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Abstract

The present paper is devoted to the investigation of the dynamic response of typical aerospace structures sub-

jected to different time-dependent loads. These analyses have been performed using the mode superposition

method combined with refined one-dimensional models, which have been developed in the framework of the

Carrera Unified Formulation (CUF). The Finite Element Method (FEM) and the principle of virtual dis-

placements are used to compute the stiffness and mass matrices of these models. Using CUF, one has the

great advantage to obtain these matrices in terms of fundamental nuclei, which depend neither on the adopted

class of beam theory nor on the FEM approximation along the beam axis. In this paper, Taylor-like expan-

sions (TE), Chebyshev expansion (CE) and Lagrange expansion (LE) have been employed in the framework of

CUF. In particular, the latter class of polynomials has been used to develop pure translational displacement-

based refined beam models, which are referred to as Component Wise (CW). This approach allows to model

each structural component as a 1D element. The dynamic response analysis has been carried out for several

aerospace structures, including thin-walled, open section and reinforced thin-shells. The capabilities of the

proposed models are demonstrated, since this formulation allows to detect shell-like behaviour with enhanced

performances in terms of computational efforts.

Keywords: Refined beam theories, Finite elements, Carrera unified formulation, Dynamic response, Mode

superposition.
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1 Introduction

In aerospace engineering applications, several types of slender structures are used. For example, aircraft

wings and fuselages, rotor and wind blades, launchers and rockets can be modeled as one-dimensional (1D)

structures. Thus, these components can be analyzed using beam assumptions and 1D approaches, which have

the great advantage to require lower computational costs than bi-dimensional (2D) plate and shell models or

3D solid models [1]. The beam models referred to as classical are the Euler-Bernoulli Beam Theory (EBBT)

[2], in which the transverse shear deformation is neglected, and the Timoshenko Beam Theory (TBT) [3, 4],

which assumes a constant shear strain across the section. However, several problems (e.g., short beams and

composite structures) require to overcome these assumptions since their use can lead to incorrect results.

Over the years, much effort has been done in order to improve and refine the classical beam theories

[5, 6, 7, 8]. These works aimed to compute a suitable shear correction factor for several cases: torsional and

flexural shearing stresses in prismatic beams, arbitrary shaped cross-sections, wide, thin-walled and bridge-like

structures. A second order beam theory which takes into account shear curvature, transverse direct stresses

and rotatory inertia was presented in [9], whereas a theory for beams of rectangular cross-section capable to

include the warping effects of the cross-sections was presented by Levinson [10]. Levinson’s theory was then

extended to two-dimensional linear theory of elasticity in [11]. An overview of models adopted for the analysis

of laminated beams and plates, with particular emphasis on vibrations and wave propagation, was given in [12].

In [13], the finite element formulation for a variationally consistent higher-order beam theory was presented

for the static and dynamic behavior of rectangular beams, whereas in [14] static and free vibration analyses

were performed using a higher-order shear-deformable beam model. A refined theory suitable for the static

and/or dynamic analysis of an orthotropic straight beam was developed in [15], whereas Marur proposed

three higher-order refined displacement models in [16]. Moreover, the vibrations of angle ply laminated

beams were studied using a higher-order theory and isoparametric 1D finite element formulations in [17]. The

analytical solution to the natural frequency analysis of composite and sandwich beams based on a higher-order

refined theory was presented in [18]. In [19], an analytic solution for free and forced vibrations of stepped

Timoshenko beams was presented. This solution was used for the approximate analysis of generally non-

uniform Timoshenko beams, whereas Librescu and Na [20] dealt with the problem of controlling the bending

oscillations of cantilevers subjected to harmonic time-dependent excitations. Moreover, a procedure for the

enhancement of the response characteristic of the proposed models was presented in the same work. Ould Larbi

et al. [21] recently developed a shear deformation beam theory based on neutral surface position for bending

and free vibration analysis of functionally graded beams. 3D elasticity equations were reduced to a beam-like

formulation by Ladevze [22, 23, 24], obtaining a solution for high aspect-ratio thin-walled beams. Berdichevsky

[25] proposed asymptotic type expansions based on variational methods. This method was further developed

in the VABS models presented by Volovoi [26], Volovoi and Hodges [27], Popescu and Hodges [28], Yu and

Hodges [29, 30]. Subramanian [31] carried out the free vibration analysis of laminated composite beams using
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finite elements based on two higher-order displacement-based shear deformation theories. Moreover, in [32],

the investigation of the free undamped vibration response of tapered composite beams, using a higher-order

finite element formulation, was carried out. Şimşek and Kocatürk [33] studied the free vibration of beams

with different boundary conditions within the framework of the third-order shear deformation theory. For

further details about modern models for beam structures and a comprehensive review, the reader is referred

to [34].

In the aforementioned papers, the theories developed are problem dependant. This means that, different

problems may require the adoption for different models. The present paper adopts a refined 1D model that

can be employed independently on the problem characteristics and complexity. Those refined beam models

are developed in the framework of the Carrera Unified Formulation (CUF), a hierarchical approach which has

been developed initially for plates and shells [35, 36] and then extended to beams [37, 38]. The hierarchical

formulation of CUF models enables the arbitrary choice of the expansion functions over the cross-section up to

the desired order [39]. Thus, any-order structural models can be implemented with no need of formal changes

in the problem equations and matrices. The use of a CUF model allows to deal with arbitrary geometries,

boundary conditions and material configurations with no need of ad hoc formulations. CUF capabilities

combined with the simplicity of 1D models allow to detect shell- and solid-like solutions for either static [40],

free-vibration [41, 42, 43, 44] and buckling [45] analyses. In [46], the dynamic response of thin-walled structures

has been investigated combining CUF beam theories with the Newmark method. The aforementioned works

have been performed by means of Taylor-like Expansion (TE). On the other hand, in [47] the displacement

field across the section was modeled by means of Lagrange Expansion (LE) polynomials, whereas a beam

theory based on Chebyshev Expansion (CE) polynomials has been introduced in [48]. The LE models have

the great advantage of considering only pure displacement variables, enabling the use of the Component-Wise

(CW) approach. This approach allows the representation of every component of the structure through a 1D

CUF model, i.e. the same 1D finite element is used for each part of the structure. This characteristic is

of particular interest for the modelling of multi-component constructions, such as aircraft reinforced-shells.

In classical approaches, in fact, by mainly using the direct stiffness method, each component of the aircraft

structure (e.g., panels and stiffeners) are modelled separately by using 1D and 2D finite elements. These

elements are then assembled or, if appropriate, linked together by using fictitious multi-point constrains,

which introduce some physical inconsistencies in the mathematical formulations (see [49]). On the other

hand, only the real surfaces of the structure are used to formulate the mathematical FE model in the CW

approach. In [50], the CW approach was recently used to study laminated anisotropic composites, whereas

typical aerospace structures have been analyzed in [49] and [51].

The present research mainly deals with dynamic response problems, which are of great interest for lifting

systems in unsteady dynamic pressure fields [52], for loads deriving from sonic shock-waves [53] and for

launches and impacts, which cause impulsive loadings on the structure [54]. A typical aerospace structure is

4



often subjected to loads originating from sudden, abrupt or constant gravity accelerations. Thus, inertial and

dynamic loads must be taken into account. A typical dynamic load is a gust. Gust loadings affect different

aspect of the aircraft design and operation, playing a key role in dynamic load, flight stability, safety and

control fields. The gust structure is defined as turbulence when it is characterised by a random nature and a

velocity profile that tends to be continuous and irregular. On the other hand, when it consists of more or less

isolated pulses, the single pulse is referred to as a gust [55]. In this work, the approach adopted in [56, 57] is

considered and the time-history response to gust is analyzed. Although in principle the solution to dynamic

problems could be obtained by standard procedures, in practical a greater interest is addressed towards few

effective numerical methods, which fall within direct integration and mode superposition categories. In the first

case (e.g., central difference, Houbolt, and Newmark methods), a numerical step-by-step procedure [1, 46] is

adopted. However, as a main drawback, these procedures require large computational times and are affected by

possible instability due to error growth. On the other hand, several works have adopted the mode superposition

to investigate the dynamic response of structures [1]. For example, in [58] this approach was adopted for the

analysis of nonlinear dynamic problems involving impacts, whereas a technique for the approximate solution

of nonlinear initial-boundary-value problems of structural dynamics was proposed in [59]. Moreover, modal

frequency response analysis was performed in [60] by means of an improved mode-superposition technique,

whereas the transient dynamic response of composite and sandwich plates was investigated by means of a

refined shear deformation theory and mode superposition technique in [61].

The use of refined 1D models is relevant to predict the time-dependent response of thin-walled slender

structures, as those considered in [62]. In this paper, 1D CUF is employed along with mode superposition

method to conduct dynamic response analysis on various structures. First, a simply supported beam sub-

jected to a harmonic load is considered. Then, thin-walled aerospace structures subjected to harmonic and

distributed loads and wing-like structures subjected to harmonic and pulse gust loads are investigated. This

paper is organized as follows: classical beam theories are presented in Section 2 , whereas Section 3 gives

an overview of the higher-order beam theories developed in the framework of CUF. Section 4 gives a brief

outline of the FEM approach and gives an overview of the mode superposition method, whereas in Section

5 the extension of inertial and pulse gust loads in the framework of CUF is briefly presented. Subsequently,

in Section 6 the results obtained using the proposed CUF theories are discussed. Section 7 is devoted to the

conclusions.

2 Classical beam theories

Figure 1 shows the Cartesian coordinate system adopted for a generic beam structure. The cross-section Ω is

normal to the beam axis y, which has boundaries 0 ≤ y ≤ L. It should be highlighted that the validity of the

proposed formulation is not affected by the shape of the cross-section and the rectangular cross-section adopted
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Figure 1: Coordinate frame of the beam.

has merely explicative purposes. According to the Euler-Bernoulli Beam Theory (EBBT), the kinematic field

is

ux(x, y, z) = ux1(y)

uy(x, y, z) = uy1(y)− x ∂ux1(y)

∂y
+ z

∂uz1(y)

∂y

uz(x, y, z) = uz1(y)

(1)

where ux, uy and uz are the displacement components of a point along x, y and z axes, respectively; ux1, uy1

and uz1 are the displacements of the beam axis whereas −∂ux1

∂y
and

∂uz1
∂y

are the rotations of the cross-section

about the z-axis (i.e. φz) and x-axis (i.e. φx). In EBBT, the cross-sectional shear deformation phenomena

are neglected. Therefore, the deformed cross-section is assumed plane and orthogonal to the beam axis. An

improved displacement field is adopted in the Timoshenko Beam Theory (TBT)

ux(x, y, z) = ux1(y)

uy(x, y, z) = uy1(y) + x φz(y)− z φx(y)

uz(x, y, z) = uz1(y)

(2)

Since the the cross-section does not necessarily remain perpendicular to the beam axis after deformation

and the original displacement field is enriched by the unknown rotations, φz and φx, it is clear that TBT

constitutes an improvement over EBBT. For a comprehensive review about classical and modern 1D modelling

techniques, the reader is referred to [34].

3 Higher-order, hierarchical models by CUF

Considering slender, solid-section, homogeneous structures subject to bending phenomena, classical beam

models provide a reasonably good approximation of the problem. On the other hand, more sophisticated

theories are needed in case of short, thin-walled, open cross-section beam analyses. These theories adopt

richer kinematic fields to obtain more accurate 1D models. The Carrera Unified Formulation (CUF) can be

used to develop refined beam models having an arbitrary number of terms in the kinematic field. In the
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framework of the CUF, the kinematics of a beam model can be summarized as follows:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (3)

where u(x, y, z) = ux(x, y, z)uy(x, y, z)uz(x, y, z)
T

is the displacement vector; Fτ indicates the functions of the

cross-section coordinates x and z ; uτ is the generalized displacement vector; M indicates the number of terms

in the expansion. It should be noted that the repeated subscript indicates summation. Moreover, the choice

of Fτ and M is arbitrary. Thus, the basis functions adopted to model the displacement field across the section

can be different and expanded to any order. The models known in the literature as TE (Taylor Expansion)

[38, 63, 43] are obtained considering Taylor-like expansion polynomials as Fτ functions. For example, the

displacement field of the second-order TE model can be expressed as follows:

ux(x, y, z) = ux1
(y) + x ux2

(y) + z ux3
(y) + x2 ux4

(y) + xz ux5
(y) + z2 ux6

(y)

uy(x, y, z) = uy1(y) + x uy2(y) + z uy3(y) + x2 uy4(y) + xz uy5(y) + z2 uy6(y)

uz(x, y, z) = uz1(y) + x uz2(y) + z uz3(y) + x2 uz4(y) + xz uz5(y) + z2 uz6(y)

(4)

where the parameters on the right-hand side (ux1 , uy1 , uz1 , ux2 , etc.) represent the components of the

generalized displacement vector. Other classes of hierarchical CUF models adopt the Lagrange polynomials

and the Chebyshev polynomials as Fτ functions. These models are referred to as Lagrange Expansion (LE) and

Chebyshev Expansion (CE) models, respectively. The CE second-order kinematic model with 18 generalized

displacement variables can be defined as follows:

ux(x, y, z) = P00(x, z)ux1
(y) + P10(x, z)ux2

(y) + P01(x, z)ux3
(y) + P20(x, z)ux4

(y) + P11(x, z)ux5
(y) + P02(x, z)ux6

(y)

uy(x, y, z) = P00(x, z)uy1(y) + P10(x, z)uy2(y) + P01(x, z)uy3(y) + P20(x, z)uy4(y) + P11(x, z)uy5(y) + P02(x, z)uy6(y)

uz(x, y, z) = P00(x, z)uz1(y) + P10(x, z)uz2(y) + P01(x, z)uz3(y) + P20(x, z)uz4(y) + P11(x, z)uz5(y) + P02(x, z)uz6(y)

(5)

The above model is analogous to the second-order TE model since it involves three constant variables, six

linear and nine parabolic terms.

In LE models, the unknown variables are only pure displacements. This formulation allows one to adopt a

Component-Wise (CW) approach [50, 49, 51]. Lagrange elements are in fact used to model the displacement

variables in each structural component, whereas arbitrary geometry can be set adopting the iso-parametric

formulation. In this work, mainly bi-quadratic nine-nodes (L9) Lagrange polynomials are used as Fτ . Lagrange

polynomials can be found in [47]. The displacement field within a L9 element can be written as:

ux(x, y, z) = F1(x, z)ux1(y) + F2(x, z)ux2(y) + ...+ F9(x, z)ux9(y)

uy(x, y, z) = F1(x, z)uy1(y) + F2(x, z)uy2(y) + ...+ F9(x, z)uy9(y)

uz(x, y, z) = F1(x, z)uz1(y) + F2(x, z)uz2(y) + ...+ F9(x, z)uz9(y)

(6)
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where ux1, ..., uz9 are the translational components of the nine points of the L9 element. In classical approaches,

each component of multi-component structures is modeled in relation with their geometry and scale. On the

other hand, CW allows the representation of every part through a 1D CUF model, leading to the use of the

same 1D finite element, i.e. the same stiffness matrix in the FEM framework. For more details about the CW

approach and the features of LE models, the reader is referred to [50, 64, 65], whereas a detailed dissertation

of the CE models can be found in [48].

4 Finite element formulation

In this paper, FEM has been used to formulate the undamped free vibration problem in the framework of 1D

CUF. Subsequently, the modal shapes obtained from free vibration analyses have been used with reference to

the mode superposition method to investigate the dynamic forced response of the proposed models. A brief

overview of the FEM when applied to CUF is given in the following section, whereas the mode superposition

method is introduced in Section 4.3.

4.1 Preliminaries

The stress σ and the strain ε vectors are defined as follows:

σ = {σyy, σxx, σzz, σxz, σyz, σxy}T

ε = {εyy, εxx, εzzεxz, εyz, εxy}T
(7)

In the case of small displacements, the following relation between strains and displacements holds:

ε = Du (8)

where the linear differential operator D is defined as follows:

D =



0 ∂
∂y 0

∂
∂x 0 0

0 0 ∂
∂z

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y

∂
∂y

∂
∂x 0


(9)

The constitutive law can be used to obtain the stress components:

σ = C̃ε (10)
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Considering an isotropic material, C̃ can be written as:

C̃ =



λ+ 2G λ λ 0 0 0

λ λ+ 2G λ 0 0 0

λ λ λ+ 2G 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G


(11)

where G is the shear modulus and λ is the Lamé’s parameter. These parameters are related to the elastic

modulus E and Poisson ratio ν by the following relation:

G = E
2(1+ν) λ = νE

(1+ν)(1−2ν)
(12)

4.2 Fundamental nuclei

The generalised displacement vector uτ is interpolated along the y direction by means of the shape functions

Ni, according to FEM classical procedure:

u(x, y, z) = Fτ (x, z)Ni(y)uτi (13)

where uτi is the nodal unknown vector. For the sake of brevity, the properties of the shape functions are not

reported in the present paper. More details on FEM can be found, for example, in [39]. In the present work

four-node (B4) 1D elements which lead to a cubic approximation along the y axis have been used. Given the

principle of virtual displacements, the internal strain energy Lint can be related to the work of the inertial

loads Line as follows:

δLint =

∫
V

δεTσ dV = −δLine (14)

Where δ stands for virtual variation. Considering Eqs. 8, 10 and 13, the virtual variation of the strain energy

can be written in a compact form:

δLint = δuTτiK
ijτsusj (15)

where Kijτs is the fundamental nucleus of the stiffness matrix and the superscripts indicate the four indexes

exploited to expand the elemental matrix: τ and s are related to the expansion functions Fτ and Fs whereas

i and j are related to the shape functions Ni and Nj . The fundamental nucleus, which is a 3x3 array, is

formally independent of the order of the beam model. A more detailed explanation of the expansion of nuclei

and assembly procedures in FEM framework can be found in [39].
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The work of the inertial loadings can be written in terms of virtual variation:

δLine =

∫
V

ρüδuT dV (16)

In the above equation ρ stands for the density of the material, whereas ü is the acceleration vector. By

substituting Eq. 13 into Eq. 16, one has

δLine = −δuTτi
∫
L

NiNj dy

∫
Ω

ρFτFs dΩüsj = −δuTτiM
ijτsüsj (17)

where üsj indicates the nodal acceleration vector and Mijτs is the fundamental nucleus of the elemental mass

matrix, whose components are:

Mijτs
xx = Mijτs

yy = Mijτs
zz =

∫
L

NiNj dy

∫
Ω

ρFτFs dΩ

Mijτs
xy = Mijτs

xz = Mijτs
yx = Mijτs

zx = Mijτs
yz = Mijτs

zy = 0

(18)

Even in the case of inertial terms, no assumptions have been made on the expansion order of the theory;

thus, several refined beam models can be developed using this formulation without any formal change in the

fundamental nucleus components.

The undamped dynamic problem is obtained by substituting the fundamental nuclei into the principle of

virtual displacement (Eq. 14), by expanding the CUF fundamental indexes and by assembling the global

FEM arrays.

Mü + Ku = 0 (19)

In the present work, the boundary conditions are applied by using the penalization method, which is a classical

procedure in FEM.

Considering harmonic solutions, the second-order system of ordinary differential equations in Eq. (19)

results into a classical eigenvalue problem:

(−ω2
kM + K)uk = 0 (20)

where uk is the k-th eigenvector.

4.3 Mode Superposition Method

Given a system with multiple degrees of freedom (DOFs), the equilibrium governing equations of the dynamic

response are [66]:

Mü(t) +Cu̇(t) +Ku(t) = P (t) (21)
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where C is the damping matrix and P is the time-dependant loading vector, which is computed in the

framework of CUF as in [39]. According to the superposition method, the unknowns vector u is transformed

as follows:

u(t) = Φx(t) (22)

where Φ is a DOFs×m matrix containing mM -orthonormalized eigenvectors and x(t) is a time-dependent

vector of order m. Hence, the equations of motion can be transformed by substituting Eq. 22 into the governing

equations (Eq. 21) and pre-multiplying each term by ΦT

ẍ(t) + ΦTCΦẋ(t) + Ω2x(t) = ΦTP (t) (23)

where Ω2 is the diagonal matrix that stores the eigenvalues ω2
i . It can be noticed from Eq. 23 that the

equations of motion are decoupled if the damping is neglected. The resulting relation can be decomposed in

m individual equations whose solution can be obtained by means of the Duhamel integral

ẍi(t) + ω2
i xi(t) = ri(t)

ri(t) = ΦiP (t)

 i = 1, 2, ..., n (24)

xi(t) =
1

ωi

∫ t

0

ri(τ) sinωi(t− τ)dτ + αi sinωit+ βi cosωit (25)

Initial conditions are needed to compute αi and βi .

Once the solution for each of the m equations is calculated, the contribution to the response for each mode

is obtained.

um(t) =

m∑
i=1

Φixi(t) (26)

Of course, the accuracy of the solution will depend on m. Equation 24 can be decoupled even in the simple

case of proportional damping:

ΦT
i CΦj = 2ωiξiδij (27)

where ξi is a modal damping parameter and δij is the Kronecker delta (δij = 1 for i = j, δij = 0 otherwise).

In this case, in fact, the eigenvectors are also C-orthonormal and the response can be obtained by means of

the Duhamel integral

xi(t) =
1

ωi

∫ t

0

ri(τ)e−ξiωi(t−τ) sinωi(t− τ)dτ + e−ξiωit (αi sinωit+ βi cosωit) (28)

where ωi = ωi
√

1− ξ2
i and αi and βi are calculated from the initial conditions.
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Figure 2: One-minus-cosine discrete gust idealization

In this work the Rayleigh damping is considered

C = αM + βK (29)

since α and β are constants, the model adopted is a proportional damping. Further information about dynamic

response analysis and related solution methodologies can be found in [1, 57, 66].

5 Time-varying Inertial Loads

In this paper, considerable attention is focused on the response to inertial loads. Inertial loads have been

introduced in the framework of CUF in [67]. In general, the equivalent load vector due to an applied ac-

celeration field, ü0, is calculated by evaluating the virtual variation of the work of the external loadings as

follows:

δLext =

∫
V

ρδuT ü0 dV (30)

Typical inertial loads are gust loads. Gust loads are generally considered as the result of a change in angle of

attack due to a component of the gust velocity (U). In case of a vertical gust, the change of angle of attack

(∆α), in radians, is assumed approximately equal to the gust velocity divided by the aircraft speed (V∞).

The lift change caused by the gust and the incremental load factor ∆n can be defined as

∆L = ρ∞
2 V 2
∞SCLα∆α ∆n = ∆L

W =

ρ∞
2
UV∞ W

CLαS

 (31)

where ρ∞ indicates the air density and ρ∞
2 V 2
∞ is the dynamic pressure; S and CLα are the reference wing area

and the lift curve slope, respectively.

In this paper, a temporally distributed discrete gust idealization is adopted. The gust structure can be

modeled as the one-minus-cosine pulsed function shown in Fig. 2. As reported in [56], the gust is defined as
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follows

U(t) =
1

2
U0

(
1− cos2πt

tg

)
(32)

where tg is the duration of the gust and U0 is the design gust velocity. The time-dependant incremental load

factor can be computed by substituting Eq. (32) into Eq. (31),

∆n =

ρ∞
2
U0V∞(
W

CLαS

) (1− cos2πt

tg

)
(33)

For a more detailed dissertation about discrete gust idealization, the reader is referred to [55, 56, 57]. This

paper investigates the dynamic response of straight wings subjected to discrete gust loads. These loads cause

the deformation of the structure, modifying the aerodynamic forces acting on the wing. In general, this aspect

requires the modification of the value of CLα used in Eq. 33. However, this aeroelastic phenomenon decreases

as the sweep angle of the wing becomes small [55], so the reduction of CLα has been neglected in the present

paper. Moreover, all the aspects related to the unsteadiness of the aerodynamics, which plays a fundamental

role in gust response as detailed in [56] and [68], are not considered in the present preliminary study.

6 Numerical Results

This section presents results concerning the dynamic response of one-dimensional CUF models by means of

the modal superposition method. A preliminary assessment to validate the accuracy of CUF based finite

elements is performed, whereas the second part focuses on the dynamic response analysis of typical aerospace

structures, such as wing-box and complete wing structures.

6.1 Compact square section

A simply supported square-section beam is considered. The sides have 0.1 m dimension, the span-to-height

ratio L/h is 100 and the material properties are: E = 69 GPa, ν = 0.33 and ρ = 2700 kg
m3 . The structure

is modeled by means of 10 B4 beam elements along the y axis, and it is loaded with a single harmonic load

applied at the center of the mid-span section of the beam:

Pz (t) = Pz0sin (ωt)

where Pz0 = −1000N is the amplitude of the sinusoidal load whereas ω = 7 rads is the angular frequency. Let

ω1 > ω be the fundamental angular frequency related to the first bending mode. Under the Euler-Bernoulli

beam assumptions, the peak response by whether considering inertial term or not as well as the dynamic load

factor can be written as follows [66]:
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Theory uzmaxDY N uzmaxST ω1
uzmaxDYN
uzmaxST

1
1− ω

ω1

Analytical −69.4719 −36.2319 14.4030 1.9174 1.9456
EBBT −70.4503 −36.2319 14.4023 1.9444 1.9456
TE3 −70.0014 −36.2429 14.4006 1.9318 1.9459
TE7 −70.0039 −36.2429 14.4006 1.9325 1.9459

Table 1: Maximum dynamic and static displacement [mm] obtained by means of different theories. Square
beam subjected to sinusoidal load.
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Figure 3: Transverse displacement at the mid-span section for various theories. Square beam under sinusoidal
load.

uzmaxDYN ' 2Pz0L
3

π4EI
1

1− ω
ω1

uzmaxST = 2Pz0L
3

48EI '
2Pz0L

3

π4EI
1

1− ω
ω1

uzmaxDYN
uzmaxST

' 1

1− ω
ω1

where uzmaxST is the displacement computed with Euler-Bernoulli model in the static case , uzmaxDYN is the

analytical undamped dynamic response of an Euler-Bernoulli beam,
uzmaxDYN
uzmaxST

is the Dynamic Load Factor

(DLF), and I is the moment of inertia of the beam cross-section. The dynamic response is investigated by

means of the modal superposition and the present CUF models over the time interval [0, 8] s . The results are

reported in Table 1 in terms of maximum displacement in static and dynamic analysis for several expansion

orders, whereas the trend as function of the time is shown in Fig. 3. The considered case shows good

accordance between the results obtained by means of classical theories and those obtained using higher-order

expansions. It is clear that slender beams with solid-section are well described by EBBT in cases which involve

only bending phenomena.

14



hL

b

F

Figure 4: Application point of the sinusoidal load, wing-box model.

6.2 Wingbox

The dynamic response of a cantilever wing-box is investigated. The model consists of a rectangular reinforced

structure whose dimensions are L = 3 m, b = 1 m and h = 0.5 m. The thickness of the panels is t = 2× 10−3

m, the spar caps area is As = 1.6 × 10−3 m2, whereas the whole structure is made of aluminum alloy

having the following properties: E = 75 GPa ν = 0.33 and ρ = 2770 kg
m3 . Analyses are also performed on

a modification of the box by adding a transversal stiffener having thickness r = t at the free edge. Static

and free vibration analyses of these models have been performed in [49, 51]. Two different loading cases are

considered in the present study, using TE, LE and CE theories. The first study involves a sinusoidal load

having amplitude F0 = 10000N and angular frequency ω = 3 rads whose application point is shown in Fig.

4. Time dependent transverse displacements at the load application point are reported in Fig. 5 for various

theories. The maximum and minimum displacement at the center of each stringer is reported in Table 2 for

the wing-box without rib and in Table 3 for the model with rib. Moreover, in the case of the wing-box without

rib, the deformation of the tip cross-section, evaluated at t = 0.5 s and t = 1.55 s is reported in Fig. 6.

The results highlight the limits of classical theories. In fact, the wing-box without transversal stiffener

undergoes a significant deformation of the cross-section, as shown in in Fig. 6. These warping effects can be

observed also from the comparison between the displacements of each stringer reported in Table 2. Fig. 5

allows to observe the difference between the two configurations considered: it is clear that the addition of a

rib increases the stiffness of the structure, which is subjected to lower deformations. Moreover, the presence

of the stiffener decreases the differences between the results obtained by means of classical theories and those

obtained using higher-order models. In fact, Table 3 shows a good accordance between classical and higher-
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Figure 5: Time dependent transverse displacement for various theories, wing-box model, sinusoidal loading
case.

Theory
Stringer 1 Stringer 2 Stringer 3 Stringer 4

uzmax uzmin uzmax uzmin uzmax uzmin uzmax uzmin

EBBT 2.1609 −2.1577 2.1609 −2.1577 2.1609 −2.1577 2.1609 −2.1577
TBT 2.2437 −2.2475 2.2437 −2.2475 2.2437 −2.2475 2.2437 −2.2475

TE3 2.7147 −2.7136 2.3594 −2.3572 2.3589 −2.3567 2.7141 −2.7130
TE5 3.1402 −3.1457 2.0593 −2.0612 2.0575 −2.0594 3.1384 −3.1440

CE3 2.7064 −2.7052 2.3567 −2.3544 2.3565 −2.3542 2.7061 −2.7050
CE5 3.1403 −3.1459 2.0593 −2.0613 2.0575 −2.0595 3.1385 −3.1441

LE 5.9281 −5.9129 0.6764 −0.6783 0.6764 −0.6783 5.9281 −5.9129

Table 2: Maximum and minimum transverse displacement [mm] at the tip obtained by means of different
theories. Wing-box, sinusoidal load.

Theory
Stringer 1 Stringer 2 Stringer 3 Stringer 4

uzmax uzmin uzmax uzmin uzmax uzmin uzmax uzmin

EBBT 2.1620 −2.1593 2.1620 −2.1593 2.1620 −2.1593 2.1620 −2.1593
TBT 2.2512 −2.2479 2.2512 −2.2479 2.2512 −2.2479 2.2512 −2.2479

TE3 2.6873 −2.6876 2.3973 −2.3974 2.3971 −2.3972 2.6871 −2.6874
TE5 2.9533 −2.9497 2.2538 −2.2510 2.2511 −2.2482 2.9503 −2.9467

CE3 2.6873 −2.6876 2.3974 −2.3974 2.3972 −2.3972 2.6871 −2.6874
CE5 2.9580 −2.9543 2.2387 −2.2363 2.2385 −2.2361 2.9577 −2.9541

LE 3.0304 −3.0345 2.2721 −2.2773 2.2721 −2.2773 3.0304 −3.0345

Table 3: Maximum and minimum transverse displacement [mm] at the tip obtained by means of different
theories. Wing-box with rib, sinusoidal load.
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Figure 6: Deformation of the tip cross-section of the wing-box with no rib, sinusoidal loading case.

q0

Figure 7: Load distribution on the cross-section.

order theories for this case.

In the second analysis case, the wing-box subjected to a pressure load whose distribution across the section is

shown in Fig. 7. The load, uniformly distributed in the span-wise direction, is modeled as a function of time

according to the following relation:

q =


q0
t1
· t, t ∈ [0, t1]

q0, t > t1

(34)

The analysis is performed considering t1 = 0.05 s and q0 = 10000
3

N
m . The maximum displacement at the center

of the stringers and the horizontal panels is reported in Table 4 and Table 5 for the two configurations of the

structure. In the case of wing-box without rib, the transverse displacement obtained by means of different

theories is shown in Fig.8(a) for the component evaluated at the center of the stringer 1, whereas Fig.8(b)

shows the values obtained at the center of the upper panel. Moreover, the deformation of the tip cross-section

evaluated at t = 0.57 s is reported in Fig. 9 for EBBT, higher-order Taylor and Lagrange models.

It is clear, for this loading case, that classical theories provide unreliable results. As shown in Fig. 9, the
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Figure 8: Time dependent transverse displacement for various theories, wing-box model, linear loading case.

Theory Stringer 1 Stringer 2 Stringer 3 Stringer 4 Upper Panel Lower Panel

EBBT 0.9178 0.9178 0.9178 0.9178 0.9178 0.9178
TBT 0.9697 0.9697 0.9697 0.9697 0.9697 0.9697

TE3 1.1123 1.0632 1.0634 1.1124 1.0888 1.0880
TE5 1.1807 1.0315 1.0349 1.1841 1.3299 0.8967

CE3 1.1124 1.0631 1.0632 1.1125 1.0886 1.0880
CE5 1.1818 1.0330 1.0362 1.1851 1.3295 0.8939

LE 1.9392 0.8300 0.8318 1.9423 27.6448 −5.5371

Table 4: Maximum transverse displacement [mm] at the tip obtained by means of different theories. Wingbox,
linear load.
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Theory
Stringer 1 Stringer 2 Stringer 3 Stringer 4 Upper Panel Upper Panel

(Tip) (Mid-span)

EBBT 0.9151 0.9151 0.9151 0.9151 0.9151 0.3573
TBT 0.9546 0.9546 0.9546 0.9546 0.9546 0.3917

TE3 1.0685 1.0231 1.0230 1.0684 1.0465 0.4945
TE5 1.1639 1.0488 1.0402 1.1556 1.1070 0.6278

CE3 1.0676 1.0222 1.0221 1.0675 1.0457 0.4938
CE5 1.1592 1.0445 1.0419 1.1568 1.1040 0.5495

LE 1.4093 1.2717 1.2537 1.3796 1.3579 7.9432

Table 5: Maximum transverse displacement [mm] obtained by means of different theories. Wingbox with rib,
linear load.
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Figure 9: Deformation of the cross-section at t = 0.57 s, linear loading case.
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(a) Configuration A : Complete Wing (b) Configuration B : Skin Only (c) Configuration C : Open Bay

Figure 10: Wing configurations.

EBBT model is not able to detect the deformation of the cross-section caused by the distributed load applied

on the upper surface. On the other hand, the LE model is capable to describe the warping phenomena which

involve the panels and the effects concerning the stringers, which are subjected to torsion. Moreover, from

the comparison between the displacements evaluated for various theories reported in Table 4, it is clear that

these values are underestimated by classical and lower order theories. These limits can be observed also from

the time history shown in Fig. 8(a) and Fig. 8(b). Also in this case, the addition of the transversal stiffener

slightly reduces the difference of the results evaluated at the tip, as reported in Table 5. However, the limits

of lower order theories are blatantly evident if the displacement of the upper panel at the mid span (column

7) is considered.

6.3 Aircraft wing

The structure considered in this section consists in an aircraft wing in various configurations. A NACA 2415

airfoil cross-section was used, with 6 m length and 1 m chord, as shown in Fig. 10(a). Clamped-free boundary

conditions are addressed, whereas the material is the same used in the previous case. The whole structure

is discretized by means of CUF L9 elements, as reported in [51]. In order to investigate the behaviour of a

thin-walled structure, the model is modified as shown in Fig. 10(b). In this case, the contribution of the

transversal stiffeners and the longerons is neglected. Moreover, the effect of the presence of an open bay

is evaluated, considering the model shown in Fig. 10(c). In the first case, a single harmonic load having

amplitude F0 = 1000 N and angular frequency ω = 3 rad/s is applied in y = 1.996 m as shown in Fig. 11.

The transverse displacement evaluated using TE and LE theories at the trailing edge and the leading edge

for the considered time interval is reported in Table 6, whereas time-dependent displacement of the leading

edge and the trailing edge of the configurations A and C are shown in Fig. 12.

The data for configuration A in Fig. 12(a) show, in general, good accordance between the classical and

LE theories considered. However, the results reported in Table 6 highlight that the torsional effects must be

taken into account for a correct prediction of the behaviour of the structure. Moreover, from Fig. 12(b) it

is possible to observe that the EBBT model leads to incorrect results if the model involves open sections or
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Figure 11: Application point of the harmonic force on the cross-section.

Point EBBT TBT LE

Configuration A

DOFs 84 140 24864

Leading Edge
uzmax 6.036 6.045 5.711
uzmin −6.183 −6.198 −5.866

Trailing Edge
uzmax 6.036 6.045 6.102
uzmin −6.183 −6.198 −6.261

Configuration B

DOFs 84 140 14616

Leading Edge
uzmax 8.591 8.593 8.211
uzmin −8.696 −8.711 −8.277

Trailing Edge
uzmax 8.591 8.593 9.213
uzmin −8.696 −8.711 −9.299

Configuration C

DOFs 84 140 24450

Leading Edge
uzmax 8.319 8.318 7.690
uzmin −7.879 −7.889 −7.253

Trailing Edge
uzmax 8.319 8.318 9.084
uzmin −7.879 −7.889 −8.594

Table 6: Maximum and minimum uz displacement [mm] at the tip of the wing obtained by means of different
theories, various configurations of the wing subjected to sinusoidal load.
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Figure 12: Time-dependent transverse displacement at the tip for various theories. Configurations A and C
of the wing subjected to sinusoidal load.
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Point EBBT TBT LE

Configuration A

DOFs 84 140 24864

Leading Edge
uzmax 67.192 67.256 66.878
uzmin −23.539 −23.627 −22.914

Trailing Edge
uzmax 67.192 67.256 67.705
uzmin −23.539 −23.627 −23.177

Configuration B

DOFs 84 140 14616

Leading Edge
uzmax 58.202 58.254 59.298
uzmin −13.934 −14.001 −16.711

Trailing Edge
uzmax 58.202 58.254 61.429
uzmin −13.934 −14.001 −17.391

Configuration C

DOFs 84 140 24450

Leading Edge
uzmax 88.425 88.406 89.484
uzmin −48.484 −48.481 −49.190

Trailing Edge
uzmax 88.425 88.406 91.570
uzmin −48.484 −48.481 −50.202

Table 7: Maximum and minimum uz displacement [mm] at the tip obtained by means of different theories,
various configurations of the wing subjected to gust loads.

stiffness members are not modeled. This is also clear from Table 6. Since torsional and local effects are not

taken into account, classical and lower order theories provide poor results for these cases.

6.3.1 Gust pulse analysis

The effect of a gust load is then investigated. Considering a wing loading W
S = 378.6 kg

m2 , the following flight

conditions at sea level are addressed: ρ∞ = 1.225 kg
m3 , V∞ = 80 m/s. A vertical gust having intensity U0 = 10

m/s and duration tg = 0.4 s is encountered at 1-g flight conditions. Assuming inviscid flow, a CLα = 7.6 rad−1

was estimated by means of XFLR5 [69] and XFoil [70] softwares. The transverse displacement evaluated at

the leading edge and the trailing edge is reported in Table 7 for the three proposed wing structures. Moreover,

the effect of the parameter tg is investigated. In fact, Fig. 13(a), Fig. 13(b) and Fig. 13(c) report the time

dependent displacement of the trailing edge for the configurations A, B and C, respectively.

Since the gust load primary involves the bending of the structure, in the case of the reinforced structure

considered in configuration A the classical theories provide results which are in good accordance with those

obtained using the LE model. This is evident from the observation of Fig. 13(a) and rows 4-7 of Table 7. On

the other hand, the deviation of these models is clear in the case of thin-walled structures and open sections.

In both cases a refined theory is needed to predict the behaviour of the structure with the desired degree of

accuracy.

For the last analysis, the effect of the damping parameter is investigated. Figure 14 allows one to evaluate

the effect of the β parameter reported in Eq. 29 on the dynamic behaviour of the structure. The analysis is

performed considering tg = 0.4 s and β = 0.01. It is clear, for the models proposed, that the introduction
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Figure 13: Time-dependent transverse displacement at the trailing edge of the wing tip for tg = 0.8s and
tg = 1.6s, various configurations of the wing subjected to gust loads.
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Figure 14: Time-dependent transverse displacement at the trailing edge of the wing tip for tg = 0.4s in the
case of the undamped and damped system, various configurations of the wing subjected to gust loads.
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of this parameter leads to the damping of the oscillations which involve the structure. On the other hand,

in the undamped system it is possible to observe that the oscillations maintain the same amplitude after the

perturbation induced by the gust.

7 Conclusions

The dynamic response of typical aerospace structures, including thin-walled and open-section wing boxes,

has been investigated in this paper. The analyses have been performed by employing the mode superposition

method in conjunction with the Carrera Unified Formulation (CUF). It has been highlighted, for the loading

cases considered, that:

• The models investigated undergo significant higher-order phenomena, such as, for example, bend-

ing/torsion couplings and local effects.

• 1D refined CUF provide us with a general formulation able to give accurate and efficient solutions. CUF

beam models, and particularly CW, are, in fact, able to deal with bending/torsional couplings, differen-

tial bending, warping, and in-plane cross-sectional distortions. Those effects can only be described by

2D and 3D finite elements, or by ad-hoc higher-order models.

• Classical beam theories provide inaccurate results for most of the cases considered.

• Nonetheless, the introduction of transversal stiffeners reduces the difference between the results obtained

using classical and refined theories.

In the present paper, various beam theories for the dynamic analysis of aircraft structures have been

developed by employing the hierarchical capabilities of CUF. Namely, Taylor Expansion (TE), Chebyshev

Expansion (CE) and Lagrange Expansion (LE) models have been formulated. The main advantages of CUF

refined models are: (i) the formal structure of the FE arrays does not depend on the beam order and class;

(ii) refined models can be automatically obtained by opportunely increasing the number of terms in the beam

kinematics and choosing a suitable set of Fτ functions; the same accuracy of 2D and 3D FE models can be

obtained with 1D CUF elements.

Particular attention has been focused on the Component-Wise (CW) approach deriving from the LE CUF

formulation. The CW methodology allows one to model each part of a multi-component structure as a refined

1D beam element, thus avoiding the geometrical inconsistencies of classical approaches. The CW models have

shown the accuracy and numerical efficiency of this formulation in the investigation of the dynamic response

of aerospace structures. Moreover, thanks to its hierarchical characteristics, CUF models can be used in both

preliminary and advanced design phases. In fact, the model accuracy can be easily improved, because it is a

simple input of the analysis.
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