.

Fig. 5 depicts the Pattern Dissimilarity computation consid-
ering a 2-dimensional space. From left to right, DBSCAN first
clusters the points (grey dots for the first snapshot, white for
the second). Then, centroids emerge to form the patterns, and
we compute the Centroid Distance for each centroid. Finally,
the Pattern Dissimilarity is the sum of all Centroid Distances.

In the following, we consider two subsequent snapshots
n, and n + 1, compute the clustering C(n) and C(n+1), then
extract the patterns P̂(n) and P̂(n+1), and finally compute their
dissimilarity PD

(
P̂(n), P̂(n+1)

)
.

As we discuss in Sec. II, to the best of our knowledge we
are the first to propose an approach to quantify the similarity
among different clustering results. We note that we can base
the Pattern Dissimilarity on other similarity metrics different
from the Euclidean distance, e.g., the well known Cosine
Similarity. However, as we show in Sec. IV-C using the
Euclidean distance lets the Pattern Dissimilarity to inherit
linear properties, and therefore to vary proportionally with size
of the changes. Observe also that the design of the Pattern
Dissimilarity offers a nice property that is particularly desirable
for troubleshooting purposes. In particular, the Pattern Dissim-
ilarity, which is a simple sum of Euclidean distances, lets us
immediately pinpoint the centroids responsible for changes in
the pattern. As we show in Sec. VI, this aspect is crucial, as
it allows us to design an automatic procedure that i) captures
changes in YouTube CDN infrastructure, and ii) highlights the
edge-nodes involved in these changes.

C. Observations about the Pattern Dissimilarity

We run some numerical evaluation to gauge how the
Pattern Dissimilarity changes with respect to changes in the
data. We consider two main sources of changes: i) centroids
that simply move from their position, and ii) the birth of new
centroid reflecting the generation of a new cluster in the data.

For the first scenario, we generate a random pattern Ĉ1
of N = |Ĉ1| centroids. We randomly place centroids in the
unitary hypercube of edge 1 in RN according to a uniform
distribution. Then, we generate pattern Ĉ2 by taking the
centroids in Ĉ1, and repositioning them in a random sphere
of radius e centered in the centroid original position. Finally,
we compute PD(Ĉ1, Ĉ2). We repeat the experiment for 100
times, and average the obtained values. Fig. 6(a) reports the
average Pattern Dissimilarity for increasing values of e, and
for different values of N . As expected, curves pass through the
origin, and linearly grow with e. The larger is N , the higher
is the average Pattern Dissimilarity.
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For the second case, we run the same experiment while
also increasing the number of centroids. Thus |Ĉ1| < |Ĉ2|.
Fig. 6(b) shows the results. Notice the nice property of the
Pattern Dissimilarity for which the birth of new centroids
causes the Pattern Dissimilarity to grow by a factor that is
proportional to the number of new centroids. This is due to
definition in Eq.(11) in which no normalization is present. This
property is important, as it lets the Pattern Dissimilarity nicely
highlight the sudden birth (or death) of centroids.

V. RESULTS

In this section we first assess and tune the performance
of DBSCAN in order to identify edge-nodes. We next run
YouLighter over a longitudinal dataset to show its ability to
highlight sudden changes in the YouTube CDN.

A. DBSCAN performance

1) Clustering Performance Metrics: We first evaluate the
impact of the parameter settings on the DBSCAN clustering
results. In particular, we aim to understand how good is the
matching between the clustering DBSCAN returns and the
edge-nodes we observe in the measurements. To perform this
analysis, we consider the snapshot X from November 4th to
November 10th, 2013, in trace ISP1-A. We manually inspect
the dataset, and, guided by the IATA codes, we assign each
cache a label corresponding to the edge-node in the YouTube
CDN. We manually cross-check labels by inspecting server IP
addresses and subnets, RTT and TTL distributions to verify
the accuracy of the labels. The result is a ground truth label,
GT-label, that we assign to each cache. In total we find
|X| = 620 caches serving more than MinFlow = 50 flows,
and belonging to 6 edge-nodes, each identified by a different
GT-label. Hence, the number of GT-labels is NGT = 6.

We then run DBSCAN as described in Sec. IV-A, obtaining
the clustering C. Let NC = |C| be the number of clusters. We
next use the GT-labels to assign a label to caches by using a
majority-voting scheme: For each cluster Cj ∈ C, we assign
all caches x ∈ Cj the most frequent GT-label observed in Cj .
Caches whose assigned label matches the GT-label are the so
called True Positives (TP), whose number is NTP . Conversely,
caches whose assigned label is different from their GT-label
are False Positives (FP), whose number is NFP . |X| = NTP +
NFP . We compute the set of distinct labels assigned to clusters
in C, whose number is NL ≤ NGT . We do not assign any label
to the caches which DBSCAN classifies as noise points.
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Fig. 7. Examples of patterns for which the True Positive Rate , the
Fragmentation Index, and the Pureness Index are not equal to 1, and the
optimal case in which they are all equal to 1. Color represent the GT-label.

To validate the clustering we obtain with DBSCAN, we
compute the followings indices:

TPR =
NTP

|X|
, µ =

NC

NL
, φ =

NL

NGT
(12)

i) The True Positive Rate (TPR ≤ 1) is the ratio between TP
and the number of samples in the experiment. TPR = 1 means
that all labels are identical to the GT-label. TPR < 1 indicates
the presence of i) mislabelled caches (or FP), or ii) noise
points (unlabeled points). Leftmost sub-figure in Fig. 7 reports
a simple example where the clustering algorithm mislabels a
cache for both the GT-labels E-1 and E-2, thus leading to
TPR < 1. Colors represent the GT-label.
ii) The Fragmentation Index (µ ≥ 1) captures the case when
more clusters share the same GT-label. When µ = 1, the
number of clusters is identical to the number of GT-labels
and DBSCAN assigns each cluster a different GT-label. When
µ > 1 instead, we have more clusters which share the same
GT-label, i.e., DBSCAN splits an edge-node into two or more
clusters. Second sub-figure in Fig. 7 reports an example where
the clustering algorithm splits edge-node E-1 in two different
clusters, C-1 and C-2, thus leading to µ > 1.
iii) The Pureness Index (φ ≤ 1) measures the ability to identify
all edge-nodes. When φ = 1, DBSCAN assigns each GT-label
to at least one cluster, i.e., it correctly identifies all edge-nodes.
φ < 1 indicates that some edge-nodes disappear into other
clusters (i.e., their GT-label is not the majority label for any
cluster). Third sub-figure of Fig. 7 reports an example where
the clustering algorithm groups together edge-nodes with GT-
labels E-2 and E-3 in cluster C-2, thus leading to φ < 1.

Rightmost sub-figure in Fig. 7 also depicts the ideal clus-
tering result in which DBSCAN groups correctly the caches
for all the edge-nodes, i.e., one cluster for each GT-label
(edge-node), leading to the case in which all the clustering
performance indices, TPR, µ and φ, are equal to 1.

Finally, we use also the number of noise points as an index
of bad clustering results, i.e., the inability of DBSCAN to
group caches into edge-nodes.

2) DBSCAN Performance and Parameter Sensitivity: We
run experiments to evaluate the impact of DBSCAN parame-
ters, i.e., the choice of the features, MinPts and ε. For now,
we set features as the 20th, 35th, 50th, 65th, 80th percentiles
for both the RTT and TTL distributions. MinPts is typically
not critical since it defines the minimum number of caches in
an edge-node DBSCAN needs to form a cluster. We set it to
5. Instead, we must choose ε carefully: If too small, a lot of
fragmented clusters will emerge, or a large number of points
will not be able to form dense areas, increasing the number of
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Fig. 8. DBSCAN performance versus ε with percentiles as feature. 1st week
of November, ISP1-A.

noise points; conversely, large values tend to create few, large
clusters, that aggregates caches from different edge-nodes.

Fig. 8 reports the clustering indices when varying ε ∈ [0.0 :
0.2]. As shown, we achieve the best performance with values
between 0.018 and 0.052 (in between the vertical solid lines).
For such values, all the three indices are equal or very close to
1. Smaller values of ε increase the number of noise points and
artificially fragment edge-nodes into multiple clusters. TPR
decreases, while µ first increases, then decreases due to caches
DBSCAN labels as noise (more than 300 caches fall in the
noise for ε < 0.005). For ε larger than 0.052 DBSCAN merges
edge-nodes into too few clusters, and both φ and the TPR
considerably decrease. We repeat this analysis for other traces
and for different snapshots. We find ε ∈ [0.02 : 0.045] to give
consistent results. In the following we choose ε = 0.04.

We also run a set of experiments to choose which features
to use to capture the RTT and TTL distributions. We replace
the vector of percentiles Pm(x) in Eq.(3) with simple statistics,
e.g., the mean and the standard deviation. The goal of this
experiment is to verify whether we can replace the percentiles
with some measure which does not require us to build an
empirical distribution, a task which requires to collect a fairly
large number of flows per cache. Unfortunately, in this case,
good clustering can be obtained for a much more restricted
values of ε, e.g., ε = 0.035 (the plot, not reported in this
paper due to space constraints, is available in [19]). By
manually investigating the reasons, we observe that the mean
and standard deviation varies widely among caches in the same
edge-node. This variability is due to the tail of the distributions
which is affected by few outliers, e.g., very large RTT samples
that bias the mean and standard deviation, but have little impact
on percentiles. Indeed, percentiles are very similar, except
those that gauge the tail (see the 95th percentiles in Fig.4).
This suggests that the choice of the percentiles to populate
the vector Pm(x) is more robust with respect to other simpler
statistics. We run other experiments with different percentile
choices that we do not report for the sake of brevity. We find no
significant differences when avoiding considering percentiles
in the tail. Similarly, we observe that using both RTT and TTL
gives better results than considering RTT or TTL alone.

VI. YOULIGHTER’S HIGHLIGHTING CAPABILITY

We run YouLighter over the four traces in Tab. I to validate
its capability of highlighting changes in the YouTube CDN.
The rationale is to let the ISP observe macroscopic changes
that may affect a large number of users, and which may last
for moderate time periods. We consider ∆T = 7 days, and we
start a new snapshot at midnight of every day. Snapshots form
a sliding window that moves forward every day, and aggregates
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Fig. 9. Pattern Dissimilarity values and number of noise points for ISP1-B.

statistics for the past seven days. ∆T = 7 days guarantees to
collect large enough number of samples for the large subset
of the most used caches.

Fig. 9 shows the evolution of the Pattern Dissimilarity (red
solid curve, left y-axes) over time for ISP1-B. It also depicts the
evolution over time of the number of caches that remain in the
noise after clustering (black dashed curve, right y-axes). The
plot refers to ISP1-B. X-axes reports daily snapshots, starting
from April 1st, 2013. We compute Pattern Dissimilarity on
ISP1-A and ISP1-C too. Results, omitted here due to space
constraints, are available in our technical report [19].

As shown, the Pattern Dissimilarity is very good at high-
lighting events. Indeed, according to Sec. IV-C, a PD > 10
suggests that the clustering at time (n) is very different to the
one at time (n+ 1). Thanks to the data aggregation we obtain
with the clustering, we can easily analyze the highlighted
events, and quickly identify the edge-nodes involved in the
changes. We investigate these events, and verify that they
all correspond to sudden changes in the edge-nodes used
by YouTube in serving ISP customers. In the following, we
illustrate the most relevant ones, i.e., those with a PD > 50.

A. Large event, involving all ISP customers
We first investigate an event YouLighter highlights in

different datasets. It starts on May 2nd (snapshot 27), May
7th (snapshot 32) for ISP1-B and ISP1-A, respectively. Pattern
Dissimilarity peaks above 60. Starting from then, both PD and
the number of noise points are very large. This indicates an
unstable behavior, with many caches that DBSCAN cannot
successfully group together, and the clustering pattern that
keeps changing day by day, for more than 40 days.

To give the intuition of what happened, Fig. 10 shows the
per-cache percentiles of the RTT that we measure in ISP1-A
before, during, and after the anomalous event. First, we notice
that most of the edge-nodes suddenly change: E-1, E-4, E-
5 and E-6 actually “disappear” from the clustering pattern,
and during the event, many previously unseen caches in edge-
node E-2 start serving lots of customers (observe the center
plot). Second, and more surprisingly, the path properties to
these new caches is by far different from paths to other caches
in E-2: the RTT percentiles are much larger (95ms versus
15ms for the 50th percentile) and much more variable. Despite
these caches share the same IATA code (E-2), the path to
reach them is different from the path of other caches in E-
2, with the former possibly being severely congested. Some of
these caches form new clusters, but most of them become part
of the noise: Indeed, their features do not correspond to the
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Fig. 10. Per-cache RTT percentiles during the ISP-wide anomaly in May
2013. Dataset ISP1-A.

ones DBSCAN’s tuning is expecting, i.e., the distance between
points is higher than ε = 0.04. We call these caches Bad-E-2,
in opposition to the small share of caches still belonging to
E-2, but showing small RTT, i.e., Good-E-2.

We now analyze the impact of such change on the Quality
of Experience the ISP customers perceive. We report in Fig. 11
the distributions of the download throughput obtained by
video retrieved by caches in E-3, the best edge-node to ISP
customers, Good-E-2 and Bad-E-2. The difference is striking:
while videos served by E-3 and Good-E-2 have throughput that
allows to enjoy YouTube with no major impact on the QoE
(>1,000 kb/s in 63% of the cases), the throughput for Bad-E-2
caches is below 500 kb/s (250 kb/s) in 75% (40%) of the cases,
clearly not enough to enjoy a video with a satisfiable QoE.
Tab. II corroborates above observation reporting the fractions
of video (and audio) formats seen in flows handled by both
Good-E-2 and Bad-E-2.7 For this analysis we consider only
DASH formats, as for these formats the cache delivering the
video automatically adapts the quality of the video stream
depending on the congestion it measures on the path to the
client. As shown, Good-E-2 serves larger fractions of high-
definition videos. Conversely, the share of videos encoded with
low-definition (144p and 240p) increases for Bad-E-2. This
confirms that Bad-E-2 experienced possible congestion during
the monitored period, severely impairing the QoE of the users.

By double checking this event with the ISP network
support team, we confirm the incident involved most of their
customers, increasing dramatically the complaining at their
customer support. This confirms the pervasiveness of this event
upon ISP customers.

B. Other events for ISP1
We manually cross check other events, and find that some

of those affected only part of the ISP customers. This shows

7Observe that in our dataset only a tiny portion (∼1%) of requests
are HTTPS, and, thus, encrypted. For the wide majority of the cases,the
information about video and audio formats are exposed in plain text in HTTP
requests.
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Fig. 11. Throughput distribution for flows served by E-3, Good-E-2 and
Bad-E-2 during the large anomaly we observe in May 2013. Dataset ISP1-B.

Format Good-E2 Bad-E2
144p 17.4% 31.7%
240p 18.3% 26.1%
360p 45.4% 35.7%
480p 14.5% 5.3%
720p 3.8% 1.0%
1080p 0.6% 0.2%

AAC128 80.3% 92.0%
AAC256 19.7% 8.0%

TABLE II. FRACTIONS OF VIDEO AND AUDIO DASH FORMATS
SERVED BY GOOD-E-2 AND BAD-E-2. DATASET ISP1-B.

that YouTube CDN allocates customers to edge-nodes using
a fine grained granularity, i.e., the load-balancing allows to
identify small groups of clients by using the client IP address
(or network). For instance, on October 2nd (snapshot 180) and
October 9th (snapshot 187) YouLighter highlights two sudden
changes in the ISP1-A, as the Pattern Dissimilarity peaks over
60. Inspecting the point dissimilarity one by one, we observe
that the changes are due to 3 edge-nodes (E-4, E-5 and E-6) out
of 7 that suddenly “appear” in snapshot 180 and “disappear”
in snapshot 187. The remaining four edge-nodes then serve
the videos for customers in ISP1-A. We analyze the impact
of the presence of such caches on the QoE by measuring
the aggregate download throughput before, during and after
their permanence, but we do not appreciate any significant
change. Also in this case we double check the event with
the ISP support team and we confirm that the change had no
influence on the QoE as the customer support did not receive
any meaningful complaining in the considered period.

Finally, for ISP1-B, we do not detect any change (PD =
0.12) in the same period, as YouTube’s CDN keeps serving
customers with the same group of edge-nodes.

C. Events in ISP2
As a last set of experiments, we run YouLighter on the

ISP2 dataset, which we collect in a different ISP in a different
country. We run YouLighter with the same parameters we tune
for ISP1, i.e., without going through ε optimization. Indeed we
aim to check whether if the edge-node model that DBSCAN
creates is general and robust enough to work in a completely
different scenario.

We repeat the experiment of Fig. 9 for ISP2 dataset, and
we analyze the evolution of the Pattern Dissimilarity and
number of noise points. We report the results in Fig. 12. To
check if the clustering correctly identifies the edge-nodes, we
select five different snapshots at random among the ones where
YouLighter highlights no events. Again, we use the IATA codes
as ground truth, and we manually check IP address subnets,
RTTs and TTLs to see if some suspicious cache is present
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ISP2.

in a cluster. The clustering results in perfect match with the
(possible) edge-nodes in the ground truth. This despite edge-
nodes, path, and ISP in this dataset are completely different.

We then check two suspicious events. The first one oc-
curs from March 7th to March 10th, 2014 (snapshots 1-4,
PD > 60), and the second one happens on March 18th, 2014
(snapshot 12, PD > 51). We observe that the first anomaly
is due to a change in the network path to reach a small group
of caches in E-2. We observe that this deviation does not
influence the QoE perceived by the users. For the second
event, by comparing the clustering at snapshot 12 with the
following one (March 19th), we observe a notable change in
the infrastructure of the YouTube CDN: all caches belonging to
a specific edge-node in E-7 disappear during this period (more
details available in our technical report [19]). Also in this case,
the change has no evident impact on users’ QoE, as the average
download throughput does not vary. However, we notice that
the edge-node E-7 represents a much more expensive route
for the ISP2, since it is located in an remote ISP for which no
peering agreements are in place.

VII. CONCLUSIONS

In this paper we proposed a novel system, named
YouLighter, that leverages passive observation of network
traffic and unsupervised machine learning techniques to auto-
matically monitor and identify changes in the YouTube CDN.
Based on the well known DBSCAN clustering algorithm,
YouLighter can automatically group thousands of caches into
few edge-nodes. To then compare the results of clustering
obtained considering the snapshots collected in consecutive
time intervals, we propose the Pattern Dissimilarity, a novel
framework that, for the first time to the best of our knowledge,
allows to easily pinpoint changes in clusters.

We validated YouLighter using a large set of traces report-
ing the activity of users accessing YouTube. Our results are
excellent: after a short and simple tuning procedure to find the
best setup for DBSCAN, YouLighter could detect anomalous
events that happened in YouTube CDN. For instance, we no-
ticed a large transformation in a crucial edge-node of YouTube
CDN which notably impaired the QoE perceived by the ISP
customers for more than 40 days.

We believe that YouLighter may represent a promising
opportunity for ISPs, network administrators, developers and
researchers to monitor the traffic generated by YouTube CDN.
ISPs, for instance, may employ YouLighter to design automatic
traffic engineering policies or to promptly react when changes
in YouTube CDN impair the QoE of their customers.

Our ongoing efforts are focused on three directions: First,
we are working to automate the tuning of YouLighter’s pa-
rameters, and, thus, its whole operation process. Second, we
are developing an online deployment of YouLighter, capable
of detecting changes in YouTube CDN in real time. Third, we
are adapting it to consider other use cases.
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