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How Affine Arithmetic Helps Beat Uncertainties in
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Manfredi, Member, IEEE, Igor S. Stievano, Senior Member, IEEE, Flavio G. Canavero, Fellow, IEEE

Abstract—The ever-increasing impact of uncertainties in elec-
tronic circuits and systems is requiring the development of
robust design tools capable of taking this inherent variability into
account. Due to the computational inefficiency of repeated design
trials, there has been a growing demand for smart simulation
tools that can inherently and effectively capture the results
of parameter variations on the system responses. To improve
product performance, improve yield and reduce design cost, it is
particularly relevant for the designer to be able to estimate worst-
case responses. Within this framework, the article addresses
the worst-case simulation of lumped and distributed electrical
circuits. The application of interval-based methods, like interval
analysis, Taylor models and affine arithmetic, is discussed and
compared. The article reviews in particular the application of the
affine arithmetic to complex algebra and fundamental matrix
operations for the numerical frequency-domain simulation. A
comprehensive and unambiguous discussion appears in fact to
be missing in the available literature. The affine arithmetic turns
out to be accurate and more efficient than traditional solutions
based on Monte Carlo analysis. A selection of relevant examples,
ranging from linear lumped circuits to distributed transmission-
line structures, is used to illustrate this technique.

Index Terms—Tolerance analysis, uncertainty, worst-case anal-
ysis, circuit simulation, transmission lines, affine arithmetic,
interval analysis, Taylor model.

I. INTRODUCTION

Nowadays, there has been a growing demand for the
availability of tools enabling the simulation of electrical and
electronic equipment with the inclusion of the effects of
system uncertainties. Circuit and device parameters suffer from
various kinds of temporal and structural variations, including
temperature conditions, aging and process tolerances, thus
unavoidably leading to an uncertainty in the system behavior
that needs to be fully characterized [1], [2].

In this framework, Monte Carlo (MC) has been used as
a faithful technique which carries out repeated deterministic
simulations to span the domain of parameters variation and to
collect useful statistical information (e.g., see [3]). However,
for large and complex systems, a single simulation can require
a long time and MC becomes extremely inefficient due to the
large number of runs required.

Recently, a set of alternative techniques aimed at over-
coming the above limitation and that are based on either
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probabilistic or worst-case methods have been proposed. An
effective example belonging to the former class is the so called
polynomial chaos (PC) theory, where random variables are
expanded in terms of orthogonal polynomials [4]. This tech-
nique has been proven to be far more efficient than MC in the
statistical simulation of circuits, cables and interconnects [2],
[5], [6], [7]. The main drawback shared by both MC and PC is
that the worst-case bounds arising from bounded uncertainties
can be computed via post-processing and a large number of
simulations only.

On the contrary, the inherent worst-case approaches directly
provide an estimation of the true bounds of the responses (e.g.,
see [8], [9], [10]). In 1960s, Ramon E. Moore first proposed
the interval analysis (IA) method [11], which represents a
random parameter by means of its lower and upper bounds.
The proper propagation of these bounds through a chain of
calculations allows to predict the worst combination of all
the uncertain parameters. Femia et al. used IA for time-
domain circuit simulation in [12], where the partitioning of
the parameter ranges of uncertainty is used to increase the
accuracy of the IA-based computations. Although the IA is
able to provide inherent worst-case results, it assumes that
all random parameters are independent, without taking any
possible correlation into account. As such, it in general leads to
relatively large overestimation. Since MC techniques provide
an underestimation of the true range, whereas IA yields an
overestimation, they can be regarded as complementary tools
and be applied jointly.

In order to improve the results from IA, a multivariate
Taylor model (TM) approach, capable of rigorously accounting
for correlation among variables, has been developed by Berz et
al. [13], [14]. A TM is based on the representation of random
parameters in terms of truncated Taylor expansions plus an
interval remainder describing the truncation error. This method
has been applied in solving ODEs, reducing the problem of
overestimation in IA.

In the early 1990s, Stolfi and Comba proposed the affine
arithmetic (AA) [15], which also accounts for the correlation
among variables and yields much tighter and more reasonable
upper and lower bounds than IA. Femia and Spagnuolo used
AA to improve the circuit tolerance analysis obtained from
IA [16]. Rutenbar et al. used AA for interconnect and effective
capacitance modeling, and to estimate the delay distribution
of variational circuits [17]. The affine technique has also
been used to efficiently perform range analysis for power
flow problems [18], [19] and thermal rating assessment of
overhead lines [20]. However, so far, the application has been
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mainly focused on time-domain analysis of lumped circuits
and systems only.

This article provides an overview of the aforementioned
worst-case techniques, with a summary of their inherent fea-
tures and possible limitations. Based on this discussion, it
shows how AA represents a viable solution for an accurate
and efficient worst-case analysis. Moreover, a self-contained
description of the basic AA tool is provided, together with
an overview of the necessary extensions for its effective ap-
plication to the frequency-domain simulation of both lumped
and distributed circuits. Specifically, the application of AA to
complex- and matrix-valued calculations, which are the key
building blocks allowing to operate in the frequency domain,
is not available in a clear, unambiguous and systematic form
in the existing literature.

The article is organized as follows. Sec. II highlights the
basic features of the available state-of-the-art approaches for
tolerance analysis. In Sec. III, the fundamental theory of IA,
TMs and AA is briefly summarized. A comparison among
these techniques is provided in Sec. IV. Sec. V introduces
the partitioning technique, used to improve the accuracy of
the AA predictions, along with two examples involving the
frequency-domain simulation of lumped and distributed cir-
cuits. Summary and conclusions are provided in Sec. VI.

II. STATE-OF-THE-ART OVERVIEW

This section briefly summarizes the key features of the state-
of-the-art techniques for the computation of worst-case system
responses. To provide a preliminary and qualitative illustration,
Fig. 1 shows the upper bound of the response of an electronic
equipment affected by parameters uncertainties (solid black
line) and the approximations achieved using MC, PC, IA, TM
and AA. The figure provides a visualization of the intrinsic dif-
ferences between the class of worst-case (IA, TM and AA) and
probabilistic (MC and PC) techniques. The former methods
always provide conservative bounds, i.e., an overestimation of
the true worst-case response. As discussed later on, the TM-
and AA-based approaches are in general more precise and
less conservative than IA. On the contrary, the probabilistic
methods typically provide an underestimated approximation,
whose accuracy increases with the number of samples and/or
expansion order and can potentially get infinitely close to the
true value. Hence, the probabilistic techniques achieve high
precision with the sacrifice of efficiency.

A robust worst-case analysis seeks for the most pessimistic
scenario. Hence, in the following, we focus on the interval-
based methods, which provide a conservative estimation of the
response bounds.

III. WORST-CASE INTERVAL-BASED METHODS

In this section, the essential mathematical background of
the worst-case interval-based methods is outlined. IA, TM and
AA are numerical techniques that replace the basic operations
involved in the computation of the circuit or system response
(such as sums and multiplications) and produce guaranteed
enclosures for the computed quantities, taking into account any
uncertainty in the input data as well as all internal truncation
and round-off errors.

True%bound%

Monte%Carlo%

Affine%arithme4c%%
Taylor%Model%

Interval%Analysis%Polynomial%chaos%

PROBABILISTIC+METHODS+ WORST1CASE+METHODS+

Figure 1. Approximations of the upper bound of a generic circuit or system
response by means of different techniques. The solid black line is the “true”
worst case, while the dashed lines are approximations obtained with PC, IA,
TM and AA. The gray area corresponds to the superposition of MC responses,
which eventually approach the true bound as the number of runs is increased.

A. Interval Arithmetic

Interval arithmetic (or interval analysis) is based on the
representation of random parameters in terms of an interval
bounding the possible values the parameter can assume. We
will use the notation x̄ = [a, b] to indicate that x is a variable
that assumes values in the interval [a, b]. Algebraic operations
between IA-variables are carried out by computing an interval
providing a guaranteed enclosure of the result. It follows that,
given x̄ = [a, b] and ȳ = [c, d],

x̄+ ȳ = [a+ c, b+ d]
x̄− ȳ = [a− d, b− c]
x̄× ȳ = [min(ac, ad, bc, bd),

max(ac, ad, bc, bd)]

(1)

However, this approach is unable to track any possible
correlation between the parameters and, in such a case, may
lead to serious overestimation. The typical example is the
calculation of z̄ = x̄ − x̄, which according to (1) leads to
z̄ = [a − b, b − a] 6= [0, 0]. This trivial example shows that
the application of IA without any additional modification to
account for the possible correlation among variables may be
too pessimistic and can be hardly used to tightly capture the
worst-case bounds in a realistic chain of computations.

B. Taylor Model

The TM approach was proposed to overcome this overes-
timation issue. It is a “hybrid” representation of a nonlinear
function of an interval variable in terms of a Taylor expansion
plus an IA-remainder. Given x̄ = [a, b],

f(x̄) = Pn
f (x) + If (2)

where Pn
f (x) is the polynomial representing the Taylor ex-

pansion of f(x), truncated to a given order n and usually
calculated around the center of the interval, i.e., in x0 =
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(a + b)/2, whilst If is an IA-variable bounding the error
introduced by the truncation. Depending on the order n, If can
be made arbitrary small. The operations between TMs consist
of a suitable combination of standard and IA calculations.
Given f(x̄) = Pn

f (x) + If and g(x̄) = Pn
g (x) + Ig , the

calculation of v(x̄) = f(x̄)±g(x̄) is straightforward and leads
to Pn

v (x) = Pn
f (x) ± Pn

g (x) (sum/difference of polynomial
coefficients) and Iv = If ± Ig (IA operation). In this case,
when Pn

f (x) = Pn
g (x), Pn

v (x) = 0 and the error is limited to
the (small) IA-remainder.

The product u(x̄) = f(x̄) · g(x̄) is instead carried out by
combining the standard multiplication between two polyno-
mials, the rules of IA and the information on the bounds
of the pertinent polynomial in a given domain [13], [14]. It
should be noted that the order of the TM is preserved through
multiplication, and the resulting IA-remainder encloses all the
truncation and round-off errors in a conservative way.

The case of multiple and independent parameters is dealt
with by means of multivariate Taylor expansions, whereas
correlated parameters share the same variable.

It is obvious that the accuracy of the model is proportional
to the order of the polynomial expansions, which increases
the complexity of calculation and impacts on the efficiency.
Additionally, each TM-based operation requires to correctly
estimate the bounds of the IA-remainder, which can be indeed
complicated in complex systems with multivariate problems.

C. Affine Arithmetic

Another representation of correlated interval variables is
provided by the so-called AA. According to AA, the interval
variables are interpreted in terms of variations around their
central values, i.e., x̃ = x0 + x1ε, with x0 = (a + b)/2,
x1 = (b− a)/2, and where ε is an independent interval value
ranging from −1 to +1. Based on this alternative definition,
the correlation between two variables is automatically taken
into account via the same symbol ε, leading, e.g., to the exact
calculation of x̃− x̃ = x0 + x1ε− x0 − x1ε = 0.

The general definition of the affine form for a given variable
with n uncertainties writes:

x̃ = x0 +

n∑
i=1

xiεi, (3)

where x0 is the nominal or central value of the affine form,
εi are symbolic real variables (noise symbols) whose values
are unknown but assumed to lie in the interval [−1, 1], and xi
are the corresponding coefficients. The AA representation is
therefore similar to a first-order TM, although it encompasses
all the information without resorting to additional IA terms.
Based on (3) and the definition of the noise symbols, the worst-
case bounds are readily given as x0 ±

∑
i |xi|.

Given two generic interval variables x̃ and ỹ, the addition
and subtraction are readily defined as x̃ ± ỹ = (x0 ± y0) +∑n

i=1(xi ± yi)εi. On the contrary, other operations, such
as the multiplication, require special care, since the direct
computation

z̃ = x̃ · ỹ

= x0y0 +

n∑
i=1

(x0yi + y0xi)εi+

+

(
n∑

i=1

xiεi

)(
n∑

i=1

yiεi

) (4)

yields an expression that does not belong to the standard
affine form as addition or subtraction do. However, the last
quadratic term in (4) is suitably replaced (in a conserva-
tive way) by an additional noise symbol with a coefficient∑n

i=1|xi|
∑n

i=1|yi|). From the above observation, it is clear
that a new term is added at each multiplication, leading to
a growing number of variables in a chain of computations,
with a detrimental impact on the compactness of the numerical
representation and on the simulation efficiency.

In order to solve this issue, Rutenbar proposed in [17]
to distribute the additional quadratic terms into the existing
uncertainty variables. This modification, which is used here-
after in this article, has been proven to provide a conservative
approximation that bounds the true range of z̃ and, at the same
time, successfully avoids the uncontrolled generation of new
uncertainty symbols.

D. Towards Matrix Operations

Summarizing, both TM and AA introduce symbolic tech-
niques into naive IA to include the correlation among variables
and to help reduce the overestimation problem. For additional
details on other TM- or affine-based scalar operations, such
as division, exponential or square root, the reader should refer
to [14] and [15], respectively.

It is important to note, however, that complex-valued ma-
trix operations are needed to successfully apply the interval
methods to the numerical solution of lumped and distributed
electronic circuits in the frequency domain. Unfortunately,
whereas the extension of summation and multiplication is
relatively straightforward, the available literature often lacks of
a systematic description of specific tools to handle other rele-
vant matrix operations (like inversion and matrix exponential)
within a given interval-based framework. In the following, we
briefly review and elucidate the available information in this
regard.

Complex Algebra is implemented based on the funda-
mental rules. Specifically, given two complex variables in
rectangular form with their real and imaginary parts defined
as interval values, the basic algebraic operations are readily
carried out by separately accounting for the real and imaginary
parts via suitable real-valued calculations.

The matrix inversion, which provides one of the key
computational blocks for the frequency domain solution of a
circuit, requires the joint application of interval methods along
with a suitable numerical technique or algorithm. For example,
consider the inversion of a matrix X̃ given in affine form, and
where the variability is defined by one noise symbol only:

Ỹ = X̃
−1

= (X0 + X1ε1)
−1
, (5)
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where X0 and X1 play the same role of the scalar coefficients
x0 and x1 in (3). Among the algorithms available in the
literature, the Sherman-Morrison formula provides a clever
solution for the above problem when the matrix X1 has
unitary rank [22]. For the general case of matrices with full
rank, the above procedure is still valid and is applied without
modifications by splitting each matrix into the sum of rank-one
matrices and carrying out the solution iteratively.

Finally, another important building block, needed for the
simulation of distributed interconnects, is the matrix expo-
nential. This operation is achieved by adopting a bilinear
approximation, as outlined in [23], [24].

IV. CROSS-COMPARISON

This section proposes a cross-comparison, where all the
aforementioned worst-case techniques are applied to a simple
illustrative example, in order to highlight their main features
in the analysis of dynamical electric circuits.

For this purpose, the RLC circuit of Fig. 2 is considered.
The circuit parameters are interval variables defined as C̄ =
[0.4, 0.6] F, L̄ = [0.4, 0.6] H, and Ḡ = [1.9, 2.1] S, and are
assumed to be all correlated.

e(t)

G L 3

ie

1 iL

0

Cv3
v2

v1

2

Figure 2. Illustrative RLC example used to demonstrate the performance of
the various tools for the worst-case circuit analysis.

In this comparison, our analysis focuses on the magnitude
(in dB) of the network function H(jω) = V3(jω)/E(jω),
which reads:

|H(jω)|dB = −20 log10

(√
(1− ω2LC)2 + (ωRC)2

)
= −10 log10

(
(1− ω2LC)2 + (ωRC)2

)
,

(6)
with R = 1/G. It is worth noting that the above frequency-
domain transfer function plays the role of a generic nonlinear
function of interval-valued parameters, which needs to be
processed with the IA, TM or AA tools based on their specific
rules.

Fig. 3 provides the worst-case bounds of |H(jω)| estimated
via the considered techniques and compared with the spread of
the response obtained with a large number of MC evaluations
(solid green area). A zoom-in around the circuit’s resonance
is also displayed. This comparison shows, as expected, a large
overestimation of IA, especially around the resonance. This
is due to both the inherent large overestimation in treating
the basic operations (1) and the inability to track the existing
correlation among the variables. Furthermore, it emerges that
a first-order TM significantly lacks of accuracy as well, and

gives a very rough estimation. Nonetheless, a second-order
TM has already a very good accuracy, far superior to IA,
whereas a third-order TM is nearly indistinguishable from the
MC spread. Finally, AA is also in very good agreement with
the MC result, with an accuracy very close to the third-order
TM.
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MC

IA

TM (order 1)

TM (order 2)

TM (order 3)

AA

Figure 3. Bode plot (magnitude) of the transfer function H(jω) =
V3(jω)/E(jω) for the lumped circuit of Fig. 2. The upper and lower bounds
obtained via IA (blue lines), first-, second-, and third-order TMs (red lines),
and AA (black lines) are compared against the spread given by the MC
samples (green area).

Summarizing, from this simple, illustrative example, it is
possible to conclude that the TM requires higher-order approx-
imations to reach good accuracy. This is likely to significantly
increase the arithmetic complexity in a long chain of complex
operations. On the contrary, AA turns out to be an intermediate
and viable solution that allows to achieve good accuracy with
a simpler mathematical representation.

In general, the response of an electrical circuit is not avail-
able in closed form, and needs to be calculated numerically.
Owing to the above considerations, the AA is a good candidate
to be extended in aim of an efficient frequency-domain worst-
case analysis.

V. APPLICATIONS

In this section, the AA is applied to the same illustrative
example of Fig. 2, but in a numerical fashion, thus verifying
the capability of the extended AA to deal with complex-
valued matrix operations. In addition, possible enhancements
currently available in the literature and aimed at improving
the accuracy of the worst-case predictions are discussed. A
second example involving a distributed microstrip interconnect
is included as well, to highlight the feasibility of the affine-
based tool to handle both lumped and distributed circuits. All
the simulations are carried out using MATLAB on a Intel i7-
4710M Quad-Core notebook operating at 2.5 GHz.

A. Worst-Case Frequency-Domain Analysis
The numerical frequency-domain solution of the circuit of

Fig. 2 is obtained via the classical modified nodal analysis
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(MNA) tool [25]:

M̃W̃ = J̃ (7)

where W̃ = [V1(jω), V2(jω), V3(jω), IL(jω), Ie(jω)]T

collects the phasors of the unknown variables, J̃ =
[0, 0, 0, 0, E(jω)]T , and

M̃ =


g0 −g0 0 0 1
−g0 g0 0 1 0

0 0 jωC0 −1 0
0 1 −1 −jωL0 0
1 0 0 0 0

+

+


g3ε3 −g3ε3 0 0 0
−g3ε3 g3ε3 0 0 0

0 0 jωC1ε1 0 0
0 0 0 −jωL2ε2 0
0 0 0 0 0

 .
(8)

The uncertain circuit parameters are expressed in standard
affine form according to (3), with G0, C0 and L0 correspond-
ing to the central values of the intervals, and G1, C1 and L1

accounting for the noise coefficients (C0 = 0.5 F, C1 = 0.05 F,
L0 = 0.5 H, L1 = 0.05 H, G0 = 2 S, G1 = 0.1 S).

The above matrix is interpreted as the sum of matrices in
the canonical form, i.e., M̃ = M0 +M1ε1 +M2ε2 +M3ε3,
and the solution of the above problem is achieved via matrix
inversion (W̃ = M̃

−1
J̃ ). This yields the response of the

pertinent nodal voltages and branch currents in the complex
affine form, which comprises information on the upper and
lower bounds of the response.

Similarly to what was done in Sec. IV, the accuracy of
the prediction via AA is assessed based on the Bode plot
(magnitude) of the transfer function H(jω) = V3(jω)/E(jω),
for which the same results as in Fig. 2 are found. As far as
the efficiency is concerned, the CPU time required to compute
the worst-case bounds for 300 frequency samples via AA is
5 s only, in contrast to the 32 s taken by 10000 MC runs.

The good performance of the AA highlighted in the previous
example is confirmed for lumped circuits that do not exhibit
strong resonant behavior and with a complexity defined by a
number of circuit elements in the order of 3–10. However,
for more complex circuits and for a richer frequency-domain
behavior, some improvements are needed and the method
benefits from suitable adjustments. As an example, Fig. 4
shows the response of a lumped circuit consisting of the
cascade connection of three RLC blocks like the one of
Fig. 2. All the circuit parameters are in this case defined
by dependent interval variables with ±10% relative variation
(nominal values: C0 = 1 F, L0 = 1 H, G0 = 1 S). The
curves in the figure correspond to the Bode plot (magnitude)
of the transfer function defined as the ratio between the far-end
voltage response and the input voltage excitation. From this
comparison, the plain AA (blue lines) only provides a rough
approximation of the upper bound of the system response.
However, the AA combined with the so-called uncertainty
interval partitioning (UIP) [26] (black lines) leads to a major

improvement, with a similar accuracy as in the previous
example.
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Figure 4. Frequency-domain response of the cascade connection of three
lumped RLC blocks like the one of Fig. 2. Blue lines: upper and lower
bounds obtained via standard AA; black lines: bounds obtained via the joint
application of AA and UIP; green area: spread from MC samples.

Roughly speaking, the UIP subdivides the uncertain interval
of the parameters into smaller ones and, for each subinterval,
it computes the response range separately via an interval-based
tool. Fig. 5 helps visualize the concept behind this technique
for the case of two generic variables x and y. This solution
unavoidably impacts on the efficiency of the method which,
however, in most of the applications is still more efficient
than MC (7 s vs. 134 s for the example of Fig. 4). In the
example at hand, a non-uniform partitioning is adopted, with
up to 5 interval partitions in the frequency regions around the
resonances.

It is relevant to remark that, in some extreme situations,
a large amount of partitions with geometric progression is
required to provide an accurate approximation [16]. For a
detailed discussion on UIP, the interested reader is pointed
to [12], [26], where the UIP is jointly applied with IA.

y

x

AA+UIP+AA+

1x x2

y2

y1

Figure 5. Graphical illustration of the UIP based on two uncertain variables
(intervals x and y in the left panel), which are split into two subintervals each
(right panel).
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B. Distributed Interconnect Structures

The second validation test case is based on the multicon-
ductor transmission-line structure of Fig. 6, with a microstrip
configuration consisting of two conductors over an ideal
ground plane (top panel). For this example, the nominal values
of the per-unit-length inductance and capacitance matrices L0

and C0 are calculated numerically and are

L0 =

[
670 360
360 670

]
nH/m, C0 =

[
56 −26
−26 56

]
pF/m

The source and load impedances (bottom panel of Fig. 6) are
RS = 50 Ω and RL = 1 kΩ, respectively. The line length is
` = 5 cm.

The frequency-domain behavior of this transmission line is
described via the telegrapher’s equations [27]:

d

dz

[
V (z, s)
I(z, s)

]
= −s

[
0 L
C 0

] [
V (z, s)
I(z, s)

]
(9)

where s = jω is the Laplace variable, whilst V (z, s) =
[V1(z, s), V2(z, s)]T and I(z, s) = [I1(z, s), I2(z, s)]T are
vectors collecting the voltage and current along the two signal
conductors. For the analysis, C is assumed to be an interval
matrix with ±10 % relative variation, i.e., C̃ = C0(1+0.1ε1),
whereas no variation is ascribed to the inductance matrix
(L = L0).

1 2

+

−
V1(z, s)

+

−
V2(z, s)

E RS

RS RL

RL

1

2

z = 0 z = ℓ

Figure 6. Three-conductor transmission-line structure. Microstrip cross-
section (top panel) and circuit configuration (bottom panel).

According to [27], the fundamental step in the frequency-
domain solution of (9) is the calculation of the matrix expo-
nential

Φ(`) = exp

([
0 −sL
−sC 0

]
`

)
, (10)

together with other basic operations that are carried out by
means of the rules discussed in Sec. III-C and Sec. III-D.

Fig. 7 shows the spread of the magnitude of the far-end
crosstalk transfer function H(jω) = V2(`, jω)/E(jω) up
to 5 GHz, computed by means of 10000 MC simulations
(green area). The solid black lines correspond to the upper
and lower bounds obtained with the AA, with the matrix ex-
ponential (10) treated as described in Sec. III-C, in conjunction
with non-uniform partitioning. The accuracy and tightness of
the predicted bounds confirm the potential of AA, which also

provides a remarkable speed up of 10× with respect to MC
(2 min vs. 20 min).
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Figure 7. Bode plot (magnitude) of the far-end crosstalk transfer function for
the microstrip line of Fig. 6. The number of frequency samples is 1000. Green
area: spread from MC simulations; black lines: worst-case bounds computed
with AA.

VI. CONCLUSIONS

This article provides an overview of the application of
interval-based methods to the worst-case analysis of electrical
circuits, with a specific focus on the frequency-domain nu-
merical simulation via AA. Classical tools for circuit analysis
are used within the affine framework, combined with UIP
and accounting for complex algebra and fundamental matrix
operations. The AA is successfully applied to the worst-
case analysis of both lumped and distributed circuits. The
performances of AA are compared in terms of both simulation
time and accuracy with the traditional Monte Carlo method.
Accurate results and remarkable speed-ups are achieved.
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