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We present a theory of the dc Josephson effect in contacts between Fe-based and spin-singlet s-wave
superconductors. The method is based on the calculation of temperature Green’s function in the junction
within the tight-binding model. We calculate the phase dependencies of the Josephson current for different
orientations of the junction relative to the crystallographic axes of Fe-based superconductor. Further, we consider
the dependence of the Josephson current on the thickness of an insulating layer and on temperature. Experimental
data for PbIn/Ba1−xKx(FeAs)2 point-contact Josephson junctions are consistent with theoretical predictions for
s± symmetry of an order parameter in this material. The proposed method can be further applied to calculations
of the dc Josephson current in contacts with other new unconventional multiorbital superconductors, such as
Sr2RuO4 and the superconducting topological insulator CuxBi2Se3.
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I. INTRODUCTION

An order parameter symmetry in unconventional super-
conductors contains an important information about su-
perconducting pairing mechanisms. It is well-known that
the phase-sensitive tunneling experiments in junctions with

*igor-devyatov@yandex.ru

unconventional superconductors provide an important infor-
mation about the symmetry of the order parameter [1–4].
The theory of quasiparticle tunneling spectroscopy of a
junction between a normal metal and an unconventional
superconductor was developed in Refs. [5,6] and the ex-
istence of midgap Andreev bound states was predicted in
Ref. [7]. The theory of a Josephson current composed of
unconventional superconductor junctions was developed in
Refs. [8,9]. After the discovery of high-TC cuprates, several
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new types of unconventional superconductors have been
discovered. The common property of these new uncon-
ventional superconductors like Sr2RuO4 [10–12], Fe-based
superconductors (FeBS) [13], and doped superconducting
insulators CuxBi2Se3 [14,15] is that all of them are multiorbital
materials.

All these materials have a complex single-particle
excitation spectrum, and one can expect sign changing of
superconducting order parameters in momentum space.
The interband and intervalley scattering in these multiband
unconventional superconductors significantly influences their
energy spectrum. Several phenomenological theories of trans-
port in junctions based on FeBS have been proposed in the past
[16–22]. However, only recently, a microscopic theory of
the quasiparticle current in a normal metal–multiband
superconductor junctions was formulated [23,24], which
takes into account the unusual properties of these materials.
But there is still no microscopic theory to describe
the Josephson current in junctions between multiband
superconductors and conventional single-band spin-singlet
s-wave superconductors, which goes beyond the existing
phenomenological theories [18,25–27].

The aim of this paper is to propose a microscopic theory
of the Josephson current in junctions based on multiband
superconductors. We apply this theory to calculate the current
phase relations in junctions between spin-singlet s-wave
and FeBS’s for different orientations. We also calculate the
temperature dependencies of the critical Josephson current in
these junctions. We confirm that the recently proposed phase
sensitive experiment [28] is feasible to determine the symmetry
of the order parameter in FeBS’s. A brief account of the basic
results of this paper is given in Ref. [29].

The organization of our paper is as follows. In Sec. II, we
discuss the general formulation of our tight-binding approach
for the calculation of the dc Josephson current in junctions
with single-orbital superconductors. We demonstrate that our
tight-binding approach reproduces the previous results for the
Josephson effect in junctions with single-orbital superconduc-
tors. In Sec. III, we present an application of our method in
the multiorbital case. We consider FeBS in the framework
of the two-band model and describe the detailed procedure
of the calculation of the Josephson current for in-plane and
out-of-plane current directions. We consider two types of
pairing symmetry in FeBS, either the s± or the s++ one. In
Sec. IV, we present numerically calculated results of phase
dependencies of dc Josephson current for different orientations
of the junctions. We show that the c axis oriented junction
can be used to distinguish between the s±- and the s++-wave
types of symmetry in FeBS. We also present the temperature
dependencies of the maximum Josephson current. In Sec. V,
experimental data for PbIn/Ba1−xKx(FeAs)2 point-contact
Josephson junctions are presented that are consistent with
theoretical predictions for the s± model. We summarize the
results and formulate conclusions in Sec. VI.

II. TIGHT-BINDING MODEL FOR
SINGLE-ORBITAL CASE

In this section, we formulate a Green’s function approach
for the calculation of dc Josephson current in single-orbital
tight-binding models. First, we consider the procedure of

FIG. 1. (Color online) Schematic illustration of 1D model of the
S/I/S Josephson junction.

calculation of 1D Josephson current for one-dimensional
S/I/S junctions, where S is a conventional spin-singlet s-
wave superconductor and I is an insulating layer. Then, we
outline the same procedure for S/I/Sd junctions, where Sd

is a spin-singlet single-orbital d-wave superconductor. We
demonstrate that our tight-binding Green’s function approach
reproduces the previous results for both S/I/S and S/I/Sd

Josephson current. In the end of this section, we discuss an
alternative plane-wave approach for the calculation of the
Josephson current.

A. Model of S/I/S Josephson junction

We consider the 1D tight-binding model of an S/I/S
Josephson junction as depicted in Fig. 1. In the left and
right parts of Fig. 1, red filled circles represent sites of
s-wave superconductor S with hopping amplitude t . In the
middle of Fig. 1, there are N sites of an insulator, which
we represent as blue circles with hopping t ′ between them.
At the S/I and I/S boundaries, we choose to have an equal
magnitude of the hopping parameters γ in Fig. 1. We assume
that the superconductors that form S/I/S Josephson junctions
are the same with a common pair potential �0. For simplicity,
we assume that the lattice spacings a in S and I are the same
and a = 1. To calculate the Josephson current across a S/I/S
junction, we must construct a Green’s function of the whole
system. The simplest way to do it is to construct the Green’s
functions in the S,I,S regions first and then to match them
at the boundaries. We define temperature Green’s functions in
the tight-binding model in the following form:

Gn,j (τ1,τ2) = −〈Tτ c↑(n,τ1)c+
↑ (j,τ2)〉,

Fn,j (τ1,τ2) = 〈Tτ c
+
↓ (n,τ1)c+

↑ (j,τ2)〉,
(1)

G̃n,j (τ1,τ2) =−〈Tτ c
+
↓ (n,τ1)c↓(j,τ2)〉,

F̃n,j (τ1,τ2) = 〈Tτ c↑(n,τ1)c↓(j,τ2)〉,
with a creation (annihilation) operator c+

σ (n,τi)(cσ (n,τi)) of an
electron with spin σ on a site n and an imaginary time ordering
operator Tτ .

After the differentiation of Green’s functions with respect
to τ1, one can obtain the lattice version of Gorkov’s equations:

(iω − μ)Gω
n,j −

∑
l

tn,lG
ω
l,j + �nF

ω
n,j = δn,j ,

(iω + μ)Fω
n,j +

∑
l

tn,lF
ω
l,j + �∗

nG
ω
n,j = 0,
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(iω − μ)F̃ ω
n,j −

∑
l

tn,l F̃
ω
l,j + �nG̃

ω
n,j = 0,

(iω + μ)G̃ω
n,j +

∑
l

tn,lG̃
ω
l,j + �∗

nF̃
ω
n,j = δn,j , (2)

where tn,l = t for l = n ± 1, tn,l = 0 for other values of l,
ω = πT (2m + 1) is the Matsubara frequency, and T is the
temperature. In the insulating region, we choose �n = 0 in
Eq. (2). One can find exact solutions of Eqs. (2) as follows:(

G
ω,SL

n,j

F
ω,SL

n,j

)
= a1j

(
β

eiφ

)
e−ikn + a2j

(
β−1

eiφ

)
eikn (3)

in the left superconductor,(
G

ω,SR

n,j

F
ω,SR

n,j

)
= b1j

(
β

1

)
eikn + b2j

(
1
β

)
e−ikn (4)

in the right superconductor, and(
G

ω,I
n,j

F
ω,I
n,j

)
= c1j

(
1
0

)
eqn + c2j

(
1
0

)
e−qn

+ c3j

(
0
1

)
eqn + c4j

(
0
1

)
e−qn

−
(

1
0

)
e−q|n−j |

2t sinh q
(5)

in the insulator. Here, β = −i(
√

ω2 + |�|2 + ω)/|�|, ϕ =
ϕR − ϕL, and k (q) are the phase difference between the
left and right superconductors and the momentum of a
quasiparticle in the superconductor (insulator), respectively.
We assumed also that in Eqs. (3)–(5) the quasiclassical
approximation (� � μ,t,t ′) is applied.

The unknown coefficients a1j , a2j , b1j , b2j , c1j , c2j ,
c3j , and c4j in Eqs. (3)–(5) can be obtained from matching
the Green’s functions (3)–(5) at the S/I and I/S interfaces.
Boundary conditions for multiorbital metals in the tight-
binding approximation have been proposed recently [23,24].
For temperature Green’s functions, these boundary conditions
in the quasiclassical approximation at S/I boundary have the
form:

tG
ω,SL

1,j = γG
ω,I
1,j , tF

ω,SL

1,j = γF
ω,I
1,j ,

(6)
γG

ω,SL

0,j = t ′Gω,I
0,j , γ F

ω,SL

0,j = t ′Fω,I
0,j ,

and the following form at I/S boundary:

t ′Gω,I
N+1,j = γG

ω,SR

N+1,j , t ′Fω,I
N+1,j = γF

ω,SR

N+1,j ,
(7)

γG
ω,I
N,j = tG

ω,SR

N,j , γ F
ω,I
N,j = tF

ω,SR

N,j .

In the same way, one can find the other pair of Green’s
functions G̃ω

n,j and F̃ ω
n,j from Eq. (2). The Josephson current

across 1D S/I/S junction in the tight-binding model is given
by the following expression:

I (ϕ) = eT t

i�

∑
ω

(
Gω

j,j+1 − Gω
j+1,j + G̃ω

j,j+1 − G̃ω
j+1,j

)
. (8)

Equation (8) is the generalization for the lattice model version
of the Josephson current in the framework of Green’s function
approach.

Using Eqs. (3)–(7), it is possible to derive analytically,
that previous results [30–35] for Josephson tunneling across
an S/I/S constriction for equal hopping parameters in S and
I with t = t ′ are reproduced by the present tight-binding
approach:

I (ϕ) = e�0σN sin ϕ

2
√

1 − σN sin2
(

ϕ

2

) tanh
�0

√
1 − σN sin2

(
ϕ

2

)
2T

, (9)

where σN is the transparency of the S/I/S junction in the
normal state. The transparency σN is equal to unity in the
case of the direct contact (N = 0 layers of insulator atoms)
with equal hopping parameters in the bulk and at the interface,
γ = t .

For the direct contact, the expression of σN has the
following form:

σN = 2σ 2
1 (1 − cos 2k)

σ 4
1 − 2σ 2

1 cos 2k + 1
, (10)

with σ1 = t2/γ 2. In the case of γ = t with nonzero length of
an insulating region, i.e., N 	= 0, the transparency σN of the
S/I/S junction has the following form:

σN = 4 sin2 k sin2 q(
σ 2

2 + σ 2
3 − 2σ2σ3 cos(2qN )

)2 , (11)

where σ2 = 1 − cos(k + q) and σ3 = 1 − cos(k + q).
Thus, based on our tight-binding Green’s functions, Eq. (9)

reproduces well-known previous results [30–35], with a
generalized definition of the normal state transparency (10)
and (11).

B. Model of S/I/Sd Josephson junction

In this section, we extend the present tight-binding Green’s
functions approach to single-orbital d-wave superconductor
(Sd ). We consider a 2D model of an S/I/Sd planar junction,
where the pair potential in a d-wave superconductor has the
form � = 2�d (cos kx − cos ky) for zero misorientation angle
and � = 4�d sin kx sin ky for π/4 misorientation angle. We
assume that the energy dispersion of both left and right super-
conductors has the form εN = 2t(cos kx + cos ky) + μN and
that in an insulating region εI = 2t(cos kx + cos ky) + μI with
μI > μN . In the actual numerical calculation, the Josepshon
current is expressed by the summation of all possible values
of ky . With the increase of the thickness of the insulator N , the
quasiparticles around a perpendicular injection to the insulator
provide the dominant contributions to the total Josepshon
current and the contribution from the large values of ky is
suppressed.

For zero misorientation angle, surface Andreev bound states
are absent. For the low transparent case, the qualitative feature
of the Josepshon current is similar to that of a conventional
s-wave superconductor. However, for the high transparent
case, the current-phase relation can deviate from the simple
sinusoidal current-phase relation. Then free energy mimima
can locate at ϕ = ±ϕ0, where ϕ0 is neither 0 nor ±π . The
reason can be understood if we decompose the Josephson
current into components with fixed ky . For the region with
small values of ky , the obtained current phase relation is
proportional to sin ϕ. On the other hand, for a large magnitude
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of ky , the Josepshon current is proportional to − sin ϕ. Then,
after an angle averaging of ky , the first-order term is relatively
suppressed as compared to that of the second-order term
proportional to sin 2ϕ. Our calculations demonstrate that
increasing the length of the insulating region up to N = 3,
the current-phase relation becomes that of 0 junction. In this
case, contributions to the averaged Josephson current from
the regions with a large magnitude of ky are suppressed
and that from the regions with a small magnitude of ky

prevail. This feature obtained in the framework of our Green’s
function tight-binding approach coincides qualitatively with
the previous results derived in Ref. [9] (see Fig. 2 of Ref. [9]).

Next, we study the case with a π/4 misorientation angle. It
is known that the current-phase relation becomes very unusual
in this case. The regions with positive and negative values of
ky give rise to different phase dependencies of the Josephson
current for a fixed ky . Positive values of ky correspond to the 0
junction and negative ones contribute to the π junction. Then,
the first-order term disappears. Then, the free-energy minima
are not located at 0 or ±π .

Our calculations demonstrate that the above feature appears
even when we increase the number of insulating layers up to
N = 4. The current-phase relation is proportional to sin 2φ

for a low transparent junction with nonzero N . These results
obtained in the framework of the present lattice Green’s
approach coincide qualitatively with the previous results
derived in Refs. [9,36] (Fig. 3 of [9]).

It is necessary to note that the same results as described
above can be obtained not only in terms of Green’s functions
but also in terms of wave functions [37]. For this purpose, one
should solve Bogoliubov-de Gennes equations and find the
wave functions for an s-wave superconductor, an insulating
region and a d-wave superconductor on the sites of the discrete
lattice [24]. However, calculations of the total Josephson
current in terms of wave functions are inconvenient for the
averaging of the Josephson current over all possible values of
ky than in terms of Green’s functions and lead to numerical
errors. Therefore, in the following sections, we use the tight-
binding Green’s functions approach to obtain the averaged
Josephson current in FeBS junctions.

III. MODEL FOR THE CONTACT BETWEEN S-WAVE
SUPERCONDUCTOR AND A FEBS

In this section, we consider Josephson transport across
S/I/Sp junctions, where S is a single-orbital s-wave super-
conductor, I is an insulating layer, and Sp is a FeBS. First,
we consider the procedure of the calculation of the 2D
Josephson current for the (100) oriented S/I/Sp junctions
for zero misorientation angle. Then, we describe the same
procedure for S/I/Sp junctions along c axis.

A. 2D model of the S/I/S p Josephson junction with a (100)
oriented FeBS

In Fig. 2, a two-dimensional crystallographic plane of a
single-orbital s-wave superconductor S (empty circles on left
side of Fig. 2), N atomic layers of an insulator (blue filled
circles in the middle of Fig. 2), and a FeBS in the right part of
Fig. 2 are presented. The minimal model to reproduce Fermi

FIG. 2. (Color online) 2D tight-binding model of the (100) ori-
ented S/I/Sp junction.

surfaces in a FeBS is a two-orbital model consists of dxz and
dyz orbitals in iron [38]. There are four hopping parameters t1,
t2, t3, and t4 in this model, as shown in Fig. 2. The Fermi surface
of a FeBS in unfolded Brillouin zone is shown in Fig. 3(b).

For the pair potentials, the intraorbital s± and s++ models
are considered [39–41]. The hopping between the sites of a
single-orbital superconductor S and an insulator I is described
by parameters t and t ′, respectively. The hopping parameter
across the interface between S and I is described by γ and
that between I and dxz (dyz)-orbitals in Sp are described by
γ1 (γ2). Due to the necessity to take into account at least two
orbitals for correct description of the FeBS band structure, two
hopping parameters γ1 and γ2 should be introduced in orbital
space, which describe an interface between single-band and
two-band materials (instead of a single hopping parameter γ

at the interface between two single-band materials [42]). The
introduction of these two parameters provides a possibility
to match coherently wave functions (Green functions) at this
boundary and to describe the processes of interband scaterring
microscopically, as it was demonstrated in Refs. [23,24].
For simplicity, we assume that the lattice constants in S, I,
and Sp are equal. To calculate the Josephson current across
S/I/Sp junction, we should construct the Green’s functions of
the whole system (the Green’s functions in S, I regions are

1 0 1
1

0

1
1 0 1

1

0

1

kx

Π

k
y Π

1 0 1
1

0

1
1 0 1

1

0

1

kx

Π

k
y Π

(a) (b)

FIG. 3. (Color online) Fermi surfaces of the S/I/Sp junction with
a (100) oriented FeBS. (a) Fermi surface of a single-orbital s-wave
superconductor and (b) Fermi surface of a FeBS.
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presented in Sec. II A [Eqs. (3) and (5)]):

G{n},{j}(τ1,τ2) =
(

Gαα
{n},{j}(τ1,τ2) G

αβ

{n},{j}(τ1,τ2)

G
βα

{n},{j}(τ1,τ2) G
ββ

{n},{j}(τ1,τ2)

)
=

(
−〈Tτ c↑({n},τ1)c+

↑ ({j},τ2)〉 −〈Tτ c↑({n},τ1)d+
↑ ({j},τ2)〉

−〈Tτd↑({n},τ1)c+
↑ ({j},τ2)〉 −〈Tτd↑({n},τ1)d+

↑ ({j},τ2)〉

)
,

F{n},{j}(τ1,τ2) =
(

Fαα
{n},{j}(τ1,τ2) F

αβ

{n},{j}(τ1,τ2)

F
βα

{n},{j}(τ1,τ2) F
ββ

{n},{j}(τ1,τ2)

)
=

(
〈Tτ c

+
↓ ({n},τ1)c+

↑ ({j},τ2)〉 〈Tτ c
+
↓ ({n},τ1)d+

↑ ({j},τ2)〉
〈Tτd

+
↓ ({n},τ1)c+

↑ ({j},τ2)〉 〈Tτd
+
↓ ({n},τ1)d+

↑ ({j},τ2)〉

)
,

(12)

G̃{n},{j}(τ1,τ2) =
(

G̃αα
{n},{j}(τ1,τ2) G̃

αβ

{n},{j}(τ1,τ2)

G̃
βα

{n},{j}(τ1,τ2) G̃
ββ

{n},{j}(τ1,τ2)

)
=

(
−〈Tτ c

+
↓ ({n},τ1)c↓({j},τ2)〉 −〈Tτ c

+
↓ ({n},τ1)d↓({j},τ2)〉

−〈Tτd
+
↓ ({n},τ1)c↓({j},τ2)〉 −〈Tτd

+
↓ ({n},τ1)d↓({j},τ2)〉

)
,

F̃{n},{j}(τ1,τ2) =
(

F̃ αα
{n},{j}(τ1,τ2) F̃

αβ

{n},{j}(τ1,τ2)

F̃
βα

{n},{j}(τ1,τ2) F̃
ββ

{n},{j}(τ1,τ2)

)
=

(〈Tτ c↑({n},τ1)c↓({j},τ2)〉 〈Tτ c↑({n},τ1)d↓({j},τ2)〉
〈Tτd↑({n},τ1)c↓({j},τ2)〉 〈Tτd↑({n},τ1)d↓({j},τ2)〉

)
,

where c+
σ ({n},τi)(cσ ({n},τi)) and d+

σ ({n},τi)(dσ ({n},τi)) are creation (annihilation) operators for the dxz and dyz orbitals with
spin σ at {n} = (nx,ny), respectively. Tτ is the imaginary time ordering operator. Superscript α(β) corresponds to the dxz(dyz)
orbital, respectively. Differentiating the Green’s functions (12) with respect to τ1, expanding them in Fourier series and using a
Hamiltonian for the 2D two-orbital model of a FeBS [43], one can obtain the following Gorkov’s equations:

(iω − μ)Gαα,ω
{n},{j} −

∑
{l}

tαα
{n},{l}G

αα,ω
{l},{j} −

∑
{l}

t
αβ

{n},{l}G
αβ,ω

{l},{j} +
∑
{l}

�{n},{l}F
αα,ω
{l},{j} = δ{n},{j},

(iω − μ)Gαβ,ω

{n},{j} −
∑
{l}

t
ββ

{n},{l}G
αβ,ω

{l},{j} −
∑
{l}

t
βα

{n},{l}G
αα,ω
{l},{j} +

∑
{l}

�{n},{l}F
αβ,ω

{l},{j} = 0,

(iω + μ)Fαα,ω
{n},{j} +

∑
{l}

tαα
{n},{l}F

αα,ω
{l},{j} +

∑
{l}

t
αβ

{n},{l}F
αβ,ω

{l},{j} +
∑
{l}

�∗
{n},{l}G

αα,ω
{l},{j} = 0,

(iω + μ)Fαβ,ω

{n},{j} +
∑
{l}

t
ββ

{n},{l}F
αβ,ω

{l},{j} +
∑
{l}

t
βα

{n},{l}F
αα,ω
{l},{j} +

∑
{l}

�∗
{n},{l}G

αβ,ω

{l},{j} = 0,

(13)
(iω − μ)Gββ,ω

{n},{j} −
∑
{l}

t
ββ

{n},{l}G
ββ,ω

{l},{j} −
∑
{l}

t
βα

{n},{l}G
βα,ω

{l},{j} +
∑
{l}

�{n},{l}F
ββ,ω

{l},{j} = δ{n},{j},

(iω − μ)Gβα,ω

{n},{j} −
∑
{l}

tαα
{n},{l}G

βα,ω

{l},{j} −
∑
{l}

t
αβ

{n},{l}G
ββ,ω

{l},{j} +
∑
{l}

�{n},{l}F
βα,ω

{l},{j} = 0,

(iω + μ)Fββ,ω

{n},{j} +
∑
{l}

t
ββ

{n},{l}F
ββ,ω

{l},{j} +
∑
{l}

t
βα

{n},{l}F
βα,ω

{l},{j} +
∑
{l}

�∗
{n},{l}G

ββ,ω

{l},{j} = 0,

(iω + μ)Fβα,ω

{n},{j} +
∑
{l}

tαα
{n},{l}F

βα,ω

{l},{j} +
∑
{l}

t
αβ

{n},{l}F
ββ,ω

{l},{j} +
∑
{l}

�∗
{n},{l}G

βα,ω

{l},{j} = 0.

Here, tαα
{n},{l}(t

ββ

{n},{l}) are the intraorbital hopping parameters for dxz(dyz) orbital. tαβ

{n},{l}(t
βα

{n},{l}) are the interorbital hopping parameters
between the different orbitals, which have the following form:

tαα
{nx,ny },{lx ,ly } = t1 for lx = nx ± 1, ly = ny,

tαα
{nx,ny },{lx ,ly } = t2 for lx = nx, ly = ny ± 1,

tαα
{nx,ny },{lx ,ly } = t3 for lx = nx ± 1, ly = ny ± 1,

tαα
{nx,ny },{lx ,ly } = 0 for the other conditions on the variables lx,nx,ly,ny ;

t
ββ

{nx,ny },{lx ,ly } = t2 for lx = nx ± 1, ly = ny,

t
ββ

{nx,ny },{lx ,ly } = t1 for lx = nx,ly = ny ± 1,

t
ββ

{nx,ny },{lx ,ly } = t3 for lx = nx ± 1, ly = ny ± 1,

t
ββ

{nx,ny },{lx ,ly } = 0 for the other conditions on the variables lx,nx,ly,ny ;

t
αβ

{nx,ny },{lx ,ly } = t
βα

{nx,ny },{lx ,ly } = t4 for lx = nx ± 1, ly = ny ± 1,

t
αβ

{nx,ny },{lx ,ly } = t
βα

{nx,ny },{lx ,ly } = 0 for the other conditions on the variables lx,nx,ly,ny.
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In a similar way, one can obtain the other Green’s functions G̃
αα,ω
{n},{j},G̃

αβ,ω

{n},{j},G̃
βα,ω

{n},{j},G̃
ββ,ω

{n},{j} and F̃
αα,ω
{n},{j},F̃

αβ,ω

{n},{j},F̃
βα,ω

{n},{j} and

F̃
ββ,ω

{n},{j}.
Placing the source terms δ{n},{j} in Eqs. (2) and (13) into the insulating region I, one can see from Eq. (13) that the four upper

and four lower equations (13) coincide, with G
βα,ω

{n},{j}G
ββ,ω

{n},{j}, F
βα,ω

{n},{j}, and F
ββ,ω

{n},{j} corresponding to G
αα,ω
{n},{j}, G

αβ,ω

{n},{j}, F
αα,ω
{n},{j}, and

F
αβ,ω

{n},{j}, respectively. Therefore, in order to calculate the Josephson current across this S/I/Sp junction, it is enough to solve only
either the first four or the last four equations in (13).

Solving the first four Gorkov’s equations (13), we obtain the Green’s functions in the quasiclassical approximation (�p �
μ,t1,t2,t3,t4):⎛⎜⎜⎜⎝

G
αα,ω
{n},{j}

G
αβ,ω

{n},{j}
F

αα,ω
{n},{j}

F
αβ,ω

{n},{j}

⎞⎟⎟⎟⎠ = a1

⎛⎜⎜⎜⎝
u0(−kF1 )
v0(−kF1 )

u0(−kF1 )β(1)
p (E,�(−kF1 ,ky))

v0(−kF1 )β(1)
p (E,�(−kF1 ,ky))

⎞⎟⎟⎟⎠ e−ikF1 nx+ikyny + a2

⎛⎜⎜⎜⎝
u0(kF1 )
v0(kF1 )

u0(kF1 )β̃(1)
p (E,�(kF1 ,ky))

v0(kF1 )β̃(1)
p (E,�(kF1 ,ky))

⎞⎟⎟⎟⎠ eikF1 nx+ikyny

+ a3

⎛⎜⎜⎜⎝
u0(−kF2 )
v0(−kF2 )

u0(−kF2 )β(2)
p (E,�(−kF2 ,ky))

v0(−kF2 )β(2)
p (E,�(−kF2 ,ky))

⎞⎟⎟⎟⎠ e−ikF2 nx+ikyny + a4

⎛⎜⎜⎜⎝
u0(kF2 )
v0(kF2 )

u0(kF2 )β̃(2)
p (E,�(kF2 ,ky))

v0(kF2 )β̃(2)
p (E,�(kF2 ,ky))

⎞⎟⎟⎟⎠ eikF2 nx+ikyny , (14)

where (
u0(kx,ky)
v0(kx,ky)

)
=

(
1

−ξxx(kFi
)/ξxy(kFi

)

)
(15)

and

β1(2)
p = ieiϕ

|�p(−kF1(2),ky)|√
ω2 + |�p(−kF1(2),ky)|2 + ω

, β̃1(2)
p = −ieiϕ

|�p(kF1(2),ky)|√
ω2 + |�p(kF1(2),ky)|2 − ω

. (16)

Here, ξxx = 2t1 cos(kx) + 2t2 cos(ky) + μ and ξxy = 4t4 sin(kx) sin(ky) are the dispersion relation of the dxz orbital and
hybridization terms, respectively, μ is a chemical potential, and kF1(2) is the momentum within the first (second) band in a

FeBS. In a similar way, one can obtain the expressions for the Green’s functions G̃
αα,ω
{n},{j},G̃

αβ,ω

{n},{j} and F̃
αα,ω
{n},{j},F̃

αβ,ω

{n},{j}.
To build the Green’s function of the whole S/I/Sp junction, one should match Green’s functions in S, I, and Sp regions

[Eqs. (3), (5), and (14)] at both S/I and I/Sp interfaces. The boundary conditions for the Green’s functions in the tight-binding
approximation can be found in a similar way as in Refs. [23,24]. Due to the translational invariance of the structure in the direction
parallel to the interface, the ky component of the momentum is conserved. Further, due to the translational invariance of the
considered structure, the subscript with index (y) corresponding to the coordinate along the boundary is omitted. Thus boundary
conditions at the S/I boundary have the form given in Eq. (6). At the I/Sp interface, the boundary conditions have the following
form [23,24]:

t1G
αα,ω
N,j + 2t3 cos kyG

αα,ω
N,j + 2it4 sin kyG

αβ,ω

N,j = γ1G
ω,I
N,j , t1F

αα,ω
N,j + 2t3 cos kyF

αα,ω
N,j + 2it4 sin kyF

αβ,ω

N,j = γ1F
ω,I
N,j ,

t2G
αβ,ω

N,j + 2t3 cos kyG
αβ,ω

N,j + 2it4 sin kyG
αα,ω
N,j = γ2G

ω,I
N,j , t2F

αβ,ω

N,j + 2t3 cos kyF
αβ,ω

N,j + 2it4 sin kyF
αα,ω
N,j = γ2F

ω,I
N,j , (17)

γ1G
αα,ω
N+1,j + γ2G

αβ,ω

N+1,j = t ′Gω,I
N+1,j , γ1F

αα,ω
N+1,j + γ2F

αβ,ω

N+1,j = t ′Fω,I
N+1,j .

A general expression for the Josephson current has the form

I = eT t ′L′

2iπ�

∫ ∑
ω

(
GI

j,j+1 − GI
j+1,j + G̃I

j,j+1 − G̃I
j+1,j

)
dky, (18)

where t ′ is the hopping parameter inside the insulating region (see Fig. 2) and L′ = L/a, L is the width of the junction.

B. 3D model of the S/I/S p Josephson junction along c-axis of FeBS

Now we consider Josephson current across an S/I/Sp junction parallel to the c axis of FeBS.
In Fig. 4, a single-orbital s-wave superconductor S/insulator (I)/FeBS(Sp) junction along the z direction is shown. For the 3D

tight-binding model of FeBS, the hopping parameter tz between the same orbitals on the nearest neighbor sites in the z direction
should be taken into account in addition to the hopping parameters t1,t2,t3,t4 in the x-y plane. The existence of this hopping tz
leads to light warping of cylindrical Fermi surface sheets in the z direction. The main property of the excitation spectrum of an
FeBS as a function of kz is that for each fixed value of k|| = (kx,ky) only one band crosses the Fermi level. This means that for
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each value of k|| only one of the bands contributes to the electronic transport. In Fig. 4, γ , γ1z, and γ2z are hopping parameters
across the S/I and I/Sp interfaces, respectively.

For the calculation of the Josephson current across the S/I/Sp junction along the z axis of FeBS, one can define the temperature
Green’s function of FeBS in the same way as in Eq. (12). One can obtain the same set of Gorkov’s equations like (13) as in the
previously considered case of the Josephson transport in the x-y plane of an FeBS, but with a different definition of the hopping
parameters: t11

{n},{l},t
22
{n},{l},t

12
{n},{j},t

21
{n},{j}:

t
(11)
{nx,ny ,nz},{lx ,ly , lz} = t1 for lx = nx ± 1, ly = ny,lz = nz,

t
(11)
{nx,ny ,nz},{lx ,ly ,lz} = t2 for lx = nx, ly = ny ± 1, lz = nz,

t
(11)
{nx,ny ,nz},{lx , ly ,lz} = t3 for lx = nx ± 1, ly = ny ± 1, lz = nz,

t
(11)
{nx,ny ,nz},{lx ,ly , lz} = tz for lx = nx, ly = ny, lz = nz ± 1,

t
(11)
{nx,ny ,nz},{lx ,ly } = 0 for the other conditions on the variableslx,nx,ly,ny,lz,nz;

t
(22)
{nx,ny ,nz},{lx ,ly ,lz} = t2 for lx = nx ± 1, ly = ny, lz = nz,

t
(22)
{nx, ny ,nz},{lx ,ly ,lz} = t1 forlx = nx, ly = ny ± 1, lz = nz,

t
(22)
{nx,ny ,nz},{lx , ly ,lz} = t3 for lx = nx ± 1, ly = ny ± 1, lz = nz,

t
(22)
{nx, ny ,nz},{lx ,ly ,lz} = tz forlx = nx,ly = ny,lz = nz ± 1,

t
(11)
{nx,ny ,nz},{lx ,ly } = 0 for the other conditions on the variables lx,nx,ly,ny,lz,nz;

t
(12)
{nx,ny ,nz},{lx ,ly ,lz} = t

(21)
{nx,ny },{lx ,ly } = t4 for lx = nx ± 1, ly = ny ± 1, lz = nz,

t
(12)
{nx,ny ,nz},{lx ,ly ,lz} = t

(21)
{nx,ny },{lx ,ly } = 0 for the other conditions on the variables lx,nx,ly,ny,lz,nz.

Solving Gorkov’s equations for this 3D model of an
FeBS, one can obtain the Green’s function in the Sp re-
gion, which has the same form as Eq. (14) in the case
of the 2D model of an FeBS, but with another defi-
nition of the dispersion relation of the dxz orbital ξxx

in Eq. (15): ξxx = 2t1 cos(kx) + 2t2 cos(ky) + 2tz cos(kz) + μ.
As a result, one can obtain the expressions for the compo-
nents of Green’s functions G̃

αα,ω
{n},{j},G̃

αβ,ω

{n},{j},G̃
βα,ω

{n},{j},G̃
ββ,ω

{n},{j} and

F̃
αα,ω
{n},{j},F̃

αβ,ω

{n},{j},F̃
βα,ω

{n},{j},F̃
ββ,ω

{n},{j} for the 3D model of an FeBS.
The Green’s functions for S and I regions can be found in a
similar way as in Sec. II A.

FIG. 4. (Color online) 3D tight-binding model for an S/I/Sp

junction along the z axis. t ′, t , and tz are hopping integrals along
the z axis in S, I, and Sp , respectively. γ is the hopping integral at the
S/I boundary. γ1z and γ2z are hopping parameters between I and Sp

for xz and yz orbitals, respectively.

The boundary conditions for Green’s functions in the
tight-binding approximation for transport along the z axes
can be found in a similar way [23,24] as in Sec. III A and
they have a simpler form than in the case of transport in the
x-y plane. Due to the translational invariance of the structure
in the direction parallel to the interface, the k|| = (kx,ky)
component of the momentum is conserved. Further, due to the
translational invariance of considered structure the subscripts
with indices (x,y) corresponding to the coordinate of an atom
in a direction parallel to the boundary is omitted. Thus the
boundary conditions at the S/I boundary coincide with Eq. (6).
For the I/Sp boundary we obtain the following boundary con-
ditions in the z direction in the quasiclassical approximation
(�0,�p,�′

p � μI ,μ,μN,t,t ′,t1,t2,t3,t4,tz) [23,24]:

tzG
αα
N+1,j = γ1zG

I
N+1,j , tzF

αα
1,j = γ1zF

I
N+1,j ,

tzG
αβ

N+1,j = γ2zG
I
N+1,j , tzF

αβ

N+1,j = γ2zF
I
N+1,j , (19)

γ1zG
αα
N,j + γ2zG

αβ

N,j = tGI
N,j , γ1zF

αα
N,j + γ2zF

αβ

N,j = tF I
N,j .

The Josephson current across an S/I/Sp junction is described
by the sum over all possible values of k|| of Eq. (18), where ky

should be replaced by k|| = (kx,ky).

IV. NUMERICAL RESULTS

In this section, we present the results of numerical cal-
culations of the Josephson current across an S/I/Sp junction.
We calculate the averaged Josephson current by summing all
possible k|| for two models of pairing symmetry in an FeBs: the
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s± model with an order parameter � = 4�p cos kx cos ky with
�p = 0.008 eV and the s++ model with an order parameter
� = 2�p(cos kx + cos ky) + �′

p with �p = 0.001 eV and
�′

p = 0.0042 eV. We choose �0 = 0.002 eV as the pair
potential in S.

There is a number of factors that influence the Josephson
current averaged over k||. (1) The sensitivity of the Josephson
current to the values of the hopping parameters at the I/Sp

interface γ1 and γ2. (2). The influence of the Fermi surface size
of an s-wave superconductor: the Josephson current strongly
depends on the values of k||, therefore, variation of the size of
the Fermi surface in S leads to changes of relative contributions
to the averaged Josephson current from regions with different
k||. (3). Influence of the length of an insulating layer: increasing
this length leads to the suppression of the contributions from
large k|| to the averaged Josephson current.

A. Current-phase relation in S/I/S p junctions

First, we present the results of numerical calculations of
the current-phase relation (CPR) in (100) oriented S/I/Sp

Josephson junctions, when the charge transport occurs in
the x-y planes of FeBS. We choose the normal excitation
spectrum in S in the form εN = 2t(cos kx + cos ky) + μN ,
where t = −0.3 and μN = 0.05 in order to provide a large
size of the Fermi surface in S. Consequently, areas with
large ky in FeBS contribute to the current (Fig. 3). We
use the following values of the hopping parameters and
chemical potential in FeBS: t1 = −0.1051 eV, t2 = 0.1472 eV,
t3 = −0.1909 eV, t4 = −0.0874 eV, and μ = −0.081 eV,
according to Ref. [43], and we consider a relatively low
temperature T/T s

c ≈ 0.02, where T s
c is the critical temperature

of the conventional s-wave superconductor. In the insulating
region, we choose the normal excitation spectrum in the form
of εI = 2t ′(cos kx + cos ky) + μI with a hopping parameter
t ′ = −0.3 eV and chemical potential μI = 1.2 eV.

The CPR for a direct S/I/Sp contact is depicted in Fig. 5, for
hopping parameters across this boundary γ1 = 0.02 and γ2 =
0.2. Here the solid line corresponds to the total Josephson
current, the dotted line corresponds to the Josephson current
averaged over ky < π/2 (over the values of ky belonging to
the hole and electron pockets of FeBS near (kx,ky) = (0,0) and
(±π,0), respectively [Fig. 3(a)]), while the line with crosses
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I/I
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φ /π
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0,
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-0.4 0 0.4   0.8 -0.8

φ /π
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FIG. 5. The CPR for the (100) oriented S/I/Sp junction for
γ1 = 0.02,γ2 = 0.2, and T/T s

c ≈ 0.02. The solid line corresponds
to the total Josephson current and the dotted line corresponds to
the contribution from |ky | < π/2. The line with crosses shows the
contribution from |ky | > π/2. I0 = e�0L

′/2π�. (a) corresponds to
the direct contact and (b) corresponds to N = 3 atomic layers in the
insulating region.
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FIG. 6. The same as in Fig. 5, but γ1 = 0.02 and γ2 = 0.3.

corresponds to the Josephson current averaged over ky > π/2
(the values of ky belonging to the electron and hole pockets
of a FeBS near (kx,ky) = (0,π ) and (±π,π ) [Fig. 3(a)]. The
contributions to the Josephson current from small ky contribute
to the π coupling, while the contributions from large values of
ky to 0 contact. However, the sum of these two contributions
leads to the formation of a π contact. An increase of the length
of an insulating barrier up to N = 3 atomic layers leads to
the suppression of the contributions to the averaged Josephson
current from large values of ky , therefore the contribution from
small values of ky dominates and the contact remains in the
π -state for the finite length of an insulator [see Fig. 5(b)].

Figure 6(a) shows the CPR averaged over ky for a
direct S/I/Sp contact for another parameter set γ2 (γ1 =
0.02 and γ2 = 0.3). For these values of hopping parameters the
CPR is characterized by a stable equilibrium phase 0 < φ < π ,
i.e., φ contact is realized. Increasing the length of an insulator
up to N = 3 leads to suppression of the contributions to the
averaged Josephson current from regions with large values of
ky and the π state is realized [Fig. 6(b)].

The CPR averaged over ky for a direct S/I/Sp contact is
depicted in Fig. 7(a) for γ1 = 0.02 and γ2 = 0.4. In this case,
the contribution from large ky values to the total averaged
Josephson current prevails, hence the CPR is characterized
by the stable equilibrium state at phase difference φ = 0 (0
contact). However, an increase of the length of an insulator up
to N = 3 atomic layers leads to the suppression of the large ky

contributions to the averaged current and to the transition to a
π state [Fig. 7(b)].

Finally, for the parameter set γ1 = 0.2 and γ2 = 0.02, the
CPR of the direct S/I/Sp contact is shown in Fig. 8(a). In this
case, the opposite situation in comparison with the previous
cases (Figs. 5–7) is realized, since here the contributions to
the averaged current from small ky lead to the appearance of
0 contact, while the contributions from large ky to π contact.
However, for N = 0, as in the case shown in Fig. 5(a), the
sum of these contributions leads to the appearance of the
resulting π contact, because the contribution from regions with

 0I/I
0

φ/π

(a)
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FIG. 7. The same as in Fig. 5, but γ1 = 0.02 and γ2 = 0.4.
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FIG. 8. The same as in Fig. 5, but γ1 = 0.2 and γ2 = 0.02.

large values of ky dominates over that with small ky . With an
increase of the length of an insulator up to N = 3 layers, the
contribution from large ky is suppressed and the junction goes
in 0 state [Fig. 8(b)].

In the case of s++ pairing symmetry in FeBS, the order
parameter has equal signs on each Fermi surface pocket
[Fig. 3(a)]. Hence, for each value of ky and for any set of
hopping amplitudes across the I/Sp interface γ1 and γ2, we
always obtain 0 contact. So, after averaging over all possible
values of ky , this S/I/Sp junction has an equilibrium phase that
is equal to zero. Increasing the length of an insulating layer
leads to the suppression of the contributions to the averaged
current from large values of ky , but the junction still remains
in 0 state.

Let us summarize the obtained results for an S/I/Sp junction
along (100) direction. In the case of s++ pairing symmetry in
Sp, the junction is in 0 junction only. On the other hand, in
the case of the s± symmetry, changing the interface hopping
parameters, the size of the Fermi surface in the s-wave
superconductor, and the insulating barrier length, we can
obtain 0, π , or φ junctions. In the latter case, an important
feature of the S/I/Sp junction is the existence of a large second
harmonic in CPR in a broad parameter range, as illustrated
in Fig. 9. The physical origin of a large second harmonic
is related to interband interference effects in the s± pairing
state. These effects manifest themselves in the formation of
additional current-carrying surface bound states.

FIG. 9. (Color online) The ratio of the second and the first
harmonics of the CPR for the (100) oriented S/I/Sp Josephson junction
for the direct contact case as a function of hopping parameters across
the boundary.
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FIG. 10. The CPR of the S/I/Sp Josephson junction with transport
in z direction for (a) the direct contact I/Sp and (b) N = 3 layers of
an insulator atoms.

Next, we present the results of calculations of CPR in
an S/I/Sp junction along the z axis using the tight-binding
Green’s functions obtained in Sec. III B. We assume that
the normal excitation spectrum in S has the form εN =
2t(cos kx + cos ky + cos kz) + μN with a hopping parameter
t = −0.3 eV and a chemical potential μN = 0.6 eV. For the
chosen values of hopping parameters and chemical potential
the size of the Fermi surface in S is sufficiently large and
both electronic and hole pockets in FeBS contribute to the
Josephson current. We choose hopping tz = −0.1 eV between
the same orbitals on the nearest neighbor sites of FeBS along
z axis. We assume that the S/I interface is fully transparent
and the I/Sp interface is characterized by the following set
of hopping amplitudes: γ1z = γ2z = 0.17. As in the previous
case, we consider the low temperature regime: T/T s

c ≈ 0.02.
In contrast to the case of (100) oriented S/I/Sp junction, only
one of the FeBS bands contributes to the Josephson current at
each fixed k|| = (kx,ky) for transport in the z direction.

The CPR of S/I/Sp junction along the z-direction averaged
over k|| = (kx,ky) are plotted in Fig. 10 for the direct contact
(a) and for the case of N = 3 insulating layers (b). In the
direct contact, the main contribution to the total Josephson
current stems from electronic pockets. The S/I/Sp Josephson
junction has a ground state at π phase difference [Fig. 10(a)].
In the presence of the insulating barrier, the main contribution
to the Josephson current stems from hole pockets due to the
suppression of the contributions from the regions with large
k|| to the total current. As a result, the junction has a ground
state at zero phase difference [Fig. 10(b)].

Modern microfabrication techniques make it possible to
create a dc SQUID loop with two different types of junctions,
transparent and insulating one, attached to a c-oriented
FeBS. Observation of π -phase shift in such device could
provide crucial evidence for the s± symmetry in FeBS. Such
experimental setup has been proposed recently in Ref. [28]. An
important feature of a c-oriented S/I/Sp Josephson junction is
the significant suppression of the magnitude of the Josephson
current in the case of a long insulating layer [Fig. 10(b)]
compared to the direct contact [Fig. 10(a)]. The suppression
of the Josephson current was observed in recent Josephson
tunneling experiments in FeBS [44].

B. Temperature dependencies of the Josephson critical current
in S/I/S p junctions

Temperature dependencies of the Josephson critical current
in S/I/Sp junctions were calculated in the framework of the
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FIG. 11. The temperature dependence of the maximum Joseph-
son current of the (100) oriented S/I/Sp junction for zero misorien-
tation angle with respect to the interface. The solid line corresponds
to the direct contact and the line with crosses corresponds to N = 3
insulator layers. The dashed line corresponds to the Ambegaokar-
Baratoff temperature dependence of the maximum Josephson current
in a conventional S/I/S junction; (a) γ1 = 0.02,γ2 = 0.2; (b) γ1 =
0.02,γ2 = 0.3; (c) γ1 = 0.02,γ2 = 0.4; and (d) γ1 = 0.2,γ2 = 0.02.

developed tight-binding Green’s function approach. To search
for manifestations of unconventional pairing symmetry in
FeBS, we considered the case of the s± pairing symmetry. The
results are shown in Fig. 11 for the following choice of hopping
parameters across the I/Sp interface: γ1 = 0.02,γ2 = 0.2 in
Fig. 11(a), γ1 = 0.02,γ2 = 0.3 in Fig. 11(b), γ1 = 0.02,γ2 =
0.4 in Fig. 11(c), and γ1 = 0.2,γ2 = 0.02 in Fig. 11(d).

The solid lines in Fig. 11 correspond to the direct contact,
the lines with crosses to the S/I/Sp junction with a thick
insulating layer, and the dotted lines show the Ambegaokar-
Baratoff [33] temperature dependence for the Josephson
critical current in a standard S/I/S junction. One can see from
Figs. 11(a)–11(d) that the Josephson current decreases with
temperature more slowly in the case of the S/I/Sp structure
with a long insulating layer compared to the S/I/S junction
in the whole considered parameter range. The behavior of
the critical current in S/I/Sp junctions with a direct contact
depends on the choice of the hopping parameters at the
I/Sp interface. The most significant difference compared to
the Ambegaokar-Baratoff temperature dependence occurs in
the case of γ1 = 0.02,γ2 = 0.3 [Fig. 11(b)]. This choice
of hopping parameters corresponds to the realization of a
nontrivial dependence of the Josephson current on the phase
difference in the ground state at φ (0 < φ < π ) [Fig. 6(a)].

Our calculations demonstrate that the temperature depen-
dencies of the Josephson critical current in z-axis S/I/Sp

junctions, both for the direct contact and for N = 3 insulating
layers, are quite close to each other. In both cases, Ic(T ) falls
down with temperature more slowly than in a standard S/I/S
tunnel junction.

V. EXPERIMENTAL RESULTS

The experiments were performed on Ba0.4K0.6(FeAs)2

single crystals with Tc ≈ 30 K. The samples were fabricated by

FIG. 12. (Color online) Normalized resistance R/R(300 K) of
the Ba0.4K0.6(FeAs)2 single crystals. (Upper inset) Zero-field cooled
magnetization measurement. (Lower inset) Phase diagram of
Ba1−xKx(FeAs)2 [45,46]. The blue symbol represents the samples
studied in this work. Tc has been determined from the magnetization
curve shown in the upper inset.

the self-flux method. Firstly, precursor materials (BaAs, KAs,
and Fe2As) were prepared by sintering elemental mixtures
at 400 ◦C,600 ◦C, and 700 ◦C, respectively. After a careful
weighing procedure, the starting precursors with a ratio of
KAs:BaAs:Fe2As =3.6:0.4:1 were loaded into an alumina
crucible and then sealed in a tantalum tube under 1 atm of
argon gas. By sealing the tube in an evacuated quartz tube, the
chemicals were subsequently heated up to 1050 ◦C and held
for 5 hours. Then the furnace was cooled down to 900 ◦C at a
rate of 3 ◦C/h and from 900 ◦C to 600 ◦C at 5 ◦C/h. Finally, the
power of the furnace was shut off, and the samples were ob-
tained by washing out the KAs flux. The EDS analysis showed
that the effective composition was Ba0.41K0.61Fe1.97As2, very
close to the nominal one. For this reason, we will keep referring
to the samples by using the nominal content. Figure 12 shows
the normalized resistance, R/R(300 K), from which it is
possible to notice that R(40 K)/R(300 K) ≈ 0.09, in very
good agreement with Ref. [45]. Moreover, since it has been
shown that the Ba1−xKx(FeAs)2 compounds are clean over the
whole doping range [45], we can exclude any significant effect
of scattering on the measured Josephson current. The lower
inset of Fig. 12 reports the phase diagram for the K-doped Ba
122 materials [45,46]. The point on the diagram representative
of the samples experimentally investigated in this work, shown
as a blue symbol, has been obtained from the magnetization
curve reported in the upper inset of Fig. 12 and matches very
well with the corresponding one of the phase diagram. Finally,
let us note that the samples studied here are far off the region
of coexistence of antiferromagnetism and superconductivity.
Hence possible effects related to such a coexistence cannot
play a role.

PbIn/Ba1−xKx(FeAs)2 point-contact Josephson junctions
were fabricated using Pb0.7In0.3 alloy (Tc ≈ 6.5 K, as de-
termined by the temperature at which the Josephson current
vanishes) as the counterelectrode. A sharpened tip was used
for injecting the current along the c axis, while a wedgelike
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FIG. 13. (Color online) Pb0.7In0.3/Ba0.4K0.6(FeAs)2 point-
contact junctions with current injection along the c axis. (a)
Normalized critical current as a function of the square root of the
power; (inset) subset of I -V curves at T = 1.76 K irradiated with
a 6.15-GHz rf frequency at different power levels. (b) Normalized
amplitude of step 1 vs (rf power)1/2; (inset) normalized amplitude of
step 2 vs (rf power)1/2.

one was employed for current injection along the ab plane.
The contacts were formed at low temperature by means of a
differential micrometer.

Reproducible, nonhysteretic RSJ-like I -V characteristics
were observed at low temperature. The junctions were then
irradiated with microwaves by using a monopole antenna
placed at the end of a semirigid coaxial cable. The occur-
rence of the Josephson effect was proved by the presence
of microwave-induced current steps at voltages multiple
of �ωrf/2e, where ωrf is the microwave frequency. Sub-
sequently, the power dependence of the current steps was
investigated.

Figure 13 shows the results obtained for a c-axis junction
whose IcRN product was about 12 μV. The inset of panel
(a) reports some of the I -V curves obtained at 1.76 K and
in the presence of an rf irradiation of 6.15 GHz at different
power levels. It can be seen that, as expected, the amplitude
of both the critical current and of the higher-order steps is
modulated by changing the power. Panel (a) (symbols) shows

the behavior of the critical current as a function of the square
root of the power while panel (b) and the inset of panel (b)
(symbols) report the amplitudes of step 1 and 2, respectively.
All the steps were normalized by the low-temperature critical
current.

To describe the junction under microwave irradiation, the
RSJ model is extended to the nonautonomous case with
an rf current-source term [47]. For the results of Fig. 13,
the model has been calculated supposing I = Ic sin(ϕ) as
the current-phase relation and by using the parameter � =
�ωrf/2eIcRN = 1, as imposed by the experiment. Then, since
the actual microwave power coupling with the junction is
unknown, a scaling parameter for the power was used to
fit the data, as it is usual in these cases [48]. The lines
in panel (a), (b), and the inset of panel (b) are the results
of the calculations. It is worth noticing that the scaling
parameter for the power is of course the same for all the
current steps shown. It can be clearly seen that the agreement
between the model and the experimental results is very good.
This agrees also well with what is shown in Fig. 10(a),
where a dominant sin(ϕ) component has been predicted for
the current-phase relation along the z direction in a direct
contact.

Figure 14 shows a typical result obtained for current
injection along the ab plane. The inset of panel (a) reports a
subset of I -V curves measured at 1.8 K and under a microwave
irradiation of 3.37 GHz at different power levels. The IcRN

product for the nonirradiated curve was approximately 15 μV.
The irradiated curves show the occurrence of current-induced
steps at voltages n�ωrf/2e, where n is an integer, but also at
(n/2)�ωrf/2e, indicating the presence of a second-harmonic
component in the current-phase relation. Also in this case
the amplitude of the steps oscillates with increasing rf
power.

Panel (a), (b), and the inset of panel (b) report this behavior
as a function of the square root of the rf power of the amplitude
of the critical current, of step 1, and of step 1/2, respectively
(symbols). The data were compared to the nonautonomous
case with � = 0.42, as determined by the experiment. The
equation was first solved with I = Ic sin(ϕ). The result is
shown in the figure as dashed lines. This solution clearly
fails in reproducing the data in amplitude but especially in
following the period of the steps oscillations. Besides, the
fractional steps are of course not obtained. Therefore a solution
of the model with I = Ic sin(2ϕ) has been calculated as well
and is shown as solid lines. In this case the fit, though not
perfect, is quite close to the actual experimental behavior,
especially for steps 0 and 1. Also in this case, for each
expression of I, only one fitting parameter has been used
for all the steps. The slight discrepancy between the model
with a pure second-harmonic component and the experimental
data suggests that the actual current-phase relation is not
exactly I = Ic sin(2ϕ) but most probably a mixing of the first
and second harmonic (see Fig. 9). The presence of a further
component in the current-phase relation can be inferred, for
example, by the incomplete suppression of the first minimum
of the supercurrent [panel (a)] and of the first step [panel
(b)] [49], as well as by the larger amplitude of the theoretical
step 1/2 in the inset of panel (b). Finally, it is worth recalling
that there may be, in principle, other reasons for the appearance
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FIG. 14. (Color online) Pb0.7In0.3/Ba0.4K0.6(FeAs)2 point-
contact junctions with current injection along the ab plane. (a)
Normalized critical current as a function of the square root of the
power; (inset) subset of I -V curves at T = 1.8 K irradiated with
a 3.37-GHz rf frequency at different power levels. (b) Normalized
amplitude of step 1 vs (rf power)1/2; (inset) normalized amplitude of
step 1/2 vs (rf power)1/2.

of subharmonic steps, but they can be excluded from playing
a role here [50–52]. Possible accidental nodes in K-doped
samples do not modify qualitatively the CPR of the Josephson
current because, as it was demonstrated in Ref. [9], CPR is
modified qualitatively only in the case of a sign-change of the
order parameter. Possible nodes in K-doped samples do not
imply sign-change of an order parameter.

These results indicate that a sin(2ϕ) component is highly
dominant in the CPR of junctions with current injection along
the ab plane. As shown in Fig. 9, this situation is predicted
for a broad range of values of the hopping parameters in case
of in-plane tunneling between a conventional superconductor
and a multiband superconductor with an s±-wave symmetry
of the order parameter. Indeed, as reported in more detail in
Sec. IV, a large second-harmonic component in the CPR can
occur as a consequence of interband interference effects within
the s±-wave model.

Therefore these experiments appear to be in good agree-
ment with the theoretical calculations of the Josephson current
presented here in case of an s±-wave symmetry of the order

parameter. However, direct measurements of the current-phase
relation are desirable, in order to catch finer details of the actual
current-phase relation.

VI. CONCLUSION

In this paper in the framework of a tight-binding model, we
have proposed a microscopic theory describing Josephson tun-
neling in junctions with unusual multiband superconductors.
Our theory takes into account not only the complex excitation
spectrum of these superconductors, their multiband Fermi
surface, interband and intervalley scattering at the boundaries,
but also anisotropy and possible sign-changing of the order
parameter in them. This theory has been applied to the calcu-
lation of the current-phase relation of the Josephson current
and the temperature dependence of the maximum Josephson
current of an FeBS/spin-singlet s-wave single-orbital super-
conductor junction for different orientations of the crystal
axes of FeBS by changing the length of the insulating layer.
We have investigated experimentally PbIn/Ba1−xKx(FeAs)2

point-contact Josephson junctions and based on our theory
have demonstrated that the s± scenario is more probable than
s++ in Ba1−xKx(FeAs)2. A largely dominant second-harmonic
component in the CPR has indeed been observed in the case
of current injection along the ab plane, as predicted by the
theory and shown in Fig. 9. We have demonstrated theoretically
that to measure the Josepshon current in the junction parallel
to c axis of FeBS allows to distinguish the s± wave from
s++ wave in FeBS. In the light of our theory, the recently
proposed experimental setup to determine the symmetry of
the order parameter in FeBS [28] has been confirmed to be
plausible. It is interesting to note that our proposed theoretical
scheme in the framework of a tight-binding model technique
can be used for calculations of the charge transport in structures
with different unconventional and complex superconductors,
such as other multiband superconductors [53], superconduc-
tors on topological insulators [54–56], and superconducting
topological insulators [15,57]. Also it is interesting to focus
on the properties of anomalous Green’s function in terms of
odd-frequency pairing [58] and its relevance to topological
edge states [59], since odd-frequency pairing and Majorana
fermions in a multiband system are current topics of inter-
est [54,60–63].
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