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Lumped parameters models of rectangular pneumatic pads: static analysis 

Federico Colombo, Terenziano Raparelli, Andrea Trivella, Vladimir Viktorov 

Politecnico di Torino, Department of Mechanical and Aerospace Engineering 

Corso Duca degli Abruzzi 24, Torino, Italy 

 

Abstract 

A lumped parameters model of a rectangular pneumatic pad is developed and static analysis is performed. 

The model can be implemented more quickly than a distributed parameters model and is equally accurate. 

The influence of geometric parameters is discussed to help the reader in the design of pneumatic pads. 

Analysis is carried out in dimensionless form to obtain results of general validity. 
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Nomenclature 

� Dimensionless distance from pad edge 

� Pad aspect ratio 

� Dimensionless distance between supply holes 

� Gas viscosity 

����� Supply hole diameter 

b Critical pressure ratio 

cd Supply hole discharge coefficient 

ds Dimensionless supply hole diameter 

h Air gap 

href Reference air gap (=10 µm) 

k Pad stiffness 

�� Dimensionless pad stiffness 

�	 Temperature coefficient, �	 = �	�	  


 Distance from pad edge 

p Pressure 

pa Ambient pressure 

pc Supply hole downstream pressure 

p0 Mean pressure in supply rectangle 

ps Supply pressure 

�� Air density in normal conditions (p0=100 kPa and T0=293.5 K) 

w Distance between supply holes 

� Conductance of the supply hole 

F Pad load capacity 

�� Dimensionless load capacity 

Φ Pressure ratio coefficient 

G Gas mass flow rate 

�̅ Dimensionless gas mass flow rate 

H Dimensionless air gap 

Lx, Ly Length of pad sides 

Nx, Ny Number of supply holes along x,y directions 



P Dimensionless pressure 

R Gas constant, in calculations =287 J/(kg K) 

Re Reynolds number  

T Absolute temperature, in calculations =293 K 

Ψ Coefficient of isentropic expansion, in calculations Ψ = �.���
√�·	  

X, Y Dimensionless axes 

 

1. Introduction 

Gas bearings are widely used in precision engineering because of  their low friction, oil-free operation and 

freedom from wear. Accordingly, more and more linear guideways for measuring machines and precision 

positioning systems are provided with these components. Their design is important in ensuring that the 

machine meets requirements for load capacity, stiffness, air flow consumption and time response. 

Analytical models of flow can be used only for a few simple bearing geometries [1-7]. With the advent of 

computerized methods, Distributed Parameters (DP) models made it possible to simulate the pressure 

distribution under the bearings more realistically, in particular for complex geometries. Finite difference 

methods [8-12] and finite element methods [13-17] have been shown to be capable of calculating bearings of 

any geometry. A multiphysics finite element model can also be used to consider the interaction between the 

air flow dynamics and the bearing’s structural flexibility, as for example in [18]. Recently, Computational Fluid 

Dynamics (CFD) was used jointly with experimental activities to improve the description of the flow field near 

the supply holes [19-23]. In [24,25], by contrast, semi-analytical methods were employed to determine 

orifice discharge coefficients, which were then used in analytical formulations.  

However, DP models can require considerably longer solution times and it is more difficult to identify the 

dominant factors that influence pad characteristics. With Lumped Parameters (LP) models, only a few values 

of pressure in the gap are sufficient to calculate the bearing’s characteristics. Though LP models yield less 

accurate results than DP models, they are faster and simpler to implement in the design process and in 

optimization. Nevertheless, few papers have addressed simplified LP models. 

A circular porous thrust bearing is studied using an LP model in [26]. In paper [27], a circular thrust bearing 

with multiple pocketed orifices was modelled with a simplified calculation method that was found to be 

faster than DP methods. An integral gas bearing is analyzed in paper [28] with an LP model, providing 

information about the most appropriate configuration. Paper [29] analyzes rectangular pads with a supply 

recess. Analysis makes use of simplifying assumptions and an empirical formula which relates the recess 

pressure to the supply pressure. In paper [30], a lumped model is used to study the behavior of a pneumatic 

journal bearing.  

As far as the authors know, rectangular pads have been investigated in only a few experimental studies 

[31,32] and in analytical analyses dealing with simplified geometries [33]. The present paper introduces a 

lumped parameters model that is a practical and sufficiently accurate tool for designing and optimizing 

rectangular pads with multiple holes. This model is the evolution of a previous model described in papers 

[34,35]. A rectangular pad shape is considered with different aspect ratios, supply pressures and number and 

diameter of supply holes. Static results are discussed in dimensionless form. The results of the LP model are 

compared with those of the DP model and their accuracy is estimated. 

 



2. Pad geometry 

Rectangular pads with sides Lx and Ly are considered. Pad geometry is shown in Figure 1. Multiple supply 

holes are positioned on the sides of a supply rectangle at distance l from the edges of the pad. This distance 

is the same along x and y directions. The holes are equi-spaced at a distance w, which is also assumed to be 

equal along the two directions. The hole diameter is ds. The following dimensionless parameters completely 

define pad geometry and supply hole position: 

� = 

�� 

� = ���� 

� = �
  

(1) 

� is the dimensionless parameter that indicates the distance of the supply holes from the edges of the pad. � 

is the aspect ratio of the pad and � is the ratio of the distance between the holes referred to the distance 

from the edges. Lx is assumed to be greater than Ly, so 0  �  1. Coefficient α is defined in the range 

0  �  �/2. Case �=0 is not realistic, as the supply hole would be in correspondence of the pad edge. Case 

� 
 �/2 is not realistic too as two rows of holes would coincide in only one row positioned at the center axis 

of the pad. Given these three parameters, the number of holes Nx and Ny along the x and y directions is 

defined by formulas (2): 

$� 
 1 % 2��� & 1 

$� 
 � % 2��� & 1 

(2) 

The total number of supply holes is 2Nx+2Ny-4. The minimum number of supply holes in this model is 4. 

 

Figure 1: Sketch of the pad geometry under investigation 

 



3. Distributed parameters model 

The dimensionless form of the Reynolds equation for gas-lubricated bearings in steady conditions (3) is 

solved for the pads under investigation, 

'
'( )*+

, '*
'(- &

'
'. )*+

, '*
'.- 
 0 (3) 

where X=x/Lx, Y=y/Lx, H=h/href, P=p/pa. href is the reference air gap, assumed equal to 10 µm. 

A flow term at the input orifices is added to eq. (3). Pad input flow is the sum of the contributions of each 

supply hole. It can be easily approximated by an ellipse in the subsonic regime using ISO 6358 formula [40] 

� = �	�	��0�11 −Φ2
 

(4) 

 

where C is the conductance of each supply hole, �� is the air density in normal conditions (p0=100 kPa and 

T0=293.5 K), Φ is a coefficient that depends on the pressure ratio across the supply hole and �	 = �	�	  a 

temperature ratio. The expression of the conductance is  

� = 3 ��24
Ψ56��  

where, considering isentropic expansion, see [40], we have 

Ψ = 0.685
√: · ; 

In case of subsonic flow (< < =>
=? < 1), we have 

Φ = 0A/0� 	− <1 − <  

and for sonic flow (0A/0� < <) it is Φ=0, where pc is the pressure downstream of the supply hole and b is the 

critical pressure ratio. 

The discharge coefficient depends on the geometry of the supply orifice, as it is well known, see [41]. In our 

model the discharge coefficient cd is assumed to be a function of ratio h/ds and of the Reynolds number 

calculated at the supply hole cross section: 

56 = 0.85B1 − CD�.2 E6?	F G1 − 0.3CD�.��I�J) (5) 

where Re is the Reynolds number calculated in the supply hole cross section: 

:C = 4�
3��� 

This formula was experimentally obtained by testing different geometries (ratio h/ds) and regimes (Re) of the 

supply holes [24]. It is the result of an extensive set of experimental tests carried out with supply holes of 

different diameters, by changing the air gap height and the supply pressure. The formula was adapted also to 



microholes [36]. The DP model was substantiated by a comparison with experimental measurements carried 

out on rectangular pads with microholes [38] and on circular pads [39] and the accuracy is good. 

Steady state lumped parameters model 

A lumped parameters model was developed to simplify pad calculation and avoid solving the Reynolds 

equation with a numerical program developed for this purpose. This lumped model makes calculating  pad 

characteristics faster and simpler. 

The steady state model is based on the mass balance applied to the air volume inside the supply rectangle 

(see Figure 2): 

�KL = �MNO (6) 

where 
 

�MNO = 2G�� + ��) (7) 

The input flow is 

�KL = 5I56 	0�11 −Φ2
 

(8) 

where 

5I =Ψ3��
2
4 P2$� + 2$� − 4Q 

Using the dimensionless parameters it is possible to obtain 

5I =Ψ3��
2
4 )2 + 2� − 8��� - 

(9) 

The exhaust mass flow Gout can be calculated integrating along the edges of the supply rectangle the mass 

flow g per unit of length. This flow is expressed by the well-known formula for rectangular air channels, in 

case of isothermal viscous flow: 

R = ℎ,
24�:;

0KL2 − 0MNO2

  

where l is the length of the channel. 

Using this formula we obtain the flow along x and y directions: 

�� = ℎ,
24�:; G0�2 − 0T2)

�� − 2

  

�� = ℎ,
24�:; G0�2 − 0T2)

�� − 2

  

The total flow is �MNO = 2�� + 2�� 

�MNO = ℎ,
12�:; G0�2 − 0T2) B

�� − 2

 + �� − 2

 F 

Introducing the dimensionless parameters �, � and � we obtain 



�MNO = ℎ,
12�:; G0�

2 % 0T2@ )���
 & ��
 % 4- 

�MNO 
 S,
12�:; G0�

2 % 0T2@ )�� &
1
� % 4- 

The exhaust mass air flow Gout is finally: 

�MNO 
 52S,G0�2 % 0T2@ (10) 

where  

52 
 1 & � % 4��
1

12�:; 
(11) 

 

 

Figure 2: Region to which the mass balance is applied; in gray the supply rectangle is indicated 

Pressure p0 is the mean pressure calculated along the edges of the supply rectangle. The value calculated at 

the two sides is very similar for the geometry depicted in Figure 1, as distance w and length l are the same in 

both directions. Pressure p0 is lower than the downstream pressure pc. A similar definition for journal 

bearings was given in paper [37].  

In this model, the supply hole downstream pressure pc and the mean pressure p0 are the two unknown 

quantities. To solve the problem, another formula relating the two pressures must be taken into account. For 

this purpose, ratio p0/pc was calculated with the DP model and a formula was identified (see the next 

paragraph) for use in the LP model. 

The pad load carrying capacity F is estimated by considering constant pressure p0 inside the supply rectangle 

and a linear decrease outside to ambient pressure pa. The pressure is integrated considering the 

contributions of the supply rectangle of surface G�� % 2
@P�� % 2
Q, the rectangles in the sides, of surface 

G�� % 2
@
 and P�� % 2
Q
 and the squares in the corners, of surface 
2, see Figure 1. 

The force F is then 

� 
 G0� % 0T@ VG�� % 2
@P�� % 2
Q & 
G�� % 2
@ & 
P�� % 2
Q & 43 

2W 



� = G0� − 0T) V���� − 
P�� + ��Q + 43 
2W 
The pad’s dimensionless load carrying capacity �� is given by 

�� = �
0T���2  

in which �� is the ratio between the load capacity and a reference force obtained by the product of ambient 

pressure and the pad surface area. 

Introducing the dimensionless parameters α, β and γ it is 

�� = �
0T���2 = G*� − 1)

1
���2 V��

2� − 
��G1 + �) + 43 
2W 

�� = G*� − 1) X1 − � )1 + 1�- +
4�2
3� Y (12) 

Pressure P0 is considered in this formula, as it was verified that the mean pressure inside the supply rectangle 

is very similar to the mean pressure calculated on the edges of this rectangle. 

A dimensionless air consumption is introduced by formula 

�̅ = �
2P$� +$� − 2Q3 ��24 Ψ	0.85	0�

 

(13) 

in which the air flow is referred to the maximum air flow in sonic conditions and with discharge coefficient cd 

equal to 0.85. 

The algorithm for implementing the LP model is shown in the flow-chart of Figure 3. 



 

Figure 3: Flow-chart of the algorithm for implementing the LP model 

 

4.1 Model identification 

The distributed parameters (DP) model was used to calculate the mean pressure p0 for different geometries, 

whose main geometric parameters are shown in Table 1. Pads A1 to C2 have an aspect ratio β=0.5, while 

pads D1 to D3 have different values of aspect ratio β. 

 

Table 1: Geometric parameters of the investigated pads 

pad  A1 A2 B1 B2 B3 C1 C2 D1 D2 D3 

α 0.0833 0.0833 0.125 0.125 0.125 0.167 0.167 0.167 0.125 0.083 

β 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.75 0.33 

γ 2 1 2 1 0.667 1 0.5 1 1 1 

Nx 6 11 4 7 10 5 9 5 7 11 

Ny 3 5 2 3 4 2 3 5 5 3 

 

Two expressions were found to approximate ratio p0/pc: 



0�0A = ZI )�,
1 − 2�
� − 2�- = −0.134� + 0.0044

1 − 2�
� − 2� + 0.97 

(14a) 

or more simply  

0�0A = Z2G�) = −0.148� + 1 (14b) 

Parameter 

�� − 2
�� − 2
 =
1 − 2�
� − 2� 

is the aspect ratio of the supply rectangle. The coefficients of these expressions were calculated with the 

least square error minimization approach. Table 2 compares these formulas with the pressure ratio p0/pc 

obtained with the DP model. 

The first expression takes the effect of the supply rectangle aspect ratio into account. For example, if we 

consider the geometries with γ=1, it can be seen that ratio p0/pc decreases when the supply rectangle ratio 
ID2]
^D2] is increased. The second formula neglects this effect and is simpler. In any case, the error is less than 5% 

for any combination of parameters α, β and γ.  

Table 2: Comparison between ratio p0/pc obtained with DPM and formulas f1 (14a) and f2 (14b) 

pad γ G_ − `a)/Gb − `a) DPM f1 error % f2 error % 

A1 2 2.5 0.73 0.713 -2.3 0.704 -3.6 

A2 1 2.5 0.87 0.847 -2.6 0.852 -2.1 

B1 2 3 0.7 0.715 2.2 0.704 0.57 

B2 1 3 0.85 0.849 -0.1 0.852 0.24 

B3 0.667 3 0.9 0.894 -0.7 0.901 0.11 

C1 1 4 0.81 0.854 5.4 0.852 5.2 

C2 0.5 4 0.92 0.921 0.1 0.926 0.65 

D1 1 1 0.82 0.840 2.5 0.852 3.9 

D2 1 1.5 0.85 0.843 0.9 0.852 0.24 

D3 1 5 0.875 0.858 -1.9 0.852 -2.6 

 

4. Results and discussion 

The pads were simulated with both LP and DP models considering the dimensionless air gap in the range 

0.4<H<1.6 and a dimensionless supply hole diameter in the range 5<�����<30. This parameter is defined by 

����� = ��ℎcJd (15) 

An example of 3D pressure distribution obtained with DP model is shown in figure 4. It is the case of pad C1 

with P=6 and �����=10. 



 

Figure 4: 3D pressure distribution for pad C1 with P=6 and �����=10 obtained with DP model 

Figure 5 compares the dimensionless pressure distribution along the X direction at different air gaps, 

obtained with DP model. In calculations, href=10 µm. As can be seen, the pressure distribution is almost 

independent of the air gap. The maximum relative difference of ratio p0/pc respect to the value obtained at 

H=1 is less than 6% for all pads considered (see Table 3). This explains why the air gap is not considered in 

eqs. 14. 

Table 3: Ratio p0/pc at different air gaps and maximum relative difference respect to the values at H=1 

 

p0/pc relative error 

pad H=0.4 H=1 H=1.6 H=0.4 H=1.6 

A1 0.723 0.723 0.759 0.0% 5.0% 

A2 0.869 0.865 0.872 0.5% 0.8% 

B1 0.677 0.692 0.73 -2.2% 5.5% 

B2 0.8473 0.843 0.854 0.5% 1.3% 

B3 0.899 0.895 0.9 0.4% 0.6% 

C1 0.822 0.804 0.81 2.2% 0.7% 

C2 0.922 0.92 0.925 0.2% 0.5% 

D1 0.824 0.817 0.827 0.9% 1.2% 

D2 0.846 0.84 0.848 0.7% 1.0% 

D3 0.87 0.8695 0.88 0.1% 1.2% 
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Figure 5: Dimensionless pressure distribution for pad A1 in case H=1.6, 1 and 0.4; Ps=ps/pa=6, �̅s=10. 

If pads with different ratios � are compared, it is clear from Table 2 that ratio p0/pc decreases when � is 

increased, as in the case of pads B1, B2 and B3. This occurs when the distance w between the supply holes is 

increased or the distance l from the pad edges is decreased. In the range 0.5  �  2, this relationship is 

almost linear. In Figure 6, ratio p0/pc is compared for all pads with formula 14b. This formula provides a good 

approximation of the results obtained with the DP model in the range γ<3. It was found that this behavior is 

no longer linear outside this range. 

 

Figure 6: Ratio p0/pc vs γ=w/l for the pads under investigation 

If pads with the same ratio γ=w/l are compared, e.g., pads A2, B2 and C1, p0/pc decreases when ratio 
ID2]
^D2] is 

increased. These pads are shown in Figure 7a, while their pressure distribution is compared in Figure 7b.  
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Figure 7a: Sketch of pads A2, B2 and C1; γ=1, �̅s=10. 

 

Figure 7b: Dimensionless pressure distribution for pads A2, B2 and C1; γ=1, Ps=6, �̅s=10. 

The results for pads D1 to D3 show that ratio p0/pc increases as aspect ratio β decreases (if ratio γ is kept 

constant, see Table 2).  
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The results from the model are practically independent of supply pressure ps. As Figure 8 shows, 

dimensionless pressure distribution was found to be almost identical at different supply pressures in the 

common range of operation (6<Ps<11).  

 

Figure 8: Dimensionless pressure distribution for pad B2, H=1, �̅s=10; comparison between Ps=6 and 11 

Moreover, supply hole diameter has a negligible effect on ratio p0/pc in the range 5<�̅s<30. Dimensionless 

pressure distributions in two different planes are compared in Figure 9. 

 

Figure 9: Dimensionless pressure distribution for pad B2, H=1.6, Ps=6; comparison between �̅s=5, 10, 20 and 

30 
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The load carrying capacity and air consumption obtained with the DP and the LP models were compared for 

all pads. The LP model agrees quite well with the DP model. As an example, Figure 10 compares the 

dimensionless load capacity and air consumption for pads A1, B1 and C1, depicted in Figure 11. For load 

capacity in the H=0.4 to 1.6 range, the LP model gives a maximum relative error with respect to the DP model 

of less than 12%, while the error for air consumption is less than 10% (see Table 4). In most cases, the 

maximum errors for load capacity are for H=0.4. 

 

Figure 10: Dimensionless load capacity and air flow for pads A1, B1 and C1, Ps=6; comparison between LP and 

DP models 

 

 



Figure 11: Sketch of pads A1, B1 and C1 

Table 4: Relative error for the LP model with respect to the DP model in estimating load capacity and air 

consumption 

pad max. error for F max. error for G 

A1 -3.16% -3.28% 

A2 -4.80% -3.62% 

B1 1.79% -2.76% 

B2 -2.92% -3.50% 

B3 -5.50% -5.76% 

C1 12.34% -4.18% 

C2 -6.15% -9.74% 

D1 5.72% -2.28% 

D2 -2.02% -2.78% 

D3 -6.61% -3.93% 

 

The LP model approximates the DP model better than the models shown in ref. [35], of which this model is 

an evolution. The improvement stems from having introduced two different pressures (p0 and pc) related by 

formula 14, instead of considering the same pressure in calculating Gin and Gout. 

5. Influence of parameters on pad performance 

The LP model was then used to evaluate the influence of parameters α, β ,γ and �̅s on load capacity, stiffness 

and air consumption. The dimensionless variables were calculated; in particular, dimensionless stiffness is 

defined by 

�� = � ℎcJd
0T���2  (16) 

One parameter at a time was changed within the following ranges of variation: 

0.5<γ<2 

0.5<β<1 

β/10<α<2β/5 

with the restriction that the number of holes Nx and Ny be an integer. 

Case 1: γ=1; β=0.5; 0.05<α<0.2 

The possible values of α are shown in Table 4, which also indicates Nx and Ny. Figure 12 shows dimensionless 

load capacity, stiffness and air consumption of pads with different α values. Sketches of the first and the last 

pads in Table 4 are also given. When α is decreased, the supply holes increase in number and move towards 

the edges of the pad. 

Table 4: Geometrical parameters in case 1 

α 1/6 1/8 1/10 1/12 1/14 1/16 1/18 1/20 



Nx 5 7 9 11 13 15 17 19 

Ny 2 3 4 5 6 7 8 9 

 

It is clear that pad load carrying capacity and stiffness increase when coefficient α is decreased. The air gap 

at which stiffness is maximum is around h=href and does not change with α. Dimensionless air consumption is 

independent of coefficient α. The flow rate is proportional to the total number of supply holes; this means 

that the air flow through each hole does not change when parameter α is modified. The supply hole 

downstream pressure pc thus remains unchanged. 

 

Figure 12: Dimensionless load capacity, stiffness and air consumption of pads with different α values; sketch 

of the first and last pads in Table 4 

 

Case 2: α=0.125; γ=1; 0.5<β<1 

The possible values of β are  shown in Table 5, which also indicates Nx and Ny. Figure 13 shows the 

characteristics of pads with different β values, as well as a sketch of the first and the last pads in Table 5. 

Table 5: Geometrical parameters in case 2 



β 1/2 5/8 3/4 7/8 1 

Nx 7 7 7 7 7 

Ny 3 4 5 6 7 

 

It is clear from Figure 13 that load capacity and stiffness increase when ratio β approaches unity. A square 

pad is to be preferred to a rectangular pad with the same surface area. As in the previous case, 

dimensionless flow rate is independent of ratio β. 

 

Figure 13: Dimensionless load capacity, stiffness and air consumption of pads with different β values; sketch 

of the first and last pads in Table 5 

 



Case 3: α=0.125; β=0.5; 0.5<γ<2 

The possible values of γ are  shown in Table 6, which also indicates Nx and Ny. Figure 14 shows the 

characteristics of pads with different γ  values, as well as a sketch of the first and the last pads in Table 6. 

Table 6: Geometrical parameters in case 3 

γ 1 2/3 1/2 

Nx 7 10 13 

Ny 3 4 5 

 

Load capacity increases when ratio γ is decreased, but stiffness decreases. Air gap at maximum stiffness 

increases. As ratio p0/pc is a function of γ in this case, dimensionless flow rate is not independent of γ. Flow 

rate decreases along with γ.  

 

Figure 14: Dimensionless load capacity, stiffness and air consumption of pads with different γ values; sketch 

of the first and last pads in Table 6 



Case 4: α=0.125; β=1; γ=1; 10<�����<20 

In this case, Nx=7 and Ny=3. As diameter ����� is larger, load capacity increases, but stiffness decreases (see 

Figure 15). Air gap at maximum stiffness increases. Dimensionless air consumption decreases if the air gap is 

maintained constant; the same dimensionless air flow can be obtained at larger air gaps. 

 

Figure 15: Dimensionless load capacity, stiffness and air consumption of pads with different ds. 

 

6. Conclusions 

A lumped parameters model was developed to calculate the static performance of rectangular air pads. The 

model was compared with a distributed parameters model and was found to be sufficiently accurate and 

faster to implement. The model takes several dimensionless parameters into account which in combination 

define a general geometry. Analysis of a number of geometric parameters provided useful information for 

designing new pads. Main findings were as follows: 

• It is advisable to increase the number of supply holes and move them towards the edges of the pad 

to increase load capacity and stiffness. 



• The square pad maximizes load capacity and stiffness compared to a rectangular pad. 

• Increasing ratio w/l decreases load capacity decreases, while stiffness also increases with air 

consumption. 

As the LP model is a very good approximation with the DP model in many different geometries, we can affirm 

its general validity. 
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