
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Development Flow for On-Line Core Self-Test of Automotive Microcontrollers / Bernardi, Paolo; Cantoro, Riccardo; De
Luca, Sergio; SANCHEZ SANCHEZ, EDGAR ERNESTO; Sansonetti, Alessandro. - In: IEEE TRANSACTIONS ON
COMPUTERS. - ISSN 0018-9340. - STAMPA. - 65:3(2016), pp. 744-754. [10.1109/TC.2015.2498546]

Original

Development Flow for On-Line Core Self-Test of Automotive Microcontrollers

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TC.2015.2498546

Terms of use:

Publisher copyright

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2621708 since: 2015-11-07T22:48:52Z

IEEE

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2498546,
IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 1

Development Flow for On-Line Core Self-Test
of Automotive Microcontrollers

Paolo Bernardi, Member, IEEE, Riccardo Cantoro, Student Member, IEEE, Sergio De Luca,

Ernesto Sánchez, Senior Member, IEEE, Alessandro Sansonetti

Abstract— Software-Based Self-Test (SBST) is an effective methodology for devising the on-line testing of Systems-on-Chip

(SoCs). In the automotive field, a set of SBST programs to be run during mission mode is also called Core Self-Test (CST) library.

This paper introduces many new contributions: (1) it illustrates the several issues that need to be taken into account when

generating test programs for on-line execution; (2) it proposed an overall development flow based on ordered generation of test

programs that is minimizing the computational efforts; (3) it is providing guidelines for allowing the coexistence of the CST library

with the mission application while guaranteeing execution robustness. The proposed methodology has been experimented on a

large industrial case study. The coverage level reached along 1 year of team work is over 87% of Stuck-At fault coverage and

execution time is compliant with the ISO26262 specification. Experimental results show that alternative approaches may request

excessive evaluation time thus making the generation flow unfeasible for large designs.

Index Terms— Microprocessors and microcomputers, Reliability and Testing, Software-Based Self-Test

-- --

1 INTRODUCTION

he d iffusion of electronic systems in the automotive

field is increasing at a fast pace, and car makers con-

stantly demand from electronic manufacturers for faster,

less expensive, less power-consuming and more reliable

devices. Microprocessor-based systems are employed in

cars for a great variety of applications, ranging from info-

tainment to engine and vehicle dynamics control, includ-

ing safety-related systems such as airbag and braking con-

trol.

The use of such devices in safety- and mission-critical ap-

plications raises the need for total dependability. This re-

quirement translates in a series of system audit processes

that need to be applied throughout the product lifecycle.

Some of these processes are common in today ’s industrial

design and manufacturing flow s, and include risk analysis,

design verification and validation, performed since the

early phases of product development, as well as various

test operations during and at the end of manufacturing and

assembly steps. Increasingly often, additional test opera-

tions need to be applied also during the product mission

life, and may include periodic on-line testing and/ or con-

current error detection. The reliability requirements need

to be met by trading off fault/ error coverage capabilities

with admissible implem entation costs of the selected solu-

tions.

Within the scope of microprocessor-based integrated sys-

tems, the Software-Based Self-Test (SBST) approach has

been addressed for a long time by d ifferent teams in the

research community [1][2][3]. SBST techniques basically

consists in letting the CPU running a sequence of code

words dedicated to excite and propagate to error the larg-

est set of faults possibly affecting the circuit [4]. Compared

to hardware-based test solu tions, such as Built-In Self-Test

(BIST), it presents many advantages, including the possi-

bility of autonomously testing [5] and d iagnosing [6] both

the microprocessor and the controllable peripherals in nor-

mal mode of operation, without introducing any hardware

modifications, and at-speed test application (i.e., at the cir-

cuit nominal frequency). Nonetheless, SBST methodolo-

gies raise some issues that have been limiting their appli-

cation in industry throughout the years: those issues re-

gard writing efficient and effective test programs and de-

vising suitable methodologies for test application.

While in the manufacturing test arena BIST solu tion are of-

ten preferred because achieving high coverage in a short

time and with a simple development flow, regarding on-

line test application, SBST is standing up as the preferable

solu tion for periodically monitor the system health with-

out inferring the normal mission behavior [7][8]. A recog-

nized solu tion adopted by the industry relies in periodic

test application of a Core Self-Test (CST) library composed

of SBST test programs. As depicted in figure 1, the micro-

processor is periodically forced to execute a self-test code

able to detect the possible occurrence of permanent faults

in the processor core itself and the peripherals connected

to it. Such procedures are specifically tailored to activate

possible faults and then compress and store the self-test re-

sults in an available memory space or raising a signal when

the test has not ended correctly.

As far as test program generation is concerned, many ap-

proaches can be found in the literature, employing manual

or automated approaches, which are su ited to target d iffer-

ent processor architectures and fault models as described

in [4]. However, setting up an efficient CST development

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 P. Bernardi, R.Cantoro and E. Sánchez are with the Politecnico di Torino,
Dipartimento di Automatica e Informatica, Torino, Italy. E-mail:
name.surname@polito.it.

 S. De Luca and A. Sansonetti are with STMicroelectronics, Agrate Bri-
anza, Italy. E-mail name.surname@st.com

T

mailto:name.surname@polito.it
mailto:name.surname@st.com

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2498546,
IEEE Transactions on Computers

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

flow implicates a number of additional issues to be solved

regarding test program generation, organization and grad-

ing [9]. Coping with such on-line requirements means in-

troducing additional ru les to be respected along test pro-

gram generation and additional code parts need to be

added, that may impact on the CST development time.

[CPU time]

Self-Test
chunk

2

Self-Test
chunk

1

Self-Test
chunk

3

Key-on
full Self-Test

Power-down
full Self-Test

Mission
application

Fig 1: On-Line Self-Test application example.

This paper presents an innovative and comprehensive ap-

proach for the development of a CST library for micropro-

cessors in safety-critical au tomotive embedded systems to

be integrated in the Operating System. The pursued goal is

to satisfy the reliability requirements given by emerging

standards such as ISO 26262 [10], which mandates a con-

stant monitoring for the possible occurrence of permanent

faults in the circuit along its mission life.

The technical content of the paper deals with the most rel-

evant aspects of on-line test programs characteristics and

development flow. The paper progresses the state-of-the-

art by describing and d iscussing:

1. The constraints to be taken into account when gener-

ating self-test programs to be run on-line;

2. The requirement for a robust on-line execution of self-

test programs in coexistence with an embedded oper-

ating systems;

3. An effective development flow organization aim ing at

minimizing the computational efforts.

The paper is finally showing the results that have been col-

lected on an industrial case study. The impact of on-line re-

quirements is evaluated on a very large 32-bit microproces-

sors embedded in an automotive Systems-on-Chip manu-

factured by STMicrolectronics. Code overheads and adap-

tation toward on-line of the generation strategies are re-

ported; experimental results are also showing how the de-

velopment of a CST may become unfeasible on processors

with a significant d imension , unless planning for a proper

resource partitioning and order in the CST creation.

The rest of the paper is organized as follow ing: Section 2

describes the on-line constraints that are encountered

while generating test programs. Section 3 details the char-

acteristics a test program should own for guaranteeing ro-

bustness and fu ll compliancy with the OS. Section 4 is il-

lustrating an effective development flow suitable for large

microcontrollers. Section 5 is showing experimental results

and section 6 is drawing conclusions.

2 CORE SELF-TEST GENERATION CONSTRAINTS

Software-Based Self-Test is widely perceived as proper

method for an accurate and non-invasive autonomous test.

In a few words, a test program is made running and sig-

naling misbehavior by simply exercising the processor

functionalities. This process intrinsically respects power

constraints since the test programs make the processor to

work under the same conditions available in the mission

mode; they do not ask for additional test circuitries, and

are quite cheap in terms of features and commodities re-

quired to the test equipment.

When dealing with Core Self-Test, which has to be applied

on-line, the test programs have to share processor re-

sources with the mission application, i.e., the Operating

System (OS) who is managing mission tasks; this coexist-

ence introduces very strong limitations compared to man-

ufacturing tests through SBST:

1. Cores Self-Test programs need to be compliant with a

standard interface, enabling the Operating System to

handle them as normal processes. This interface must

guarantee processor status preserving and restoration,

even in case of higher priority requests (e.g., preemp-

tion);

2. The CST programs need to be generated following ex-

ecution time constraints, due to the resources occupa-

tion that can be afforded by the mission environment .

In particular, this is strictly required when a test cannot

be interrupted because using critical resources (i.e.,

special purpose registers);

3. There is a strong limitation in terms of memory re-

sources usage, due to the mission code and data char-

acterizing the OS. To face front this issue, it is recom-

mended to

- Provide the CST as a set of precompiled programs

stored in binary images to be run along mission

mode, possibly scheduled and loaded by the op-

erating system;

- Not to refer to any absolu te addresses when

branching, meaning that the test code can be

stored anywhere in the memory for being eventu-

ally copied and lau nched from other locations

without any functional or coverage drawback;

- Not to refer to absolu te addresses when accessing

to the data memory;

- Identify possible memory constraints from the

point of view of the OS restrictions, and indispen-

sable locations to be reserved for test purposes.

It is fair to say also that, targeting effort reduction, the test

should be created also taking into account the characteris-

tics of the general processor family, in order to reduce code

modifications when transferring the CST library to another

processor core belonging to the same family architecture.

The next paragraphs face these questions and provide

some guidelines for easily taking early decisions.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2498546,
IEEE Transactions on Computers

BERNARDI ET AL.: DEVELOPMENT FLOW FOR ON-LINE CORE SELF-TEST OF AUTOMOTIVE MICROCONTROLLERS 3

3 CORE SELF-TEST EXECUTION MANAGEMENT

As briefly described in the introductory section, the inclu-

sion of SBST routines in the mission environment is a criti-

cal issue. To face front the problematic aspects of this inte-

grations, we propose to consider three major points be-

yond generation, which are related to test program execu-

tion:

 Cooperation with other software modules, usually re-

lated to the mission environment such as the OS

 Context switching and result monitoring

 Robustness in case of faulty behavior, which is strictly

related to interruption management.

3.1 Test encapsulation

Considering the cooperation with other software modules,

such as the threads launched by the OS, the test program

suite needs to be constructed by including key features en-

abling the test to be launched, monitored and eventually

interrupted by higher priority processes of the mission

management system.

Figure 2 is graphically depicting how the test program is

structured and which memory and peripheral resources

need to be configured for test purposes. The test programs

are normally stored and executed in the Flash memory.

First of all, in order to be compliant with the mission soft-

ware environment, a viable and strongly suggested solu -

tion is the adoption of the Embedded-Application Binary

Interface (EABI) [11], which specifies standard conventions

for file formats, data types, register usage, stack frame or-

ganization, and function parameter passing of a software

program. Thus, every test program includes an EABI pro-

logue and epilogue, in charge of saving and restoring the

mission status.

Having the EABI frame created by the test code at its be-

ginning, any scheduler can launch the test execution, e.g.,

the scheduler available in the OS hosting the test routine.

Moreover, we propose the inclusion of extra information

needed to setup a proper running environment by a spe-

cific test scheduler.

Additional test information encompasses:

 Stack frame size

 Special purpose register setup,

 Memory protection setup and

 Test duration.

These metadata are used by the test program for the setup

1) Duration time (i.e., watchdog setup)

2) Stack frame size (i.e., space available for mission con-

figurations to be saved and local variables of the test

program)

3) Processor setup (i.e., special purpose register ad -hoc

values)

4) Memory configuration (i.e., virtual memory initializa-

tion)

5) Memory protection (i..e, to manage wrong memory ac-

cesses through exceptions)

and at the test program execution end

6) Signature check.

Such a memory structure can be also stored in the mass

memory until it is loaded to be run from any portion of the

available memory, according to the features already de-

scribed in section 2 (i.e., relocation).

OS (in flash)

Self-Test programs

Free

Unmapped

OS (in RAM)

Self-Test data
(read/write)

Free

Unmapped

Control
Status

Unmapped
Watchdog

FL
A

SH
R

A
M

Pe
ri

p
h

er
al

s

MPU

Signature

Test duration

Stack frame size

Processor setup

Memory configuration

Memory protection

EABI prologue

Self-Test code
EABI epilogue

Self-Test data
(read-only)

Test Program StructureMemory Allocation

GP and SPR registers
MMU

Peripheral Setup

Si
gn

at
ur

e
ch

ec
k Setup phase

Fig. 2. Test program encapsulation and loading for execution phase.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2498546,
IEEE Transactions on Computers

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Prepare for INTR

Excepting instruction

Assert: RET from INTR

Program peripheral

Prepare for async INTR

…
…
…

Create stack frame

Assert: expected INTR?

Serve INTR &
update signature

RET from INTR

INT skipped

sync test INTR

Assert: barrier after RET

RET skipped

async
mission/test

INTRPeripheral
core

FAIL

FAIL

…

FAIL

Unexpected
INTR

Test ISR

Unstable processor status

???

Continuous INTR

Freeze/Loop

Signature
corruption &

Jump into Test
Assert: check signatureFAIL

PASSED

Watchdog

SYSTEM RESET

Test routine

RET

Fig. 3. Expected and unexpected exception management scenario.

3.2 Context switching to test procedure

Test programs structured as described section 3.1 are prone

to be integrated in any Operating System as normal system

tasks. Proper context switching is mainly afforded by the

EABI interface; additional setup may vary according to the

characteristics of test program and it is managed by the test

programs exploiting metadata.

We identify three general cases, each one demanding for

proper metadata to be used in setup procedures:

 Run-time tests: usually devised to cover computa-

tional modules such as arithmetic modules, can be in-

terrupted by mission requests.

 Non-exceptive tests: require the manipulation of SPR

register for testing sakes, such as for testing the Regis-

ter File

 Critical tests: are intentionally raising interrupts and

make use of peripheral cores for testing sakes.

Run-time tests are the easiest to manage: they only require

creating a stack frame according to EABI compliancy; stack

frame size is minimal. It is suggested to execute this kind

of tests with low privileges, i.e., user mode, because they

will never request interruptions or privileged instruction

execution in the good (not faulty) scenario. No other spe-

cial setup is required . EABI compliancy can be satisfied

during the overall execution, meaning that another OS

thread can preempt the test execution.

Non-exceptive test are less easy to manage because they

use resources that are not allowed to be d irectly used in the

EABI context, e.g., special purpose registers. For this cate-

gory, additional setup steps have to be executed before

running the test

 To disable the external interrupts in order to avoid

preemption

 To save all special and general purpose registers in a

larger stack frame memory area and

 To modify their content according to the processor

setup information.

As well, some closing operations are needed at the conclu-

sion of the test execution to restore the initial configuration.

Along the execution of these tests, no preemption is al-

lowed because the compliancy with the EABI standard

cannot be guaranteed .

When considering Critical tests, more restrictive requests

have to be accomplished. Other than saving-restore all reg-

isters and d isable external interrupt sources, more infor-

mation need to be saved, such as

 The Interrupt Vector Table (IVT) and the related regis-

ters in case an alternative IVT is required for testing

purposes

 The current status and control registers of the used pe-

ripheral modules, such as the interrupt controller con-

figuration and the MMU.

3.3 Interruption management and robustness

Interrupt mechanisms, which are managing synchro-

nous and asynchronous exceptions, need to be handled

with extreme care, because they are not only intentionally

raised for testing purposes. There are three types of excep-

tion in our view:

 Intentionally provoked exceptions, i.e., to test proces-

sor exceptions

 Unexpected , induced by an erroneous execution that

is provoked by a faulty configurations

 Mission mode interruptions.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2498546,
IEEE Transactions on Computers

BERNARDI ET AL.: DEVELOPMENT FLOW FOR ON-LINE CORE SELF-TEST OF AUTOMOTIVE MICROCONTROLLERS 5

Intentionally provoked interruptions can be synchronous

or asynchronous. Situations like system calls, illegal

memory access, illegal instructions and privilege related

operations are synchronous, since they have to be forced

by the code itself. Contrarily, the asynchronous category is

raised by means of peripheral cores.

To test exceptions it is therefore necessary both to induce

exceptions to rise and to manage them. The mechanism is

graphically shown in figure 3. If the circuitries managing

the interrupt have not been corrupted by a fault, each sin-

gle forced exception is correctly managed, meaning that a

test specific Interrupt Service Routine (ISR) is accessed .

Such an ISR is configured along the scheduling execution

and it is replacing the mission one.

The code included in the ISR is also responsible for accu-

mulating significant contents into the signature, e.g., the

status registers. In presence of a fault, this standard execu-

tion flow may be d iverted in such a manner that an excep-

tion was intentionally scheduled but it is not raised . In this

case, the signature update is not performed and the test, at

the end, is not producing the right signature value.

Furthermore, the exception management is also crucial for

facing flow deviations due to any kind of fault leading to

an unexpected processor internal status and bringing to

unexpected synchronous interruptions. Typical cases are

legal to illegal instruction format, illegal memory access

protected by memory protection unit mechanism. If this

situation is occurring during the execution of any test pro-

gram, the test ISR should ideally be able to recover such a

deviation and to record the wrong behavior observed .

Some counter measurement can be adopted to identify un-

expected interrupt requests, such as performing an asser-

tion in the ISR prologue to check a password stored into a

GPR before the interrupt is intentionally raised . A similar

method is implemented for checking the correct return

from interrupt, e.g., by completing the test execution with

an assertion.

This technique is making the test code quite robust, but

more work is needed if the processor status become unsta-

ble, resu lting in spurious and repeated exceptions as well

as infinite loops. In the latter case, an external mechanism

have to be implemented in order to move the system into

a safe status, i.e., by watchdog timer.

These cases are shown in figure 5, where solid lines are

showing expected interrupts while dashed are showing the

effect in case the processor status is unstable. Along run-

time test programs, mission interrupts need to be identi-

fied and served as soon as possible, i.e., passed to the OS.

By following the EABI standard , it permits to easily man-

age this case.

4 CORE SELF-TEST DEVELOPMENT FLOW

The major cost and issue in the development flow of a Core

Self-Test is constitu ted by the computational effort re-

quired to proceed in a quick generation of the test program

suite. In particular, the fault grading process [9], which has

to be performed to evaluate the goodness of a test program

in fault detection, represents a severe bottleneck. This cost

is weigh down by test program infrastructure described in

the previous paragraphs and required by the on -line exe-

cution.

For instance, ju st to give the reader an idea about this cost,

for a medium sized embedded processor with about 200k

stuck-at faults, the required time for fault simulating a 1ms

program may ask up to 3 days by using a 2GHz quad -core

workstation running 4 fault simulation processes in paral-

lel.

This cost becomes unsustainable if the generation process

is iterative [15] and produces many programs to be graded

before achieving a good coverage.

Therefore, we propose a methodology for achieving a de-

velopment time reduction and resources optimization

based on the following principles:

1. The embedded processor cannot be tackled as a

unique module, but it is better to consider its sub-mod-

ules separately (e.g., ALU, CTRL Unit, etc.) meaning

that the processor fault universe is selectively d ivided

into several smaller fault lists for being effectively at-

tacked while generating the test programs;

2. By facing modules separately, it facilitates paralleliza-

tion of the development process whether many work-

stations/ test-engineers are available (see more details

in 4.1);

3. By developing a test for a specific sub-module, it is

likely to have a side-effect that is the coverage of faults

belonging to other sub-modules;

The strategy we propose is based on these principles and

it consists on the iterated execution of two steps until all

sub-modules are considered:

 To generate (possibly in parallel) the test programs for

a set of carefu lly selected sub-modules (see more de-

tails in 4.2) until these are sufficiently covered

 To perform synchronization among the d ifferent test

programs to evaluate their effectiveness over a larger

fault list; to synchronize means to grade test programs

generated for a specific sub-module over a d ifferent

(larger) sub-module list.

A simplified illu stration of the proposed flow is shown in

figure 4, which considers a microprocessor (CPU) com-

posed of four modules (s1 to s4). In the first step shown by

figure 2.B, two modules (s3 and s4) are considered in par-

allel and graded separately, i.e., during the generation pro-

cess for module s3 only its own faults are considered . As

soon as the coverage of these sub-modules is satisfactory,

the generated test programs are graded over the other

parts of the CPU as shown in figure 2.C; this synchroniza-

tion step brings to observe a positive side-effect on the cov-

erage of modules s1 and s2, as well as on s3 when grading

the test program for s4, and vice versa. A new generation

step is then started on s1 and s2; as depicted in figure 2.D;

it is worth to mention that the previous steps were benefi-

cial because the starting fault lists of s1 and s2 have been

lightened before facing their generation process.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2498546,
IEEE Transactions on Computers

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

(a) sub-module division (c) synchronization and
side-effect evaluation

(d) new generation step

CPU CPU CPU CPU
Modules under test

S4

S1 S3

S2 S4

S1 S3

S2

S1

S2

(b) test generation of
a set of sub-modules

S4

S3

Modules under test

S1

S2 S4

S3

Fig 4: Sub-module identification and visualization of the coverage figure evolution along the proposed generation steps.

The advantage of using this approach is mainly resulting

in a faster development of the test su ite because

 The fault lists to be considered are significantly smaller

than the complete fault list, resulting in a faster fault

grading that usually takes in the order of minutes to

complete;

 After each synchronization step, the number of active

faults in new sub-modules is reduced, again leading to

a speed-up of the fault simulation process.

4.1 Resources partitioning

As briefly stated in the previous paragraph, the processor

d ivision into sub-modules permits to consider many inde-

pendent fault lists in parallel; their selection is the major

issues in the preliminary phase preced ing the generation

effort.

For being independent, fault lists need to be

 non-overlapping: one fault has to belong to only one

fault list

 functionally orthogonal: faults in the same independ-

ent fault list need to belong to modules related to one

specific functionality

The non-overlapping criteria requires that the same fault

have to be considered only one time in the process; on the

other hand, when dealing with orthogonality, a fault needs

to be included in the most relevant fault list from the point

of view of the functionality of the related gate.

The process of selecting the set of fault lists is not trivial. In

our flow, this process is accounting on:

 Manuals and documentation of the microcontroller

with specific indications about the micro-architecture

 Hierarchy of the microcontroller netlist

 Test engineer expertise.

To identify independent fault lists

 Analysis of the processor functionalities

 Mapping of the functionalities over the microcontrol-

ler hierarchical netlist.

It is likely that most of the fault lists derive from specific

modules, but it is also frequent that many sub-modules

need to be squeezed into a single fault list when related to

the same processing functionality. As an example, the

faults of a multiplication un it usually constitu te an inde-

pendent fault list. On the contrary, there are several multi-

plexers that seem to be independent netlist modules, but

these ones actually compose the feed -forwarding logic in

the processor pipeline; thus, faults belonging to these mul-

tiplexers have to be grouped into the same fault list, which

is functionally orthogonal and non-overlapping with other

modules.

Concerning computational resources allocation, once the

independent fault lists have been identified , for maximiz-

ing the number of fault lists to be considered in parallel:

 A single sub-modules coverage calculation on a single

or many fault grading threads according to

- Number of available threads per CPU;

- Number of EDA tool licenses;

- Fault list size

 Result synchronization by using many threads.

4.2 Optimized test programs generation order

Based on the side effect principle described above, it is cru -

cial to select the most promising order to proceed in the test

program generation. The decision needs to be tailored on

the specific architecture under analysis.

In the following, we propose some general guidelines for

determining the test program generation order consider-

ing the most common and widely used microprocessor ar-

chitectures for automotive.

In our development flow, we organize the generation order

according to horizontal and vertical flow ru les.

Vertical flow ru les demand to split the flow into consecu-

tive levels, such that by testing all the modules into a given

level, a large positive side-effect in terms of fault coverage

is observed when moving to the next level. We are cur-

rently proposing to d ivide the flow into levels according to

the following ru les:

1) to consider first those units that can be mapped on spe-

cific assembly instructions or specific architectural

programming mechanisms;

2) to continue with memorization and control flow re-

sources;

3) to conclude with modules which functionalities are

transparent to the programmer.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2498546,
IEEE Transactions on Computers

BERNARDI ET AL.: DEVELOPMENT FLOW FOR ON-LINE CORE SELF-TEST OF AUTOMOTIVE MICROCONTROLLERS 7

According to the presented strategy, a synchronization step

is needed after completion of the currently considered

level before moving to the next; this synchronization step

involves all sub-modules of the next level, i.e., to reduce

the size of the fault lists to be considered successively.

By looking at the problem in a horizontal manner, it is also

possible to identify many parallel branches which are still

complying with vertical requirements. This horizontal

view consists in identifying branches, so that a negligible

side-effect crosses branches belonging to d ifferent horizon-

tal views.

Based on the aforementioned ru les, for a typical automo-

tive-oriented architecture, we individuate a development

flow based on 3 levels and 2 branches. However, additional

branches can be added when considering microprocessors

equipped with special features, e.g., caches [12], shared

memory schemes [13], and Floating-Point unit [14].

We suggest considering two categories of sub-module by

first:

level 1 --- branch A) ALU sub-modules: easy to test,

they ask for the execution of specific arithmetic and logical

instructions. Side effect is maximized towards the REGIS-

TER FILE by an accurate selection of registers to be used as

operands and in the control flow management.

level 1 - branch B) SPECIAL sub-modules: they en-

compass Exceptions Management, Branch Prediction and

Virtual Memory related modules, e.g., the Memory Man-

agement Unit (MMU) module. These sub-modules are

hard to cover, requiring specific instructions and sequences

of instructions. They will produce a very large positive

side-effect on ADDRESS related modules.

As shown in figure 5, once a sufficient coverage on these

sub-modules is reached, it is suggested to proceed in a syn-

chronization process. The set of programs developed for

1A) are evaluated on the REGISTER FILE fault lists, while

1B) is graded on the ADDRESS related modules. As a re-

sult, the number of active faults to be then considered is

greatly reduced.

level 2 --- branch A) REGISTER FILE: the test of the

register file is straightforward , being many papers describ-

ing effective sequences to test. In the proposed generation

method, it is suggested to reorder instructions and oper-

ands in order to induce the usage of DATA DEPENDENCY

structures in the PIPELINE.

level 2 --- branch B) ADDRESSING modules: by

having completed 1B), the most of the faults included in

the ADDRESS related modules, such as Branch unit, Effec-

tive Address calculation, and Program Counter, are result-

ing as already covered . This step is therefore a completion

of the previous one, which is done mainly by adding

memory operation and branches to specific addresses.

A synchronization step is then operated on the PIPELINE

and CONTROL UNIT modules, followed by level 3 with

no more branches, which consists on an ad -hoc generation

step for these level modules.

To complete the process, the entire test su ite obtained along

this process is evaluated on the whole processor fault uni-

verse, eventually by adding refinement programs to cover

corner cases and specific configurations not considered

along the previous steps.

ALU sub-modules

ADDER
(ARITH)

MUL DIV
LOGIC

SHIFTERS

Synchro

REGISTER FILE

REGISTER
BANK

MUX-DECODER
(R/W PORTS)

SPECIAL sub-modules

EXCEPTIONS MMU
BRANCH

PREDICTION

Synchro

Synchro

ADDRESSING

ADDER
(EFFECTIVE ADDR)

PROGRAM
COUNTER

PIPELINE - CONTROL UNIT

FETCH
PRE-FETCH

MUX-DECODER
(DATA DEPENDENCY)

DECODE LOAD/STORE

Synchro

FINAL REFINEMENT

1A)

2A)

1B)

2B)

3) FLAGS

HORIZONTAL rules - BRANCHES

V
ERTICA

L rules -LEV
ELS

Fig. 5. Proposed test program development order organized in levels and branches, and synchronization steps.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2498546,
IEEE Transactions on Computers

8 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

5 RESULTS ON A 32-BIT AUTOMOTIVE DEVICE

In order to assess its effectiveness, the methodology herein

introduced has been applied to a SoC including a 32-bit

pipelined microprocessor based on the Power Architec-

ture™. The SoC is employed in safety-critical au tomotive

embedded systems, such as airbag, ABS, and EPS control-

lers and is currently being manufactured by STMicroelec-

tronics.

5.1 Case of study

The microcontroller ’s cost-efficient processor core is built

on the Power Architecture technology and designed spe-

cifically for embedded applications. The processor inte-

grates a pair of integer execution units, a branch control

unit, instruction fetch unit and load/ store unit, and a

multi-ported register file capable of sustaining six read and

three write operations per clock. Most integer instructions

execute in a single clock cycle. Branch target prefetching is

performed by the branch unit to allow single-cycle

branches in many cases. It contains a Memory Manage-

ment Unit and A Nexus Class 3 module is also integrated .

The 32-bit processor u tilizes a five-stage pipeline for in-

struction execution. These stages are:

 Instruction Fetch (stage 1)

 Instruction Decode/ Register file Read/ Effective Ad-

dress Calculation (stage 2)

 Execute 0/ Memory Access 0 (stage 3)

 Execute 1/ Memory Access 1 (stage 4)

 Register Write-Back (stage 5)

The stages operate in an overlapped fashion, allowing sin-

gle clock instruction execution for most of the available in-

structions.

The integer execution unit consists of a 32-bit Arithmetic

Unit (AU), a Logic Unit (LU), a 32-bit Barrel shifter

(Shifter), a Mask-Insertion Unit (MIU), a Condition Regis-

ter manipulation Unit (CRU), a Count-Leading-Zeros unit

(CLZ), a 32x32 Hardware Multiplier array, and result feed -

forward hardware. Integer EU1 also supports hardware d i-

vision. Most arithmetic and logical operations are executed

in a single cycle with the exception of multiply, which is

implemented with a 2-cycle pipelined hardware array, and

the d ivide instructions. A Count-Leading-Zeros unit oper-

ates in a single clock cycle.

Two execution units are provided to allow dual issue of

most instructions. Only a single load/ store unit is pro-

vided, and only a single integer d ivide unit is provided ,

thus a pair of d ivide instructions cannot issue simultane-

ously.

5.2 Experimental results

Along one year of team work, we collected results of a

wide number of modules. To test processor through soft-

ware is a deeply explored field ; therefore in many cases the

technique u tilized has been borrowed from the literature

and adapted to cover the specific modules of the consid -

ered processor core. Table 1 reports the list of generation

techniques employed to achieve the high fault coverage of

each processor sub-module. On selecting these techniques,

we resort to some of the most important proposals regard -

ing test program generation available in today’s literature.

Concerning automatic approaches, we resorted to both

ATPG-based techniques, and optimization techniques

based on Evolutionary algorithms. Some other techniques

(labeled as Deterministic) refer to available solu tions that

exploit the sub-module regularity in order to propose a

well-defined test algorithm. Finally, rows labeled as Man-

ual refer to pure manual strategies performed by the test

engineer exploiting the processor user manual, the ISA, as

well as the available HDL processor descriptions.

As stated in section 2, the test duration and size of each

single test program are on-line requirements that may vary

depending on the mission application and physical limits

of the microcontroller (e.g., the memory space available).

In our case study, the limitations were given both in terms

of duration of single programs and overall occupation of

the complete test su ite. In particular, the maximum dura-

tion of a single program labeled as run -time test should not

exceed 512 clock cycles, while the FLASH memory area re-

served for test purposes was limited to 256kB.

To match these constraints, every kind of generation

method needs to be tailored opportunely:

 ATPG-based generation methods can be constrained

by asking the automatic engine for high compression

and limiting the generation to a maximum number of

patterns; the generated patterns may be eventually

transformed into many test programs compliant with

duration constraints.

 Fitness values used along Evolutionary computation

experiments include program size and length meas-

urement; in such a way, the programs exceeding the

imposed limitations were d iscarded;

 Deterministic and manual require additional efforts by

the test engineer to fit the programs length and size;

more easily, if too long they can be split into several

shorter programs.

Code characteristics fitting on-line requirements were also

considered in all cases, such as having relocatable code (ab-

solu te branches and access by absolu te address to memory

locations are not allowed) and resorting to limited portion

of memory space (1kB) reserved for testing sake.

As described in section 3, each generated program is en-

capsulated into the EABI standard frame and includ es the

additional code sequences that guarantee the test robust-

ness. For the current case of study, the EABI compliant

frame is accounting for very few instruction s at the begin-

ning of procedures (e.g., 3-5 instructions); this number in-

creases whereas:

 extra registers have to be saved before being used and

finally restored to their original values (e.g., non-vola-

tile register or special purpose registers such as the Mi-

croprocessor Status Register)

 memory resources need to be protected (e.g., Memory

Protection Unit is exploited)

 peripheral microcontroller resources need to be pro-

grammed for test robustness (e.g., watchdog timers).

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2498546,
IEEE Transactions on Computers

BERNARDI ET AL.: DEVELOPMENT FLOW FOR ON-LINE CORE SELF-TEST OF AUTOMOTIVE MICROCONTROLLERS 9

TABLE 1
SBST STRATEGIES USED ALONG THE GENERATION PROCESS

Sub-module Technique References

Arithmetic adders

Division unit

Logic unit

Multiplication unit

Shifters

Deterministic +

Constr. ATPG +

Evolutionary

[15][16]

[17][18]

Exceptions Manual [19]

Branch Unit Deterministic [20]

Timers Manual

Register bank Deterministic [21]

Register ports Deterministic [21]

EA adder

Load store unit

program counter

Loop-based +

Evolutionary +

Manual

[22]

Forward unit Deterministic [23]

Decode unit

Status/control flags

Deterministic
[24]

Fetch unit Deterministic [25]

The number of additional instructions required to afford

robustness other than raw compliancy with EABI stand-

ards are about 20 instructions. Additionally, to further en-

force robustness, additional instructions were added when

a context switching is purposely forced through exception

for testing reasons. Concerning the development flow, the

fault list generation and the adopted generation order fol-

lows the generic indications provided in section 4.

The fault lists were generated mainly according to the pro-

cessor functionalities which are d irectly related to specific

modules in the netlist hierarchy. There are some exceptions

since the considered microcontroller is dual issue and rep-

licated arithmetic modules, such as the adders, were con-

sidered as a unique fault list; in a d ifferent way, the data-

forward ing unit is composed of several multiplexers,

which faults are jointly considered . Another interesting

case of resource partitioning is related to the multi-port

register file that is contributing with two fault lists, the reg-

ister bank and the register ports (decoders and multiplex-

ers); this is due to both the fault list size that we need to

split, and the d ifferent functionalities.

Table 2 shows the evolution of the coverage along the de-

velopment flow. The final fault coverage reached was

87.23% of the fault list that includes around 750k stuck-at

faults.

There are modules not highly covered:

 Exception management modules, because it is not pos-

sible to purposely exercise all of them (e.g., it is not

possible to forcing a bus error which is asking the ex-

ception unit to intervene)

 Branch prediction, program counter and load/ store

units; due to the memory mapping configuration of

the specific system-on-chip, not all bits in the address-

ing registers can be functionally touched.

 Status and control flags, since many of these flags can-

not be used because controlling circuitries outside the

processor core.

TABLE 2
COVERAGE EVOLUTION ALONG THE DEVELOPMENT FLOW.

Sub-module #faults

Single
1A

FC [%]

Synchro
1A

FC [%]

Single
1B

FC [%]

Synchro
1B

FC [%]

Single
2A

FC [%]

Single
2B

FC [%]

Synchro
2A+2B

FC [%]

Single
3

FC [%]

Synchro
3

 FC [%]

Arithmetic adders 5,996 95.03 97.93 -- -- -- -- 98.27 -- 98.52

Divider 19,018 83.98 83.98 -- -- -- -- 83.99 -- 84.82

Logic instructions 22,294 76.32 78.57 -- -- -- -- 78.70 -- 83.34

Multiplier 78,094 91.18 92.62 -- -- -- -- 92.62 -- 95.90

Shifters 14,172 87.95 92.96 -- -- -- -- 93.97 -- 96.32

Exceptions 40,718 -- -- 66.08 67.17 -- -- 68.16 -- 72.48

Branch prediction 24,489 -- -- 70.91 70.95 -- -- 72.67 -- 72.67

Timers 7,683 -- -- 88.21 88.43 -- -- 88.46 -- 89.70

Register bank 83,764 -- 71.21 -- -- 84.15 -- 89.38 -- 92.66

Register ports 126,329 -- 69.17 -- -- 94.93 -- 97.67 -- 98.09

Program counter 26,060 -- -- -- 66.07 -- 68.66 69.42 -- 70.09

EA adder 5,228 -- -- -- 66.51 -- 92.02 93.75 -- 94.57

Fetch unit 71,582 -- -- -- -- -- -- 69.45 82.39 83.54

Forward unit 84,758 -- -- -- -- -- -- 70.95 84.29 84.82

Status flags 33,277 -- -- -- -- -- -- 59.31 78.08 78.61

Control flags 10,328 -- -- -- -- -- -- 64.21 66.83 69.83

Decode unit 62,876 -- -- -- -- -- -- 50.12 92.46 93.08

Load/Store unit 15,971 -- -- -- -- -- -- 73.50 75.42 76.73

Glue logic 19,425 -- -- -- -- -- -- -- -- 63.36

TOTAL 756,789 -- 36.07 -- 9.74 -- -- 76.87 -- 87.23

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2498546,
IEEE Transactions on Computers

10 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

TABLE 3
NUMBER OF TEST PROGRAMS, DURATION AND CODE SIZE

Development

Flow Step

Number of

test pro-

grams

Dura-

tion

[Clock

Cycles]

Code

size

[kB]

Single 1A
29 8,840 23

Synchro 1A

Single 1B
8 19,716 11

Synchro 1B

Single 2A 10 32,634 36

Single 2B 8 28,212 17

Synchro

2A+2B
55 89,402 87

Single 3 18 26,700 32

Synchro 3 73 116,102 119

As a complement to the fault coverage measurements, the

d imension and duration and coverage of the test along the

entire development flow are included in Table 3. Having a

frequency of working of 150 MHz, the overall time re-

quired for executing all 73 tests is about 0.8ms.

It is interesting to note, how the synchronization phases

produce a very strong positive cascade effect over the mod-

ules not yet considered; at least the half of the faults of the

modules that are going to be considered during the next

generation steps were pruned from the list without any ad-

ditional effort. Table 2 also permits to remark that the syn-

chronization steps cause coverage improvement also for

modules of the current and previous levels of the same

branch, as described in section 4.2.

A significant advantage in terms of grading time reduction

is achieved by a proper development order which is max-

imizing the cascade effect. As an example of effectiveness,

by adopting the proposed order, the generated test pro-

grams over the 139,574 faults of arithmetic modules in-

cluded in 1A (level 1 --- branch A) led to a positive side ef-

fects on 2A consisting in 147,029 over 210,093 faults (corre-

sponding to about 70%), i.e., these faults are already cov-

ered without any specific generation effort for 2A. In other

words, the fault simulation experiments carried on level

2A need to consider only 63,064 faults.

To the sake of completeness, we also computed the results

obtained by implementing an alternative generation order,

considering by first the modules of 2Aand then the ones of

1A. We tackled the 210,093 faults of register bank and ports

by obtaining a fault coverage comparable with results in

table 2, and evaluated the side effect of such programs over

1A: only 10,318 faults (or 7.4%) were already covered over

the total amount of 139,574 faults of the arithmetic mod-

ules.

The reduction in the fau lt list card inality, achieved by

properly ordering sub-modules and synchronizing fault

lists, induces a great time gain due to a large reduction of

fault simulation efforts. The effect is not limited to succes-

sive synchronization, but it permits faster gen eration iter-

ations as required by evolutionary algorithm.

Table 4 shows the elapsed time for fault simulation in two

cases:

1) a raw development flow not using synchronization

but simply considering sub-modules separately

2) a development flow following the proposed order and

implementing synchronization between levels.

All the experiments were executed on a single core of a 2

GHz processor; the resulting times would be reduced by

running multi-process fault-simulations.

It is worth to notice that the fault simulation time becomes

excessive if not implementing synchronization . As well,

the development order is important to minimize the fault

simulation efforts. Supposing again that level 2 branch A

has been considered before level 1 branch A, the saved

CPU time for fault simulation is decreased from about 37

to 34 hours, which is a negligible gain if compared to those

obtained by the proper ordering.

TABLE 4
CPU TIME COMPARISON FOR APPROACHES

WITHOUT AND WITH SYNCHRONIZATION

 Fault simulation time [hours]

1) without

synchro

 2) with

synchro

Saved

time

Level 1 Branch A 37 -

Level 1 Branch B 122 -

Level 2 Branch A 217 55 74.7%

Level 2 Branch B 72 23 68.1%

Level 3 630 195 69.0%

5.3 Test deployment during mission

The suite of test programs resulting from the development

phases described above is integrated in an industrial demo

project for STMicroelectronics. The project handles the

whole test set of programs by means of two software mod-

ules, and provides the project integrator with a software

Application Programming Interface (API), in order to in-

clude them in the mission application:

 Tests for power-on: 44 test program, including Non-

exceptive and Critical tests, scheduled by an ad-hoc

software module named Boot Time Self-Test Module

(BTSTM)

 Tests for Run-time: 29 Run-Time test programs han-

dled by an AUTOSAR 4.0 Complex Driver [26] named

CST Library.

Both CST Library and BTSTM provide configuration capa-

bilities at compile time, in such a way that the project inte-

grator can selectively activate all programs or a subset of

the entire su ite. It is up to the user of the API to choose

su itable test combinations and a scheduled execution order

to fu lfill the safety requirements of the system.

In the devised demo, after the execution of the tests for

power-on that takes about 0.7ms, the run-time tests were

scheduled according to some specific requirements for

mission integration:

 Self-test chunks must be less than 5µs long

 Self-test interrupts the mission application every

500µs.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2498546,
IEEE Transactions on Computers

BERNARDI ET AL.: DEVELOPMENT FLOW FOR ON-LINE CORE SELF-TEST OF AUTOMOTIVE MICROCONTROLLERS 11

Along mission, using the proposed demo setup, the overall

self-test length does not exceed 100µs and a complete self-

test is performed in less than 2ms. Availability of the mis-

sion application is reduced by around 1% even though that

self-test can be preempted at any time.

Along development, the dem o test su ite was encompass-

ing several verification and validation stages towards soft-

ware maturity, which were including embedded documen-

tation of the code by means of special comments (e.g., Dox-

ygen tags [27]) that are parsed by external tool for automat-

ically generating user manuals.

Test programs also provide services for returning test re-

sults, i.e., error codes such as AUTOSAR DEM errors and

malfunctioning signatures computed by the test programs

for successive inspection of failing chips. BTSTM assumes

that all the available processor functionalities can be exclu-

sively accessed for testing purposes; on the contrary, CST

Library has more restrictive requirements.

For validation sakes we finally conducted two kinds of ex-

periments emulating the in-field behavior of the system:

1) To verify the fault-free behavior, a sample OS was con-

sidered that was intensively triggering mission inter-

rupts while self-test executed at regular intervals as

described above; a physical target was programmed

with such a complete software environment and left

running for several hours, tracing the correctness of

the test responses and liveness of the system

2) To investigate on the robustness in case of faults, a spe-

cific fault injection campaign was performed by means

of complete simulation (i.e., without fault dropping) in

order to classify erroneous behaviors, as previously in-

troduced in section 3.3:

a) Self-test ends with a wrong signature

b) Self-test is not ending due to deadlock configura-

tion

c) Self-test ends with unattended exception manage-

ment due to

i) Illegal instruction execution

ii) Wrong branches in memory areas protected

by MPU configuration.

6 CONCLUSIONS

This work is proposing a development flow for the effec-

tive Software-Based Self-Test generation of test programs

to be run on-line during the mission of automotive envi-

ronment. The paper encompasses

 Identification of on-line constraints and implemented

solu tions

 Resources d istribution and generation order for a most

efficient and fast test program generation along the

various sub-modules of the entire processor

 Execution management of the SBST library and ro-

bustness of its execution

The case of study reported the final results related to a

SBST library generated for an industrial 32-bit processor

core included in an automotive System -on-Chip manufac-

tured by STMicroelectronics; the coverage figure obtained

in 1 year team working is more than 87% over around 750k

Stuck-at faults.

7 ACKNOWLEDGMENTS

The authors would like to thank Thomas Zsurmant, Re-

nato Meregalli and Giovanni Di Sirio at STMicroelectron-

ics, Matteo Sonza Reorda, Michelangelo Grosso, Lyl

Ciganda and Giovanni Squillero of Politecnico d i Torino,

Oscar Ballan when working a STMicroelectronics, for the

useful d iscussion and contributions to this work.

REFERENCES

[1] S.M. Thatte, J.A. Abraham, "Test Generation for Microproces-

sors", IEEE Transactions on Computers, vol.C-29, no.6, pp.429,441,

June 1980

[2] A. Paschalis, D. Gizopoulos, N. Kranitis, M. Psarakis, Y. Zorian,

‘‘Deterministic software-based self-testing of embedded proces-

sor cores’’, Design, Automation and Test in Europe (DATE), pp.92-

96, 2001

[3] C.H.P. Wen, Li.C. Wang, Kwang-Ting Cheng, "Simulation-Based

Functional Test Generation for Embedded Processors", IEEE

Transactions on Computers, vol.55, no.11, pp.1335-1343, November

2006

[4] M.A. Skitsas, C.A. Nicopoulos, M.K. Michael, "DaemonGuard :

OS-assisted selective software-based Self-Testing for multi-core

systems", IEEE Defect and Fault Tolerance in VLSI and Nanotechnol-

ogy Systems (DFT), pp.45-51, October 2013

[5] M. Psarakis, D. Gizopoulos, E. Sanchez, M. Sonza Reorda, ‘‘Mi-

croprocessor Software-Based Self-Testing’’, IEEE Design & Test of

Computers, vol.27, no.3, pp.4-19, May-June 2010

[6] F. Reimann, M. Glass, A. Cook, L. Rodríguez Gómez, J. Teich, D.

Ull, H .J. Wunderlich, U. Abelein, P. Engelke, "Advanced d iagno-

sis: SBST and BIST integration in automotive E/ E architectures",

ACM/EDAC/IEEE Design Automation Conference (DAC), pp.1-6,

June 2014

[7] K. Constantinides, O. Mutlu, T. Austin, V. Bertacco, ‘‘A flexible

software-based framework for online detection of hardware de-

fects’’, IEEE Transactions on Computers, vol.58, no.8, pp.1063-1079,

August 2009

[8] A. Paschalis, D. Gizopoulos, ‘‘Effective software-based self-test

strategies for on-line period ic testing of embedded processors’’,

IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol.24, no.1, pp.88-99, January 2005

[9] P. Bernard i, M. Grosso, E. Sanchez, O. Ballan, ‘‘Fault grad ing of

software-based self-test procedures for dependable automotive

applications’’, Design, Automation & Test in Europe Conference &

Exhibition (DATE), pp.1-2, March 2011

[10] ISO/ DIS26262, ‘‘Road vehicles --- functional safety’’, 2009

[11] PowerPC Embedded Application Binary Interface,

http:/ / www.freescale.com/ files/ 32bit/ doc/ app_note/ PPCE-

ABI.pdf

[12] S. Di Carlo, P. Prinetto, A. Savino, "Software-Based Self-Test of

Set-Associative Cache Memories", IEEE Transactions on Comput-

ers, vol.60, no.7, pp.1030-1044, July 2011

[13] A. Apostolakis, D. Gizopoulos, M. Psarakis, A. Paschalis, ‘‘Soft-

ware-based self-testing of symmetric shared -memory multipro-

cessors’’, IEEE Transactions on Computers, vol.58, no.12, pp.1682---

1694, December 2009

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2015.2498546,
IEEE Transactions on Computers

12 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

[14] G. Xenoulis, D. Gizopoulos, M. Psarakis, A. Paschalis, "Instruc-

tion-Based Online Period ic Self-Testing of Microprocessors with

Floating-Point Units", IEEE Transactions on Dependable and Secure

Computing, vol.6, no.2, pp.124-134, April-June 2009

[15] F. Corno, E. Sanchez, M. Sonza Reorda, G. Squillero, ‘‘Automatic

test program generation: a case study’’, IEEE Design & Test of

Computers, vol.21, no.2, pp.102-109, March-April 2004

[16] N. Kranitis, A. Paschalis, D. Gizopoulos, G. Xenoulis, ‘‘Software-

based self-testing of embedded processors’’, IEEE Transactions on

Computers, vol.54, no.4, pp.461-475, April 2005

[17] N. Kranitis, A. Merentitis, G. Theodorou, A. Paschalis, D.

Gizopoulos, ‘‘Hybrid -SBST Methodology for Efficient Testing of

Processor Cores’’, IEEE Design & Test of Computers, vol.25, no.1,

pp.64-75, January-February 2008

[18] M. Scholzel, T. Koal, H .T. Vierhaus, "Systematic generation of d i-

agnostic software-based self-test routines for processor com po-

nents", IEEE European Test Symposium (ETS), pp.1-6, May 2014

[19] P. Singh, D.L. Landis, V. Narayanan, "Test Generation for Precise

Interrupts on Out-of-Order Microprocessors", IEEE International

Workshop on Microprocessor Test and Verification (MTV), pp.79-82,

December 2009

[20] E. Sanchez, M. Sonza Reorda, ‘‘On the Functional Test of Branch

Pred iction Units’’, IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol.PP, no.99, pp.1-1

[21] D. Sabena, M. Sonza Reorda, L. Sterpone, ‘‘A new SBST algo-

rithm for testing the register file of VLIW processors’’, Design,

Automation & Test in Europe (DATE), pp.412-417, March 2012

[22] P. Bernard i, L. Ciganda, M. De Carvalho, M. Grosso, J. Lagos-Be-

nites, E. Sanchez, M. Sonza Reorda, O. Ballan, ‘‘On-line software-

based self-test of the Address Calculation Unit in RISC proces-

sors’’, IEEE European Test Symposium (ETS), pp.1-6, May 2012

[23] P. Bernard i, R. Cantoro, L. Ciganda, B. Du, E. Sanchez, M. Sonza

Reorda, M. Grosso, O. Ballan, ‘‘On the Functional Test of the Reg-

ister Forward ing and Pipeline Interlocking Unit in Pipelined

Processors’’, IEEE International Workshop on Microprocessor Test

and Verification (MTV), pp.52-57, December 2013

[24] P. Bernard i, R. Cantoro, L. Ciganda, E. Sanchez, M. Sonza Re-

orda, S. de Luca, R. Meregalli, A. Sansonetti, ‘‘On the in-field

functional testing of decode units in pipelined RISC processors’’,

IEEE International Symposium on Defect and Fault Tolerance in VLSI

and Nanotechnology Systems (DFT), pp.299-304, October 2014

[25] P. Bernard i, C. Bovi, R. Cantoro, S. De Luca, R. Meregalli, D. Pi-

umatti, E. Sanchez, A. Sansonetti, "Software-based self-test tech-

niques of computational modules in dual issue embedded pro-

cessors", IEEE European Test Symposium (ETS), pp.1-2, May 2015

[26] AUTOSAR web-site: http:/ / www.autosar.org/

[27] Doxygen web-site: http:/ / www.stack.nl/ ~dimitri/ doxygen/

Paolo BERNARDI (S’03–M’06) received the M.S. and Ph.D. degrees
in Computer Science from Politecnico di Torino, Torino, Italy, in 2002
and 2006, respectively. Since 2001, he has been with the Department
of Computer Engineering, Politecnico di Torino, where he is currently
an Associate Professor. His interests cover the areas of testing of
electronic circuits and systems and the design of fault-tolerant elec-
tronic systems. Dr. Bernardi is a member of the IEEE Computer Soci-
ety.

Riccardo CANTORO received the M.Sc. degree in Computer Engi-
neering from Politecnico di Torino, Torino, Italy in 2013. Since 2014,
he is a Ph.D. student in the Department of Computer Engineering,
Politecnico di Torino. His main research topic is microprocessor test-
ing.

Sergio DE LUCA Team leader, project leader and Functional Safety
expert at the STMicroelectronics; embedded software development
for Automotive system-on-chip and real-time applications.

Ernesto SANCHEZ received his degree in Electronic Engineering
from Universidad Javeriana, Bogota, Colombia in 2000. In 2006 he
received his Ph.D. degree in Computer Engineering from the Politec-
nico di Torino, where currently, he is an Associate Professor with Di-
partimento di Automatica e Informatica. His main research interests
include microprocessor testing and evolutionary computation.

Alessandro SANSONETTI manages ST’s Automotive Product Group
software design teams based in Italy (Agrate B.za, Naples and Cata-
nia) and in France (Le Mans). He has participated as an active mem-
ber of the AUTOSAR consortium as SPI document owner. Sansonetti,
who has worked at ST since 1996, graduated in computer science at
the University of Milan.

