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[1] Describing the canonical properties of turbulent flows
over rough-permeable walls such as gravel beds, vegetated-
or snow-covered surfaces have, to date, resisted complete
theoretical treatment. The major complication in describing
such geophysical flows is that the friction factor - Reynolds
number relationships significantly deviate from their con-
ventional Nikuradse curves or Moody diagrams derived over
impermeable rough boundaries. A novel phenomenological
model that describes such anomalous behavior is proposed.
It expands the approach in Gioia and Chakraborty (2006)
developed for rough-impermeable pipes to include finite
velocity effects within the porous wall and canonical length
scales governing the momentum exchanges between inter-
stitial and superficial flows. Citation: Manes, C., L. Ridolfi,
and G. Katul (2012), A phenomenological model to describe tur-
bulent friction in permeable-wall flows, Geophys. Res. Lett., 39,
L14403, doi:10.1029/2012GL052369.

1. Introduction

[2] Numerous geophysical applications requiring the
description of bulk flow over rough surfaces employ the so-
called Darcy-Weisbach equation, a phenomenological equa-
tion that relates the total energy loss due to friction along a
given pipe length to the time- and area-averaged velocity V
via a so-called friction factor f. The Darcy-Weisbach equa-
tion, named after two hydraulic engineers of the middle
19th century, is now accepted as the best empirical rela-
tionship to be used for pipe-flow resistance computations
when employed with the Nikuradse experiments or the
Moody diagram describing f. These seminal experiments of
Nikuradse [Nikuradse, 1933], now routinely used in all types
of wall-bounded flows, were among the first to describe f as
a function of (i) the bulk Reynolds number (Re = VR/n, R is
the radius of the pipe and n is the kinematic viscosity) and
(ii) the relative roughness ratio R/r (r is a characteristic
roughness size). In fact, it is precisely those early experi-
ments and the compact representation offered by the Moody
diagram representation of the f-Re relation in the mid 1940s
that enabled wide-usage of the Darcy-Weisbach equation

first in hydraulic engineering and later on in the geosciences
(especially in hydrology). However, Nikuradse’s experi-
ments were carried out in rough-impermeable pipes whereas
a large number of geophysical applications require V over
permeable-rough walls. These applications include the
modelling of flow resistance in rivers characterized by gravel
or vegetated beds or atmospheric flows over forests or snow.
Specifically, this work is most pertinent to the hyporheic
zone, a zone beneath or alongside a stream bed where mixing
between shallow groundwater and surface water occurs. The
flow dynamics and concomitant mass and energy transfer in
this zone remains central to determining surface water/
groundwater interactions and stream ecology.
[3] A permeable wall differs from an impermeable one

because the finite permeability allows momentum penetra-
tion within the wall at scales larger than the characteristic
size of its constitutive components (e.g., grains diameter). In
the case of a granular impermeable wall, momentum pene-
tration can be limited by the grain diameter, whereas in a
permeable granular wall, momentum penetration is deeper
because the wall thickness is significantly larger than the
grain diameter. Some experiments have already demon-
strated that f in rough-permeable walls differ from their
impermeable counterparts, especially when Re is large [Ruff
and Gelhar, 1972; Zagni and Smith, 1976; Zippe and Graf,
1983; Manes et al., 2011]. The number of experiments
dedicated to this subject remains limited; however, these
experiments share a number of common features. For a fixed
immobile permeable wall, these experiments show that f
follows a typical “s-shaped” curve characterized by a stan-
dard transitional regime at low Re, a plateau at intermediate
Re, and a further rising regime for higher Re (Figure 1). The
results of Manes et al. [2011] also show that the plateau
occurs at friction factors f corresponding to the hydraulically
rough regime of an equivalent impermeable wall having
the same relative roughness. The rising regime is therefore
a peculiar characteristic of permeable walls since for
impermeable rough walls the plateau persists with increasing
Re. In fact, ∂f/∂Re = 0 generally delineates the so-called
hydraulically rough regime in impermeable walls. In previ-
ous studies, the rising regime was explained as an effect of
momentum penetration within the wall and/or persistent
viscous effects on the drag around buried or sheltered
roughness elements [Manes et al., 2011; Zagni and Smith,
1976]. Recently, Manes et al. [2011] argued that momen-
tum penetration within the wall increases with increasing Re
and this is equivalent to an increase in the effective wall
roughness, which ultimately leads to higher f. Furthermore
they have argued that, within the momentum penetration
depth, viscous forces contribute significantly to the total
drag acting on sheltered or buried particles because of the
reduced local Reynolds number. This then contributes to the
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dependency of f on Re even at values of Re for which the
hydraulically rough regime is expected.
[4] Despite these advances, a phenomenological descrip-

tion of the rising regime remains qualitative and has resisted
complete theoretical treatment. This issue frames the compass
of this work and is addressed via a proposed phenomenolog-
ical model. The model makes use of well established laws
for drag parametrization in porous media at high Reynolds
numbers and builds upon the work of Gioia and
Chakraborty [2006, hereinafter GC06], developed to
describe the Nikuradse experiments.

2. Theoretical Background

[5] For a steady and uniform flow over impermeable
rough walls, GC06 argue that eddies responsible for
momentum exchange with the wall surface are those that
straddle the coves between successive roughness elements.
The size of these eddies is estimated as s = r + mh, where r
is, as before, the characteristic size of the roughness ele-
ments and mh is the viscous layer thickness, with h being the
Kolmogorov dissipation length scale and m(≃5) is a con-
ventional constant derived from boundary layer theory over
smooth flat plates [Pope, 2000]. For Re → ∞, s tends to r as
h becomes very small (recall that h/R scales as Re�3/4). The
wall shear stress can be estimated as t0 = rktVus, where r is
the fluid density and us is a characteristic turnover velocity
associated with an eddy of size s (kt is a constant of order 1).
GC06 estimated us

2 =
R
0
s E(s)ds where, E(s) = Aɛ2/3s5/3cd(h/

s)ce(s/R), A is a dimensionless constant (that can be related
to the Kolmogorov constant), ɛ is the turbulent kinetic energy

dissipation rate, h = n2/3ɛ�1/4 is, as before, the Kolmogorov
dissipation length scale, Aɛ2/3s5/3 is the conventional Kol-
mogorov spectrum, which is valid for eddy sizes s in the
inertial range where h ≪ s ≪ R, cd = exp (�bh/s) and ce =
[1 + g(s/R)2]�17/6 are correction functions for the dissipa-
tion and production range respectively when s becomes
commensurate with h or R, with b and g being two
dimensionless constants [Pope, 2000]. Starting from its
definition, f can hence be computed as f = 8(u*

2/V2), where
u* =

ffiffiffiffiffiffiffiffiffiffi
t0=r

p
and hence f = 8(ktus/V). Calculating f requires

knowledge of us and hence integrating the spectrum E(s)
within a domain of length scales smaller than s. GC06
showed that Nikuradse’s curves can be explained in terms
of the scale of eddies dominating momentum transport and
their position within the different regions of the velocity
spectrum (i.e., production, inertial and dissipation region)
with increasing Re.
[6] For the smooth and transitional regime, the GC06

model is likely to be valid for both permeable and imper-
meable boundaries because the roughness elements are bur-
ied within a continuous viscous sub-layer and hence
turbulence penetration is damped and momentum transfer is
dominated by eddies scaling with s. With increasing Re,
large-scale structures (i.e., those larger than r) populating
the near-wall region become energetic enough to penetrate
the permeable bed. Such structures are responsible for
exchanging momentum between the fast-moving fluid above
the wall and the slow-moving fluid within the permeable
wall, across a penetration depth de > s (see Figure 2). It
follows that the shear stress acting over the fluid-wall
interface must be the sum of two contributions, i.e., t0 = ts +
tp, where ts = rktVus is associated with momentum

Figure 1. Measured friction factor f curves for pipe flow
with permeable walls as a function of the bulk Reynolds
number Re: solid and hollow symbols refer to polyurethane
foam and granular walls, respectively [Ruff and Gelhar,
1972]; K is the wall permeability; R/r is the ratio between
pipe radius and roughness size. The foam experiment is clas-
sified with the ratio R/

ffiffiffiffi
K

p
instead of the most commonly

used R/r, because polyurethane foams do not have a well
defined size of roughness elements r like granular walls
do. Note the occurrence of the (anomalous) rising regime
after the occurrence of a plateau.

Figure 2. (left) Conceptual scheme of the momentum
transfer over a permeable wall. The small eddies are
selected by the roughness element length scale and contrib-
ute to ts as modelled by GC06. Differently, the large eddy
here represents the turbulent coherent structures able to pen-
etrate across a depth de (i.e., the turbulence penetration depth)
into the wall and contribute to tp; vp is the vertical velocity
component imposed by the large eddies within the wall; Ud

is the interstitial velocity within the shear-free flow region;
V is the depth-averaged velocity; r is the characteristic size
of the roughness elements. (right) The qualitative behavior
of the time-averaged velocity profile u(z) is also shown.
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transport induced by the eddies straddling the roughness
coves (and calculated using the GC06 model) whereas tp
takes into account the effects of permeability and the tur-
bulent momentum transport induced by large scale eddies.
Define vp as the vertical velocity component of the fluid
moving across the penetration depth de sustained by the large
turbulence structures; Ud is the uniform velocity of the
interstitial fluid resulting from a force balance between
the mean pressure gradient, the weight of the fluid, and the
opposing drag force acting on the fluid by the solid elements
(Figure 2); as for the impermeable wall case, V remains the
bulk velocity of the flow outside the wall. Large scale eddies
contribute to the wall shear stress via sweeps and ejections
that inject fast moving fluid within the bed and extract slow
moving fluid from the bed, respectively. Then the total
momentum flux due to sweeps and ejections can be thought
of as a mass flux crossing the fluid wall interface, multiplied
by a velocity contrast, i.e., tp ∝ rfvp(V� Ud) where f is the
bulk porosity of the wall. The total shear stress at the wall
boundary becomes t0 = rktVus + rkpfvp(V� Ud), where kp
is a proportionality constant. The friction factor f can now be
determined as:

f ¼ 8 kt
us
V
þ kp

fvpðV � UdÞ
V 2

� �
: ð1Þ

To calculate f, it becomes necessary to define vp and Ud

(both non-existing in the GC06 model). The Ud varies
with f because it depends on the hydraulic head gradient
responsible for moving the fluid within the permeable wall.
Assuming that the fluid is forced by a hydraulic gradient S,
Ud can be estimated by solving the Forcheimer resistance
law S = aUd + bUd

2 [Whitaker, 1996], where a = n/(gK),
b = c/(g

ffiffiffiffi
K

p
), K is the permeability of the wall, g is the

gravitational acceleration, and c is the so called “Forcheimer
term” estimated empirically. A force balance on the fluid
volume above the wall results in u* =

ffiffiffiffiffiffiffiffi
gSR

p
; hence, the

driving gradient S can be computed as S = fV2/(8gR). This
implies that

Ud ¼
�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4b fV 2

gR8

q
2b

: ð2Þ

The estimation of vp involves a formulation for the pene-
tration depth de and for the driving force moving the fluid
inside and outside the wall across de. Across de, sweeps and
ejections impose a kinetic hydraulic head difference Sp =
uR
2/(2gde), where uR is the characteristic velocity of such

structures. Therefore, in a first-order analysis, the simplest
estimate of vp may be again a Forcheimer resistance law with
Sp = avp + bvp

2. In analogy with GC06, the uR
2 is derived from

the integration of E(s), i.e., uR
2 =

R
0
R E(s)ds, where R (i.e.,

the pipe radius) is chosen as the representative length scale
of large-scale eddies. The penetration depth can be estimated
following the work of Ghisalberti [2009, hereinafter G09]
on obstructed shear flows. Starting from the definition of de
being the distance from the wall surface to the level where
the fluid shear stress vanishes, G09 showed that de is pro-
portional to the so called drag length scale (or adjustment
length scale) of the wall, i.e., de � f(CdAf)

�1, where Cd is
the drag coefficient of the medium and Af is the frontal area
per unit volume of the solid fraction. More general, the drag

length scale can be thought of as the ratio between the square
of a chosen scale-velocity Vs and the drag force (per unit
mass) acting within the turbulence penetration depth de. In
porous media, the drag force can be computed as DF = (gf)
(aVs + b(Vs)

2). That is, when the flow is quasi-Darcian, the
DF scales linearly with Vs, but as Vs increases, the DF is
dominated by the quadratic term, as expected. For simplic-
ity, we chose V as the scale velocity Vs. Other options may
involve combinations of V and Ud, which better represent
velocities within de (e.g., Vs = (V + Ud)/2), however it was
observed that the model outcome is robust to the precise
definition of Vs. Again, for simplicity, de = cLVs

2/DF, where
cL is a proportionality constant. In summary, vp can be
estimated from the following group of equations: vp = (�a +ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 4bSp
p

)/(2b), where Sp = uR
2/(2gde), uR

2 =
R
0
R E(s)ds,

and de = cLVs
2/DF. It should be noted that G09 proposes a

unique value for cL for a wide range of porous media, but it
is plausible that such a constant is not universal and differs
with the geometrical characteristics of the wall (e.g., cL
may be different between a canopy of vegetation and a
granular wall). Using the above formulations for Ud and vp,
equation (1) can be solved iteratively to find f by varying
Re, K and R/r.

3. Results

[7] With respect to GC06, the proposed model adds two
more parameters pertinent to the properties of the porous
wall kp and cL. The former is a factor that modulates the
effects of tp on f and therefore shifts the f-Re curves up or
down, whereas the latter is a factor that controls the exten-
sion of the penetration depth. The larger is cL, the smaller are
Sp and vp and ultimately, the more muted are the effects of
large scale structures on f. The curves presented in Figure 3
were obtained for a granular wall with K = 2.4 � 10�8 m2,
R/r = 5 � 400, c = 3 � 10�4 setting kp = 0.12, f = 0.5 and
cL = 0.1. The different curves were obtained by fixing r and
K but allowing R to vary. The values of r, c, K and f are
typical of a gravel bed described elsewhere [Manes et al.,
2011]. The values of kp and cL were chosen arbitrarily to
best reproduce the experimental curves as reported in
Figure 1. Universal values could be obtained with a rigor-
ous fitting procedure of an extensive set of experimental
data, which at the moment is not available from the litera-
ture. Figure 3 also includes the results from the GC06
model for an equivalent impermeable wall with the same
R/r. In the computation of f for the impermeable wall and
for ts, the conventional values of the GC06 model para-
meters were used. It should be noted that the model pre-
sented here considers walls that are much thicker than de.
However, it can be extended to any case by imposing a
limit equal to the wall thickness in the growth of de.
[8] The model can reproduce the typical curves observed

from experiments and it is robust to the choice of kp and cL.
The s-shape can now be explained as a combined effect of
low values of R/r and permeability (see the thick black line
in Figure 3, top). At low R/r (i.e., at R/r < 10, which is the
range that has been earlier investigated experimentally),
f increases with increasing Re until a plateau associated with
the hydraulically rough regime is approached equivalent to
those for an impermeable-rough wall. With further increase
in Re, the earlier noted anomalous behavior is now initiated
because the wall becomes effectively permeable to large
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scale sweeps and ejections, which in turn, begin to contrib-
ute significantly to momentum transport. This contribution
results in further increase in f, thereby marking the rising
regime. At higher values of R/r, the s-shape curve becomes
less evident since in the transitional behavior f has a non-
monotonic behavior, showing the so called belly typical of
granular walls. The higher is R/r the more the friction factors
f for permeable walls deviate from their impermeable
counterpart. This can be explained since, for a given Re,
with increasing R/r seepage velocities (i.e., Ud) generally
decrease and hence momentum contrast at the interface, and
ultimately friction, increases.
[9] At the limit Re → ∞, the f-Re curves saturate reaching

a Re-independent regime where the effective roughness of
the wall is dictated by the size of the penetration depth de,
which also saturates at Re → ∞ (Figure 3, bottom). Such a
regime has not yet been observed experimentally, probably
because it occurs at very high Re that are difficult to reach in
laboratory facilities. However, we argue that, its onset
should be expected. In this context, Manes et al. [2011]
suggested that with increasing Re, turbulent structures
become more energetic and may progressively penetrate the
permeable wall. For such a scenario, a Re-independent f

should be expected when the entire wall thickness is sub-
jected to fluid shear. It is accepted that with increasing Re,
turbulent structures increase in energy, but it is also true that
the shear at the wall-interface increases and strong shear is
known to promote ‘wall blocking’ as predicted by the “shear
sheltering theory” developed by Hunt and Durbin [1999].
Therefore, with increasing Re, shear penetration within the
wall is a result of two competing mechanisms: on the one
hand, turbulence penetration is promoted because turbulence
structures gain energy, on the other hand shear at the wall
interface increases and this blocks turbulence structures from
penetrating the permeable wall. It is conceivable that the
new saturation regime in the f-Re curve is a region where
these two effects counterbalance each other, consistent with
the findings here.
[10] In the proposed model, the Re-independent regime is

due to the inclusion of the quadratic term in the Forcheimer
resistance law used to parameterize the drag needed in the
computations of Ud, vp and L. The inclusion of both the
linear and the quadratic term is crucial to obtain the correct
shape of the f-Re curves observed experimentally. Figure 4
demonstrates that upon neglecting the quadratic term (i.e.,
setting b = 0), f never saturates and, at high Re and low R/r, it
leads to unrealistic results such as Ud being greater than V
(not shown here). In contrast, neglecting the linear term (i.e.,
a = 0) leads to f being just shifted upwards with respect to
their impermeable wall counterpart and hence the rising
regime is lost. Therefore, the quadratic term must play the
role of setting the (upper) limit that f can reach at Re → ∞
whereas the linear term matches the friction factor of the
equivalent impermeable rough wall to this new limit. The

Figure 4. The influence of the linear and non linear terms
in the Forcheimer resistance law on the parametrization of
drag for the f versus Re curves. Dotted line is the curve for
the impermeable rough case; the dashed line is for the per-
meable wall case without the non linear term (i.e., b = 0);
the light solid line is for the permeable wall case without
the linear term (a = 0) and the thick solid line is for the per-
meable wall with both terms. The curves were obtained for
R/r = 10.

Figure 3. (top) The friction factor f versus the Reynolds
number (Re) curves obtained from equation 1 (solid lines)
and GC06 model (dashed lines); (bottom) the penetration
depth normalized with the roughness size (grain diameter)
r vs Re. The thick line highlights the part of the modelled
curve that reproduces the typical shape of f vs Re curves
found in the experiments.
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need for the quadratic term to reproduce realistically the
experimental curves in the rising regime (i.e., at intermediate
Re) further justifies the presence of the Re-independent
regime at Re → ∞.

4. Conclusions

[11] In turbulent flows over permeable walls, friction fac-
tor-Re curves are different from those reported for imper-
meable-rough walls. In particular, at high Re, they are
characterized by an anomalous rising regime due to the
combined effect of shear penetration and persistent viscous
forces within the wall. We have presented a novel model that
includes these two effects and captures well the shape of
experimental f-Re curves provided that roughness, perme-
ability and the Forcheimer coefficient of the wall are known.
The model predicts that, at very high Re, the rising regime is
followed by a new hydraulically rough regime where friction
factors become Re independent. The existence of such a new
flow regime still requires experimental proof. However, on
the basis of physical arguments, we propose that its onset
should be expected. Moreover, the model recovers the GO06
for impermeable walls by virtue of its construct.
[12] We conclude by pointing out that, for future practical

applications, the model could be improved by: (i) providing
experimentally-based parameterizations of the penetration
depth de, which are currently lacking - especially for gran-
ular walls and (ii) by computing ts with empirical formulas,
such as the Virtual Nikuradse [Yang and Joseph, 2009],
which match experimental data better than the GC06 model,
here used as a theoretical basis to compute tp.
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