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HELIX SURFACES IN EUCLIDEAN SPACES

CINTHIA BARRERA CADENA, ANTONIO J. DI SCALA,
AND GABRIEL RUIZ-HERNÁNDEZ

Abstract. We study helix surfaces with parallel mean curvature
vector in Euclidean space from a local point of view. Our main
result says that they are either part of a cylinder of revolution
or a plane. One way to prove this is with the generalization we
found about the Laplacian of a support function of a hypersurface.
This allows us to study the constant mean curvature surfaces in
space forms which have constant angle with respect to a closed and
conformal vector field. The result we find says that these surfaces
are totally umbilic.

1. Introduction

Helix or constant angle submanifolds are those whose angle function
between its tangent spaces and a vector field in the ambient is constant.
In 2012 Dillen and his collaborators investigated in [2] the surfaces in
the ambient S3 × R which have constant angle with respect to the
parallel vector field induced by the R-direction. They obtained the
classification of such surfaces with parallel mean curvature vector. In
[10, page 66, Theorem 5.1] the third author showed that a complete
surface of Rn with parallel mean curvature whose tangent space made
a constant angle with respect to a fixed vector is either totally geodesic
or a revolution cylinder. His proof is based on Chen-Yau’s classification
of surfaces with parallel mean curvature [3, page 660], [13, page 358,
Theorem 4]. Both Chen and Yau proofs are related to ideas of H.
Hopf and uses isothermal coordinates and a holomorphicity argument.
The first goal of the present paper is to show that the completeness
assumption in [10, page 66, Theorem 5.1] can be removed. Namely, we
have the following local result.
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2 C. BARRERA CADENA, A. J. DI SCALA, AND G. RUIZ-HERNÁNDEZ

Theorem 1. A surface of Rn with parallel mean curvature whose tan-
gent space made a constant angle θ 6= π

2
with respect to a fixed vector

is either totally geodesic or an open subset of a revolution cylinder.

We point out that our first proof does not use Chen-Yau’s classifica-
tion and is based in elementary facts related to the Gauss-Codazzi-Ricci
equations from submanifold geometry [1].

In Section 6, we develop some tools to give a second proof of our main
result Theorem 1 with the help of the mentioned Chen-Yau’s result. In
particular, we generalize in our Proposition 6.7 the formula in Propo-
sition 1.3.5 given in [12] about the Laplacian of a support function of
a hypersurface. One condition to obtain this more general formula is
to consider a closed conformal vector field in a space form in instead
of a constant vector field or parallel in Euclidean space.
As other application of this technique we investigated constant angle
surfaces of three dimensional space forms with constant mean curva-
ture. In Theorem 6.18, we prove that constant mean curvature surfaces
in space forms which have constant angle with respect to a closed and
conformal vector field are totally umbilic.

2. Preliminaries and basic properties

Let us recall how to use an eikonal function to construct a helix
submanifold, as in [8] we will call it the projection method. Let
M ⊂ Rn be a helix submanifold of angle θ /∈ {0, π

2
} with respect to the

unit vector
−→
d . So we have

(1)
−→
d = cos(θ)T + sin(θ)ξ

where T tangent to M and ξ normal to M . Let π : Rn → Rn−1 be the

orthogonal projection to the orthogonal complement of
−→
d identified

with Rn−1. The restriction of π to M is an immersion. Then M looks
locally as the graph of a function f : U ⊂ π(M) → R. That is to say,
M is locally the image of the map φ : π(M)→ Rn−1 × R define as

(2) φ(p) := (i(p), f(p))

where i is the canonical inclusion of π(M). In simple words we can start
with a Riemannian submanifold B ⊂ Rn−1 and a function f ∈ C∞(B)
and construct M ⊂ Rn has the graph of f . In [6] we proved that M
is an helix if f is a so called Eikonal function of B. Moreover, any
helix comes locally from such a construction. This is what we mean by
the projection method. We will call the manifold B the base of the
helix M .
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We know from [7] that a helix submanifold of arbitrary codimension
satisfies the equations: For every X ∈ TM ,

(3) cos(θ)∇XT − sin(θ)Aξ(X) = 0,

(4) cos(θ)α(X,T ) + sin(θ)∇⊥Xξ = 0,

where ∇, α, Aξ is the Levi-Civita connection, the second fundamental
form and the shape operator, respectively, of the isometric immersion
of M in Rn.

3. Helix surfaces with constant curvature or with
parallel normal direction

The following proposition shows how to construct helix surfaces with
constant Gauss curvature via the projection method.

Proposition 3.1. An immersed helix surface in Rn has constant cur-
vature if and only if either it is a cylinder over a curve or its base has
the same signed constant curvature .

Proof. Let B the base of the helix surface M and let f be the eikonal
function on B given by the projection method. Let us observe that
the function f induces a function on M call also f . In our previ-
ous work [8] in Proposition 2.11 we proved that RiccM(∇f,∇f) and
RiccB(∇f,∇f), calculated in the corresponding Riemannian structures
of M and B respectively, are related by multiplying one of them by a
positive constant to obtain the other one.
But for the case of Riemannian surfaces, as M and B, the Ricci curva-
ture becomes the sectional curvature. So, we are done. �

We recall that a submanifold M ⊂ Rn is said to be full if it is
not contained in a hyperplane of Rn (see [1, page 22]). The following
proposition gives the description of helix surfaces with parallel normal
direction introduced in [7, Section 6].

Proposition 3.2. Let M be an immersed full helix surface in Rn. Then
ξ is normal parallel if and only if M is flat and ruled helix.

Proof. Since M is full the vector field T is well-defined. Indeed, T is not

defined only in the case that
−→
d is perpendicular to TM i.e. when the

helix angle θ = π
2
. Since M has dimension two ξ is parallel if and only

if ∇⊥T ξ = 0 and ∇⊥W ξ = 0, where W is a unit vector field perpendicular
to T . We know by Equation (4) that the first condition is equivalent
to α(T, T ) = 0 which is equivalent for M to be a ruled helix. Similarly,
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the condition ∇⊥W ξ = 0 is equivalent to α(T,W ) = 0.
Therefore, ξ is normal parallel if and only if

α(T, T ) = 0 and α(T,W ) = 0.

By Gauss equation, M is flat if and only if

〈α(T, T ), α(W,W )〉 − |α(T,W )|2 = 0.

Therefore, if ξ is normal parallel it implies that M is flat and ruled.
Finally, if M is flat and ruled then |α(T,W )|2 = 0, i.e. α(T,W ) = 0.

�

4. Minimal helix in spheres

Let M2 → Rn be a helix surface of angle 0 < θ < π
2

with helix

direction
−→
d = e1. Then the vector field T is (locally) the gradient of

an eikonal function t : M2 → R. So around any point there exists a
local chart (t, x) where the metric of M has the form

ds2 = dt2 +
dx2

B2
,

where B(t, x) is smooth. Then with respect to this local chart the
immersion φ : M2 → Rn is given by

φ(t, x) = (cos(θ)t, F (t, x)) .

Now, if M2 is minimal in a sphere of radius r then according to
Beltrami’s formula ∆φ = −2r−2φ. This implies

∆t = −2r−2t

where ∆ is the Laplacian of ds2. Here is the Laplacian of ds2:

∆ = B
∂

∂t

(
B−1

∂

∂t

)
+B

∂

∂x

(
B
∂

∂x

)
.

So

−2r−2t = ∆t = B
∂

∂t

(
B−1

)
= −∂ log(B)

∂t
and we get

B(t, x) = er
−2t2+a(x) .

Lemma 4.1. Let M2 → Rn be a helix surface of angle 0 < θ < π
2
.

Assume that M2 → Rn is a minimal surface of a sphere of radius r.
Then around each point p ∈ M2 there exists a coordinate system (t, y)
(centered at p, i.e. (0, 0) corresponds to p) such that

(5) ds2 = dt2 + e−2r
−2t2dy2
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Proof. According to the previous discussion we have a coordinate
system of the form

ds2 = dt2 +
dx2

B2
,

where B(t, x) = er
−2t2+a(x). Note that B(t, x) = er

−2t2 .ea(x). Let y(x)
such that dy

dx
= e−a(x). Then

ds2 = dt2 + e−2r
−2t2dy2

as we claimed. 2

By using the formula for the Gaussian curvature

κ = − 1

2
√
EG

(
∂

∂u

Gu√
EG

+
∂

∂v

Ev√
EG

)
we get that the Gauss curvature of the metric ds2 is

2r−2(1− 2r−2t2) .

So we have the following result.

Proposition 4.2. A helix surface M2 → Rn with helix angle 0 ≤ θ < π
2

can not be a minimal surface of a sphere.

Proof. Assume by contradiction that such a minimal helix M2 of a
sphere do exists. Then, by the above lemma any point p of M2 has
a local chart (t, y) centered on p on which the metric has the same
expression i.e. given by equation (5). So the metric of M2 must have
constant Gauss curvature. Indeed, the Gaussian curvature at point p
is computed through the local expression of the metric in coordinates
(t, y). But the metric ds2 = dt2+e−2r

−2t2dy2 has not constant curvature
as a direct computation shows. This contradiction proves that the helix
M2 cannot be a minimal surface of a sphere. 2

5. Helix surfaces with parallel mean curvature (PMC)

Lemma 5.1. Let M2 ⊂ Rn be a PMC helix surface with helix angle
θ < π

2
. Assume that α(T,W ) ≡ 0. Then M2 is either totally geodesic or

(locally) a cylinder of revolution contained in an affine 3-dimensional
subspace of Rn.

Proof. The condition α(T,W ) ≡ 0 implies R⊥ ≡ 0 so by [5, page 57,
Theorem 4.4] we can assume n = 4. The condition to be PMC implies
that the following expression is tangent to M

DWH = DW (DTT +DWW − 〈DWW,T 〉T )
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where H is the mean curvature of M . Then

DWH ≡ DWDTT +DWDWW − 〈DWW,T 〉DWT

≡ DWDTT +DWDWW − 〈DWW,T 〉(∇WT + α(T,W ))

≡ DWDTT +DWDWW

≡ DTDWT +D[W,T ]T +DWDWW

≡ DTDWT + α([W,T ], T ) +DWDWW

≡ DTDWT + α(∇WT, T ) +DWDWW

≡ DTDWT +DWDWW

≡ DT∇WT +DWDWW

≡ α(T,∇WT ) +DWDWW

≡ DWDWW

where the symbol ≡ means an equality module Γ(TM). Now by ([7])
the integral curve of W is contained in a hyperplane perpendicular to−→
d . By using the Frenet-Serret frame in the hyperplane containing the
integral curve of W we get

DWDWW ≡ k′1N1 − k21W + k1k2N2 .

So if DWDWW is tangent to M then either T is tangent to the hy-
perplane or k′1 = 0, k1k2 = 0. Since we assumed the helix angle to be
different from π

2
the vector field T cannot be tangent to the hyperplane.

Then we have to cases:
(a) k1 ≡ 0. Then the integral curve of W is an straight line in R4

and the surface must be an extrinsic product. Then the surface M2 is
an extrinsic product R × γ where γ ⊂ R3 the integral curve of T is a
helix curve with PMC hence it is either a piece of a circle or a line in
a plane and we are done.

(b) k1 6= 0. Then k1 ≡ c 6= 0 and k2 ≡ 0 hence the integral curve
S of W is a circle in a 2-plane. To complete the proof we are going to
show that this case also gives a totally geodesic or (locally) a cylinder
of revolution contained in an affine 3-dimensional subspace of R4.

Notice that an integral curve γ(t) of T starting at a point p of S is
contained in the normal spaces νp(S) of S as submanifold of R4. So as
in [9, page 92, Lemma 4.7] we have that the surface M2 is constructed
by normal parallel transport of γ(t) ⊂ νp(S) along S. The parallel
transport of the normal connection of a circle S in a 2-plane Π ⊂ R4

is given by the rotations around the center of S. Thus we get a local
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parametrization of M2 ⊂ R4 as follows: Put coordinates in R4 such
that

• Π = linear span{e1, e2},
• the center of S is the origin of Π,
• the point p is re1,

• the helix direction
−→
d = e4,

so γ(t) ⊂ p + linear span{e1, e3, e4}. Since γ(t) is a helix w.r.t.
−→
d

we have the following parametrization of γ(t):

γ(t) =


x(t)

0
z(t)

t cos(θ)


Then the local parametrization of M2 ⊂ R4 is as follows:

cos(ϑ) − sin(ϑ) 0 0
sin(ϑ) cos(ϑ) 0 0

0 0 1 0
0 0 0 1




x(t)
0
z(t)

t cos(θ)

 =


cos(ϑ)x(t)
sin(ϑ)x(t)

z(t)
t cos(θ)


In terms of this parametrization the mean curvature vector field H

is given by:

H = DTT +DWW − 〈DWW,T 〉T

=


cos(ϑ)x′′(t)
sin(ϑ)x′′(t)

z′′(t)
0

+
1

x(t)


− cos(ϑ)
− sin(ϑ)

0
0

+
x′(t)

x(t)


cos(ϑ)x′(t)
sin(ϑ)x′(t)

z′(t)
cos(θ)



=


cos(ϑ)x′′(t)− cos(ϑ)

x(t)
+ x′(t)2 cos(ϑ)

x(t)

sin(ϑ)x′′(t)− sin(ϑ)
x(t)

+ x′(t)2 sin(ϑ)
x(t)

z′′(t) + x′(t)z′(t)
x(t)

x′(t) cos(θ)
x(t)


The condition ∇⊥TH = 0 implies DTH = mT for a smooth function

m. So we get

d

dt


cos(ϑ)x′′(t)− cos(ϑ)

x(t)
+ x′(t)2 cos(ϑ)

x(t)

sin(ϑ)x′′(t)− sin(ϑ)
x(t)

+ x′(t)2 sin(ϑ)
x(t)

z′′(t) + x′(t)z′(t)
x(t)

x′(t) cos(θ)
x(t)

 = m


cos(ϑ)x′(t)
sin(ϑ)x′(t)

z′(t)
cos(θ)
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which is equivalent to the following system
(
x′′(t)− 1

x(t)
+ log(x(t))′.x′(t)

)′
= log(x(t))′′.x′(t) ,

(z(t)′′ + log(x(t))′z′(t))′ = log(x(t))′′.z′(t) .

Then we get 
x′′′(t) + log(x(t))′.x′′(t) = ( 1

x(t)
)′ ,

z(t)′′′ + log(x(t))′z′′(t) = 0 .

The second equation implies x(t)z′′(t) = c2 for c2 ∈ R. The first
equation is equivalent to

x(t)x′′′(t) + x′(t)x′′(t)

x(t)
=

(x(t)x′′(t))′

x(t)
= (

1

x(t)
)′ .

Then we have {
x(t)z′′(t) = c2 ,

x(t)x′′(t) = − log(x(t)) + c1 .

Since γ(t) is parametrized by the natural parameter we get the fol-
lowing over-determined system

x(t)z′′(t) = c2 ,

x(t)x′′(t) = − log(x(t)) + c1 ,

x′(t)2 + z′2(t) = sin2(θ) .

We claim that the above system have no solutions for c2 6= 0. Indeed,

set v(t) := x′(t) and w(t) := z′(t) and f(x) := log(x)−c1
x

. Then derivation

of v2 + w2 = sin2(θ) yields to

0 = v.v′ + w.w′ = vf(x) + w
c2
x

= 0 ,

so

w = −vxf(x)

c2
Another derivation gives

(6) 0 = v2A+B

where {
A = f(x) + xf ′(x) ,

B = xf 2(x) + ( c2
x

)2 .

Another derivation of equation (6) gives

v(v2A′ +B′ + 2f(x)A) = 0 .
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So if v ≡ 0 we get x(t) ≡ 1 and this implies that M2 is contained in
an hyperplane and we are done. If v 6= 0 elimination of v2 yields the
following ODE for f(x)

2f(x) + (
B

A
)′ = 0 .

A straightforward calculation shows that

2f(x) + (
B

A
)′ =

c22 + 4c1x− 4x log(x)

x2

and this is not possible since log(x) is not a rational function.
This complete the proof of Lemma 5.1. 2 �

5.1. Proof of Theorem 1. Here we give the proof of Theorem 1.

Proof. LetH be the mean curvature vector field of the surface. IfH ≡ 0
then the surface is a totally geodesic submanifold as follows from [10,
page 58, Theorem 3.2]. So we can assume H 6= 0. If the shape operator
AH is a multiple of the identity then the surface is a minimal surface of
some sphere. This is not possible by Proposition 4.2. So we have that
the shape operator AH has two different eigenvalues. Then the Ricci
equation 〈R⊥X,YH, η〉 = 〈[AH , Aη]X, Y 〉 implies that the surface has flat

normal bundle i.e. R⊥ ≡ 0. Since we assumed θ 6= π
2

the tangent vector

T in equation (1) is not zero. Since T is in the kernel of Aξ (see [7,
Proposition 2.4., page 195]) we get that either α(T,W ) ≡ 0 or Aξ ≡ 0.
In the first case the theorem follows from Lemma 5.1. In the second
case ξ is perpendicular to the first normal space. Then by [5, page 57,

Theorem 4.4] that the helix direction
−→
d is either tangent or normal to

M . Since
−→
d can not be normal we get that M is (locally) a cylinder

i.e. θ = 0. 2 �

6. Surfaces in space forms

This section is motivated by the following two lemmas which say
that if a helix surface in M ⊂ R4 with parallel mean curvature vector is
contained in S3 then M ⊂ S3 is a surface with constant mean curvature
and satisfies the condition 〈Z, T 〉 is constant. Then we will investigate
this class of surfaces in S3. As application we will give a second proof
of Theorem 1 above about helix surfaces in Rn with parallel mean
curvature vector. Let us give the details.

Lemma 6.1. Let M ⊂ R4 be an isometric immersion of the surface
M . Let us assume that M is contained in the unitary sphere S3 of R4.
If M has parallel mean curvature vector in R4 then M has constant
mean curvature in S3.
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Proof. Given the isometric immersions M ⊂ S3 ⊂ R4 we will denote
by αM , αS, α the second fundamental forms of M ⊂ R4, S3 ⊂ R4 and
M ⊂ R4, respectively. Similarly, we will use HM , HS and H to denote
the mean curvature vector of the immersions. Let us observe that HM

is constant by hypothesis.
So we want to prove that 〈H,H〉 is constant in M :
Let x ∈ M ⊂ S3 ⊂ R4 be any point and X, Y ∈ TpM two arbitrary
tangent vectors. It well known that αS(X, Y ) = −〈X, Y 〉x and that
αM(X, Y ) = α(X, Y ) + αS(X, Y ).
Therefore αM(X, Y ) = α(X, Y ) − 〈X, Y 〉x. This relation implies that
the next one about the mean curvature vector HM = H − 2x. In par-
ticular 〈HM(x), x〉 = 〈H(x), x〉 − 2 = −2 because H(x) is tangent to
S3 and x is orthogonal to S3. Now the last calculus:

〈H(x), H(x)〉 = 〈HM(x), HM(x)〉+ 4 + 2〈HM(x), 2x〉
= 〈HM(x), HM(x)〉 − 8.

So, H has constant length because HM is constant by hypothesis. �

Lemma 6.2. Let M be an immersed surface in R4 and let
−→
d be a con-

stant vector field of unitary length. Let us assume that M is contained

in S3 ⊂ R4. Then M is a helix in R4 with respect to
−→
d if and only if

the function 〈Z, T 〉 is constant, where Z is the tangent part of
−→
d in S3

and T is the unitary tangent part of Z in M .

Proof. It is an exercise that Z : S3 −→ TS3 is given by Z(x) :=
−→
d (x)−

〈
−→
d (x), x〉x. Let us observe that for x ∈ M , T (x) = λ(p)(Z(x) −
〈Z(x), ξ(x)〉ξ(x)) where ξ is a unitary orthogonal vector field along M

and λ is defined by 〈T, T 〉 = 1. By substitution T = λ(
−→
d − 〈

−→
d , x〉x−

〈
−→
d , ξ〉ξ). This proves that T is also the unitary tangent part of

−→
d

in M . Moreover, 〈Z, T 〉 = 〈
−→
d , T 〉 because 〈x, T 〉 = 0. Finally, by

hypothesis M is a helix with respect to
−→
d , i.e. 〈

−→
d , T 〉 is constant

along M . This finish the proof. �

6.1. Closed conformal vector fields. In the next results we will
see that Z in Lemma 6.2, is a so called closed conformal vector field
in S3. So, in order to investigate helix surfaces in R4 with parallel
mean curvature vector we will study surfaces in S3 with constant mean
curvature and constant angle with respect to a closed conformal vector
field Z.

Definition 6.3. A vector field Z in a Riemannian manifold (N, g) is
called closed conformal vector field if there exist a smooth function
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ϕ : N −→ R, such that for every vector field X in N ,

∇̄XZ = ϕX,

where ∇̄ is the Levi-Civita connection of (N, g).

Remark 6.4. We should observe that the flow of Z is given by con-
formal transformations and that the 1-form β(·) := 〈Z, ·〉 is closed.

We are going to study surfaces of codimension one in the connected,
simply connected complete space forms Qn

c with constant sectional cur-
vature c = 1, −1. First, let us describe the closed conformal vector
fields in Qn

c that we will use.

For this we have to consider isometric immersions of Qn
1 := Sn into

the euclidean space Rn+1
c := Rn+1 if c = 1 and an isometric immersion

of the hyperbolic space Qn
−1 := Hn in the Minkowski space Rn+1

c :=
Ln+1 of dimension four if c = −1. Let us recall that Rn+1

c has the stan-
dard Riemannian (if c = 1) or Lorentzian metric (if c = −1) given by
〈u, v〉 = u1v1 +u2v2 + · · ·+ cun+1vn+1. The immersion of Qn

c in Rn+1
c is

given by the inclusion of the points x = (x1, x2, · · · , xn+1) ∈ Rn+1
c such

that 〈x, x〉 = c. When c = −1 we also need the condition xn+1 > 0 to
define the immersion of Hn in the Minkowski space Rn+1

c .
Let D, ∇̄ the Levi-Civita connection of Rn+1

c and Qn
c , respectively. Fi-

nally, let us denote by
−→
d a constant vector field in Rn+1

c . We will as-

sume that this parallel vector field satisfies the condition 〈
−→
d ,
−→
d 〉 = c.

With the above immersion, let us define the vector field Z on Qn
c as

the tangent component of
−→
d into Qn

c , i.e.

Z(x) :=
−→
d (x)− c〈

−→
d (x), x〉x.

Let us observe that the position vector x is orthogonal to the described
immersion of Qn

c and 〈x, x〉 = c.

Proposition 6.5. Under the above construction, Z is a closed confor-
mal vector field in Qn

c satisfying ∇̄XZ = ϕX, for every vector field X

on Qn
c and where ϕ(x) := −〈

−→
d (x), x〉 is a function on Qn

c . Moreover
c|Z|2 + ϕ2 = 1 and in particular,

(7) X · ϕ = −c〈X,Z〉.

Proof.

∇̄XZ = (DXZ)T = −(DX(〈
−→
d (x), x〉x))T

= −(〈
−→
d (x), X〉x− 〈

−→
d (x), x〉X)T = −〈

−→
d (x), x〉X = ϕX.



12 C. BARRERA CADENA, A. J. DI SCALA, AND G. RUIZ-HERNÁNDEZ

Finally,

|Z|2 = 〈
−→
d (x),

−→
d (x)〉+ 2cϕ〈

−→
d (x), x〉+ ϕ2〈x, x〉

= c− 2cϕ2 + cϕ2 = c− cϕ2.

Finally, we take the derivative in direction X in this relation:
2cϕ〈X,Z〉+ 2ϕ(X · ϕ) = 0. This concludes the proof. �

Remark 6.6. A consequence of the equations c|Z|2 + ϕ2 = 1 and
X ·ϕ = −c〈X,Z〉 is that ϕ and then |Z| are constant along orthogonal
directions to Z. Moreover, if ϕ is a constant function then |Z| is a
constant function which implies that Z would be parallel, i.e. ϕ = 0.
Finally, since c is either 1 or −1, then Qn

c do not has parallel vector
fields. This implies that ϕ is not constant along the Z direction.

The following result and its proof is a generalization of the Proposi-
tion 1.3.5 in [12], page 14. Morover, a particular case of this formula
was applied by James Simons in his famous work [11] in pages 88-89,
to prove an extrinsic rigidity theorem for closed minimal hypersurfaces
in a round sphere.

Proposition 6.7. Let M be a isometrically immersed oriented hy-
persurface in Qn+1

c with an unit vector field ξ ∈ Γ(TM⊥) and let
Z ∈ Γ(TQn+1

c ) be a closed conformal vector field. If M has constant
mean curvature then

(8) 4M〈Z, ξ〉+ |α|2〈Z, ξ〉+ ϕ〈H, ξ〉 = 0,

where α is the second fundamental form of the immersion with squared
norm |α|2 =

∑n
i,j=1 |α(Xi, Xj)|2 and H =

∑n
i=1 α(Xi, Xi) its mean

curvature vector (Xi’s base orthonormal of TM).

Proof. We will prove the relation pointwise. Let p ∈M . Let e1, . . . , en
be a local frame in M around p such that ∇eiej |p = 0 for every i, j.

The Laplacian is given by

4M〈Z, ξ〉 =
∑n

i=1 ei · ei · 〈Z, ξ〉 =
∑n

i=1 ei · 〈Z, ∇̄eiξ〉
= −

∑n
i=1 ei · 〈Z,Aξ(ei)〉

= −ϕ
∑n

i=1〈ei, Aξ(ei)〉 −
∑n

i=1〈Z, ∇̄eiA
ξ(ei)〉

= −ϕ〈H, ξ〉 −
∑n

i=1〈Z,∇eiA
ξ(ei)〉

−
∑n

i=1〈Z, α(ei, A
ξ(ei))〉

= −ϕ〈H, ξ〉 − 〈Z,
∑n

i=1∇eiA
ξ(ei)〉 − |α|2〈Z, ξ〉.

We applied the next calculation∑n
i=1〈Z, α(ei, A

ξ(ei))〉 =
∑n

i=1〈α(ei, A
ξ(ei)), ξ〉〈Z, ξ〉

=
∑n

i=1〈Aξ(ei), Aξ(ei))〉〈Z, ξ〉
= |A|2〈Z, ξ〉 = |α|2〈Z, ξ〉.
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Now let us analyse the next term at point p

∇eiA
ξ(ei) =

∑n
j=1∇ei(〈Aξ(ei), ej〉ej) =

∑n
j=1(ei · 〈α(ei, ej), ξ〉)ej

=
∑n

j=1(ei · 〈∇̄ejei, ξ〉)ej =
∑n

j=1〈∇̄ei∇̄ejei, ξ〉ej
=

∑n
j=1〈∇̄ej∇̄eiei, ξ〉ej

=
∑n

j=1〈∇̄ej∇eiei, ξ〉ej +
∑n

j=1〈∇̄ejα(ei, ei), ξ〉ej
=

∑n
j=1〈α(ej,∇eiei), ξ〉ej +

∑n
j=1〈∇⊥ejα(ei, ei), ξ〉ej

=
∑n

j=1〈∇⊥ejα(ei, ei), ξ〉ej
Taking the sum over i we have that,

n∑
i=1

∇eiA
ξ(ei) =

n∑
j=1

〈∇⊥ejH, ξ〉ej = 0.

In the latter equality we applied that M has constant mean curvature
and that ∇eiei|p = 0.
Let us observe that in the above equalities we applied that for a space
form holds the relation 〈∇̄ei∇̄ejek, ξ〉 = 〈∇̄ej∇̄eiek, ξ〉 when ei, ej, ek
are orthogonal to ξ and [ei, ej] = 0 as in our case at point p. By
substitution we conclude that

4M〈Z, ξ〉 = −ϕ〈H, ξ〉 − |α|2〈Z, ξ〉.
�

We will need the following result in the next subsections.

Proposition 6.8. Let M be an immersed connected surface in Q3
c with

constant mean curvature. Let Z ∈ Γ(TQ3
c) be a closed conformal vector

field on Q3
c. If Z is tangent to M , then M is totally geodesic.

Proof. Let S be a surface orthogonal to Z and let us denote γ :=
M ∩ S 6= ∅ and let u be a unit tangent vector to γ. In particular,
u, Z/|Z| is an orthonormal basis of TM .
Since 〈Z, ξ〉 = 0 along M by hypothesis, the Equation (8) in the Propo-
sition 6.7, becomes ϕ〈H, ξ〉 = 0. In our case we are assuming that ϕ is
nowhere zero along M . This implies that H = 0, i.e. M is a minimal
surface in Q3

c :

αM,Q(u, u) + αM,Q(Z/|Z|, Z/|Z|) = 0.

Now, the Gauss formula for the immersion M ⊂ Q3
c says:

0 = ∇̄Z/|Z|(Z/|Z|) = ∇Z/|Z|(Z/|Z|) + αM,Q(Z/|Z|, Z/|Z|),
where ∇ is the connection of M . Therefore, αM,Q(Z/|Z|, Z/|Z|) = 0.
So, we have that αM,Q(u, u) = 0.
Finally, αM,Q(u, Z/|Z|) = ¯∇u(Z/|Z|) − ∇u(Z/|Z|). Let us observe
that Z is also closed conformal in M . This implies that ∇̄u(Z/|Z|) =
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u · (1/|Z|)Z + (1/|Z|)ϕu and ∇u(Z/|Z|) = u · (1/|Z|)Z + (1/|Z|)ϕu.
Hence,

αM,Q(u, Z/|Z|) = 0.

We conclude that M is totally geodesic. �

6.2. Surfaces in space forms with 〈Z, T 〉 constant. Let M be an
oriented surface isometrically immersed in Q3

c with the property that

(9) 〈Z, T 〉 = b,

is a constant function on M . Here Z is a closed conformal vector field
and T is the unit tangent component of Z relative to M , i.e.

(10) Z = 〈Z, T 〉T + 〈Z, ξ〉ξ,
where ξ is a vector field orthogonal to M of unit constant length.
From now, in this subsection if we do not say otherwise, both 〈Z, T 〉 6= 0
and 〈Z, ξ〉 6= 0.
Finally, W is a local vector field of M such that {T,W} is a positive
oriented orthonormal basis on TM .

Proposition 6.9. Under the above conditions we have that the con-
nection ∇, the shape operator Aξ and the second fundamental form α
of M satisfy the following equalities

α(T, T ) = − ϕ
〈Z,ξ〉ξ, α(T,W ) = 0.

Aξ(T ) = − ϕ
〈Z,ξ〉T ∇WT = ϕW+〈Z,ξ〉Aξ(W )

〈Z,T 〉
∇TT = 0 ∇TW = 0.

In particular, T and W are principal directions of the immersion and
the integral curves of T are geodesics of M .

Proof. Taking the derivative of Equation (9) in direction X ∈ TM , we
have that
ϕ〈X,T 〉+ 〈Z, ∇̄XT 〉 = ϕ〈X,T 〉+ 〈Z,∇XT 〉+ 〈Z, α(X,T )〉 = 0. Using
Equation (10), we deduce that

(11) α(X,T ) = −ϕ〈X,T 〉
〈Z, ξ〉

ξ.

In particular, we have that α(T,W ) = 0, α(T, T ) = − ϕ
〈Z,ξ〉ξ and

Aξ(T ) = − ϕ
〈Z,ξ〉T . This says that T and W are principal directions.

Finally, we take the derivative of Equation (10):

ϕX = 〈Z, T 〉∇̄XT + (X〈Z, ξ〉)ξ + 〈Z, ξ〉∇̄Xξ
= 〈Z, T 〉(∇XT + α(X,T )) + (X〈Z, ξ〉)ξ − 〈Z, ξ〉Aξ(X)
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The tangent part of this equation is ϕX = 〈Z, T 〉∇XT − 〈Z, ξ〉Aξ(X).
Since T,W are principal directions, this implies that

(12) ∇TT = 0, ∇WT =
ϕW + 〈Z, ξ〉Aξ(W )

〈Z, T 〉
.

�

Now, let us assume that M has constant mean curvature in Q3
c .

Proposition 6.10. If M satisfies that 〈Z, T 〉 is constant and has con-
stant mean curvature with mean curvature vector given by H = α(T, T )+
α(W,W ) = aξ, then

(13) Aξ(W ) = (a+
ϕ

〈Z, ξ〉
)W, α(W,W ) = (a+

ϕ

〈Z, ξ〉
)ξ,

(14) ∇WW = −2ϕ+ a〈Z, ξ〉
〈Z, T 〉

T.

Proof. Then 〈Aξ(W ),W 〉 = 〈α(W,W ), ξ〉 = a−〈α(T, T ), ξ〉 = a+ ϕ
〈Z,ξ〉 .

We are ready for the next calculus:

∇WW = 〈∇WW,T 〉T = −〈W,∇WT 〉T = −2ϕ+ a〈Z, ξ〉
〈Z, T 〉

T.

�

Now we are ready to calculate the Laplacian in M of 〈Z, ξ〉. We will
do the calculus in two ways, first with the extrinsic geometry of M and
second with the intrinsic information. We will assume that the closed
conformal vector field Z satisfies as before that c|Z|2 + ϕ2 = 1. Let us
assume also that M has constant mean curvature with mean curvature
vector given as in Corollary 6.10.

Corollary 6.11. (Extrinsic Laplacian) If M ⊂ Q3
c is an isometrically

immersed surface with 〈Z, T 〉 constant and constant mean curvature,
then

(15) 4M〈Z, ξ〉 =
−2ϕ2 − 3aϕ〈Z, ξ〉 − a2〈Z, ξ〉2

〈Z, ξ〉
.

Proof. By Equation (8) we have to calculate

4M〈Z, ξ〉 = −|α|2〈Z, ξ〉 − ϕ〈H, ξ〉.
Since H = α(T, T ) + α(W,W ) = aξ, −ϕ〈H, ξ〉 = −aϕ. Finally,

|α|2 = |α(T, T )|2 + |α(W,W )|2 + 2|α(T,W )|2

= |α(T, T )|2 + |α(W,W )|2 = ϕ2

〈Z,ξ〉2 + (a+ ϕ
〈Z,ξ〉)

2

−|α|2〈Z, ξ〉 = −2ϕ2−2aϕ〈Z,ξ〉−a2〈Z,ξ〉2
〈Z,ξ〉 .
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Therefore, 4M〈Z, ξ〉 = −2ϕ2−3aϕ〈Z,ξ〉−a2〈Z,ξ〉2
〈Z,ξ〉 .

�

Corollary 6.12. (Intrinsic Laplacian) If M ⊂ Q3
c is an isometrically

immersed surface with 〈Z, T 〉 constant and constant mean curvature,
then

(16) 4M〈Z, ξ〉 =
(c〈Z, T 〉2 − 1)〈Z, T 〉2

〈Z, ξ〉3
+

2ϕ2 + aϕ〈Z, ξ〉
〈Z, ξ〉

.

Proof. The intrinsic formula for the Laplacian is
4M〈Z, ξ〉 = TT 〈Z, ξ〉+WW 〈Z, ξ〉 −∇TT 〈Z, ξ〉 −∇WW 〈Z, ξ〉. In our
situation we have that W 〈Z, ξ〉 = 0 and ∇TT = 0. So, the calculus we
have to do is 4M〈Z, ξ〉 = TT 〈Z, ξ〉 − ∇WW 〈Z, ξ〉.
Let us start: T 〈Z, ξ〉 = −〈Z,AξT 〉 = −〈Z, T 〉〈T,AξT 〉 = 〈Z,T 〉

〈Z,ξ〉ϕ . Now,

TT 〈Z, ξ〉 = 〈Z, T 〉
〈Z,ξ〉(T ·ϕ)−ϕ2 〈Z,T 〉

〈Z,ξ〉
〈Z,ξ〉2 = 〈Z, T 〉 〈Z,ξ〉

2(T ·ϕ)−ϕ2〈Z,T 〉
〈Z,ξ〉3

−∇WW 〈Z, ξ〉 = 2ϕ+a〈Z,ξ〉
〈Z,T 〉 T · 〈Z, ξ〉 = 2ϕ+a〈Z,ξ〉

〈Z,ξ〉 ϕ = 2ϕ2+aϕ〈Z,ξ〉
〈Z,ξ〉 .

Therefore, 4M〈Z, ξ〉 = 〈Z, T 〉 〈Z,ξ〉
2(T ·ϕ)−ϕ2〈Z,T 〉
〈Z,ξ〉3 + 2ϕ2+aϕ〈Z,ξ〉

〈Z,ξ〉 .

By Proposition 6.5, T ·ϕ = −c〈Z, T 〉 and c|Z|2 +ϕ2 = 1. By substitu-
tion:

4M〈Z, ξ〉 = −c〈Z,ξ〉2−ϕ2

〈Z,ξ〉3 〈Z, T 〉2 + 2ϕ2+aϕ〈Z,ξ〉
〈Z,ξ〉

= (c〈Z,T 〉2−1)〈Z,T 〉2
〈Z,ξ〉3 + 2ϕ2+aϕ〈Z,ξ〉

〈Z,ξ〉 .

�

Theorem 6.13. If M ⊂ Q3
c is an isometrically immersed connected

surface with 〈Z, T 〉 constant and constant mean curvature, then M is
a totally umbilical surface of Q3

c orthogonal to Z.

Proof. First case: We will prove that with the above hypothesis do not
exist surfaces M ⊂ Q3

c with 〈Z, T 〉 6= 0 and such that 〈Z, ξ〉 6= 0 on
M . Under these conditions, we can apply (16) and (15). We obtain that

(c〈Z, T 〉2 − 1)〈Z, T 〉2

〈Z, ξ〉3
+

4ϕ2 + a2〈Z, ξ〉2

〈Z, ξ〉
=
−4aϕ〈Z, ξ〉
〈Z, ξ〉

.

Multiplying by 〈Z, ξ〉3 we get that

(c〈Z, T 〉2 − 1)〈Z, T 〉2 + (4ϕ2 + a2〈Z, ξ〉2)〈Z, ξ〉2 = −4aϕ〈Z, ξ〉3.
Let us observe that ϕ2 = 1− c〈Z, T 〉2 − c〈Z, ξ〉2 where we applied the
equality |Z|2 = 〈Z, T 〉2 + 〈Z, ξ〉2.
To obtain a polynomial, denoted by P (〈Z, ξ〉), in the variable 〈Z, ξ〉 we
have to square the latter equation. The constant term in P (〈Z, ξ〉) is
a0 = (c〈Z, T 〉2 − 1)2〈Z, T 〉4.
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When c = −1 this constant a0 is non zero if and only if 〈Z, T 〉 6= 0. In
the case that c = 1, the constant a0 6= 0 if and only if 〈Z, T 〉 6= 0, 1.
We are working in the case 〈Z, T 〉 6= 0. If we had 〈Z, T 〉 = 1 along
M , would imply that Z = T + 〈Z, ξ〉ξ. This is a contradiction: We
are assuming c = 1 and so Q3

c is a round sphere of radius one. By

construction Z is the tangent part of a constant vector field
−→
d in R4

of unit length. Therefore the length of Z is at most one. The above
formula for Z would imply that 〈Z, ξ〉 = 0 and we are working in the
case 〈Z, ξ〉 6= 0.
This implies that some term of degree great or equal that one of
P (〈Z, ξ〉) is not zero. Otherwise (c〈Z, T 〉2 − 1)2〈Z, T 〉4 would be zero.
This proves that 〈Z, ξ〉 satisfies a non zero polynomial of degree greater
or equal than one. So 〈Z, ξ〉 is constant and thus |Z| is constant in M
because 〈Z, T 〉 is constant and |Z|2 = 〈Z, T 〉2 + 〈Z, ξ〉2. Since Z is
closed conformal we deduce by Remark 6.6, |Z| is constant only along
the directions orthogonal to Z. For example W · |Z| = 0. Therefore, we
can conclude that Z is orthogonal to M and in particular 〈Z, T 〉 = 0.
This is a contradiction because our conditions say that 〈Z, T 〉 6= 0.
This proves that there are not CMC surfaces such that 〈Z, T 〉 is con-
stant, 〈Z, T 〉 6= 0 and 〈Z, ξ〉 6= 0.
Second case: 〈Z, T 〉 = 0 implies that M is orthogonal to Z and there-
fore M is totally umbilical orthogonal to Z.
Last case: If 〈Z, ξ〉 = 0 at some point, then 〈Z, ξ〉 = 0 along M . Let us
prove this assertion: If there were a point with 〈Z, ξ〉 6= 0, then there
is an open U ⊂M with this property. Now, let us observe that we can
assume that 〈Z, T 〉 6= 0 along M . We have a contradiction because by
the first case in this proof, a surface like U can not exist. Therefore,
〈Z, ξ〉 = 0 along M . The latter property means that Z is tangent to
M . By Equation (10), this implies that |Z| = |〈Z, T 〉| is constant along
M . But this is not possible: It only happens if M is orthogonal to Z
but we are in the case that Z is tangent to M . �

Now, we will apply Theorem 6.13 to the study of helix surfaces in
R4 with parallel mean curvature vector.

Second Proof of Theorem 1

Proof. In this second proof we will use Chen [3] and Yau’s [13] classi-
fication: A surface M of Rn has parallel mean curvature vector if and
only if M is one of the following surfaces

• M is a minimal surface in Rn,
• a minimal surface of a hypersphere of Rn,
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• a surface in R3 with constant mean curvature,
• a surface of a 3-sphere in R4 with constant mean curvature.

This sentence was taken from [4] page 11.
Such classification give us four possibilities. We will apply that M is
also a helix surface in Rn. If M is a minimal surface in Rn, we con-
clude that it is totally geodesic and so M is an open part of a plane.
See Theorem 3.1 in [10] for details. If M is a minimal surface of a
hypersphere of Rn, we can apply Proposition 4.2, to see that this does
not happen. Finally, M either is a CMC surface contained in R3 or
contained in S3 with constant mean curvature. In the first situation
M should be a plane or a cylinder of revolution. See proof of Theorem
5.1 in [10] for details. In the second case, Lemma 6.2, M should be a
surface in S3 with 〈Z, T 〉 constant. Here Z is the tangent part of the

helix direction
−→
d of M . By Proposition 6.5, Z is closed conformal in

S3. So, by Lemma 6.1, M is a CMC surface in S3 with 〈Z, T 〉 constant,
where T is the unit tangent component of Z in M . Therefore, we can
apply the techniques of this subsection to study M .
Finally, by Theorem 6.13, M is a totally umbilical surface in S3 and
orthogonal to Z. Then M is the intersection of a hyperplane R3, or-

thogonal to
−→
d , in the R4 that contains S3 with S3. Then M is a CMC

surface contained in such R3. But our hypothesis says that θ 6= π/2.
So this case is not possible. �

6.3. Constant angle surfaces in space forms. Let us consider a
isometrically immersed oriented surface M in a space form Qc which
has constant angle with respect to a closed conformal vector field Z.
Let T and ξ as before, then the condition to have constant angle means
that 〈Z/|Z|, T 〉 is constant.

(17) Z = |Z|〈Z/|Z|, T 〉T + 〈Z, ξ〉ξ,
equivalently

(18) Z/|Z| = cos(θ)T + sin(θ)ξ,

i.e. cos(θ) = 〈Z/|Z|, T 〉 , sin(θ) = 〈Z/|Z|, ξ〉. Here θ is the angle
between TpM and Z(p) for every p ∈M .
From now, in this subsection if we do not say otherwise, θ will be
different from 0, π/2. This is equivalent to say that both 〈Z, T 〉 6= 0
and 〈Z, ξ〉 6= 0.
Finally, W is a local vector field of M such that {T,W} is a positive
oriented orthonormal basis on TM .

Proposition 6.14. Under the above conditions we have that the con-
nection ∇, the shape operator Aξ and the second fundamental form α
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of M satisfy the following equalities

α(T, T ) = ϕ(〈Z/|Z|,T 〉2−1)
〈Z,ξ〉 ξ, α(T,W ) = 0.

Aξ(T ) = ϕ(〈Z/|Z|,T 〉2−1)
〈Z,ξ〉 T ∇WT = ϕW+〈Z,ξ〉Aξ(W )

〈Z,T 〉
∇TT = 0 ∇TW = 0.

In particular, T and W are principal directions of the immersion and
the integral curves of T are geodesics of M .

Proof. We take the derivative of Equation (17): The tangent part of
the resulting equation is

(19) ϕX = (X · |Z|)〈Z/|Z|, T 〉T + 〈Z, T 〉∇XT − 〈Z, ξ〉Aξ(X).

We choose X = W in Equation (19) to obtain

ϕW = (W · |Z|)〈Z/|Z|, T 〉T + 〈Z, T 〉∇WT − 〈Z, ξ〉Aξ(W )
= 〈Z, T 〉∇WT − 〈Z, ξ〉Aξ(W )

Thus ∇WT = 〈Z,ξ〉Aξ(W )+ϕW
〈Z,T 〉 . Since dimM = 2 and we are assuming

that 〈Z, T 〉 6= 0 6= 〈Z, ξ〉 we deduce that W and then T are principal
directions. We also have that α(T,W ) = 0 because we have codimen-
sion one and 〈α(T,W ), ξ〉 = 〈Aξ(T ),W 〉.
Now, we take X = T :

ϕT = (T · |Z|)〈Z/|Z|, T 〉T + 〈Z, T 〉∇TT − 〈Z, ξ〉Aξ(T ).

This equation implies that ∇TT = 0 which is equivalent in dimension
two to ∇WT = 0. Thus
(T · |Z|)〈Z/|Z|, T 〉T − 〈Z, ξ〉Aξ(T ) = ϕT . We need the following cal-
culus: 2|Z|(T · |Z|) = T · 〈Z,Z〉 = 2ϕ〈T, Z〉. By substitution in the
above equation we have ϕ〈T, Z/|Z|〉〈Z/|Z|, T 〉T − 〈Z, ξ〉Aξ(T ) = ϕT .

This is equivalent to Aξ(T ) = 〈Z/|Z|,T 〉2−1
〈Z,ξ〉 ϕT. �

Corollary 6.15. If M has constant angle and has constant mean cur-
vature with mean curvature vector given by H = α(T, T ) +α(W,W ) =
aξ, then

Aξ(W ) = a〈Z,ξ〉−ϕ(〈Z/|Z|,T 〉2−1)
〈Z,ξ〉 W,

α(W,W ) = a〈Z,ξ〉−ϕ(〈Z/|Z|,T 〉2−1)
〈Z,ξ〉 ξ,

∇WW = ϕ〈Z/|Z|,T 〉2−a〈Z,ξ〉−2ϕ
〈Z,T 〉 T.

Proof. It follows from the hypothesis that

α(W,W ) = aξ − α(T, T ) = aξ − ϕ(〈Z/|Z|, T 〉2 − 1)

〈Z, ξ〉
ξ.



20 C. BARRERA CADENA, A. J. DI SCALA, AND G. RUIZ-HERNÁNDEZ

Therefore

Aξ(W ) = 〈Aξ(W ),W 〉W = 〈α(W,W ), ξ〉W
= a〈Z,ξ〉−ϕ(〈Z/|Z|,T 〉2−1)

〈Z,ξ〉 W.

By Proposition 6.14 and the above equation we deduce that

〈∇WT,W 〉 = 〈ϕW + 〈Z, ξ〉Aξ(W )

〈Z, T 〉
,W 〉 =

2ϕ+ a〈Z, ξ〉 − ϕ〈Z/|Z|, T 〉2

〈Z, T 〉

Thus
∇WW = 〈∇WW,T 〉T = −〈W,∇WT 〉T

= ϕ〈Z/|Z|,T 〉2−a〈Z,ξ〉−2ϕ
〈Z,T 〉 T.

�

Corollary 6.16. (Extrinsic Laplacian II) If M ⊂ Q3
c is an isometri-

cally immersed surface with constant angle and constant mean curva-
ture, then

(20) 4M〈Z, ξ〉 =
−2 sin4(θ)ϕ2 − a2〈Z, ξ〉2 − a(1 + 2 sin2(θ))ϕ〈Z, ξ〉

〈Z, ξ〉
.

Proof. By Equation (8) we have to calculate

4M〈Z, ξ〉 = −|α|2〈Z, ξ〉 − ϕ〈H, ξ〉.

Since H = α(T, T ) + α(W,W ) = aξ, −ϕ〈H, ξ〉 = −aϕ. Finally,

|α|2 = |α(T, T )|2 + |α(W,W )|2 + 2|α(T,W )|2
= |α(T, T )|2 + |α(W,W )|2

= ϕ2(〈Z/|Z|,T 〉2−1)2
〈Z,ξ〉2 + (a〈Z,ξ〉−ϕ(〈Z/|Z|,T 〉2−1))2

〈Z,ξ〉2

= ϕ2 sin4(θ)
〈Z,ξ〉2 + (a〈Z,ξ〉+ϕ sin2(θ))2

〈Z,ξ〉2

−|α|2〈Z, ξ〉 = −2 sin4(θ)ϕ2−a2〈Z,ξ〉2−2a sin2(θ)ϕ〈Z,ξ〉
〈Z,ξ〉 .

In the above calculus we applied that cos(θ) = 〈Z/|Z|, T 〉, see (18).

Therefore, 4M〈Z, ξ〉 = −2 sin4(θ)ϕ2−a2〈Z,ξ〉2−a(1+2 sin2(θ))ϕ〈Z,ξ〉
〈Z,ξ〉 .

�

Corollary 6.17. (Intrinsic Laplacian II) If M ⊂ Q3
c is an isometri-

cally immersed surface with constant angle and constant mean curva-
ture, then
(21)

4M〈Z, ξ〉 =
(sin4(θ) + sin2(θ))ϕ2 + a sin2(θ)ϕ〈Z, ξ〉 − c cos2(θ)〈Z, ξ〉2

〈Z, ξ〉
.
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Proof. The intrinsic formula for the Laplacian is
4M〈Z, ξ〉 = TT 〈Z, ξ〉+WW 〈Z, ξ〉 −∇TT 〈Z, ξ〉 −∇WW 〈Z, ξ〉. In our
situation we have that W 〈Z, ξ〉 = 0 and ∇TT = 0. So, the calculus we
have to do is 4M〈Z, ξ〉 = TT 〈Z, ξ〉 − ∇WW 〈Z, ξ〉.
Let us start:

T 〈Z, ξ〉 = −〈Z,AξT 〉 = −〈Z, T 〉〈T,AξT 〉
= −〈Z, T 〉ϕ(〈Z/|Z|,T 〉

2−1)
〈Z,ξ〉 = sin(θ) cos(θ)ϕ.

By Proposition 6.5, T · ϕ = −c〈Z, T 〉. Then,

TT 〈Z, ξ〉 = sin(θ) cos(θ)(T · ϕ) = −c sin(θ) cos(θ)〈Z, T 〉
= −c sin(θ) cos(θ) cot(θ)〈Z, ξ〉 = −c cos2(θ)〈Z, ξ〉.

−∇WW 〈Z, ξ〉 = −ϕ〈Z/|Z|,T 〉2−a〈Z,ξ〉−2ϕ
〈Z,T 〉 T · 〈Z, ξ〉

= − sin(θ) cos(θ)ϕϕ〈Z/|Z|,T 〉2−a〈Z,ξ〉−2ϕ
〈Z,T 〉

= − sin2(θ) (cos
2(θ)−2)ϕ2−aϕ〈Z,ξ〉

〈Z,ξ〉 .

Here we applied that 〈Z, T 〉 = 〈Z, ξ〉 cot(θ). Therefore,

4M〈Z, ξ〉 = − sin2(θ) (cos
2(θ)−2)ϕ2−aϕ〈Z,ξ〉

〈Z,ξ〉 − c cos2(θ)〈Z,ξ〉2
〈Z,ξ〉

= − sin2(θ)(− sin2(θ)−1)ϕ2+a sin2(θ)ϕ〈Z,ξ〉−c cos2(θ)〈Z,ξ〉2
〈Z,ξ〉

�

Theorem 6.18. If M ⊂ Q3
c is an isometrically immersed connected

surface with constant angle and constant mean curvature, then either
M is totally umbilical or a totally geodesic surface in Q3

c.

Proof. First case: We will prove that there are not surfaces with the
above hypothesis with 〈Z, T 〉 6= 0 and 〈Z, ξ〉 6= 0.
Applying Corollaries 6.17 and 6.16, we have the equation

(3 sin4(θ)+sin2(θ))ϕ2+a(1+3 sin2(θ))ϕ〈Z, ξ〉+(a2−c cos2(θ))〈Z, ξ〉2 = 0.

This is a polynomial in the variable 〈Z, ξ〉, denoted by Q(〈Z, ξ〉) = 0.
Let us see that the constant term of this polynomial Q is non zero.
First, let us recall that

ϕ2 = 1− c〈Z, T 〉2 − c〈Z, ξ〉2 = 1− c〈Z, ξ〉2 cot2(θ)− c〈Z, ξ〉2
= 1− c csc2(θ)〈Z, ξ〉2.

We can conclude that the constant term a0 of Q is a0 = (3 sin4(θ) +
sin2(θ))2 because we have to square the above formula Q(〈Z, ξ〉) = 0
to be able to substitute ϕ. Now it is clear that a0 6= 0 if and only if
sin θ 6= 0. This implies that 〈Z, ξ〉 is constant.

Then |Z|2 = |Z|2 cos2 θ+〈Z, ξ〉2 is constant in M . But |Z| is constant
only in the orthogonal surfaces to Z which are totally umbilic because
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Z is closed conformal.
Second case: 〈Z, T 〉 = 0. This implies that M is orthogonal to Z and
so a totally umbilical surface.
Last case: 〈Z, ξ〉 = 0. This means that Z is tangent to M and by
Proposition 6.8, we can conclude that M is a totally geodesic surface
in Q3

c . �
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