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Development Flow for On-Line Core Self-Test 
of Automotive Microcontrollers 

Paolo Bernardi, Member, IEEE, Riccardo Cantoro, Student Member, IEEE, Sergio De Luca,  

Ernesto Sánchez, Senior Member, IEEE,  Alessandro Sansonetti 

Abstract— Software-Based Self-Test (SBST) is an effective methodology for devising the on-line testing of Systems-on-Chip 

(SoCs). In the automotive field, a set of SBST programs to be run during mission mode is also called Core Self-Test (CST) library. 

This paper introduces many new contributions: (1) it illustrates the several issues that need to be taken into account when 

generating test programs for on-line execution; (2) it proposed an overall development flow based on ordered generation of test 

programs that is minimizing the computational efforts; (3) it is providing guidelines for allowing the coexistence of the CST library 

with the mission application while guaranteeing execution robustness. The proposed methodology has been experimented on a 

large industrial case study. The coverage level reached along 1 year of team work is over 87% of Stuck-At fault coverage and 

execution time is compliant with the ISO26262 specification. Experimental results show that alternative approaches may request 

excessive evaluation time thus making the generation flow unfeasible for large designs. 

Index Terms— Microprocessors and microcomputers, Reliability and Testing, Software-Based Self-Test 

------------------------------------------------------------      ------------------------------------------------------------ 

1 INTRODUCTION

he d iffusion of electronic systems in the automotive 

field  is increasing at a fast pace, and car makers con-

stantly demand from electronic manufacturers for faster, 

less expensive, less power-consuming and more reliable 

devices. Microprocessor-based systems are employed in 

cars for a great variety of applications, ranging from info-

tainment to engine and vehicle dynamics control, includ-

ing safety-related  systems such as airbag and braking con-

trol. 

The use of such devices in safety- and mission-critical ap-

plications raises the need for total dependability. This re-

quirement translates in a series of system audit processes 

that need to be applied  throughout the product lifecycle. 

Some of these processes are common in today ’s industrial 

design and manufacturing flow s, and include risk analysis, 

design verification and validation, performed since the 

early phases of product development, as well as various 

test operations during and at the end of manufacturing and 

assembly steps. Increasingly often, additional test opera-

tions need  to be applied  also during the product mission 

life, and may include periodic on-line testing and/ or con-

current error detection. The reliability requirements need 

to be met by trading off fault/ error coverage capabilities 

with admissible implem entation costs of the selected  solu-

tions. 

Within the scope of microprocessor-based integrated  sys-

tems, the Software-Based Self-Test (SBST) approach has 

been addressed  for a long time by d ifferent teams in the 

research community [1][2][3]. SBST techniques basically 

consists in letting the CPU running a sequence of code 

words dedicated  to excite and propagate to error the larg-

est set of faults possibly affecting the circuit [4]. Compared 

to hardware-based test solu tions, such as Built-In Self-Test 

(BIST), it presents many advantages, including the possi-

bility of autonomously testing [5] and d iagnosing [6] both 

the microprocessor and the controllable peripherals in nor-

mal mode of operation, without introducing any hardware 

modifications, and at-speed test application (i.e., at the cir-

cuit nominal frequency). Nonetheless, SBST methodolo-

gies raise some issues that have been limiting their appli-

cation in industry throughout the years: those issues re-

gard  writing efficient and effective test programs and de-

vising suitable methodologies for test application. 

While in the manufacturing test arena BIST solu tion are of-

ten preferred  because achieving high coverage in a short 

time and with a simple development flow, regarding on-

line test application, SBST is standing up as the preferable 

solu tion for periodically monitor the system health with-

out inferring the normal mission behavior [7][8]. A recog-

nized  solu tion adopted  by the industry relies in periodic 

test application of a Core Self-Test (CST) library composed  

of SBST test programs. As depicted  in figure 1, the micro-

processor is periodically forced  to execute a self-test code 

able to detect the possible occurrence of permanent faults 

in the processor core itself and the peripherals connected  

to it. Such procedures are specifically tailored  to activate 

possible faults and  then compress and store the self-test re-

sults in an available memory space or raising a signal when 

the test has not ended correctly. 

As far as test program generation is concerned, many ap-

proaches can be found in the literature, employing manual 

or automated  approaches, which are su ited  to target d iffer-

ent processor architectures and fault models as described 

in [4]. However, setting up an efficient CST development 
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flow implicates a number of additional issues to be solved 

regarding test program generation, organization and grad-

ing [9]. Coping with such on-line requirements means in-

troducing additional ru les to be respected  along test pro-

gram generation and additional code parts need to be 

added, that may impact on the CST development time.  

[CPU time]
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Self-Test 
chunk 

1

Self-Test 
chunk 
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Key-on
full Self-Test 

Power-down
full Self-Test 

Mission
application

 

Fig 1: On-Line Self-Test application example. 

This paper presents an innovative and  comprehensive ap-

proach for the development of a CST library for micropro-

cessors in safety-critical au tomotive embedded systems to 

be integrated  in the Operating System. The pursued goal is 

to satisfy the reliability requirements given by emerging 

standards such as ISO 26262 [10], which mandates a con-

stant monitoring for the possible occurrence of permanent 

faults in the circuit along its mission life.  

The technical content of the paper deals with the most rel-

evant aspects of on-line test programs characteristics and  

development flow. The paper progresses the state-of-the-

art by describing and d iscussing:  

1. The constraints to be taken into account when gener-

ating self-test programs to be run on-line;  

2. The requirement for a robust on-line execution of self-

test programs in coexistence with  an embedded oper-

ating systems; 

3. An effective development flow organization aim ing at 

minimizing the computational efforts.  

The paper is finally showing the results that have been col-

lected  on an industrial case study. The impact of on-line re-

quirements is evaluated  on a very large 32-bit microproces-

sors embedded in an automotive Systems-on-Chip manu-

factured  by STMicrolectronics. Code overheads and adap-

tation toward  on-line of the generation strategies are re-

ported; experimental results are also showing how the de-

velopment of a CST may become unfeasible on processors 

with a significant d imension , unless planning for a proper 

resource partitioning and order in the CST creation. 

The rest of the paper is organized  as follow ing: Section 2 

describes the on-line constraints that are encountered  

while generating test programs. Section 3 details the char-

acteristics a test program should  own for guaranteeing ro-

bustness and fu ll compliancy with the OS. Section 4 is il-

lustrating an effective development flow  suitable for large 

microcontrollers. Section 5 is showing experimental results 

and section 6 is drawing conclusions. 

2 CORE SELF-TEST GENERATION CONSTRAINTS 

Software-Based Self-Test is widely perceived as proper 

method for an accurate and non-invasive autonomous test. 

In a few words, a test program is made running and sig-

naling misbehavior by simply exercising the processor 

functionalities. This process intrinsically respects power 

constraints since the test programs make the processor to 

work under the same conditions available in the mission 

mode; they do not ask for additional test circuitries, and 

are quite cheap in terms of features and commodities re-

quired  to the test equipment.  

When dealing with Core Self-Test, which has to be applied  

on-line, the test programs have to share processor re-

sources with the mission application, i.e., the Operating 

System (OS) who is managing mission tasks; this coexist-

ence introduces very strong limitations compared to man-

ufacturing tests through SBST: 

1. Cores Self-Test programs need to be compliant with a 

standard  interface, enabling the Operating System to 

handle them as normal processes. This interface must 

guarantee processor status preserving and restoration, 

even in case of higher priority requests (e.g., preemp-

tion); 

2. The CST programs need to be generated  following ex-

ecution time constraints, due to the resources occupa-

tion that can be afforded by the mission environment . 

In particular, this is strictly required  when a test cannot 

be interrupted  because using critical resources (i.e., 

special purpose registers); 

3. There is a strong limitation in terms of memory re-

sources usage, due to the mission code and data char-

acterizing the OS. To face front this issue, it is recom-

mended to  

- Provide the CST as a set of precompiled  programs 

stored  in binary images to be run along mission 

mode, possibly scheduled  and loaded by the op-

erating system; 

- Not to refer to any absolu te addresses when 

branching, meaning that the test code can be 

stored  anywhere in the memory for being eventu-

ally copied  and lau nched from other locations 

without any functional or coverage drawback; 

- Not to refer to absolu te addresses when accessing 

to the data memory; 

- Identify possible memory constraints from the 

point of view of the OS restrictions, and indispen-

sable locations to be reserved  for test purposes.  

It is fair to say also that, targeting effort reduction, the test 

should  be created  also taking into account the characteris-

tics of the general processor family, in order to reduce code 

modifications when transferring the CST library to another 

processor core belonging to the same family architecture. 

The next paragraphs face these questions and  provide 

some guidelines for easily taking early decisions.  
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3 CORE SELF-TEST EXECUTION MANAGEMENT 

As briefly described in the introductory section, the inclu-

sion of SBST routines in the mission environment is a criti-

cal issue. To face front the problematic aspects of this inte-

grations, we propose to consider three major points be-

yond generation, which are related  to test program execu-

tion: 

 Cooperation with other software modules, usually re-

lated  to the mission environment such as the OS 

 Context switching and result monitoring 

 Robustness in case of faulty behavior, which is strictly 

related  to interruption management.  

3.1 Test encapsulation 

Considering the cooperation with other software modules, 

such as the threads launched by the OS, the test program 

suite needs to be constructed  by including key features en-

abling the test to be launched, monitored  and eventually 

interrupted  by higher priority processes of the mission 

management system. 

Figure 2 is graphically depicting how the test program is 

structured  and which memory and peripheral resources 

need to be configured  for test purposes. The test programs 

are normally stored  and executed  in the Flash memory. 

First of all, in order to be compliant with the mission soft-

ware environment, a viable and strongly suggested  solu -

tion is the adoption of the Embedded-Application Binary 

Interface (EABI) [11], which specifies standard  conventions 

for file formats, data types, register usage, stack frame or-

ganization, and function parameter passing of a software 

program. Thus, every test program includes an EABI pro-

logue and epilogue, in charge of saving and restoring the 

mission status. 

Having the EABI frame created  by the test code at its be-

ginning, any scheduler can launch the test execution, e.g., 

the scheduler available in the OS hosting the test routine. 

Moreover, we propose the inclusion of extra information 

needed to setup a proper running environment by a spe-

cific test scheduler. 

Additional test information encompasses: 

 Stack frame size 

 Special purpose register setup, 

 Memory protection setup and  

 Test duration. 

These metadata are used  by the test program for the setup  

1) Duration time (i.e., watchdog setup) 

2) Stack frame size (i.e., space available for mission con-

figurations to be saved and local variables of the test 

program) 

3) Processor setup (i.e., special purpose register ad -hoc 

values) 

4) Memory configuration (i.e., virtual memory initializa-

tion) 

5) Memory protection (i..e, to manage wrong memory ac-

cesses through exceptions) 

and at the test program execution end  

6) Signature check.  

Such a memory structure can be also stored  in the mass 

memory until it is loaded to be run from any portion of the 

available memory, according to the features already de-

scribed in section 2 (i.e., relocation). 
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Fig. 2. Test program encapsulation and loading for execution phase. 
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Fig. 3. Expected and unexpected exception management scenario. 

3.2 Context switching to test procedure 

Test programs structured  as described section 3.1 are prone 

to be integrated  in any Operating System as normal system 

tasks. Proper context switching is mainly afforded by the 

EABI interface; additional setup may vary according to the 

characteristics of test program and it is managed by the test 

programs exploiting metadata. 

We identify three general cases, each one demanding for 

proper metadata to be used  in setup procedures: 

 Run-time tests: usually devised  to cover computa-

tional modules such as arithmetic modules, can be in-

terrupted  by mission requests. 

 Non-exceptive tests: require the manipulation of SPR 

register for testing sakes, such as for testing the Regis-

ter File 

 Critical tests: are intentionally raising interrupts and  

make use of peripheral cores for testing sakes. 

Run-time tests are the easiest to manage: they only require 

creating a stack frame according to EABI compliancy; stack 

frame size is minimal. It is suggested  to execute this kind  

of tests with low privileges, i.e., user mode, because they  

will never request interruptions or privileged instruction 

execution in the good (not faulty) scenario. No other spe-

cial setup is required . EABI compliancy can be satisfied  

during the overall execution, meaning that another OS 

thread can preempt the test execution. 

Non-exceptive test are less easy to manage because they 

use resources that are not allowed to be d irectly used  in the 

EABI context, e.g., special purpose registers. For this cate-

gory, additional setup steps have to be executed  before 

running the test 

 

 To disable the external interrupts in order to avoid  

preemption 

 To save all special and general purpose registers in a 

larger stack frame memory area and  

 To modify their content according to the processor 

setup information. 

As well, some closing operations are needed at the conclu-

sion of the test execution to restore the initial configuration. 

Along the execution of these tests, no preemption is al-

lowed because the compliancy with the EABI standard  

cannot be guaranteed . 

When considering Critical tests, more restrictive requests 

have to be accomplished. Other than saving-restore all reg-

isters and d isable external interrupt sources, more infor-

mation need to be saved, such as 

 The Interrupt Vector Table (IVT) and the related  regis-

ters in case an alternative IVT is required  for testing 

purposes 

 The current status and control registers of the used  pe-

ripheral modules, such as the interrupt controller con-

figuration and the MMU. 

3.3 Interruption management and robustness 

Interrupt mechanisms, which are managing synchro-

nous and asynchronous exceptions, need to be handled 

with extreme care, because they are not only intentionally 

raised  for testing purposes. There are three types of excep-

tion in our view: 

 Intentionally provoked exceptions, i.e., to test proces-

sor exceptions  

 Unexpected , induced by an erroneous execution that 

is provoked by a faulty configurations 

 Mission mode interruptions. 
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Intentionally provoked interruptions can be synchronous 

or asynchronous. Situations like system calls, illegal 

memory access, illegal instructions and privilege related  

operations are synchronous, since they have to be forced 

by the code itself. Contrarily, the asynchronous category is 

raised  by means of peripheral cores. 

To test exceptions it is therefore necessary both to induce 

exceptions to rise and to manage them. The mechanism is 

graphically shown in figure 3. If the circuitries managing 

the interrupt have not been corrupted  by a fault, each sin-

gle forced  exception is correctly managed, meaning that a 

test specific Interrupt Service Routine (ISR) is accessed . 

Such an ISR is configured  along the scheduling execution 

and it is replacing the mission one.  

The code included in the ISR is also responsible for accu-

mulating significant contents into the signature, e.g., the 

status registers. In presence of a fault, this standard  execu-

tion flow may be d iverted  in such a manner that an excep-

tion was intentionally scheduled  but it is not raised . In this 

case, the signature update is not performed and the test, at 

the end, is not producing the right signature value. 

Furthermore, the exception management is also crucial for 

facing flow deviations due to any kind of fault leading to 

an unexpected  processor internal status and bringing to 

unexpected  synchronous interruptions. Typical cases are 

legal to illegal instruction format, illegal memory access 

protected  by memory protection unit mechanism. If this 

situation is occurring during the execution of any test pro-

gram, the test ISR should  ideally be able to recover such a 

deviation and to record  the wrong behavior observed . 

Some counter measurement can be adopted  to identify un-

expected  interrupt requests, such as performing an asser-

tion in the ISR prologue to check a password stored  into a 

GPR before the interrupt is intentionally raised . A similar 

method is implemented  for checking the correct return 

from interrupt, e.g., by completing the test execution with 

an assertion. 

This technique is making the test code quite robust, but 

more work is needed if the processor status become unsta-

ble, resu lting in spurious and repeated  exceptions as well 

as infinite loops. In the latter case, an external mechanism 

have to be implemented  in order to move the system into 

a safe status, i.e., by watchdog timer. 

These cases are shown in figure 5, where solid  lines are 

showing expected  interrupts while dashed are showing the 

effect in case the processor status is unstable. Along run-

time test programs, mission interrupts need to be identi-

fied  and served as soon as possible, i.e., passed  to the OS. 

By following the EABI standard , it permits to easily man-

age this case. 

4 CORE SELF-TEST DEVELOPMENT FLOW 

The major cost and issue in the development flow of a Core 

Self-Test is constitu ted  by the computational effort re-

quired  to proceed in a quick generation of the test program 

suite. In particular, the fault grading process [9], which has 

to be performed to evaluate the goodness of a test program 

in fault detection, represents a severe bottleneck. This cost 

is weigh down by test program infrastructure described in 

the previous paragraphs and required  by the on -line exe-

cution. 

For instance, ju st to give the reader an idea about this cost, 

for a medium sized  embedded processor with about 200k 

stuck-at faults, the required  time for fault simulating a 1ms 

program may ask up to 3 days by using a 2GHz quad -core 

workstation running 4 fault simulation processes in paral-

lel. 

This cost becomes unsustainable if the generation process 

is iterative [15] and produces many programs to be graded 

before achieving a good coverage. 

Therefore, we propose a methodology for achieving a de-

velopment time reduction and resources optimization 

based on the following principles: 

1. The embedded processor cannot be tackled  as a 

unique module, but it is better to consider its sub-mod-

ules separately (e.g., ALU, CTRL Unit, etc.) meaning 

that the processor fault universe is selectively d ivided 

into several smaller fault lists for being effectively at-

tacked while generating the test programs; 

2. By facing modules separately, it facilitates paralleliza-

tion of the development process whether many work-

stations/ test-engineers are available (see more details 

in 4.1);  

3. By developing a test for a specific sub-module, it is 

likely to have a side-effect that is the coverage of faults 

belonging to other sub-modules;  

The strategy we propose is based  on these principles and 

it consists on the iterated  execution of two steps until all 

sub-modules are considered: 

 To generate (possibly in parallel) the test programs for 

a set of carefu lly selected  sub-modules (see more de-

tails in 4.2) until these are sufficiently covered  

 To perform synchronization among the d ifferent test 

programs to evaluate their effectiveness over a larger 

fault list; to synchronize means to grade test programs 

generated  for a specific sub-module over a d ifferent 

(larger) sub-module list. 

A simplified  illu stration of the proposed  flow is shown in 

figure 4, which considers a microprocessor (CPU) com-

posed of four modules (s1 to s4). In the first step shown by 

figure 2.B, two modules (s3 and s4) are considered  in par-

allel and graded separately, i.e., during the generation pro-

cess for module s3 only its own faults are considered . As 

soon as the coverage of these sub-modules is satisfactory, 

the generated  test programs are graded over the other 

parts of the CPU as shown in figure 2.C; this synchroniza-

tion step brings to observe a positive side-effect on the cov-

erage of modules s1 and s2, as well as on s3 when grading 

the test program for s4, and vice versa. A new generation 

step is then started  on s1 and  s2; as depicted  in figure 2.D; 

it is worth to mention that the previous steps were benefi-

cial because the starting fault lists of s1 and s2 have been 

lightened before facing their generation process. 
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Fig 4: Sub-module identification and visualization of the coverage figure evolution along the proposed generation steps. 

 

The advantage of using this approach is mainly resulting 

in a faster development of the test su ite because 

 The fault lists to be considered  are significantly smaller 

than the complete fault list, resulting in a faster fault 

grading that usually takes in the order of minutes to 

complete; 

 After each synchronization step, the number of active 

faults in new sub-modules is reduced, again leading to 

a speed-up of the fault simulation process. 

 

4.1 Resources partitioning 

As briefly stated  in the previous paragraph, the processor 

d ivision into sub-modules permits to consider many inde-

pendent fault lists in parallel; their selection is the major 

issues in the preliminary phase preced ing the generation 

effort. 

For being independent, fault lists need to be 

 non-overlapping: one fault has to belong to only one 

fault list 

 functionally orthogonal: faults in the same independ-

ent fault list need to belong to modules related  to one 

specific functionality 

The non-overlapping criteria requires that the same fault 

have to be considered  only one time in the process; on the 

other hand, when dealing with orthogonality, a fault needs 

to be included in the most relevant fault list from the point 

of view of the functionality of the related  gate. 

The process of selecting the set of fault lists is not trivial. In 

our flow, this process is accounting on: 

 Manuals and documentation of the microcontroller 

with specific indications about the micro-architecture 

 Hierarchy of the microcontroller netlist  

 Test engineer expertise. 

To identify independent fault lists 

 Analysis of the processor functionalities 

 Mapping of the functionalities over the microcontrol-

ler hierarchical netlist. 

It is likely that most of the fault lists derive from specific 

modules, but it is also frequent that many sub-modules 

need to be squeezed into a single fault list when related  to 

the same processing functionality. As an example, the 

faults of a multiplication un it usually constitu te an inde-

pendent fault list. On the contrary, there are several multi-

plexers that seem to be independent netlist modules, but 

these ones actually compose the feed -forwarding logic in 

the processor pipeline; thus, faults belonging to these mul-

tiplexers have to be grouped into the same fault list, which 

is functionally orthogonal and non-overlapping with other 

modules. 

Concerning computational resources allocation, once the 

independent fault lists have been identified , for maximiz-

ing the number of fault lists to be considered  in parallel: 

 A single sub-modules coverage calculation on a single 

or many fault grading threads according to  

- Number of available threads per CPU; 

- Number of EDA tool licenses; 

- Fault list size 

 Result synchronization by using many threads. 

4.2 Optimized test programs generation order 

Based on the side effect principle described above, it is cru -

cial to select the most promising order to proceed in the test 

program generation. The decision needs to be tailored  on 

the specific architecture under analysis. 

In the following, we propose some general guidelines for 

determining the test program generation order consider-

ing the most common and widely used  microprocessor ar-

chitectures for automotive. 

In our development flow, we organize the generation order 

according to horizontal and vertical flow ru les.  

Vertical flow ru les demand to split the flow into consecu-

tive levels, such that by testing all the modules into a given 

level, a large positive side-effect in terms of fault coverage 

is observed when moving to the next level. We are cur-

rently proposing to d ivide the flow into levels according to 

the following ru les: 

1) to consider first those units that can be mapped on spe-

cific assembly instructions or specific architectural 

programming mechanisms;  

2) to continue with memorization and control flow re-

sources; 

3) to conclude with modules which functionalities are 

transparent to the programmer. 
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According to the presented  strategy, a synchronization step 

is needed after completion of the currently considered  

level before moving to the next; this synchronization step 

involves all sub-modules of the next level, i.e., to reduce 

the size of the fault lists to be considered  successively. 

By looking at the problem in a horizontal manner, it is also 

possible to identify many parallel branches which are still 

complying with vertical requirements. This horizontal 

view consists in identifying branches, so that a negligible 

side-effect crosses branches belonging to d ifferent horizon-

tal views. 

Based on the aforementioned ru les, for a typical automo-

tive-oriented  architecture, we individuate a development 

flow based on 3 levels and  2 branches. However, additional 

branches can be added when considering microprocessors 

equipped  with special features, e.g., caches [12], shared  

memory schemes [13], and Floating-Point unit [14]. 

We suggest considering two categories of sub-module by 

first: 

level 1 --- branch A) ALU sub-modules: easy to test, 

they ask for the execution of specific arithmetic and logical 

instructions. Side effect is maximized  towards the REGIS-

TER FILE by an accurate selection of registers to be used  as 

operands and in the control flow management. 

level 1 - branch B) SPECIAL sub-modules: they en-

compass Exceptions Management, Branch Prediction and  

Virtual Memory related  modules, e.g., the Memory Man-

agement Unit (MMU) module. These sub-modules are 

hard  to cover, requiring specific instructions and sequences 

of instructions. They will produce a very large positive 

side-effect on ADDRESS related  modules. 

As shown in figure 5, once a sufficient coverage on these 

sub-modules is reached, it is suggested  to proceed in a syn-

chronization process. The set of programs developed for 

1A) are evaluated  on the REGISTER FILE fault lists, while 

1B) is graded on the ADDRESS related  modules. As a re-

sult, the number of active faults to be then considered  is 

greatly reduced. 

level 2 --- branch A) REGISTER FILE: the test of the 

register file is straightforward , being many papers describ-

ing effective sequences to test. In the proposed generation 

method, it is suggested  to reorder instructions and oper-

ands in order to induce the usage of DATA DEPENDENCY 

structures in the PIPELINE. 

level 2 --- branch B) ADDRESSING modules: by 

having completed  1B), the most of the faults included in 

the ADDRESS related  modules, such as Branch unit, Effec-

tive Address calculation, and  Program Counter, are result-

ing as already covered . This step is therefore a completion 

of the previous one, which is done mainly by adding 

memory operation and branches to specific addresses.  

A synchronization step is then operated  on the PIPELINE 

and  CONTROL UNIT modules, followed by level 3 with 

no more branches, which consists on an ad -hoc generation 

step for these level modules. 

To complete the process, the entire test su ite obtained along 

this process is evaluated  on the whole processor fault uni-

verse, eventually by adding refinement programs to cover 

corner cases and specific configurations not considered  

along the previous steps. 

ALU sub-modules

ADDER
(ARITH)

MUL DIV
LOGIC

SHIFTERS

Synchro

REGISTER FILE

REGISTER
BANK

MUX-DECODER
(R/W PORTS)

SPECIAL sub-modules

EXCEPTIONS MMU
BRANCH

PREDICTION

Synchro

Synchro

ADDRESSING

ADDER
(EFFECTIVE ADDR)

PROGRAM
COUNTER

PIPELINE - CONTROL UNIT 

FETCH
PRE-FETCH

MUX-DECODER
(DATA DEPENDENCY)

DECODE LOAD/STORE

Synchro

FINAL  REFINEMENT

1A)

2A)

1B)

2B)

3) FLAGS

HORIZONTAL rules - BRANCHES

V
ERTICA
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Fig. 5. Proposed test program development order organized in levels and branches, and synchronization steps. 
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5 RESULTS ON A 32-BIT AUTOMOTIVE DEVICE 

In order to assess its effectiveness, the methodology herein 

introduced has been applied  to a SoC including a 32-bit 

pipelined  microprocessor based  on the Power Architec-

ture™. The SoC is employed  in safety-critical au tomotive 

embedded systems, such as airbag, ABS, and EPS control-

lers and is currently being manufactured  by STMicroelec-

tronics. 

5.1 Case of study 

The microcontroller ’s cost-efficient processor core is built 

on the Power Architecture technology and designed spe-

cifically for embedded applications. The processor inte-

grates a pair of integer execution units, a branch control 

unit, instruction fetch unit and load/ store unit, and a 

multi-ported  register file capable of sustaining six read  and 

three write operations per clock. Most integer instructions 

execute in a single clock cycle. Branch target prefetching is 

performed by the branch unit to allow single-cycle 

branches in many cases. It contains a Memory Manage-

ment Unit and A Nexus Class 3 module is also integrated . 

The 32-bit processor u tilizes a five-stage pipeline for in-

struction execution. These stages are: 

 Instruction Fetch (stage 1) 

 Instruction Decode/ Register file Read/ Effective Ad-

dress Calculation (stage 2) 

 Execute 0/ Memory Access 0 (stage 3) 

 Execute 1/ Memory Access 1 (stage 4) 

 Register Write-Back (stage 5) 

The stages operate in an overlapped fashion, allowing sin-

gle clock instruction execution for most of the available in-

structions.  

The integer execution unit consists of a 32-bit Arithmetic 

Unit (AU), a Logic Unit (LU), a 32-bit Barrel shifter 

(Shifter), a Mask-Insertion Unit (MIU), a Condition Regis-

ter manipulation Unit (CRU), a Count-Leading-Zeros unit 

(CLZ), a 32x32 Hardware Multiplier array, and result feed -

forward  hardware. Integer EU1 also supports hardware d i-

vision. Most arithmetic and logical operations are executed  

in a single cycle with the exception of multiply, which is 

implemented  with a 2-cycle pipelined  hardware array, and 

the d ivide instructions. A Count-Leading-Zeros unit oper-

ates in a single clock cycle. 

Two execution units are provided to allow dual issue of 

most instructions. Only a single load/ store unit is pro-

vided, and  only a single integer d ivide unit is provided , 

thus a pair of d ivide instructions cannot issue simultane-

ously. 

5.2 Experimental results 

Along one year of team work, we collected  results of a 

wide number of modules. To test processor through soft-

ware is a deeply explored  field ; therefore in many cases the 

technique u tilized  has been borrowed from the literature 

and adapted  to cover the specific modules of the consid -

ered  processor core. Table 1 reports the list of generation 

techniques employed to achieve the high fault coverage of 

each processor sub-module. On selecting these techniques, 

we resort to some of the most important proposals regard -

ing test program generation  available in today’s literature.  

Concerning automatic approaches, we resorted  to both 

ATPG-based  techniques, and optimization techniques 

based on Evolutionary algorithms. Some other techniques 

(labeled  as Deterministic) refer to available solu tions that 

exploit the sub-module regularity in order to propose a 

well-defined  test algorithm. Finally, rows labeled  as Man-

ual refer to pure manual strategies performed by the test 

engineer exploiting the processor user manual, the ISA, as 

well as the available HDL processor descriptions.  

As stated  in section 2, the test duration and size of each 

single test program are on-line requirements that may vary 

depending on the mission application and physical limits 

of the microcontroller (e.g., the memory space available). 

In our case study, the limitations were given both in terms 

of duration of single programs and overall occupation of 

the complete test su ite. In particular, the maximum dura-

tion of a single program labeled  as run -time test should  not 

exceed 512 clock cycles, while the FLASH memory area re-

served for test purposes was limited  to 256kB. 

To match these constraints, every kind  of generation 

method needs to be tailored  opportunely:  

 ATPG-based  generation methods can be constrained  

by asking the automatic engine for high compression 

and limiting the generation to a maximum number of 

patterns; the generated  patterns may be eventually 

transformed  into many test programs compliant with 

duration constraints. 

 Fitness values used  along Evolutionary computation 

experiments include program size and length meas-

urement; in such a way, the programs exceeding the 

imposed limitations were d iscarded; 

 Deterministic and manual require additional efforts by 

the test engineer to fit the programs length and size; 

more easily, if too long they can be split into several 

shorter programs. 

Code characteristics fitting on-line requirements were also 

considered  in all cases, such as having relocatable code (ab-

solu te branches and access by absolu te address to memory 

locations are not allowed) and resorting to limited  portion 

of memory space (1kB) reserved for testing sake.  

As described in section 3, each generated  program is en-

capsulated  into the EABI standard  frame and includ es the 

additional code sequences that guarantee the test robust-

ness. For the current case of study, the EABI compliant 

frame is accounting for very few instruction s at the begin-

ning of procedures (e.g., 3-5 instructions); this number in-

creases whereas:  

 extra registers have to be saved  before being used  and 

finally restored  to their original values (e.g., non-vola-

tile register or special purpose registers such as the Mi-

croprocessor Status Register) 

 memory resources need to be protected  (e.g., Memory 

Protection Unit is exploited ) 

 peripheral microcontroller resources need to be pro-

grammed for test robustness (e.g., watchdog timers). 
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TABLE 1 
SBST STRATEGIES USED ALONG THE GENERATION PROCESS 

Sub-module Technique References 

Arithmetic adders 

Division unit 

Logic unit 

Multiplication unit 

Shifters 

Deterministic + 

Constr. ATPG + 

Evolutionary 

[15][16] 

[17][18] 

Exceptions Manual [19] 

Branch Unit Deterministic [20] 

Timers Manual  

Register bank Deterministic  [21] 

Register ports Deterministic [21] 

EA adder 

Load store unit 

program counter 

Loop-based +  

Evolutionary +  

Manual  

[22] 

Forward unit  Deterministic  [23] 

Decode unit 

Status/control flags 

Deterministic  
[24] 

Fetch unit Deterministic  [25] 

The number of additional instructions required  to afford  

robustness other than raw compliancy with EABI stand-

ards are about 20 instructions. Additionally, to further en-

force robustness, additional instructions were added when 

a context switching is purposely forced through exception  

for testing reasons. Concerning the development flow, the 

fault list generation and the adopted  generation order fol-

lows the generic indications provided in section 4. 

The fault lists were generated  mainly according to the pro-

cessor functionalities which are d irectly related  to specific 

modules in the netlist hierarchy. There are some exceptions 

since the considered  microcontroller is dual issue and rep-

licated  arithmetic modules, such as the adders, were con-

sidered  as a unique fault list; in a d ifferent way, the data-

forward ing unit is composed of several multiplexers, 

which faults are jointly considered . Another interesting 

case of resource partitioning is related  to the multi-port 

register file that is contributing with two fault lists, the reg-

ister bank and the register ports (decoders and multiplex-

ers); this is due to both the fault list size that we need to 

split, and  the d ifferent functionalities. 

Table 2 shows the evolution of the coverage along the de-

velopment flow. The final fault coverage reached was 

87.23% of the fault list that includes around 750k stuck-at 

faults.  

There are modules not highly covered: 

 Exception management modules, because it is not pos-

sible to purposely exercise all of them (e.g., it is not 

possible to forcing a bus error which is asking the ex-

ception unit to intervene) 

 Branch prediction, program counter and load/ store 

units; due to the memory mapping configuration of 

the specific system-on-chip, not all bits in the address-

ing registers can be functionally touched. 

 Status and control flags, since many of these flags can-

not be used  because controlling circuitries outside the 

processor core.

TABLE 2 
COVERAGE EVOLUTION ALONG THE DEVELOPMENT FLOW. 

Sub-module #faults 

Single 
1A 

 
FC [%] 

Synchro 
1A 

 
FC [%] 

Single 
1B  

 
FC [%] 

Synchro 
1B  

 
FC [%] 

Single 
2A  

 
FC [%] 

Single 
2B 

 
FC [%] 

Synchro 
2A+2B 

 
FC [%] 

Single 
3 
 

FC [%] 

Synchro 
3 
 

 FC [%] 

Arithmetic adders 5,996 95.03 97.93 -- -- -- -- 98.27 -- 98.52 

Divider 19,018 83.98 83.98 -- -- -- -- 83.99 -- 84.82 

Logic instructions 22,294 76.32 78.57 -- -- -- -- 78.70 -- 83.34 

Multiplier 78,094 91.18 92.62 -- -- -- -- 92.62 -- 95.90 

Shifters 14,172 87.95 92.96 -- -- -- -- 93.97 -- 96.32 

Exceptions 40,718 -- -- 66.08 67.17 -- -- 68.16 -- 72.48 

Branch prediction 24,489 -- -- 70.91 70.95 -- -- 72.67 -- 72.67 

Timers 7,683 -- -- 88.21 88.43 -- -- 88.46 -- 89.70 

Register bank 83,764 -- 71.21 -- -- 84.15 -- 89.38 -- 92.66 

Register ports 126,329 -- 69.17 -- -- 94.93 -- 97.67 -- 98.09 

Program counter 26,060 -- -- -- 66.07 -- 68.66 69.42 -- 70.09 

EA adder  5,228 -- -- -- 66.51 -- 92.02 93.75 -- 94.57 

Fetch unit 71,582 -- -- -- -- -- -- 69.45 82.39 83.54 

Forward unit 84,758 -- -- -- -- -- -- 70.95 84.29 84.82 

Status flags 33,277 -- -- -- -- -- -- 59.31 78.08 78.61 

Control flags 10,328 -- -- -- -- -- -- 64.21 66.83 69.83 

Decode unit 62,876 -- -- -- -- -- -- 50.12 92.46 93.08 

Load/Store unit 15,971 -- -- -- -- -- -- 73.50 75.42 76.73 

Glue logic 19,425 -- -- -- -- -- -- -- -- 63.36 

TOTAL 756,789 -- 36.07 -- 9.74 -- -- 76.87 -- 87.23 
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TABLE 3 
NUMBER OF TEST PROGRAMS, DURATION AND CODE SIZE 

Development 

Flow Step 

Number of 

test pro-

grams 

Dura-

tion 

[Clock 

Cycles] 

Code 

size 

[kB] 

Single 1A 
29 8,840 23 

Synchro 1A 

Single 1B 
8 19,716 11 

Synchro 1B 

Single 2A 10 32,634 36 

Single 2B 8 28,212 17 

Synchro 

2A+2B 
55 89,402 87 

Single 3 18 26,700 32 

Synchro 3 73 116,102 119 

As a complement to the fault coverage measurements, the 

d imension and duration and coverage of the test along the 

entire development flow are included in Table 3. Having a 

frequency of working of 150 MHz, the overall time re-

quired  for executing all 73 tests is about 0.8ms. 

It is interesting to note, how the synchronization phases 

produce a very strong positive cascade effect over the mod-

ules not yet considered; at least the half of the faults of the 

modules that are going to be considered  during the next 

generation steps were pruned from the list without any ad-

ditional effort. Table 2 also permits to remark that the syn-

chronization steps cause coverage improvement also for 

modules of the current and  previous levels of the same 

branch, as described in section 4.2. 

A significant advantage in terms of grading time reduction 

is achieved by a proper development order which is max-

imizing the cascade effect. As an example of effectiveness, 

by adopting the proposed order, the generated  test pro-

grams over the 139,574 faults of arithmetic modules in-

cluded in 1A (level 1 --- branch A) led  to a positive side ef-

fects on 2A consisting in 147,029 over 210,093 faults (corre-

sponding to about 70%), i.e., these faults are already cov-

ered  without any specific generation effort for 2A. In other 

words, the fault simulation experiments carried  on level 

2A need to consider only 63,064 faults. 

To the sake of completeness, we also computed  the results 

obtained by implementing an alternative generation order, 

considering by first the modules of 2Aand then the ones of 

1A. We tackled  the 210,093 faults of register bank and ports 

by obtaining a fault coverage comparable with results in 

table 2, and evaluated  the side effect of such programs over 

1A: only 10,318 faults (or 7.4%) were already covered  over 

the total amount of 139,574 faults of the arithmetic mod-

ules.  

The reduction in the fau lt list card inality, achieved by 

properly ordering sub-modules and synchronizing fault 

lists, induces a great time gain due to a large reduction of 

fault simulation efforts. The effect is not limited  to succes-

sive synchronization, but it permits faster gen eration iter-

ations as required  by evolutionary algorithm.  

Table 4 shows the elapsed time for fault simulation in two 

cases: 

1) a raw development flow not using synchronization 

but simply considering sub-modules separately 

2) a development flow following the proposed order and 

implementing synchronization between levels. 

All the experiments were executed  on a single core of a 2 

GHz processor; the resulting times would  be reduced by 

running multi-process fault-simulations. 

It is worth to notice that the fault simulation time becomes 

excessive if not implementing synchronization . As well, 

the development order is important to minimize the fault 

simulation efforts. Supposing again that level 2 branch A 

has been considered  before level 1 branch A, the saved  

CPU time for fault simulation is decreased  from about 37 

to 34 hours, which is a negligible gain if compared to those 

obtained by the proper ordering. 

TABLE 4 
CPU TIME COMPARISON FOR APPROACHES  

WITHOUT AND WITH SYNCHRONIZATION 

 Fault simulation time [hours] 

 
1) without 

synchro 

 2) with  

synchro  

Saved 

time 

Level 1 Branch A 37 - 

Level 1 Branch B 122 - 

Level 2 Branch A  217 55 74.7% 

Level 2 Branch B 72 23 68.1% 

Level 3 630 195 69.0% 

5.3 Test deployment during mission 

The suite of test programs resulting from the development 

phases described above is integrated  in an industrial demo 

project for STMicroelectronics. The project handles the 

whole test set of programs by means of two software mod-

ules, and provides the project integrator with a software 

Application Programming Interface (API), in order to in-

clude them in the mission application:  

 Tests for power-on: 44 test program, including Non-

exceptive and  Critical tests,  scheduled  by an ad-hoc 

software module named Boot Time Self-Test Module 

(BTSTM) 

 Tests for Run-time: 29 Run-Time test programs han-

dled  by an AUTOSAR 4.0 Complex Driver [26] named 

CST Library. 

Both CST Library and BTSTM provide configuration capa-

bilities at compile time, in such a way that the project inte-

grator can selectively activate all programs or a subset of 

the entire su ite. It is up to the user of the API to choose 

su itable test combinations and a scheduled  execution order 

to fu lfill the safety requirements of the system. 

In the devised  demo, after the execution of the tests for 

power-on that takes about 0.7ms, the run-time tests were 

scheduled  according to some specific requirements for 

mission integration: 

 Self-test chunks must be less than 5µs long 

 Self-test interrupts the mission application every 

500µs. 
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Along mission, using the proposed demo setup, the overall 

self-test length does not exceed 100µs and a complete self-

test is performed in less than 2ms. Availability  of the mis-

sion application is reduced by around 1% even though that 

self-test can be preempted at any time.  

Along development, the dem o test su ite was encompass-

ing several verification and validation stages towards soft-

ware maturity, which were including embedded documen-

tation of the code by means of special comments (e.g., Dox-

ygen tags [27]) that are parsed  by external tool for automat-

ically generating user manuals. 

Test programs also provide services for returning test re-

sults, i.e., error codes such as AUTOSAR DEM errors and 

malfunctioning signatures computed  by the test programs 

for successive inspection of failing chips. BTSTM assumes 

that all the available processor functionalities can be exclu-

sively accessed  for testing purposes; on the contrary, CST 

Library has more restrictive requirements.  

For validation sakes we finally conducted  two kinds of ex-

periments emulating the in-field  behavior of the system:  

1) To verify the fault-free behavior, a sample OS was con-

sidered  that was intensively triggering mission inter-

rupts while self-test executed  at regular intervals as 

described above; a physical target was programmed 

with such a complete software environment and left 

running for several hours, tracing the correctness of 

the test responses and liveness of the system  

2) To investigate on the robustness in case of faults, a spe-

cific fault injection campaign was performed by means 

of complete simulation (i.e., without fault dropping) in 

order to classify erroneous behaviors, as previously in-

troduced in section 3.3: 

a) Self-test ends with a wrong signature 

b) Self-test is not ending due to deadlock configura-

tion 

c) Self-test ends with unattended exception manage-

ment due to  

i) Illegal instruction execution  

ii) Wrong branches in memory areas protected  

by MPU configuration. 

6 CONCLUSIONS 

This work is proposing a development flow for the effec-

tive Software-Based Self-Test generation of test programs 

to be run on-line during the mission of automotive envi-

ronment. The paper encompasses 

 Identification of on-line constraints and  implemented  

solu tions 

 Resources d istribution and generation order for a most 

efficient and fast test program generation along the 

various sub-modules of the entire processor  

 Execution management of the SBST library and ro-

bustness of its execution  

The case of study reported  the final results related  to a 

SBST library generated  for an industrial 32-bit processor 

core included in an automotive System -on-Chip manufac-

tured  by STMicroelectronics; the coverage figure obtained 

in 1 year team working is more than 87% over around 750k 

Stuck-at faults. 

7 ACKNOWLEDGMENTS 

The authors would  like to thank Thomas Zsurmant, Re-

nato Meregalli and Giovanni Di Sirio at STMicroelectron-

ics, Matteo Sonza Reorda, Michelangelo Grosso, Lyl 

Ciganda and Giovanni Squillero of Politecnico d i Torino, 

Oscar Ballan when working a STMicroelectronics, for the 

useful d iscussion and contributions to this work. 

REFERENCES 

[1] S.M. Thatte, J.A. Abraham, "Test Generation for Microproces-

sors", IEEE Transactions on Computers, vol.C-29, no.6, pp.429,441, 

June 1980 

[2] A. Paschalis, D. Gizopoulos, N. Kranitis, M. Psarakis, Y. Zorian, 

‘‘Deterministic software-based  self-testing of embedded proces-

sor cores’’, Design, Automation and Test in Europe (DATE), pp.92-

96, 2001 

[3] C.H.P. Wen, Li.C. Wang, Kwang-Ting Cheng, "Simulation-Based 

Functional Test Generation for Embedded Processors", IEEE 

Transactions on Computers, vol.55, no.11, pp.1335-1343, November 

2006 

[4] M.A. Skitsas, C.A. Nicopoulos, M.K. Michael, "DaemonGuard : 

OS-assisted  selective software-based  Self-Testing for multi-core 

systems", IEEE Defect and Fault Tolerance in VLSI and Nanotechnol-

ogy Systems (DFT), pp.45-51, October 2013 

[5] M. Psarakis, D. Gizopoulos, E. Sanchez, M. Sonza Reorda, ‘‘Mi-

croprocessor Software-Based  Self-Testing’’, IEEE Design & Test of 

Computers, vol.27, no.3, pp.4-19, May-June 2010 

[6] F. Reimann, M. Glass, A. Cook, L. Rodríguez Gómez, J. Teich, D. 
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