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Abstract

The non totally geodesic parallel 2n-dimensional Kähler submanifolds of the n-
dimensional quaternionic projective space were classified by K. Tsukada. Here we
give the complete classification of non totally geodesic immersions of parallel 2m-
dimensional Kähler submanifolds in a quaternionic Kähler symmetric space of non
zero scalar curvature, i.e., in a Wolf space W or in its non compact dual. They are
exhausted by parallel Kähler submanifolds of a totally geodesic submanifold which
is either an Hermitian symmetric space or a quaternionic projective space.

1 Introduction.

Let (M̃4n, g̃, Q) be a quaternionic Kähler manifold with metric g̃ and parallel quaternionic

structure Q. A submanifold M2m together with a section J1 ∈ Γ(Q)|M such that J2
1 =
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−1 and J1TM = TM is called Kähler if J1 is parallel with respect to the Levi-Civita

connection of g̃. We will study parallel Kähler submanifolds of a quaternionic Kähler

symmetric space M̃ of non zero scalar curvature, that is, Kähler submanifolds M with

parallel second fundamental form h in a Wolf space or in its non compact dual. In the

case when dim(M̃) = 2 dimM , we prove that any curvature invariant and intrinsically

locally symmetric Kähler submanifold is parallel, and hence extrinsically symmetric .

Any parallel submanifold M of a Riemannian manifold M̃ is curvature invariant. Fur-

thermore, a curvature invariant, in particular a parallel, maximal Kähler submanifold of a

quaternionic Kähler manifold is also normal curvature invariant. Using these properties,

we derive the following result from Naitoh’s theorem 2.6 in the next section.

Theorem 1.1. Any curvature invariant (in particular, any parallel)Kähler submanifold

M2n of the maximal dimension 2n of a quaternionic Kähler symmetric space M̃4n dif-

ferent from the n-dimensional quaternionic projective space HP n, M̃4n 6= HP n, is totally

geodesic.

We recall that a submanifold M of a Riemannian manifold M̃ is called full if M is not

contained in a proper totally geodesic submanifold M of M̃ and is called 1-full (according

to Tsukada [Tsu1]) if the first normal bundle N1M = h(TM, TM) of M coincides with

the normal bundle T⊥M of M in M̃ .

We associate with a Kähler submanifold M2m of M̃4n, of arbitrary dimension 2m, a

symmetric 3-form C, called the shape tensor, and prove the following theorem.

Theorem 1.2. Let (M2m, J) be a geodesically complete parallel Kähler submanifold of a

quaternionic Kähler symmetric space M̃4n and M the minimal totally geodesic submani-

fold of M̃ containing M .

1) If the shape tensor C of M vanishes at one point, then M is an Hermitian symmetric

space and M is a full parallel Kähler submanifold of M .

2) If C 6= 0, then M = HPm and (M2m, J) is a Hermitian symmetric manifold with

parallel cubic line bundle, that is a product Qm−1 × CP 1 of the complex quadric

Qm−1 ⊂ CPm and the projective line CP 1, or one of the following exceptional Her-

mitian symmetric spaces: CP 1×CP 1,CP 1×CP 1×CP 1, Sp2/U2×CP 1,CP 1, Sp3/U3,

SU6/S(U3 × U3), SO12/U6, E7/T
1 · E6, with the canonical Tsukada imbedding into

HPm as described in [Tsu2] .

Thus, the classification of parallel Kähler submanifolds of type 1) in a quaternionic

Kähler symmetric space reduces to a description of parallel Kähler submanifolds of Her-

mitian symmetric spaces.
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The classification of parallel Kähler submanifolds of CPN was first obtained by Naka-

gawa and Takagi [NT].

Theorem 1.3. ([NT]) The only full parallel Kähler submanifolds of a complex projective

space are, up to isometries, the images of the Veronese imbedding of the projective space

PV associated with V = Cn+1 into the projectivization PS2V of the symmetric square

S2V defined by

ϕ : CP n = PV → PS2V

[v] = Cv 7→ [v ⊗ v],

of the Segre imbedding defined by

ψ : CP n × CP n′ = PV × PV ′ → P (V ⊗ V ′)
([v], [v′]) 7→ [v ⊗ v′],

or of the first canonical imbedding of compact irreducible Hermitian symmetric spaces of

rank 2, i.e., Qn,Gr2(Cn+2), SO10/SU5 and E6/Spin10 · T .

The classification of all parallel Kähler submanifolds of a Hermitian symmetric space

was established by Tsukada [Tsu1]. He proved that any such submanifold is a product

of Veronese submanifolds, Segre submanifolds, canonical Kaehler imbeddings of compact

Hermitian symmetric spaces of rank two and trivial factors (defined by the identity map).

The Theorem in [Tsu1, p.130] implies the following

Theorem 1.4. There is no full parallel (proper) Kähler submanifold M in a Hermitian

symmetric space M̃ having no factor isometric to CPN . Any full parallel Kähler subman-

ifold of CP n1 ×CP n2 has the form ψ1(M1)× ψ2(M2), where ψi(Mi) ⊂ CP ni is one of the

immersions in Theorem 1.3.

Tsukada [Tsu1] proved that any parallel Kähler submanifold of a Hermitian symmetric

space of non compact type is totally geodesic.

These results together give the full classification of non totally geodesic parallel Kähler

submanifolds in a quaternionic Kähler symmetric space. A classification of maximal

totally geodesic Kähler submanifolds of Wolf spaces in term of Satake diagrams was given

by Takeuchi [Tak]. See also Section 6.

2 Preliminaries.

2.1 Gauss, Codazzi-Mainardi and Ricci equations

Let M be a submanifold of a Riemannian manifold M̃ . We denote by h : TM × TM →
T⊥M the second fundamental form of M , and by Aξ the shape operator in the direction
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of a normal vector ξ ∈ T⊥M such that

∇̃XY = ∇XY + h(X, Y ) ,

∇̃Xξ = ∇⊥Xξ − AξX ,

where X ∈ TM, Y ∈ ΓTM and ξ ∈ T⊥M . Here ∇̃,∇,∇⊥ are the Levi-Civita connection

of M̃ and the induced connections in TM and T⊥M , respectively.

For X, Y ∈ TxM we decompose the curvature operator R̃X,Y as

R̃XY = RTT
XY +R⊥TXY +RT⊥

XY +R⊥⊥XY ,

according to the decomposition

End(TxM̃) = End(TxM) + Hom(TxM,T⊥x M) + Hom(T⊥x M,TxM) + End(T⊥x M).

Then we have the following Gauss-Codazzi equations:

(Gauss) R>>XY = RXY − hXhtY + hY h
t
X = RXY −

∑
iA

ξiX ∧ AξiY ,

(Codazzi-Mainardi) R⊥>XYZ = (∇′Xh)(Y, Z)− (∇′Y h)(X,Z) ,

(Ricci) R⊥⊥XY ξ = R⊥XY ξ −
∑

i〈X, [Aξi , Aξ]Y 〉ξi ,

where ξi is an orthonormal basis of T⊥M , X, Y ∈ TM , ξ ∈ T⊥M , R, R⊥ are the curvature

tensors of the connections ∇, ∇⊥, and ∇′ is the connection in T⊥M ⊗ S2TM induced by

∇⊥ and ∇, respectively. (We identify a bivector X ∧Y with the skew-symmetric operator

Z 7→ 〈Y, Z〉X − 〈X,Z〉Y .)

2.2 Parallel submanifolds of symmetric spaces

Definition 2.1. A submanifold M of a Riemannian manifold M̃ is called parallel if it

has parallel second fundamental form h, i.e., ∇′h = 0.

Definition 2.2. A subspace V ⊂ TxM̃ of a tangent space of a Riemannian manifold M̃

is called curvature invariant if

R̃(V, V )V ⊂ V .

A submanifold M of M̃ is called curvature invariant if each tangent space TxM is cur-

vature invariant and it is called normal curvature invariant if each normal space T⊥x M is

curvature invariant.

It follows from Codazzi-Mainardi equation that any parallel submanifold M of a Rie-

mannian manifold M̃ is curvature invariant.
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Definition 2.3. A submanifold M of a Riemannian manifold M̃ is called 1-full if the

first normal bundle N1M = h(TM, TM) coincides with the normal bundle T⊥M .

Definition 2.4. Let M̃ = G/K be a homogeneous Riemannian manifold. Fix an orbit V
of the isometry group G in the Grassmann bundle Grk(TM̃) of tangent k-planes of M̃ . If

a k-plane V ∈ V (respectively, if the orthogonal plane V ⊥, V ∈ V) is curvature invariant,

then V is called curvature invariant (respectively, normal curvature invariant).

A k-dimensional submanifold M ⊂ M̃ is called a V-submanifold if TxM ∈ V for

any x ∈ M . Obviously, if V is (normal) curvature invariant, then any V-submanifold is

(normal) curvature invariant.

Definition 2.5. A submanifold M of a Riemannian manifold M̃ is called extrinsically

symmetric if for any point x ∈ M there exists an involutive isometry (symmetry) sx of

M̃ preserving M such that sx(x) = x and its differential at x satisfies

(1) (sx)∗|TxM = −Id, (sx)∗|T⊥x M = Id.

We recall the following theorem of Naitoh [Na2].

Theorem 2.6 (H. Naitoh). Let M̃ be a simply connected Riemannian symmetric space.

A submanifold M of M̃ is parallel and normal curvature invariant if and only if it is

extrinsically symmetric.

Proof. Let M ⊂ M̃ be an extrinsically symmetric submanifold. Remark that the

symmetry sx acts as −Id on any tensor space T⊗
p

x ⊗ T⊥⊗
q

x , where p is odd. On the other

hand, it preserves the tensor ∇′h ∈ T⊗
3

x ⊗ T⊥x and the curvature tensor R̃ at x. This

implies that an extrinsically symmetric submanifold is parallel and normal curvature

invariant. Conversely, if M is parallel and normal curvature invariant, then the automor-

phism (sx)∗ ∈ Gl(TxM̃) defined by (1) preserves the curvature tensor R̃x, and hence can

be extended to an involutive isometry s of M̃ . Now the inverse statement follows from a

remarkable theorem of Strübing [Str].

Theorem 2.7 (W. Strubing). Let M be a parallel submanifold of a Riemannian manifold

M̃ and s an isometry of M̃ which preserves a point x ∈ M and satisfies (1). Then s

preserves any geodesic γ = γ(t) of M with γ(0) = x: s(γ(t)) = γ(−t).

The proof follows from the Frenet formulas for the curve γ(t) considered as a curve in
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M̃ :

∇̃γ̇


E1

.

.

.

Er

 =



0 k1 0 . . . 0 0

−k1 0 k2 . . . 0 0

0 −k2 0 . . . . . . . . .

. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 kr−1

0 0 0 . . . −kr−1




E1

.

.

.

Er

 ,

where E1, . . . , Er is an orthonormal Frenet frame along γ obtained from the fields γ̇,
..
γ,

...
γ, . . .

by Gram-Schmidt process, k1, . . . , kr−1 are constants (”curvatures”) and, moreover, E1 =

γ̇, E3, E5, · · · ∈ Γ(TM)|γ are ∇-parallel fields and E2 = h(γ̇, γ̇)/|h(γ̇, γ̇)|, E4, E6, · · · ∈
Γ(T⊥M)|γ are ∇⊥-parallel fields along γ. Indeed, the Frenet frame along γ(−t) and

s∗Ei(t) satisfy Frenet equations with the same initial conditions (−1)iEi(0). q.e.d.

Now we state the following fundamental result by Naitoh, which shows that up to a

short list of exceptions, a parallel normal curvature invariant (or, equivalently, extrinsically

symmetric) V-submanifold of a symmetric space is in fact totally geodesic.

Theorem 2.8. (H. Naitoh[Na3]) Let M̃ = G/K be a compact simply connected sym-

metric space with simple isometry group G, and V is an orbit of G in Grk(TM̃) which is

curvature invariant and normal curvature invariant. Then any V-submanifold is totally

geodesic with the exception of the following cases:

(a) M̃ = Sn = SO(n+ 1)/SO(n), 1 ≤ k < n,

(b) M̃ = CP n, V is the set of complex 2k-subspaces,

(c) M̃ = CP n, V is the set of totally real n-subspaces,

(d) M̃ = HP n, V is the set of totally complex 2n-subspaces,

(e) M̃ = G/K is an irreducible symmetric space and V = GT , where T is the tan-

gent space to an irreducible symmetric R-space (i.e., the geometries associated with

irreducible symmetric R-spaces).

The statement remains true also for non compact dual of G/K, [BENT].

The following result will be used in Section 5.

Theorem 2.9. (H. Naitoh[Na4]) Let M be a parallel submanifold of a symmetric space

M̃ . If the first osculating space O1
xM = TxM+h(Tx, Tx) at some point x ∈M is curvature

invariant, then M is contained in the totally geodesic submanifold M = exp(O1
xM) of M̃

generated by O1
xM .

Obviously, M is full in M .
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3 Kähler submanifolds of quaternionic Kähler ma-

nifolds

Let (M̃4n, Q, g̃) be a quaternionic Kähler manifold, that is, a Riemannian manifold (M̃4n, g̃)

with a ∇̃-parallel quaternionic structure Q, i.e., a rank 3 subbundle of End(TM̃) locally

generated by 3 skew-symmetric almost complex structures J1, J2, J3 = J1J2 = −J2J1. For

n = 1, in the definition we assume that (M̃4, g̃) is an anti-self-dual Einstein manifold.

Recall that the curvature tensor R̃ of a quaternionic Kähler manifold has the form

R̃ = νRHPn + W̃ ,

where W̃ is an spn-valued 2-form satisfying the Bianchi identities (the quaternionic Weyl

tensor ), ν = K/4n(n + 2) is the reduced scalar curvature, which is proportional to the

scalar curvature K, and

RHPn(X, Y ) =
1

4

(
X ∧ Y +

∑
JαX ∧ JαY − 2

∑
α

〈JαX, Y 〉Jα
)
,

where α = 1, 2, 3 and 〈 , 〉 = g̃( , ).

We recall also that the following identities hold:

[R̃(X, Y ), Jα] = −ν
(
〈JγX, Y 〉Jβ − 〈JβX, Y 〉Jγ

)
,

where (α, β, γ) is a cyclic permutation of (1, 2, 3). They are equivalent to the following

identities

(2) R̃(JαX, JαY )Z = R̃(X, Y )Z + ν
(
〈JβX, Y 〉JβZ + 〈JγX, Y 〉JγZ

)
,

which we will need later on.

Definition 3.1. A submanifold M2m of a quaternionic Kähler manifold (M̃4n, Q, g̃) to-

gether with a section J1 ∈ Γ(Q)|M such that J2
1 = −Id and J1(TM) = TM is called

1) a Kähler submanifold if J1 is ∇̃−parallel,

2) a totally complex submanifold if J2(TM) ⊥ TM , where J2 ∈ Q is a complex structure

anticommuting with J1.

The Kähler submanifold M2m considered as a manifold with the induced Riemannian

metric g = g̃|M and the almost complex structure J = J1|TM is a Kähler manifold.

Recall that if the scalar curvature of (M̃, g̃) is not zero then a Kähler submanifold

M2m, m > 1, is totally complex ([AM2]). In particular, m ≤ n. A Kähler submanifold of

maximal possible dimension 2n is called maximal.
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Let (M2m, J1) be a Kähler submanifold of a quaternionic Kähler manifold M̃4n. We

fix a local section J2 ∈ Γ(Q)|M such that J2
2 = −1 and J1J2 = −J2J1. One can check that

(3) ∇̃V J2 = ω(V )J3 ,

where J3 = J1J2 and ω is a local 1-form on M . As in [AM1], we associate with the second

fundamental form h, a (local) (0, 3)-tensor field C on M , called the shape tensor, defined

by

C(X, Y, Z) := 〈J2h(X, Y ), Z〉 .

It is symmetric with respect to X, Y, Z and satisfies the following identities:

C(X, Y, JZ) = C(JX, Y, Z) = C(X, JY, Z) ,

which means that the associated endomorphism CX , X ∈ TM , defined by

〈CXY, Z〉 = C(X, Y, Z)

anticommutes with J .

If J ′2 = cos θJ2 + sin θJ1J2 is another section, then the associated shape tensor C ′ is

related to C by

C ′X = cos θ CX + sin θJ1 ◦ CX .

This implies that the um-valued 2-form [C,C](X, Y ) := [CX , CY ] is globally defined and

satisfies the Bianchi identities.

We define the (0, 4)-tensor field P as follows:

P (V ;X, Y, Z) = (∇VC)(X, Y, Z) + ω(V )C(X, Y, JZ),

which is symmetric with respect to X, Y, Z.

Proposition 3.2. Let (M2m, J1) be a curvature invariant Kähler submanifold of a quater-

nionic Kähler symmetric space. Then

1) the tangential part RTT of the curvature tensor R̃ of M̃ is parallel and the tensor

[C,C] satisfies the second Bianchi identity:

∇RTT = 0 , cycl(∇Z [C,C])(X, Y ) = 0 ,

2) If M is parallel, then P ≡ 0.

Proof. The proof is the same as for the case n = m, which was done in [AM1]. q.e.d.

The following Lemma describes the relation between the covariant derivative of C and

the tensor P .
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Lemma 3.3. Let (M2m, J1) be a totally complex submanifold of a quaternionic Kähler

manifold M̃4n. Then the covariant derivative of the shape tensor C is given by

−(∇VC)(X, Y, Z) = 〈(∇′V h)(X, Y ), J2Z〉+ ω(V )C(X, Y, JZ) + 〈h(X, Y ), J2h(V, Z)〉

or, equivalently,

(4) − P (V ;X, Y, Z) = 〈(∇′V h)(X, Y ), J2Z〉+ 〈h(X, Y ), J2h(V, Z)〉

for any tangent vectors X, Y, Z, V .

Proof. We extend vectors X, Y, Z ∈ TxM to local tangent vector fields on M such

that ∇VX = ∇V Y = ∇VZ = 0 at x ∈M . Then we have

−(∇VC)(X, Y, Z) = −V C(X, Y, Z) = V 〈h(X, Y ), J2Z〉
= 〈∇⊥V h(X, Y ), J2Z〉+ 〈h(X, Y ),∇⊥V J2Z〉
= 〈(∇′V h)(X, Y ), J2Z〉+ 〈h(X, Y ), ∇̃V J2Z〉
= 〈(∇′V h)(X, Y ), J2Z〉+ 〈h(X, Y ), (∇̃V J2)Z + J2∇̃VZ〉
= 〈(∇′V h)(X, Y ), J2Z〉+ 〈h(X, Y ), ω(V )J3Z + J2h(V, Z)〉
= 〈(∇′V h)(X, Y ), J2Z〉+ 〈h(X, Y ),−ω(V )J2J1Z + J2h(V, Z)〉
= 〈(∇′V h)(X, Y ), J2Z〉+ ω(V )C(X, Y, JZ) + 〈h(X, Y ), J2h(V, Z) .〉

q.e.d.

Corollary 3.4. 1)Assume that at some point x ∈ M the subspace (∇′TxMh)(TxM,TxM)

is orthogonal to J2TxM . Then Px = 0 and the first normal space N1
x = h(TxM,TxM) is

totally complex, i.e., J1N
1
x = N1

x and J2N
1
x is orthogonal to N1x.

2)Assume that M is curvature invariant and the first normal space N1
x at some point

x ∈ M is totally complex. Then Px(V ;X, Y, Z) = 〈(∇′V h)x(X, Y ), J2Z〉 is symmetric in

all arguments.

Proof. 1) The first term on the right member of (4) vanishes. Hence Px(V ;X, Y, Z) =

−〈h(X, Y ), J2h(V, Z)〉 is symmetric in all arguments. Since Px(X,X,X,X)

= 〈−h(X,X), J2h(X,X)〉 = 0, we get the conclusion.

2) By taking Codazzi-Mainardi equation into account , it is obvious. q.e.d.

Theorem 3.5. Let (M2m, J1) be a totally complex submanifold of a quaternionic Kähler

manifold M̃4n. Assume that 〈(∇′V h)(X, Y ), J2Z〉 = 0 for any X, Y, Z, V ∈ TM , which

is true if M is parallel. Then the first normal bundle N1M = h(TM, TM) is totally

complex, i.e., 〈h(X, Y ), J2h(V, Z)〉 = 0 and the tensor field P = 0.

Assume moreover that the reduced scalar curvature ν of M̃4n is not zero. Then there

are two cases:

9



1) C = 0 at some point and then C ≡ 0, which means that N1M ⊥ J2TM , or

2) C 6= 0 and then M is a locally symmetric Hermitian manifold with parallel cubic

line bundle of type ν ([AM1]). More precisely, M is locally isometric to one of the

symmetric spaces: S = Qn−1×CP 1,CP 1×CP 1,CP 1×CP 1×CP 1, Sp2/U2×CP 1,

CP 1, Sp3/U3, SU6/S(U3 × U3), SO12/U6, E7/T
1 · E6 or its non compact dual.

Proof. By Corollary 3.4, the tensor P vanishes, that is,

P (X, Y, Z, V ) = (∇VC)(X, Y, Z) + ω(V )C(X, Y, JZ) ≡ 0.

It was shown in [AM1] that if C 6= 0 at least at one point, then this condition means

that the tensor field C generates a parallel holomorphic line bundle in the space of cubic

symmetric forms of type (3, 0) such that the induced connection has curvature RL = iνg◦J
(parallel cubic line bundle of type ν ). All such Kähler manifolds are locally symmetric

and locally isometric to one of the symmetric spaces described in [AM1, Thm. 3.14].

q.e.d.

4 Characterization of maximal parallel Kähler sub-

manifolds of a quaternionic Kähler symmetric space

In this section we give a characterization of maximal parallel Kähler submanifolds M2n

of a quaternionic Kähler symmetric space M̃4n, of non zero scalar curvature.

Theorem 4.1. Let M2n ⊂ M̃4n be a complete maximal Kähler submanifold of a quater-

nionic symmetric space M̃4n of non zero scalar curvature. Then the following properties

are equivalent:

(i) M is curvature invariant and locally symmetric.

(ii) M is parallel.

(iii) M is extrinsically symmetric.

Proof. For proof we need the following lemma.

Lemma 4.2. ([AM1, Prop. 2.8]) Any curvature invariant maximal Kähler submanifold

(M2n, J) of a quaternionic Kähler manifold M̃4n is normal curvature invariant.

Proof. The proof follows from the following identity which implies that the curvature

tensor R̃ is invariant under the automorphism J2:
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〈R̃(J2X, J2Y )J2Z, J2W 〉 = 〈R̃(X, Y )Z,W 〉

for all X, Y, Z,W ∈ TM̃ . q.e.d.

Proof of the Theorem 4.1. The equivalence (ii) ⇔ (iii) follows from the Lemma and

Theorem 2.6. (ii)⇒ (i) is well-known.

Thus, it remains to prove that (i) ⇒ (ii). Assume that M is curvature invariant

and locally symmetric. Then, by Proposition 2.13 in [AM1, page 887] the tensor field

[C,C] is parallel, i.e., ∇[C,C] = 0. We associate to the shape operator A the tensor

[A,A] ∈ Γ(Λ2T⊥M ⊗ Λ2TM) by [A,A](ξ, η) = [Aξ, Aη] for ξ, η ∈ T⊥M .

We need the following lemma.

Lemma 4.3. Let M2n be a maximal Kähler submanifold of a quaternionic symmetric

space M̃4n, ν 6= 0, and Aξ its shape operator. Then the following holds:

(∇Z [C,C])(J2ξ, J2η)W = (∇′Z [A,A])(ξ, η)W .

Proof of Lemma. For ξ, η ∈ J2TxM and Z,W ∈ TxM , we have

(∇Z [C,C])(J2ξ, J2η)W = ∇Z(C ◦ C)(J2ξ, J2η)W −∇Z(C ◦ C)(J2η, J2ξ)W .

We have

∇Z(C ◦ C)(J2ξ, J2η)W = ((∇ZC) ◦ C)(J2ξ, J2η)W + (C ◦ (∇ZC))(J2ξ, J2η)W .

By definition it follows that

(∇ZC)VW = ∇ZCVW − C∇ZVW − CV∇ZW .

Hence we obtain

∇Z(C ◦ C)(J2ξ, J2η)W = ((∇′ZA)ξ ◦ Aη)W + (Aξ ◦ (∇′ZA)η)W

−(C(∇ZJ2)ξ ◦ CJ2η)W − (CJ2ξ ◦ C(∇ZJ2)η)W

Since (∇ZJ2) = ω(Z)J3, we get

(C(∇ZJ2)ξ ◦ CJ2η)W + (CJ2ξ ◦ C(∇ZJ2)η)W = 0 .

Then,

∇Z(C ◦ C)(J2ξ, J2η,W ) = ((∇′ZA)ξ ◦ Aη)W + (Aη ◦ (∇′ZA)η)W = ∇′Z(A ◦ A)(ξ, η,W ) .

Now, the lemma follows from the above identity. q.e.d.

By using this lemma, we see that (i) implies (∇′Z [A,A])(ξ, η)W = 0. Since J1 is

parallel, we obtain that (∇′Z [A,A])(ξ, J1η)W = 0. From these two identities we get
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∇′Z(A ◦ A)(ξ, η)W = ((∇′ZA)ξ ◦ Aη)W + (Aξ ◦ (∇′ZA)η)W = 0 .

Also, we have

∇′J1Z
(A ◦ A)(ξ, η)W = ((∇′J1Z

A)ξ ◦ Aη)W + (Aξ ◦ (∇′J1Z
A)η)W = 0 .

Since M is curvature invariant, it follows that (∇′J1Z
A)ξX = −J1(∇′ZA)ξX. By using this

fact together with the last two identities, we obtain

((∇′ZA)ξ ◦ Aη)W = (Aξ ◦ (∇′ZA)η)W = 0.

Now, the theorem is a consequence of the following lemma. q.e.d.

Lemma 4.4. Let M be a submanifold of a Riemannian manifold and A its shape operator.

If

((∇XA)ξ ◦ Aη)W = (Aξ ◦ (∇XA)η)W = 0

then M is parallel, i.e., ∇′A = 0.

Proof. We decompose TM = N ⊕N⊥, where

N =
⋂

ξ∈TM⊥
ker(Aξ) , N⊥ = span(

⋃
ξ∈TM⊥

Image(Aξ)).

So, if Z ∈ N⊥, it follows that (∇′XA)(ξ, Z) = 0. Let Z ∈ N be any section. Observe that

(∇′XA)ξZ ∈ N . On the other hand, we have (∇′XA)ξZ = −Aξ∇XZ. Thus, (∇′XA)ξZ ∈
N⊥ and then (∇′XA)ξZ = 0, that is, A is parallel. q.e.d.

5 Parallel Kähler submanifolds of quaternionic

Kähler manifolds.

5.1 Reduction to the case of 1-full parallel Kähler submanifolds

Note that the intersection of totally geodesic submanifolds of a Riemannian manifold M̃

is a totally geodesic submanifold. Hence we may consider the minimal totally geodesic

submanifold M containing a given submanifold M .

In this subsection we prove the following theorem which reduces the classification of

parallel Kähler submanifolds of a quaternionic Kähler symmetric manifold to the classifica-

tion of 1-full parallel Kähler submanifolds in Hermitian or quaternionic Kähler symmetric

spaces.
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Theorem 5.1. Let (M2m, J) be a parallel Kähler submanifold of a symmetric quaternionic

Kähler manifold M̃4n of non zero scalar curvature and M the minimal totally geodesic

submanifold of M̃4n containing M2m.

1) If the shape tensor C of (M2m, J) vanishes, then M is a totally geodesic Hermitian

symmetric space and (M2m, J) is a full parallel Kähler submanifold of M .

2) If C 6= 0, and hence (M2m, J) is a Kähler manifold with parallel cubic line bundle,

then M is a quaternionic symmetric space of dimension 4m and (M2m, J) is a full

parallel Kähler submanifold of M .

Proof. We need the following Lemma.

Definition 5.2. A parallel Kähler submanifold of a symmetric quaternionic Kähler man-

ifold M̃4n is called of type 1) if the shape tensor C = 0 and of type 2) otherwise.

Lemma 5.3. Let M be a parallel Kähler submanifold of a symmetric quaternionic Kähler

manifold with non zero scalar curvature.

1) If is of type 1), then

J2TxM ⊥ N1
x for all x ∈M.

2) If it is of type 2), then

J2TxM = N1
x for all x ∈M.

Proof of Lemma 5.3. 1) is obvious, by definition of C. Before considering the case

2) let state some facts which hold true for any parallel submanifold M . As before, we

use Latin letters X, Y, Z, . . . for vector fields in TM and Greek letters ξ, η, . . . for vector

fields in T⊥M . By hypothesis ∇′h = 0 we have the identity

(5) ∇⊥X(h(Y, Z)) = h(∇XY, Z) + h(Y,∇XZ) .

and

(6) R̃(TM, TM)TM ⊂ TM

Moreover, by (2) of Lemma 13 of [Na1],

(7) R̃(TM, TM)N1 ⊂ N1.

(Naitoh proved (7) as follows: the Ricci equation of the parallel submanifold can be

written as
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R̃(X, Y )ξ = R⊥(X, Y )ξ − h(X,AξY ) + h(AξX, Y ),

and for ξ = h(Z, T ), by (5), it follows that

R⊥(X, Y )h(Z, T ) = h(R(X, Y )Z, T ) + h(Z,R(X, Y )T ).

The conclusion follows immediately).

The proof of the Lemma follows directly from the next two Sublemmas.

Sublemma 5.4. For any parallel Kähler submanifold M one has

(8) R̃(TM,N1)TM ⊂ N1.

Moreover, if M is of type 2) then

(9) J2TM ⊂ N1,

Proof of Sublemma 5.4. Since M̃4n is a symmetric space and the submanifold M is

curvature invariant, we have (∇̃XR̃)(Z,U)Y = 0, which can be written as

∇X(R̃(Z,U)Y ) + h(R̃(Z,U)Y,X)

= R̃(∇XZ,U)Y + R̃(Z,∇XU)Y + R̃(Z,U)∇XY

+R̃(h(X,Z), U)Y + R̃(Z, h(X,U))Y + R̃(Z,U)h(X, Y ) .

The projection onto T⊥M of this identity gives

(10) R̃(h(X,Z), U)Y + R̃(Z, h(X,U))Y = h(R̃(Z,U)Y,X)− R̃(Z,U)h(X, Y ).

By comparing (10) with the identity obtained by changing X → J1X and U → J1U , and

taking account of (2), we deduce the following identity:

(11)

R̃(h(X,Z), U)Y = (1/2)[− ν
(
〈J2h(X,Z), U〉J2Y + 〈J3h(X,Z), U〉J3Y

)
+h(R̃(Z,U)Y,X) + h(R̃(Z, JU)Y, JX)

−R̃(Z,U)h(X, Y )− R̃(Z, JU)h(JX, Y )].

If M is of type 1) then (8) follows from (11), (6), (7). Let now assume that M is

of type 2). We use (11) to compute the first two terms of the Bianchi identity 0 =

R̃(h(X,Z), U)Y + R̃(Y, h(X,Z))U + R̃(U, Y )h(X,Z). Taking account of (7), we get

(12)
−〈J2h(X,Z), U〉J2Y − 〈J3h(X,Z), U〉J3Y

+〈J2h(X,Z), Y 〉J2U + 〈J3h(X,Z), Y 〉J3U ∈ N1.

Let us assume that at a point x ∈ M there exists a vector Y such that J2Y /∈ (N1)⊥. If

U = J1Y , then (12) gives

(13) 〈J3h(X,Z), Y 〉J2Y − 〈J2h(X,Z), Y 〉J3Y ∈ N1
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and, by changing X → J1X, we get

(14) 〈J2h(X,Z), Y 〉J2Y + 〈J3h(X,Z), Y 〉J3Y ∈ N1.

By assumption, there exist vectors X,Z ∈ TxM such that

〈J2h(X,Z), Y 〉2 + 〈J3h(X,Z), Y 〉2 6= 0.

Then (13) and (14) imply that J2Y, J3Y ∈ N1. Now, for any U ∈ TM , (12) gives

(15) 〈J2h(X,Z), Y 〉J2U + 〈J3h(X,Z), Y 〉J3U ∈ N1,

from which, by comparing with the identity where U is replaced with JU , it is easy to

deduce that J2U ∈ N1, for any U ∈ TM . (8) follows from (11), (6), (9) and (7). q.e.d.

Sublemma 5.5. If M is of type 2) then

(16) J2N
1 ⊂ TM.

Proof of Sublemma 5.5. Let us assume that the vector field ξ ∈ N1. Since R̃(Y, ξ)Z ∈
N1 by (8), the identity (∇̃XR̃)(Y, ξ)Z = 0 can be rewritten as

∇⊥XR̃(Y, ξ)Z − AR̃(Y,ξ)ZX

= R̃(∇XY, ξ)Z + R̃(Y,∇⊥Xξ)Z + R̃(Y, ξ)∇XZ

+R̃(h(X, Y ), ξ)Z − R̃(Y,AξX)Z + R̃(Y, ξ)h(X,Z).

By using repeatedly (5), (7) and (8), we get

R̃(h(X, Y ), ξ)Z + R̃(Y, ξ)h(X,Z) ∈ O1

and, by changing Y → JY and ξ → Jξ,

R̃(J1h(X, Y ), J1ξ)Z + R̃(J1Y, J1ξ)h(X,Z) ∈ O1
x = TxM + h(TxM,TxM).

The last two identities together with (2) imply that

ν
(
〈J2h(X, Y ), ξ〉J2Z + 〈J3h(X, Y ), ξ〉J3Z

+〈J2Y, ξ〉J2h(X,Z) + 〈J3Y, ξ〉J3h(X,Z)
)
∈ O1

x.

Since J2Z, J3Z ∈ N1 by Lemma 5.4, we conclude that

(17) 〈J2Y, ξ〉J2h(X,Z) + 〈J3Y, ξ〉J3h(X,Z) ∈ O1
x.

Let us assume that there exists a vector Y ∈ TxM such that 〈J2Y, ξ〉2 + 〈J3Y, ξ〉2 6= 0.

We deduce easily, by comparing (17) with the identity obtained by the change Y → J1Y ,

that
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J2h(X,Z) , J3h(X,Z) ∈ O1 , for any X,Z ∈ TxM .

On the other hand, by Corollary 3.4, J2h(X,Z) is orthogonal to N1. Hence

J2h(X,Z) , J3h(X,Z) ∈ TM , for any X,Z ∈ TxM,

and (5.5) follows. This finish the proof of Sublemma 5.5 and hence Lemma 5.3. q.e.d.

Now we prove the following Proposition which, together with Lemma 5.3, implies

Theorem 5.1.

Proposition 5.6. Let (M2m, J) be a parallel Kähler submanifold of a locally symmetric

quaternionic Kähler manifold. Then the first osculating space O1
x = TxM + N1

x at any

point x ∈M is curvature invariant, i.e.,

R̃(O1, O1)O1 ⊂ O1.

Remark. The proposition remains true if M̃ is a locally symmetric Kähler manifold,

whose proof is the same as in the quaternionic Kähler case.

Proof. The identity (∇̃R̃)(Y, Z)ξ = 0 can be rewritten as

∇⊥X(R̃(Y, Z)ξ)− AR̃(Y,Z)ξX

= R̃(∇XY, Z)ξ + R̃(Y,∇XZ)ξ + R̃(Y, Z)∇⊥Xξ
+R̃(h(X, Y ), Z)ξ + R̃(Y, h(X,Z))ξ − R̃(Y, Z)AξX.

For ξ ∈ N1, by taking account of (6),(7) and (5), this gives

R̃(h(X, Y ), Z)ξ + R̃(Y, h(X,Z))ξ ∈ O1.

By changing X → J1X and Z → J1Z, we have

R̃(J1h(X, Y ), J1Z)ξ − R̃(Y, h(X,Z))ξ ∈ O1.

By (2), we also have

R̃(J1h(X, Y ), J1Z)ξ

= R̃(h(X, Y ), Z)ξ + ν
(
〈J2h(X, Y ), Z〉J2ξ + 〈J3h(X, Y ), Z〉J3ξ

)
∈ TM

which implies

(18) R̃(N1, TM)N1 ⊂ O1.

Now the Bianchi identity gives

(19) R̃(N1, N1)TM ⊂ O1.
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We rewrite the identity (∇̃R̃)(Y, η)ξ = 0 for η, ξ ∈ N1 as follows:

∇̃X(R̃(Y, η)ξ) = R̃(∇XY, η)ξ + R̃(Y,∇⊥Xη)ξ + R̃(Y, η)∇⊥Xξ
+R̃(h(X, Y ), η)ξ − R̃(Y,AηX)ξ − R̃(Y, η)AξX.

Since the bundle O1 is invariant under parallel transport, it follows that R̃(h(X, Y ), η)ξ ∈
O1
x, and hence

(20) R̃(N1
x , N

1
x)N1

x ⊂ O1
x .

Formulas (6), (7), (8), (18), (19) and (20) then imply Proposition 5.6 . q.e.d.

We also obtain the following corollary, which was proved by Tsukada [Tsu2] in the

case of quaternionic projective space.

Corollary 5.7. A non totally geodesic parallel totally complex submanifold (M2m, J1) of

a symmetric quaternionic Kähler manifold M̃4n is 1-full if and only if it has maximal

dimension, i.e., n = m.

Proof. We have the following orthogonal decomposition:

TM̃ = TM + J2(TM) +N(M),

where N(M) is a quaternionic subbundle. If we assume that M is 1-full, then it follows

that T⊥M = J2TM +NM = N1M . By 1) of Corollary 3.4, N1M is totally complex, and

hence NM = 0. Vice versa, if M has maximal dimension n = m, then J2TM = T⊥M .

Since M is not totally geodesic, M has type 2) and by Lemma 5.3, we get N1M =

J2TM = T⊥M . q.e.d.

Remark 5.8. As a consequence of Proposition 5.6 and Naitoh’s Theorem 2.9, it follows

that the concept of being 1-full and that of being full are equivalent for a parallel Kähler

submanifold of a locally symmetric quaternionic Kähler manifold.

Now we can prove Theorem 5.1. By Proposition 5.6 and Theorem 2.9, the Kähler

submanifold M2m is 1-full in the totally geodesic submanifold M = exp(O1
xM). In the

case 1), M is a totally complex totally geodesic submanifold, and hence a Hermitan

symmetric space. In the case 2), M is a quaternionic Kähler submanifold. q.e.d.

6 Totally geodesic maximal Kähler submanifolds of

Wolf spaces

All totally geodesic maximal Kähler submanifolds M2n of a Wolf space W = G/K =

M̃4n were classified by Takeuchi in terms of Satake diagrams [Tak]. Here we sketch
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another approach based on a simple observation that there exists a natural one to one

correspondence between such submanifolds and involutive automorphisms of the complex

Lie algebra g = Lie(G)C, which preserve the canonical ideal sp1 of the stability Lie algebra

k and act non trivially on it. Similar ideas can be found in [Wo].

6.1 Lie algebra description of Wolf spaces

Recall that any simple complex Lie algebra g determine the Wolf space as follows. Let

g = h +
∑
α∈R

CEα

be the Cartan decomposition of the Lie algebra g with respect to a Cartan subalgebra h

and Π = {α1, . . . , α`} a system of simple roots of the root system R.

We denote by µ the maximal root of R and by Hµ = 2/(µ, µ)B−1
µ = [Eµ, E−µ] the

corresponding element of h such that {Hµ, E±µ} is the standard basis of the 3-dimensional

subalgebra a1 = spµ1(C). Then adHµ has the eigenvalues ±2,±1, 0 and the corresponding

eigenspace decomposition

(21) g = g−2 + g−1 + g0 + g1 + g2

gives rise to a gradation of the Lie algebra g. Moreover, we have

g±2 = CE±µ , g±1 =
∑
α∈±R1

gα , g0 = h +
∑
α∈R0

CEα = g0
′ ⊕ CHµ ,

where

R1 = {α ∈ R;α(Hµ) =
2(α, µ)

(µ, µ)
= 1}, R0 = {α ∈ R; (α, µ) = 0} .

We put ϕ0 = exp iπ(adHµ), which is an involutive automorphism of g with eigenspace

decomposition

g = gev + godd = (g−2 + g0 + g2) + (g−1 + g1) .

Since ϕ0 commutes with the standard antilinear involution τ of g associated with the

Cartan decomposition, which determines the compact real form gτ = {X ∈ g; τ(X) = X},
ϕ0 defines a symmetric decomposition

gτ = gτev + gτodd = (spµ1 + g0
′)τ + (g−1 + g1)τ = k + m

of the compact Lie algebra gτ . We denote by G the adjoint (compact) Lie group with

the Lie algebra gτ and by K = NG(a1) = Spµ1 · K ′ the normalizer of the 3-dimensional

subalgebra (which is the connected Lie group generated by the subalgebra k = gτev). Then

W = G/K is a simply connected irreducible symmetric space W = G/K associated

18



with this symmetric decomposition. Moreover, it has a natural structure of quaternionic

Kähler symmetric space, which is called the Wolf space associated with the Lie algebra g.

The quaternionic structure Q in the tangent space ToW = gτodd is given by Q = adspµ1
|gτodd

.

Remark that the pair (G,K) is determined by the grading element d = Hµ of the

gradation (21) and the antilinear involution τ with τd = −d. Conversely, a pair (d, τ),

where d is the grading element of a gradation (21) with dim g±2 = 1 and τ is an antilinear

involution of g with τd = −d, defining a compact real form gτ of g defines a Wolf space

W = G/K, and any such pairs are conjugated by an inner automorphism of g.

6.2 Totally geodesic extrinsically symmetric Kähler submani-

folds of a Wolf space

Let W = G/K be a Wolf space associated with a complex simple Lie algebra g and

(d = Hµ, τ) be the pair that determines (G,K) as above. Since the isotropy group

K = Spµ1 ·K ′ acts transitively on the unit sphere of all complex structures J ∈ Q = ada1|m,

any totally geodesic Kähler submanifold M of W containing o = eK ∈ W is K-equivalent

to a submanifold M ′ 3 o, whose tangent space ToM is invariant under some fixed complex

structure J1 ∈ Q. We choose as J1 the complex structure J1 = adiHµ|gτodd
. We will call a

totally geodesic Kähler submanifold M of W admissible if it contains o and the tangent

space ToM is J1-invariant.

Theorem 6.1. Let W = G/K be a Wolf space associated with a complex simple Lie

algebra g, d = Hµ be the grading element of the gradation (21) and τ be the antilinear

involution defining the compact real form Lie G = gτ of g.

1) There is a natural one to one correspondence between

i) involutive automorphisms σ of g which commute with τ and satisfy condition

σ(E±µ) = −E±µ, and

ii) (connected) admissible totally geodesic extrinsically symmetric Kähler submani-

folds M(σ) of W = G/K given by M(σ) = W sσ , where W sσ 3 o is the connected

component of the fixed points set of the symmetry sσ : W 3 aK 7→ σ(a)K. More-

over, dimM(σ) = (1/2) dimW .

2) Submanifolds M(σ) and M(σ1) are G-equivalent if and only if the involutive auto-

morphisms σ and σ1 are conjugated by an element of K.

3) For any submanifold M(σ) there is another canonically defined totally geodesic ex-

trinsically symmetric Kähler submanifold M(σ′) associated with the involutive au-

tomorphism σ′ = ϕ0 ◦ σ such that one has the orthogonal decomposition ToW =

ToM(σ) + ToM(σ′).
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4) The pair of involutive automorphism σ and σ′ = ϕ0 ◦ σ is determined by the re-

striction of σ to g′0 . Two automorphisms σ and σ1 define G-equivalent pairs

(M(σ),M(σ′)) and (M(σ1),M(σ′1)) of submanifolds if and only if the automorphism

σ|g′0 is conjugated to σ1|g′0 or σ′1|g′0 in the group of automorphisms of g0
′.

Proof of Theorem. 1) Let M = L/L0 = Lo be an admissible totally geodesic extrinsi-

cally symmetric Kähler submanifold of the Wolf space W = G/K and

g = g−2 + g−1 + g0 + g1 + g2 = gev + godd

the adHµ- eigenspace decomposition of the complex Lie algebra g. We identify the com-

plexified tangent space TC
o W with p = godd = g−1 + g1.

The symmetry so of M at point o induces a complex linear involutive transformation

so∗ of TC
o W = p = g−1 + g1, which by assumption commutes with the complex structure

J1 = adiHµ|p. This implies that the eigenspace decomposition of so∗ has the form

p = (g+
−1 + g+

1 ) + (g−−1 + g−1 ),

where the +1-eigenspace mC = g+
−1 + g+

1 is the complexification of the tangent space

m = ToM and g−−1 + g−1 is its orthogonal complement. The graded subspace mC generates

a graded Lie subalgebra ` = [mC,mC] + mC of g. Since [mC,mC] cannot contain the

subalgebra spµ1(C), it belongs to g−1 + g0 + g1. In particular, [g+
1 , g

+
1 ] = [g+

−1, g
+
−1] = 0.

On the other hand, `0 = [mC,mC] ⊂ g0 contains Hµ, since M = L/L0 is a Hermitian

symmetric space.

We denote by σ the involutive automorphism of the group G and its Lie algebra gτ

defined by conjugation with the symmetry so, and extend it to a complex linear auto-

morphism σ of g, which commutes with τ . Since the restriction σ|p = so|p commutes

with J1 = adiHµ|p, we have σ(Hµ) = Hµ, that is, σ preserves the gradation of g de-

fined by Hµ. In particular, σ(E±µ) = εE±µ, where ε = ±1. Assume that ε = +1, i.e.,

σ(E±µ) = E±µ. Then (so)∗|ToW commutes with the quaternionic structure Q = adµsp1
(C),

which contradicts the assumption that M is totally complex. Hence σ(E±µ) = −E±µ. We

have proven that the automorphism σ defined by the symmetry so satisfies all conditions

of the theorem.

Now we remark that

[g+
±1, g

+
±1] = [g−±1, g

−
±] = 0,

since σ|g±2 = −Id. This means that g±1 = g+
±1 + g−±1 is a decomposition of the complex

symplectic vector space g±1, with the symplectic form ω defined by [X, Y ] = ω(X, Y )E±µ,

into direct sum of two Lagrangian subspaces. In particular,

dim g+
1 = dim g−1 = dim g+

−1 = dim g−−1 =
1

4
dimW.
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Conversely, let σ be an involutive automorphism commuting with τ and acting as −Id

on g−2 + g2. Then it preserves Hµ = [Eµ, E−µ]. Hence its eigenspaces decomposition has

the form

g = g−2 + g+
−1 + g−−1 + g+

0 + g−0 + g+
−1 + g−−1 + g2.

Moreover, [g+
±1, g

+
±1] = [g−±1, g

−
±1] = 0 and the four spaces g±±1 have the same dimension.

One can easily check that the subalgebras

`− = g−−1 + g−1 , `+ = g+
−1 + g+

1

define two totally geodesic extrinsically symmetric Kähler submanifolds M+ = M(σ) and

M− = M(ϕ0 ◦ σ) of the same dimension 2n = (1/2) dimW .

To prove that the correspondence between σ and M(σ) is a bijection, it is sufficient to

show that two involutive automorphisms σ, σ′ coincide if they have the same restriction

to g−1 + g1 or, equivalently, that the fixed point set gσ = gσ−1 + g′σ0 + CHµ + gσ1 can be

reconstructed from gσ−1 + gσ1 . Since g′0 = [g−1, g1] , we have

g0
′σ = [g−1, g1]σ = [gσ−1, g

σ
1 ].

2) If M(σ) and M(σ1) are G-equivalent, there exists an isometry k ∈ K such that

kM(σ) = M(σ1). Then the conjugation by k transforms σ into σ′. The converse statement

is also clear.

3) is obvious . To prove 4) , it is sufficient to check that an automorphism ρ = σ−1 ◦σ′

acting trivially on gev = g−2 + g0 + g2 is either trivial or equal to ϕ0. It follows from the

fact that the isometry of W associated to ρ with the fixed point o commutes with the

stability subgroup K acting irreducibly on ToW . q.e.d.

It is not difficult to describe all automorphisms σ of g which correspond to totally

geodesic extrinsically symmetric Kaehler submanifolds M(σ) in terms of Kac diagrams,

see [GOV]. Here we state only a corollary which we use in the proof of Theorem 1.1.

Corollary 6.2. Let W = G/K be a Wolf space or its non compact dual. Then, up

to an isometry, there exist finitely many totally geodesic extrinsically symmetric Kähler

submanifolds of W . Any one of them has dimension (1/2) dimW .

Proof. The claim for Wolf spaces follows from Theorem 6.1. It remains true for

non compact dual W ′, since totally geodesic Kähler extrinsically symmetric submanifolds

can be characterized as totally geodesic Kähler submanifolds which are normal curvature

invariant and the restriction of the natural one-to-one correspondence between totally

geodesic submanifolds of W and W ′ gives a one-to-one correspondence between such

submanifolds. q.e.d.

Remark that in a symmetric space M there could be even a continuous number of non

equivalent totally geodesic submanifolds of given dimension, for example geodesics in a

symmetric space of rank greater than 1.
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7 Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Let M be a curvature invariant maximal Kähler submanifold of a

Wolf space or its dual. By Lemma 4.2, M is also normal curvature invariant. Hence for any

point x ∈M there exists an involutive isometry so such that so|TxM = −Id and so|T⊥x M =

Id, see the proof of Theorem 2.6. This shows that the totally geodesic submanifold

M(x) = exp(TxM) is an extrinsically symmetric maximal Kähler submanifold. Hence

by 6.2, the tangent space TxM belongs to one of the finitely many orbits V = G(V ) ⊂
Gr2nT (G/K). By continuity reason, M is a V-submanifold, where V is defined by one

of the extrinsically symmetric Kähler submanifolds. Since V is curvature and normal

curvature invariant, by applying Naitoh’s Theorem 2.8, M is totally geodesic if M̃ 6= HP n

or the dual quaternionic hyperbolic space HHn (The last statement for M̃ 6= HP n can also

be obtained directly by using Theorem 5.4 and Remark 5.5 of [Na2] for the Grassmannian

G2(Cn+2). An elementary proof that G2(Cn+2) does not contain non totally geodesic

maximal Kähler submanifolds was given in [ADM]). It is known ([Tsu2]) that any parallel

Kähler submanifold of HHn is totally geodesic. This proves Theorem 1.1.

Proof of Theorem 1.2. The first claim was proved in Theorem 5.1. Assume that the shape

tensor C 6= 0. Then by Theorem 5.1, M2m is a parallel maximal Kähler submanifold of

a quaternionic Kähler symmetric space M̃4m. Theorem 1.1 then implies that M̃ = HPm.

Now result follows from Tsukada’s classification of parallel Kähler submanifolds of HPm.

q.e.d.
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